JP4279035B2 - Heat pump equipment - Google Patents

Heat pump equipment Download PDF

Info

Publication number
JP4279035B2
JP4279035B2 JP2003104732A JP2003104732A JP4279035B2 JP 4279035 B2 JP4279035 B2 JP 4279035B2 JP 2003104732 A JP2003104732 A JP 2003104732A JP 2003104732 A JP2003104732 A JP 2003104732A JP 4279035 B2 JP4279035 B2 JP 4279035B2
Authority
JP
Japan
Prior art keywords
heat exchanger
hot water
heat
expansion valve
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003104732A
Other languages
Japanese (ja)
Other versions
JP2004309044A (en
Inventor
吉継 西山
竹司 渡辺
昌宏 尾浜
啓次郎 國本
浩二 岡
誠一 安木
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003104732A priority Critical patent/JP4279035B2/en
Publication of JP2004309044A publication Critical patent/JP2004309044A/en
Application granted granted Critical
Publication of JP4279035B2 publication Critical patent/JP4279035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯用熱交換器と風呂用熱交換器を備えたヒートポンプ装置に関する。
【0002】
【従来の技術】
従来より、冷凍サイクルを用いたヒートポンプ式給湯機が提案されており、例えば冷凍サイクルを利用して給湯タンク内に温水を貯留するとともに、浴槽への給湯を行うものが提案されている(例えば特許文献1参照)。
【0003】
【特許文献1】
特許第3284905号公報
【0004】
【発明が解決しようとする課題】
しかし、上記従来技術は、風呂用熱交換器で一旦加熱した浴槽の温水、又は給湯用熱交換器で一旦加熱した給湯温水を利用することができない。
【0005】
そこで、本発明は、給湯用熱交換器に高温高圧の冷媒を流すことなく、風呂用熱交換器によって風呂の沸き上げや保温運転を行うことができるヒートポンプ装置を提供することを目的とする。
また本発明は、風呂用熱交換器によって加熱された浴槽温水の廃熱を回収して、給湯用熱交換器での加熱に利用することができるヒートポンプ装置を提供することを目的とする。
また本発明は、給湯用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができるヒートポンプ装置を提供することを目的とする。
また本発明は、給湯用熱交換器による貯湯運転と、風呂用熱交換器による風呂の沸き上げや保温運転を同時に行うことができるヒートポンプ装置を提供することを目的とする。
また本発明は、風呂用熱交換器による浴槽温水の廃熱と、熱源側熱交換器による例えば大気熱とを併用して給湯用熱交換器での加熱を行うことができるヒートポンプ装置を提供することを目的とする。
また本発明は、風呂用熱交換器に高温高圧の冷媒を流すことなく、給湯用熱交換器によって貯湯運転を行うことができるヒートポンプ装置を提供することを目的とする。
また本発明は、給湯用熱交換器によって貯湯された給湯温水を、風呂用熱交換器で加熱に利用することができるヒートポンプ装置を提供することを目的とする。
また本発明は、風呂用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができるヒートポンプ装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の本発明のヒートポンプ装置は、圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項2記載の本発明のヒートポンプ装置は、圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項3記載の本発明のヒートポンプ装置は、圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載のヒートポンプ装置において、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器及び前記熱源側熱交換器にて吸熱させる浴槽温水併用給湯加熱運転モードを有することを特徴とする。
請求項5記載の本発明のヒートポンプ装置は、圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器及び前記熱源側熱交換器にて吸熱させる浴槽温水併用給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項6記載の本発明のヒートポンプ装置は、圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる給湯温水単独利用風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項7記載の本発明のヒートポンプ装置は、圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる給湯温水単独利用風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項8記載の本発明のヒートポンプ装置は、圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる給湯温水単独利用風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項9記載の本発明は、請求項7又は請求項8に記載のヒートポンプ装置において、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器及び前記熱源側熱交換器にて吸熱させる貯湯温水併用風呂加熱運転モードを有することを特徴とする。
請求項10記載の本発明のヒートポンプ装置は、圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯加熱運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる貯湯温水単独利用風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器及び前記熱源側熱交換器にて吸熱させる貯湯温水併用風呂加熱運転モードと、前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とする。
請求項11記載の本発明は、請求項1から請求項3、又は請求項6から請求項8のいずれかに記載のヒートポンプ装置において、前記熱源側熱交換器の出口側配管に第3の開閉弁を設け、前記第2のバイパス管を流れる冷媒を前記熱源側熱交換器に流入させない構成としたことを特徴とする。
請求項12記載の本発明は、請求項1から請求項10のいずれかに記載のヒートポンプ装置において、前記給湯風呂加熱運転モード又は前記浴槽温水併用給湯加熱運転モードにおいて、前記風呂用熱交換器の利用側配管に接続された循環ポンプの運転を停止することを特徴とする。
請求項13記載の本発明は、請求項1から請求項10のいずれかに記載のヒートポンプ装置において、前記給湯風呂加熱運転モードにおいて、前記給湯用熱交換器の利用側配管に接続された循環ポンプの運転を停止することを特徴とする。
請求項14記載の本発明は、請求項4請求項5請求項9、及び請求項10のいずれかに記載のヒートポンプ装置において、前記浴槽温水併用給湯加熱運転モードにおいて、前記熱源側熱交換器に配置された送風ファンの運転を停止することを特徴とする。
【0007】
【発明の実施の形態】
本発明による第1の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、第1のバイパス管、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる風呂加熱運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、及び第2のバイパス管に順に流通させ、給湯用熱交換器にて放熱させ、風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器及び風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、給湯用熱交換器に高温高圧の冷媒を流すことなく、風呂用熱交換器によって風呂の沸き上げや保温運転を行うことができる。また本実施の形態によれば、風呂用熱交換器によって加熱された浴槽温水の廃熱を回収して、給湯用熱交換器での加熱に利用することができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第2の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、及び第2のバイパス管に順に流通させ、給湯用熱交換器にて放熱させ、風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、熱源側熱交換器にて放熱させる除霜運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器及び風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、風呂用熱交換器によって加熱された浴槽温水の廃熱を回収して、給湯用熱交換器での加熱に利用することができる。また本実施の形態によれば、給湯用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第3の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、第1のバイパス管、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる風呂加熱運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、及び第2のバイパス管に順に流通させ、給湯用熱交換器にて放熱させ、風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、熱源側熱交換器にて放熱させる除霜運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器及び風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、給湯用熱交換器に高温高圧の冷媒を流すことなく、風呂用熱交換器によって風呂の沸き上げや保温運転を行うことができる。また本実施の形態によれば、風呂用熱交換器によって加熱された浴槽温水の廃熱を回収して、給湯用熱交換器での加熱に利用することができる。また本実施の形態によれば、給湯用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第4の実施の形態は、第1から第3の実施の形態によるヒートポンプ装置において、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器にて放熱させ、風呂用熱交換器及び熱源側熱交換器にて吸熱させる浴槽温水併用給湯加熱運転モードを有するものである。本実施の形態によれば、風呂用熱交換器による浴槽温水の廃熱と、熱源側熱交換器による例えば大気熱とを併用して給湯用熱交換器での加熱を行うことができる。従って、外気温がさほど高くない場合には、浴槽温水の廃熱を有効に利用しながら大気熱を利用するため効率的な熱回収を行うことができる。
本発明による第5の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器及び風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる風呂加熱運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、及び第2のバイパス管に順に流通させ、給湯用熱交換器にて放熱させ、風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、圧縮機を吐出した冷媒を、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器にて放熱させ、風呂用熱交換器及び熱源側熱交換器にて吸熱させる浴槽温水併用給湯加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、熱源側熱交換器にて放熱させる除霜運転モードとを有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、給湯用熱交換器に高温高圧の冷媒を流すことなく、風呂用熱交換器によって風呂の沸き上げや保温運転を行うことができる。また本実施の形態によれば、風呂用熱交換器によって加熱された浴槽温水の廃熱を回収して、給湯用熱交換器での加熱に利用することができる。また本実施の形態によれば、給湯用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができる。また本実施の形態によれば、給湯用熱交換器による貯湯運転と、風呂用熱交換器による風呂の沸き上げや保温運転を同時に行うことができる。また本実施の形態によれば、風呂用熱交換器による浴槽温水の廃熱と、熱源側熱交換器による例えば大気熱とを併用して給湯用熱交換器での加熱を行うことができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第6の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、第1のバイパス管、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯加熱運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、及び第2のバイパス管に順に流通させ、風呂用熱交換器にて放熱させ、給湯用熱交換器にて吸熱させる給湯温水単独利用浴槽加熱運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器及び給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、風呂用熱交換器に高温高圧の冷媒を流すことなく、給湯用熱交換器によって貯湯運転を行うことができる。従って、風呂用熱交換器での無駄な放熱をなくすことができるとともに、浴槽水の硬度成分が風呂用熱交換器の伝熱面にスケールとして析出付着することを防止でき、スケールの付着による風呂用熱交換器の性能低下や流路の詰まりを防止することができる。また本実施の形態によれば、給湯用熱交換器によって貯湯された給湯温水を、風呂用熱交換器で加熱に利用することができる。従って、大気温度が低い場合には、例えば深夜時間帯に貯湯した温水を利用することで、効率的な風呂の沸き上げや保温運転を行うことができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第7の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、及び第2のバイパス管に順に流通させ、風呂用熱交換器にて放熱させ、給湯用熱交換器にて吸熱させる給湯温水単独利用浴槽加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、熱源側熱交換器にて放熱させる除霜運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器及び給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器によって貯湯された給湯温水を、風呂用熱交換器で加熱に利用することができる。従って、大気温度が低い場合には、例えば深夜時間帯に貯湯した温水を利用することで、効率的な風呂の沸き上げや保温運転を行うことができる。また本実施の形態によれば、風呂用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができる。また、除霜運転時に風呂用熱交換器に高温高圧の冷媒を流さないことで、浴槽水の硬度成分が風呂用熱交換器の伝熱面にスケールとして析出付着することを防止でき、スケールの付着による風呂用熱交換器の性能低下や流路の詰まりを防止することができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第8の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、第1のバイパス管、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯加熱運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、及び第2のバイパス管に順に流通させ、風呂用熱交換器にて放熱させ、給湯用熱交換器にて吸熱させる給湯温水単独利用浴槽加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、熱源側熱交換器にて放熱させる除霜運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器及び給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、を有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、風呂用熱交換器に高温高圧の冷媒を流すことなく、給湯用熱交換器によって貯湯運転を行うことができる。従って、風呂用熱交換器での無駄な放熱をなくすことができるとともに、浴槽水の硬度成分が風呂用熱交換器の伝熱面にスケールとして析出付着することを防止でき、スケールの付着による風呂用熱交換器の性能低下や流路の詰まりを防止することができる。また本実施の形態によれば、給湯用熱交換器によって貯湯された給湯温水を、風呂用熱交換器で加熱に利用することができる。従って、大気温度が低い場合には、例えば深夜時間帯に貯湯した温水を利用することで、効率的な風呂の沸き上げや保温運転を行うことができる。また本実施の形態によれば、風呂用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができる。また、除霜運転時に風呂用熱交換器に高温高圧の冷媒を流さないことで、浴槽水の硬度成分が風呂用熱交換器の伝熱面にスケールとして析出付着することを防止でき、スケールの付着による風呂用熱交換器の性能低下や流路の詰まりを防止することができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第9の実施の形態は、第7又は第8の実施の形態によるヒートポンプ装置において、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器にて放熱させ、給湯用熱交換器及び熱源側熱交換器にて吸熱させる貯湯温水併用浴槽加熱運転モードを有するものである。本実施の形態によれば、給湯用熱交換器によって貯湯された給湯温水と、熱源側熱交換器による例えば大気熱とを併用して風呂用熱交換器での加熱を行うことができる。従って、外気温がさほど高くない場合には、給湯温水を有効に利用しながら大気熱を利用するため効率的な熱回収を行うことができる。
本発明による第10の実施の形態によるヒートポンプ装置は、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器及び給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、給湯用熱交換器にて放熱させ、熱源側熱交換器にて吸熱させる給湯加熱運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、及び第2のバイパス管に順に流通させ、風呂用熱交換器にて放熱させ、給湯用熱交換器にて吸熱させる貯湯温水単独利用浴槽加熱運転モードと、圧縮機を吐出した冷媒を、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、風呂用熱交換器にて放熱させ、給湯用熱交換器及び熱源側熱交換器にて吸熱させる貯湯温水併用風呂加熱運転モードと、圧縮機を吐出した冷媒を、第1のバイパス管、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器に順に流通させ、熱源側熱交換器にて放熱させる除霜運転モードとを有し、冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、給湯風呂加熱運転モードでは、第1の膨張弁と第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、第1の膨張弁と第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、高圧側領域での冷媒量多くするものである。本実施の形態によれば、給湯用熱交換器と風呂用熱交換器とを備えたヒートポンプ装置において、風呂用熱交換器に高温高圧の冷媒を流すことなく、給湯用熱交換器によって貯湯運転を行うことができる。従って、風呂用熱交換器での無駄な放熱をなくすことができるとともに、浴槽水の硬度成分が風呂用熱交換器の伝熱面にスケールとして析出付着することを防止でき、スケールの付着による風呂用熱交換器の性能低下や流路の詰まりを防止することができる。また本実施の形態によれば、給湯用熱交換器によって貯湯された給湯温水を、風呂用熱交換器で加熱に利用することができる。従って、大気温度が低い場合には、例えば深夜時間帯に貯湯した温水を利用することで、効率的な風呂の沸き上げや保温運転を行うことができる。また本実施の形態によれば、風呂用熱交換器に高温高圧の冷媒を流すことなく、熱源側熱交換器に高温高圧の冷媒を導くことができるので、熱源側熱交換器の除霜を短時間で行うことができる。また、除霜運転時に風呂用熱交換器に高温高圧の冷媒を流さないことで、浴槽水の硬度成分が風呂用熱交換器の伝熱面にスケールとして析出付着することを防止でき、スケールの付着による風呂用熱交換器の性能低下や流路の詰まりを防止することができる。また本実施の形態によれば、給湯用熱交換器による貯湯運転と、風呂用熱交換器による風呂の沸き上げや保温運転を同時に行うことができる。また本実施の形態によれば、給湯用熱交換器によって貯湯された給湯温水と、熱源側熱交換器による例えば大気熱とを併用して風呂用熱交換器での加熱を行うことができる。従って、外気温がさほど高くない場合には、給湯温水を有効に利用しながら大気熱を利用するため効率的な熱回収を行うことができる。また、本実施の形態によれば、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
本発明による第11の実施の形態は、第1から第3、第6から第8の実施の形態によるヒートポンプ装置において、熱源側熱交換器の出口側配管に第3の開閉弁を設け、第2のバイパス管を流れる冷媒を熱源側熱交換器に流入させない構成としたものである。本実施の形態によれば、大気温度が第2のバイパス管を流れる冷媒温度よりも低い場合に、第2のバイパス管を流れる冷媒の一部が熱源側熱交換器に流入することを第3の開閉弁によって防ぐことができるので、循環する冷媒量が減少することによる加熱能力の低下を防止できる。
本発明による第12の実施の形態は、第1から第10の実施の形態によるヒートポンプ装置において、給湯風呂加熱運転モード又は浴槽温水併用給湯加熱運転モードで、風呂用熱交換器の利用側配管に接続された循環ポンプの運転を停止するものである。本実施の形態によれば、必要に応じて風呂用熱交換器の機能を停止することができ、風呂用熱交換器を使用しない状態でも運転モードを継続することができる。
本発明による第13の実施の形態は、第1から第10の実施の形態によるヒートポンプ装置において、給湯風呂加熱運転モードで、給湯用熱交換器の利用側配管に接続された循環ポンプの運転を停止するものである。本実施の形態によれば、必要に応じて給湯用熱交換器の機能を停止することができ、給湯用熱交換器を使用しない状態でも運転モードを継続することができる。
本発明による第14の実施の形態は、第4第5第9、又は第10の実施の形態によるヒートポンプ装置において、浴槽温水併用給湯加熱運転モードで、熱源側熱交換器に配置された送風ファンの運転を停止するものである。本実施の形態によれば、必要に応じて熱源側熱交換器の機能を停止することができ、熱源側熱交換器を使用しない状態でも運転モードを継続することができる。
【0008】
【実施例】
以下、本発明の一実施例によるヒートポンプ装置について図面を用いて説明する。
図1は、本実施例によるヒートポンプ装置の回路構成図である。
本実施例によるヒートポンプ装置は、圧縮機11、給湯用熱交換器12、第1の膨張弁21、風呂用熱交換器13、第2の膨張弁22、熱源側熱交換器14、及び開閉弁23を配管で順に環状に接続して冷凍サイクルを構成している。この冷凍サイクルには、圧縮機11の吐出側配管と風呂用熱交換器13の入口側配管とを接続して給湯用熱交換器12及び膨張弁21をバイパスする第1のバイパス管15と、風呂用熱交換器13の出口側配管と圧縮機11の吸入側配管とを接続して膨張弁22及び熱源側熱交換器14をバイパスする第2のバイパス管16とを有している。そして、第1のバイパス管15には開閉弁24を、第2のバイパス管16には開閉弁25を備えている。熱源側熱交換器14は送風ファン14aを備えている。
給湯用熱交換器12の利用側配管は、温水を貯留する給湯タンク31と、給湯タンク31の低温水を給湯用熱交換器12に導き、この給湯用熱交換器12で加熱した温水を給湯タンク31に戻すための循環ポンプ32とを備えた給湯回路33に接続されている。給湯タンク31の下部には給水配管34が接続され、給湯タンク31の上部には出湯配管35が接続されている。
一方、風呂用熱交換器13の利用側配管は、浴槽41と、この浴槽41の低温水を風呂用熱交換器13に導き、この風呂用熱交換器13で加熱した温水を浴槽41に戻すための循環ポンプ42とを備えた浴槽回路43に接続されている。
給湯タンク31には、サーミスタ等の温度検知手段で構成され、残湯量又はタンク内の沸き上げ温度を検出する給湯検知手段51が設けられている。また、浴槽回路43には、サーミスタ等の温度検知手段で構成され、浴槽41内の温度又は浴槽41から流出する浴槽水温度を検出する浴槽水検知手段52が設けられている。また、熱源側熱交換器14の近傍には、サーミスタ等の温度検知手段で構成され、熱源となる例えば大気温度を検出する熱源側温度検知手段53が設けられている。
【0009】
運転制御手段60は、給湯検知手段51、浴槽水検知手段52、及び熱源側温度検知手段53からの検出信号を入力し、膨張弁21、22の絞り量制御、循環ポンプ32、42の循環量制御、開閉弁23、24、25の開閉制御、及び圧縮機11の能力制御を行う。なお、図示はしないが、その他の入力手段として、圧縮機11の吐出側配管、給湯用熱交換器12の出口側配管、又は膨張弁21と膨張弁22との間の中間圧配管に、それぞれ温度検出手段54、55、56を設けることで、高圧制御による給湯用熱交換器12での能力制御、中間圧制御による風呂用熱交換器13での能力制御、圧縮機11での吐出圧力制御による安全制御を行うことが好ましい。
給湯用熱交換器12や風呂用熱交換器13の利用側配管側で高温水を得るためには、冷凍サイクルは、冷媒として二酸化炭素を用い、臨界圧を越える圧力で運転することが好ましい。
【0010】
以下に、本実施例によるヒートポンプ装置の各運転モードでの制御について説明する。
まず、2つの膨張弁21、22の基本的な制御について説明する。
冷媒として二酸化炭素を用い、臨界圧を越える圧力で運転する場合には、高圧圧力を適正に制御する必要がある。
膨張弁21と膨張弁22の間の圧力は、冷凍サイクルの高圧と低圧の間の中間圧力に保持され、冷媒の密度は、高圧側領域、中間圧側領域、低圧側領域と、減圧されていく過程において減少する。膨張弁21と膨張弁22の間に挟まれる冷媒回路(風呂用熱交換器13も含む)の空間は一定であるから、中間圧力の増減変化に伴い、中間圧側領域での冷媒量も変化する。従って、中間圧力を下げると中間圧側領域の冷媒量が減り、余剰となった冷媒は高圧側領域に移動する。また、中間圧力を上げると、中間圧側領域の冷媒量が増え、密度上昇に必要な冷媒は高圧側領域より移動する。このように、中間圧力の変化に伴い、高圧側領域での冷媒量が変化することとなるので、膨張弁21、22によって中間圧力を制御すると、高圧側領域での冷媒量を制御することができる。高圧側領域での冷媒量は、給湯水の沸き上げ温度の上昇に伴い、多くする必要がある。従って、給湯水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な給湯水の加熱運転を行うことができる。
なお、本実施例で示す中間圧力とは、所定の減圧幅を得るために設けた膨張弁21、22のような減圧手段を用いた強制的な減圧作用によって形成され、冷凍サイクル中で所定の値に保持、又は制御される圧力であり、熱交換器や配管の圧力損失で生じる圧力低下のことを指すものではない。
【0011】
次に給湯風呂加熱運転モードについて説明する。
給湯風呂加熱運転モードでは、圧縮機11を吐出した冷媒を、給湯用熱交換器12、第1の膨張弁21、風呂用熱交換器13、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、給湯用熱交換器12及び風呂用熱交換器13にて放熱させ、熱源側熱交換器14にて吸熱させる。
従って、運転制御手段60によって、開閉弁23は開とし、開閉弁24と開閉弁25は閉とする。
給湯用熱交換器12及び風呂用熱交換器13でのトータルな放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、又は送風ファン14aの回転数を増加させる。
給湯用熱交換器12での放熱量は、給湯検知手段51と温度検出手段54からの入力信号によって制御する。給湯検知手段51からの信号によって、十分な量又は温度の貯湯水を確保できた場合には、循環ポンプ32での能力を低下又は停止させる。
風呂用熱交換器13での放熱量は、浴槽水検知手段52と温度検出手段55からの入力信号によって制御する。浴槽水検知手段52からの信号によって、浴槽内の温度が所定の温度に近づき、又は所定の温度に達した場合には、循環ポンプ42での能力を低下又は停止させる。
例えば早期に浴槽41を沸き上げたい場合、又は早期に浴槽41を沸き上げたい場合で熱源側熱交換器14での吸熱量が少ない場合や給湯タンク31への給湯の必要性が少ない場合には、循環ポンプ32の能力を低下又は停止させることで給湯用熱交換器12での放熱量を低下させて、又は膨張弁21、22の開度を調整することで中間圧力を上昇させて、風呂用熱交換器13での放熱量を多くする。また、風呂用熱交換器13での放熱量を多くする場合には、循環ポンプ42の能力を高める。
【0012】
次に風呂加熱運転モードについて説明する。
風呂加熱運転モードでは、圧縮機11を吐出した冷媒を、第1のバイパス管15、風呂用熱交換器13、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、風呂用熱交換器13にて放熱させ、熱源側熱交換器14にて吸熱させる。
従って、運転制御手段60によって、開閉弁23は開とし、膨張弁21と開閉弁25は閉とする。また、循環ポンプ32を停止させる。
風呂用熱交換器13での放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、送風ファン14aの回転数を増加させ、又は循環ポンプ42の能力を高める。
風呂用熱交換器13での放熱量は、浴槽水検知手段52と温度検出手段55からの入力信号によって制御する。浴槽水検知手段52からの信号によって、浴槽内の温度が所定の温度に近づき、又は所定の温度に達した場合には、循環ポンプ42での能力を低下又は停止させる。
【0013】
次に浴槽温水単独利用給湯加熱運転モードについて説明する。
浴槽温水単独利用給湯加熱運転モードでは、圧縮機11を吐出した冷媒を、給湯用熱交換器12、第1の膨張弁21、風呂用熱交換器13、及び第2のバイパス管16に順に流通させ、給湯用熱交換器12にて放熱させ、風呂用熱交換器13にて吸熱させる。
従って、運転制御手段60によって、開閉弁25は開とし、開閉弁23、開閉弁24、及び膨張弁22は閉とする。
給湯用熱交換器12での放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、又は膨張弁21の絞り量を増加させる。
給湯用熱交換器12での放熱量は、給湯検知手段51と温度検出手段54からの入力信号によって制御する。給湯検知手段51からの信号によって、十分な量又は温度の貯湯水を確保できた場合には、循環ポンプ32での能力を低下又は停止させる。
風呂用熱交換器13での吸熱量は、浴槽水検知手段52と温度検出手段55からの入力信号によって制御する。浴槽水検知手段52からの信号によって、浴槽内の温度が低下した場合には、膨張弁21の絞り量を増加させる。また風呂用熱交換器13での吸熱量を増加させるには、循環ポンプ42での能力を高める。
浴槽温水単独利用給湯加熱運転モードの終了は、浴槽水検知手段52での検出温度と、熱源側温度検知手段53での検出温度との比較によって行うことができ、例えば浴槽水検知手段52での検出温度が熱源側温度検知手段53での検出温度を下回った場合に、継続して給湯タンク31への給湯が必要であれば、給湯風呂加熱運転モード又は浴槽温水併用給湯加熱運転モードに切り替えて運転を継続する。なお、この場合には、給湯風呂加熱運転モード又は浴槽温水併用給湯加熱運転モードとして冷媒を循環させるが、循環ポンプ42は停止した状態とする。
【0014】
次に浴槽温水併用給湯加熱運転モードについて説明する。
浴槽温水併用給湯加熱運転モードでは、圧縮機11を吐出した冷媒を、給湯用熱交換器12、第1の膨張弁21、風呂用熱交換器13、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、給湯用熱交換器12にて放熱させ、風呂用熱交換器13及び熱源側熱交換器14にて吸熱させる。
従って、運転制御手段60によって、開閉弁23は開とし、開閉弁24と開閉弁25は閉とする。
給湯用熱交換器12での放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、膨張弁21の絞り量を増加させ、送風ファン14aの回転数を増加させ、又は循環ポンプ42の能力を高める。
給湯用熱交換器12での放熱量は、給湯検知手段51と温度検出手段54からの入力信号によって制御する。給湯検知手段51からの信号によって、十分な量又は温度の貯湯水を確保できた場合には、循環ポンプ32での能力を低下又は停止させる。
風呂用熱交換器13での吸熱量は、浴槽水検知手段52と温度検出手段55からの入力信号によって制御する。浴槽水検知手段52からの信号によって、浴槽内の温度が低下した場合には、膨張弁21の絞り量を増加させる。また風呂用熱交換器13での吸熱量を増加させるには、循環ポンプ42での能力を高める。
また熱源側熱交換器14での吸熱量は、温度検出手段53からの入力信号によって制御する。温度検出手段53からの信号によって、例えば大気温度が低下した場合には、膨張弁22の絞り量を増加させる。また熱源側熱交換器14での吸熱量を増加させるには、送風ファン14aでの回転数を増加させる。
この浴槽温水併用給湯加熱運転モードでは、浴槽水検知手段52での検出温度と、熱源側温度検知手段53での検出温度との比較によって、循環ポンプ42での能力、送風ファン14aの回転数、膨張弁21、22の開度調整を行う。例えば浴槽水検知手段52での検出温度が熱源側温度検知手段53での検出温度を下回った場合には、循環ポンプ42の能力を低下又は停止させ、熱源側温度検知手段53での検出温度が浴槽水検知手段52での検出温度を下回った場合には、送風ファン14aの回転数を低下又は停止させる。
【0015】
次に除霜運転モードについて説明する。
除霜運転モードでは、圧縮機11を吐出した冷媒を、第1のバイパス管15、風呂用熱交換器13、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、熱源側熱交換器14にて放熱させる。
従って、運転制御手段60によって、開閉弁23と開閉弁24は開とし、開閉弁25と膨張弁21は閉とする。
熱源側熱交換器14での放熱量を増加させるために、運転制御手段60によって、圧縮機11の回転数を増加させ、膨張弁21の絞り量を増加させ、又は循環ポンプ42を停止した状態とすることが好ましい。
【0016】
以下、本発明の他の実施例によるヒートポンプ装置について図面を用いて説明する。
図2は、本実施例によるヒートポンプ装置の回路構成図である。
本実施例によるヒートポンプ装置は、圧縮機11、風呂用熱交換器13、第1の膨張弁21、給湯用熱交換器12、第2の膨張弁22、熱源側熱交換器14、及び開閉弁23を配管で順に環状に接続して冷凍サイクルを構成している。この冷凍サイクルには、圧縮機11の吐出側配管と給湯用熱交換器12の入口側配管とを接続して風呂用熱交換器13及び膨張弁21をバイパスする第1のバイパス管15と、給湯用熱交換器12の出口側配管と圧縮機11の吸入側配管とを接続して膨張弁22及び熱源側熱交換器14をバイパスする第2のバイパス管16とを有している。そして、第1のバイパス管15には開閉弁24を、第2のバイパス管16には開閉弁25を備えている。熱源側熱交換器14は送風ファン14aを備えている。
風呂用熱交換器13の利用側配管は、浴槽41と、この浴槽41の低温水を風呂用熱交換器13に導き、この風呂用熱交換器13で加熱した温水を浴槽41に戻すための循環ポンプ42とを備えた給湯回路43に接続されている。
一方、給湯用熱交換器12の利用側配管は、温水を貯留する給湯タンク31と、この給湯タンク31の低温水を給湯用熱交換器12に導き、この給湯用熱交換器12で加熱した温水を給湯タンク31に戻すための循環ポンプ32とを備えた浴槽回路33に接続されている。給湯タンク31の下部には給水配管34が接続され、給湯タンク31の上部には出湯配管35が接続されている。
浴槽41には、サーミスタ等の温度検知手段で構成され、残湯量又はタンク内の沸き上げ温度を検出する給湯検知手段52が設けられている。また、給湯回路33には、サーミスタ等の温度検知手段で構成され、給湯タンク31内の温度又は給湯タンク31から流出する浴槽水温度を検出する浴槽水検知手段51が設けられている。また、熱源側熱交換器14の近傍には、サーミスタ等の温度検知手段で構成され、熱源となる例えば大気温度を検出する熱源側温度検知手段53が設けられている。
【0017】
運転制御手段60は、給湯検知手段51、浴槽水検知手段52、及び熱源側温度検知手段53からの検出信号を入力し、膨張弁21、22の絞り量制御、循環ポンプ32、42の循環量制御、開閉弁23、24、25の開閉制御、及び圧縮機11の能力制御を行う。なお、その他の入力手段として、圧縮機11の吐出側配管、風呂用熱交換器13の出口側配管、又は膨張弁21と膨張弁22との間の中間圧配管に、それぞれ温度検出手段54、55、56を設けることで、高圧制御による風呂用熱交換器13での能力制御、中間圧制御による給湯用熱交換器12での能力制御、圧縮機11からの吐出圧力制御による安全制御を行うことが好ましい。
風呂用熱交換器13や給湯用熱交換器12の利用側配管側で高温水を得るためには、冷凍サイクルは、冷媒として二酸化炭素を用い、臨界圧を越える圧力で運転することが好ましい。
【0018】
以下に、本実施例によるヒートポンプ装置の各運転モードでの制御について説明する。
まず、2つの膨張弁21、22の基本的な制御について説明する。
冷媒として二酸化炭素を用い、臨界圧を越える圧力で運転する場合には、高圧圧力を適正に制御する必要がある。
膨張弁21と膨張弁22の間の圧力は、冷凍サイクルの高圧と低圧の間の中間圧力に保持され、冷媒の密度は、高圧側領域、中間圧側領域、低圧側領域と、減圧されていく過程において減少する。膨張弁21と膨張弁22の間に挟まれる冷媒回路(給湯用熱交換器12も含む)の空間は一定であるから、中間圧力の増減変化に伴い、中間圧側領域での冷媒量も変化する。従って、中間圧力を下げると中間圧側領域の冷媒量が減り、余剰となった冷媒は高圧側領域に移動する。また、中間圧力を上げると、中間圧側領域の冷媒量が増え、密度上昇に必要な冷媒は高圧側領域より移動する。このように、中間圧力の変化に伴い、高圧側領域での冷媒量が変化することとなるので、膨張弁21、22によって中間圧力を制御すると、高圧側領域での冷媒量を制御することができる。高圧側領域での冷媒量は、浴槽水の沸き上げ温度の上昇に伴い、多くする必要がある。従って、浴槽水の沸き上げ温度に応じて中間圧力を制御すると、最適な冷媒量を得て高効率な浴槽水の加熱運転を行うことができる。
なお、本実施例で示す中間圧力とは、所定の減圧幅を得るために設けた膨張弁21、22のような減圧手段を用いた強制的な減圧作用によって形成され、冷凍サイクル中で所定の値に保持、又は制御される圧力であり、熱交換器や配管の圧力損失で生じる圧力低下のことを指すものではない。
【0019】
次に給湯風呂加熱運転モードについて説明する。
給湯風呂加熱運転モードでは、圧縮機11を吐出した冷媒を、風呂用熱交換器13、第1の膨張弁21、給湯用熱交換器12、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、風呂用熱交換器13及び給湯用熱交換器12にて放熱させ、熱源側熱交換器14にて吸熱させる。
従って、運転制御手段60によって、開閉弁23は開とし、開閉弁24と開閉弁25は閉とする。
風呂用熱交換器13及び給湯用熱交換器12でのトータル放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、又は送風ファン14aの回転数を増加させる。
風呂用熱交換器13での放熱量は、浴槽水検知手段52と温度検出手段54からの入力信号によって制御する。浴槽水検知手段52からの信号によって、浴槽内の温度が所定の温度に近づき、又は所定の温度に達した場合には、循環ポンプ42での能力を低下又は停止させる。
給湯用熱交換器12での放熱量は、給湯検知手段51と温度検出手段55からの入力信号によって制御する。給湯検知手段51からの信号によって、十分な量又は温度の貯湯水を確保できた場合には、循環ポンプ32での能力を低下又は停止させる。
例えば早期に給湯タンク31を沸き上げたい場合、又は早期に給湯タンク31を沸き上げたい場合で熱源側熱交換器14での吸熱量が少ない場合や浴槽41への給湯の必要性が少ない場合には、循環ポンプ42の能力を低下又は停止させることで風呂用熱交換器13での放熱量を低下させて、又は膨張弁21、22の開度を調整することで中間圧力を上昇させて、給湯用熱交換器12での放熱量を多くする。また、給湯用熱交換器12での放熱量を多くする場合には、循環ポンプ32の能力を高める。
【0020】
次に給湯加熱運転モードについて説明する。
給湯加熱運転モードでは、圧縮機11を吐出した冷媒を、第1のバイパス管15、給湯用熱交換器12、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、給湯用熱交換器12にて放熱させ、熱源側熱交換器14にて吸熱させる。
従って、運転制御手段60によって、開閉弁23は開とし、膨張弁21と開閉弁25は閉とする。また、循環ポンプ32を停止させる。
給湯用熱交換器12での放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、送風ファン14aの回転数を増加させ、又は循環ポンプ32の能力を高める。
給湯用熱交換器12での放熱量は、給湯検知手段51と温度検出手段55からの入力信号によって制御する。給湯検知手段51からの信号によって、給湯タンク31内に十分な量又は温度の貯湯水を確保できた場合には、循環ポンプ32での能力を低下又は停止させる。
【0021】
次に貯湯温水単独利用給湯加熱運転モードについて説明する。
貯湯温水単独利用給湯加熱運転モードでは、圧縮機11を吐出した冷媒を、風呂用熱交換器13、第1の膨張弁21、給湯用熱交換器12、及び第2のバイパス管16に順に流通させ、風呂用熱交換器13にて放熱させ、給湯用熱交換器12にて吸熱させる。
従って、運転制御手段60によって、開閉弁25は開とし、開閉弁23、開閉弁24、及び膨張弁22は閉とする。
風呂用熱交換器13での放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、又は膨張弁21の絞り量を増加させる。
風呂用熱交換器13での放熱量は、浴槽水検知手段52と温度検出手段54からの入力信号によって制御する。浴槽水検知手段52からの信号によって、浴槽内の温度が所定の温度に近づき、又は所定の温度に達した場合には、循環ポンプ32での能力を低下又は停止させる。
給湯用熱交換器12での吸熱量は、給湯検知手段51と温度検出手段55からの入力信号によって制御する。給湯検知手段51からの信号によって、給湯タンク31内の温度が低下した場合には、膨張弁21の絞り量を増加させる。また給湯用熱交換器12での吸熱量を増加させるには、循環ポンプ32での能力を高める。
貯湯温水単独利用給湯加熱運転モードの終了は、給湯検知手段51での検出温度と、熱源側温度検知手段53での検出温度との比較によって行うことができ、例えば給湯検知手段51での検出温度が熱源側温度検知手段53での検出温度を下回った場合に、継続して浴槽41への給湯が必要であれば、給湯風呂加熱運転モード又は貯湯温水併用給湯加熱運転モードに切り替えて運転を継続する。なお、この場合には、給湯風呂加熱運転モード又は貯湯温水併用給湯加熱運転モードとして冷媒を循環させるが、循環ポンプ32は停止した状態とする。
【0022】
次に貯湯温水併用給湯加熱運転モードについて説明する。
貯湯温水併用給湯加熱運転モードでは、圧縮機11を吐出した冷媒を、風呂用熱交換器13、第1の膨張弁21、給湯用熱交換器12、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、風呂用熱交換器13にて放熱させ、給湯用熱交換器12及び熱源側熱交換器14にて吸熱させる。
従って、運転制御手段60によって、開閉弁23は開とし、開閉弁24と開閉弁25は閉とする。
風呂用熱交換器13での放熱量を増加させるためには、運転制御手段60によって、圧縮機11の回転数を増加させ、膨張弁21の絞り量を増加させ、送風ファン14aの回転数を増加させ、又は循環ポンプ32の能力を高める。
風呂用熱交換器13での放熱量は、浴槽水検知手段52と温度検出手段54からの入力信号によって制御する。浴槽水検知手段52からの信号によって、所定温度の浴槽水を確保できた場合には、循環ポンプ42での能力を低下又は停止させる。
給湯用熱交換器12での吸熱量は、給湯検知手段51と温度検出手段55からの入力信号によって制御する。給湯検知手段51からの信号によって、給湯タンク31内の温度が低下した場合には、膨張弁21の絞り量を増加させる。また給湯用熱交換器12での吸熱量を増加させるには、循環ポンプ32での能力を高める。
また熱源側熱交換器14での吸熱量は、温度検出手段53からの入力信号によって制御する。温度検出手段53からの信号によって、例えば大気温度が低下した場合には、膨張弁22の絞り量を増加させる。また熱源側熱交換器14での吸熱量を増加させるには、送風ファン14aでの回転数を増加させる。
この貯湯温水併用給湯加熱運転モードでは、給湯検知手段51での検出温度と、熱源側温度検知手段53での検出温度との比較によって、循環ポンプ32での能力、送風ファン14aの回転数、膨張弁21、22の開度調整を行う。例えば給湯検知手段51での検出温度が熱源側温度検知手段53での検出温度を下回った場合には、循環ポンプ32の能力を低下又は停止させ、熱源側温度検知手段53での検出温度が給湯検知手段51での検出温度を下回った場合には、送風ファン14aの回転数を低下又は停止させる。
【0023】
次に除霜運転モードについて説明する。
除霜運転モードでは、圧縮機11を吐出した冷媒を、第1のバイパス管15、給湯用熱交換器12、第2の膨張弁22、及び熱源側熱交換器14に順に流通させ、熱源側熱交換器14にて放熱させる。
従って、運転制御手段60によって、開閉弁23と開閉弁24は開とし、開閉弁25と膨張弁21は閉とする。
熱源側熱交換器14での放熱量を増加させるために、運転制御手段60によって、圧縮機11の回転数を増加させ、膨張弁21の絞り量を増加させ、又は循環ポンプ32を停止した状態とすることが好ましい。
【0024】
なお、上記実施例では、給湯用熱交換器12の利用側配管には、給湯タンク31内の水を流通させる場合で説明したが、給湯タンク31内に熱交換器を設け、この熱交換器と利用側配管とを接続した給湯回路を独立して構成し、この給湯回路内に、例えば、水、冷媒、又はオイルなどの熱媒体を流通させてもよい。
また、上記実施例では、風呂用熱交換器13の利用側配管には、浴槽41内の水を流通させる場合で説明したが、浴槽41内の水と熱交換する熱交換器を設け、この熱交換器と利用側配管とを接続した浴槽回路を独立して構成し、この浴槽回路内に、例えば、水、冷媒、又はオイルなどの熱媒体を流通させてもよい。
また、上記実施例では、給湯用熱交換器12は給湯タンク31の貯湯用として、風呂用熱交換器13は浴槽41の加熱保温用として説明したが、給湯タンク31や浴槽41と同様に、加熱保温が必要な、例えば、温水プール、暖房用貯湯タンク、又は床暖房などの暖房機器のような、保温用装置若しくは設備、加熱用装置若しくは設備、又は暖房用装置若しくは設備に用いてもよい。
【0025】
【発明の効果】
本発明によれば、給湯用熱交換器に高温高圧の冷媒を流すことなく、風呂用熱交換器によって風呂の沸き上げや保温運転を行うことができる。
【図面の簡単な説明】
【図1】 本発明の一実施例によるヒートポンプ装置の回路構成図
【図2】 本発明の他の実施例によるヒートポンプ装置の回路構成図
【符号の説明】
11 圧縮機
12 給湯用熱交換器
13 風呂用熱交換器
14 熱源側熱交換器
14a 送風ファン
15 第1のバイパス管
16 第2のバイパス管
21 第1の膨張弁
22 第2の膨張弁
23 開閉弁
24 開閉弁
25 開閉弁
31 給湯タンク
32 循環ポンプ
33 給湯回路
41 浴槽
42 循環ポンプ
43 浴槽回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump apparatus including a heat exchanger for hot water supply and a heat exchanger for bath.
[0002]
[Prior art]
Conventionally, a heat pump type hot water heater using a refrigeration cycle has been proposed, and for example, a hot water supply tank is used to store hot water in a hot water supply tank and a hot water supply to a bathtub is proposed (for example, a patent) Reference 1).
[0003]
[Patent Document 1]
Japanese Patent No. 3284905
[0004]
[Problems to be solved by the invention]
However, the above prior art cannot use hot water in a bathtub once heated by a heat exchanger for bath or hot water hot water once heated by a heat exchanger for hot water supply.
[0005]
Then, an object of this invention is to provide the heat pump apparatus which can perform boiling of a bath and a heat retention operation with a heat exchanger for baths, without flowing a high temperature / high pressure refrigerant into the heat exchanger for hot water supply.
It is another object of the present invention to provide a heat pump device that can recover waste heat from a hot bath water heated by a bath heat exchanger and can be used for heating in a hot water heat exchanger.
Further, the present invention can guide the high-temperature and high-pressure refrigerant to the heat source-side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the hot water supply heat exchanger, so that the heat source-side heat exchanger is defrosted in a short time. It is an object of the present invention to provide a heat pump device that can perform such a process.
It is another object of the present invention to provide a heat pump device capable of simultaneously performing hot water storage operation using a hot water supply heat exchanger and boiling or heat insulation operation of a bath using a bath heat exchanger.
Moreover, this invention provides the heat pump apparatus which can heat with the heat exchanger for hot water supply using together the waste heat of the bathtub warm water by the heat exchanger for baths, and the atmospheric heat by the heat source side heat exchanger, for example. For the purpose.
It is another object of the present invention to provide a heat pump device that can perform hot water storage operation with a hot water supply heat exchanger without flowing a high-temperature and high-pressure refrigerant through the bath heat exchanger.
Another object of the present invention is to provide a heat pump device that can use hot water stored in a hot water supply heat exchanger for heating in a bath heat exchanger.
Further, the present invention can guide the high-temperature and high-pressure refrigerant to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the bath heat exchanger, so that the heat source side heat exchanger is defrosted in a short time. It is an object of the present invention to provide a heat pump device that can perform such a process.
[0006]
[Means for Solving the Problems]
The heat pump device according to the first aspect of the present invention includes a compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger that are annularly arranged in order. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve, and A second bypass pipe that connects the outlet side pipe of the heat exchanger for bath and the suction side pipe of the compressor and bypasses the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is supplied to the first bypass pipe. The heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger. The bath heating operation mode in which heat is radiated by the heat exchanger for bath and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply, the first expansion valve, Flowing through the bath heat exchanger and the second bypass pipe in order, dissipating heat in the hot water heat exchanger, and absorbing heat in the bath heat exchanger, the bath hot water single-use hot water heating operation mode, The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger, Have Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region The amount of refrigerant in the high-pressure region is controlled as the boiling temperature of the hot water is controlled The It is characterized by an increase.
The heat pump device according to the second aspect of the present invention includes a compressor, a hot water heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger that are annularly arranged in order. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve, and A second bypass pipe that connects the outlet side pipe of the heat exchanger for bath and the suction side pipe of the compressor and bypasses the second expansion valve and the heat source side heat exchanger; 1 is a heat pump device having a first on-off valve in the bypass pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply. The first expansion valve, the heat exchanger for bath, and the second bypass pipe in order. The hot water supply heating operation mode using only the hot water in the bathtub that is radiated by the heat exchanger for hot water supply and absorbed by the heat exchanger for bath, and the refrigerant discharged from the compressor are used for the first bypass pipe and the bath A defrosting operation mode in which the heat exchanger, the second expansion valve, and the heat source side heat exchanger are circulated in order, and the heat source side heat exchanger dissipates heat. The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger, Have Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region The amount of refrigerant in the high-pressure region is controlled as the boiling temperature of the hot water is controlled The It is characterized by an increase.
The heat pump device according to the third aspect of the present invention includes a compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger that are annularly arranged in order. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve, and A second bypass pipe that connects the outlet side pipe of the heat exchanger for bath and the suction side pipe of the compressor and bypasses the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is supplied to the first bypass pipe. The heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger. The bath heating operation mode in which heat is radiated by the heat exchanger for bath and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply, the first expansion valve, Flowing through the bath heat exchanger and the second bypass pipe in order, dissipating heat in the hot water heat exchanger, and absorbing heat in the bath heat exchanger, the bath hot water single-use hot water heating operation mode, The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat, The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger, Have Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region The amount of refrigerant in the high-pressure region is controlled as the boiling temperature of the hot water is controlled The It is characterized by an increase.
Claim 4 The heat pump apparatus according to any one of claims 1 to 3, wherein the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply, the first expansion valve, and the heat for bath. It distribute | circulates in order to an exchanger, the said 2nd expansion valve, and the said heat source side heat exchanger, It is radiated with the said heat exchanger for hot water supply, and it is made to absorb heat with the said heat exchanger for baths, and the said heat source side heat exchanger It has the hot water supply heating operation mode with bathtub hot water combined use.
Claim 5 The heat pump device according to the present invention includes a compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger that are connected in an annular manner in order. A first bypass pipe connecting the discharge side pipe of the compressor and the inlet side pipe of the bath heat exchanger to bypass the hot water heat exchanger and the first expansion valve; and the bath heat A second bypass pipe connecting the outlet side pipe of the exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger, and the first bypass A heat pump device having a first on-off valve in the pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply, the first 1 expansion valve, the heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger in order A hot water bath heating operation mode in which heat is released by the hot water heat exchanger and the bath heat exchanger and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is the first Of the heat exchanger for the bath, the heat exchanger for the bath, the second expansion valve, and the heat source side heat exchanger in order, radiated by the heat exchanger for the bath, and absorbed by the heat source side heat exchanger Let the bath heating operation mode and the refrigerant discharged from the compressor flow in order through the heat exchanger for hot water supply, the first expansion valve, the heat exchanger for bath, and the second bypass pipe, A hot water supply heating operation mode using only a bathtub hot water to dissipate heat in a heat exchanger for hot water supply and absorb heat in the heat exchanger for bath, and a refrigerant discharged from the compressor, the heat exchanger for hot water supply, the first An expansion valve, the heat exchanger for bath, the second expansion valve, And the heat source side heat exchanger in order, dissipate heat in the hot water supply heat exchanger, and absorb heat in the bath heat exchanger and the heat source side heat exchanger. The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and is radiated by the heat source side heat exchanger. A defrosting operation mode, and Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region The amount of refrigerant in the high-pressure region is controlled as the boiling temperature of the hot water is controlled The It is characterized by an increase.
Claim 6 The heat pump device according to the present invention includes a compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger that are sequentially connected in an annular manner by piping. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve; and the hot water supply heat A second bypass pipe connecting the outlet side pipe of the exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger, and the first bypass A heat pump device having a first on-off valve in the pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is used as the first bypass pipe, the hot water supply Through the heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, A hot water heating operation mode in which heat is radiated by the heat exchanger for heat and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used as the heat exchanger for the bath, the first expansion valve, and the hot water supply. A heat exchanger for hot water and a hot water hot water single use bath heating mode in which heat is circulated through the second bypass pipe in order, radiated by the heat exchanger for bath, and absorbed by the heat exchanger for hot water, and The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger, Have Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region The amount of refrigerant in the high-pressure region is controlled as the boiling temperature of the hot water is controlled The It is characterized by an increase.
Claim 7 The heat pump device according to the present invention includes a compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger that are sequentially connected in an annular manner by piping. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve; and the hot water supply heat A second bypass pipe connecting the outlet side pipe of the exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger, and the first bypass A heat pump apparatus having a first on-off valve in the pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is used as the heat exchanger for the bath, the first 1 in order through the expansion valve, the hot water heat exchanger, and the second bypass pipe, Is the heat dissipation at use heat exchanger, to heat absorption by the hot water supply heat exchanger Hot water supply The hot water single-use bath heating operation mode and the refrigerant discharged from the compressor are sequentially circulated through the first bypass pipe, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger. , A defrosting operation mode in which heat is radiated by the heat source side heat exchanger; The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger, Have Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region Control the quantity, Bathtub As the water boiling temperature rises, the amount of refrigerant in the high-pressure region The It is characterized by an increase.
Claim 8 The heat pump device according to the present invention includes a compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger that are sequentially connected in an annular manner by piping. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve; and the hot water supply heat A second bypass pipe connecting the outlet side pipe of the exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger, and the first bypass A heat pump device having a first on-off valve in the pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is used as the first bypass pipe, the hot water supply Through the heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, A hot water heating operation mode in which heat is radiated by the heat exchanger for heat and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used as the heat exchanger for the bath, the first expansion valve, and the hot water supply. Circulates in sequence to the heat exchanger for heat and the second bypass pipe, dissipates heat in the heat exchanger for bath, and absorbs heat in the heat exchanger for hot water supply Hot water supply The hot water single-use bath heating operation mode and the refrigerant discharged from the compressor are sequentially circulated through the first bypass pipe, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger. , A defrosting operation mode in which heat is radiated by the heat source side heat exchanger; The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger, Have Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region Control the quantity, Bathtub As the water boiling temperature rises, the amount of refrigerant in the high-pressure region The It is characterized by an increase.
Claim 9 The invention as described is claimed in claim 7. Or claim 8 In the heat pump device according to claim 1, the refrigerant discharged from the compressor is used as the heat exchanger for bath, the first expansion valve, the heat exchanger for hot water supply, the second expansion valve, and the heat source side heat exchanger. It is characterized by having a bath heating operation mode in which hot water is used in combination with hot water and hot water is radiated by the heat exchanger for bath, and is absorbed by the heat exchanger for hot water supply and the heat source side heat exchanger.
Claim 10 The heat pump device according to the present invention includes a compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger that are sequentially connected in an annular manner by piping. A first bypass pipe for connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve; and the hot water supply heat A second bypass pipe connecting the outlet side pipe of the exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger, and the first bypass A heat pump apparatus having a first on-off valve in the pipe and a second on-off valve in the second bypass pipe, wherein the refrigerant discharged from the compressor is used as the heat exchanger for the bath, the first 1 expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order A hot water bath heating operation mode in which heat is radiated by the bath heat exchanger and the hot water heat exchanger and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is the first The heat exchanger for hot water supply, the second heat exchanger, the second expansion valve, and the heat source side heat exchanger are circulated in order, radiated by the heat exchanger for hot water supply, and absorbed by the heat source side heat exchanger. The hot water supply heating operation mode and the refrigerant discharged from the compressor are circulated in order through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, and the second bypass pipe, A hot water storage hot water single-use bath heating operation mode in which heat is radiated by a heat exchanger for bath and absorbed by the heat exchanger for hot water supply, and the refrigerant discharged from the compressor is used as the heat exchanger for bath, the first An expansion valve, the heat exchanger for hot water supply, the second expansion valve, Hot water storage hot water combined bath heating operation mode for circulating in order to the heat source side heat exchanger, dissipating heat in the bath heat exchanger, and absorbing heat in the hot water supply heat exchanger and the heat source side heat exchanger, and The refrigerant discharged from the compressor is sequentially circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger, and is radiated by the heat source side heat exchanger. A defrosting operation mode, and Using carbon dioxide as the refrigerant, operating on the high pressure side in a state exceeding the critical pressure, in the hot water bath heating operation mode, The intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve, so that the refrigerant in the high pressure side region Control the quantity, Bathtub As the water boiling temperature rises, the amount of refrigerant in the high-pressure region The It is characterized by an increase.
Claim 11 The present invention described in claim 1 to claim 3, or Claim 6 From Claim 8 In the heat pump device according to any one of the above, a configuration in which a third on-off valve is provided in the outlet side pipe of the heat source side heat exchanger, and the refrigerant flowing through the second bypass pipe is not allowed to flow into the heat source side heat exchanger. It is characterized by that.
Claim 12 The invention described is Claims 1 to 10 In the heat pump device according to any one of the above, in the hot water bath heating operation mode or the hot water bath heating operation mode combined with bath water, the operation of the circulation pump connected to the use side pipe of the bath heat exchanger is stopped. Features.
Claim 13 The invention described is From claim 1 Claim 1 Zero In any one of the heat pump apparatuses, in the hot water bath heating operation mode, the operation of the circulation pump connected to the use side pipe of the hot water heat exchanger is stopped.
Claim 14 The invention described is Claim 4 , Claim 5 , Claim 9 ,as well as Claim 10 In the heat pump device according to any one of the above, the operation of the blower fan disposed in the heat source side heat exchanger is stopped in the bathtub hot water combined hot water supply heating operation mode.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The heat pump device according to the first embodiment of the present invention causes the refrigerant discharged from the compressor to flow in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger. The bath heating operation mode in which heat is radiated by the heat exchanger for bath and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply, the first expansion valve, and heat exchange for bath A hot water supply heating operation mode using a hot water bath alone, which is circulated in order to the heat exchanger and the second bypass pipe, dissipates heat in the heat exchanger for hot water supply, and absorbs heat in the heat exchanger for bath The refrigerant discharged from the compressor is sequentially circulated through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and the hot water supply heat exchanger and A hot water bath heating operation mode in which heat is dissipated in the heat exchanger for bath and absorbed in the heat source side heat exchanger; Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. As the boiling water temperature rises, the amount of refrigerant in the high-pressure region The To do more. According to the present embodiment, in the heat pump device including the hot water supply heat exchanger and the bath heat exchanger, the bath heat exchanger does not flow high-temperature and high-pressure refrigerant through the hot water supply heat exchanger. Boiling and heat retention can be performed. Moreover, according to this Embodiment, the waste heat of the bathtub warm water heated with the heat exchanger for baths can be collect | recovered, and it can utilize for the heating with the heat exchanger for hot water supply. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
The heat pump device according to the second embodiment of the present invention causes the refrigerant discharged from the compressor to flow through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, and the second bypass pipe in this order. , A hot water supply heating operation mode using only a bathtub hot water that is radiated by a heat exchanger for hot water supply and absorbed by a heat exchanger for bath, and a refrigerant discharged from the compressor, a first bypass pipe, a heat exchanger for bath, A defrosting operation mode in which the second expansion valve and the heat source side heat exchanger are circulated in order and the heat source side heat exchanger radiates heat; The refrigerant discharged from the compressor is sequentially circulated through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and the hot water supply heat exchanger and A hot water bath heating operation mode in which heat is dissipated in the heat exchanger for bath and absorbed in the heat source side heat exchanger; Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. As the boiling water temperature rises, the amount of refrigerant in the high-pressure region The To do more. According to the present embodiment, in a heat pump device including a heat exchanger for hot water supply and a heat exchanger for bath, the waste heat of the bath warm water heated by the heat exchanger for bath is recovered and heat exchange for hot water supply is performed. It can be used for heating in a vessel. Further, according to the present embodiment, the high-temperature and high-pressure refrigerant can be guided to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the hot water supply heat exchanger, so that defrosting of the heat source side heat exchanger can be performed. It can be done in a short time. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
The heat pump device according to the third embodiment of the present invention causes the refrigerant discharged from the compressor to flow in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger. The bath heating operation mode in which heat is radiated by the heat exchanger for bath and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used as the heat exchanger for hot water supply, the first expansion valve, and heat exchange for bath The hot water heating operation mode using only the hot water in the bathtub, and the refrigerant discharged from the compressor, which are circulated in order to the water heater and the second bypass pipe, dissipated in the heat exchanger for hot water supply, and absorbed in the heat exchanger for bath. A defrosting operation mode in which the first bypass pipe, the heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger are circulated in order and the heat source side heat exchanger releases heat; The refrigerant discharged from the compressor is sequentially circulated through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and the hot water supply heat exchanger and A hot water bath heating operation mode in which heat is dissipated in the heat exchanger for bath and absorbed in the heat source side heat exchanger; Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. As the boiling water temperature rises, the refrigerant in the high-pressure side area The To increase the amount. According to the present embodiment, in the heat pump device including the hot water supply heat exchanger and the bath heat exchanger, the bath heat exchanger does not flow high-temperature and high-pressure refrigerant through the hot water supply heat exchanger. Boiling and heat retention can be performed. Moreover, according to this Embodiment, the waste heat of the bathtub warm water heated with the heat exchanger for baths can be collect | recovered, and it can utilize for the heating with the heat exchanger for hot water supply. Further, according to the present embodiment, the high-temperature and high-pressure refrigerant can be guided to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the hot water supply heat exchanger, so that defrosting of the heat source side heat exchanger can be performed. It can be done in a short time. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
According to the invention 4th In the heat pump apparatus according to the first to third embodiments, the embodiment is configured such that the refrigerant discharged from the compressor is used as a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, and a second expansion. It has a hot water heating operation mode combined with hot water in a bathtub and hot water that is circulated in sequence to the valve and the heat source side heat exchanger, dissipates heat in the heat exchanger for hot water supply, and absorbs heat in the heat exchanger for bath and heat source side heat exchanger. . According to the present embodiment, it is possible to perform heating in the hot water supply heat exchanger by using the waste heat of the bathtub hot water by the heat exchanger for bath and, for example, atmospheric heat by the heat source side heat exchanger. Therefore, when the outside air temperature is not so high, efficient heat recovery can be performed because the atmospheric heat is used while effectively using the waste heat of the bathtub hot water.
According to the invention 5th In the heat pump device according to the embodiment, the refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger. The hot water bath heating operation mode in which heat is radiated by the heat exchanger for hot water supply and the heat exchanger for bath and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used for the first bypass pipe and bath Flow through the heat exchanger, the second expansion valve, and the heat source side heat exchanger in sequence, dissipate heat in the bath heat exchanger, and absorb the heat in the heat source side heat exchanger, and discharge the compressor Circulated through the refrigerant to the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, and the second bypass pipe in order, to dissipate heat in the hot water supply heat exchanger, in the bath heat exchanger Hot water supply heating operation mode that uses only hot water in the bathtub to absorb heat and the refrigerant discharged from the compressor The heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger are circulated in order and radiated by the hot water supply heat exchanger, Bath hot water combined hot water supply heating operation mode that absorbs heat in the heat source side heat exchanger, and refrigerant discharged from the compressor, the first bypass pipe, the heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger And defrosting operation mode in which heat is circulated in order and radiated by the heat source side heat exchanger , Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. As the boiling water temperature rises, the amount of refrigerant in the high-pressure region The To do more. According to the present embodiment, in the heat pump device including the hot water supply heat exchanger and the bath heat exchanger, the bath heat exchanger does not flow high-temperature and high-pressure refrigerant through the hot water supply heat exchanger. Boiling and heat retention can be performed. Moreover, according to this Embodiment, the waste heat of the bathtub warm water heated with the heat exchanger for baths can be collect | recovered, and it can utilize for the heating with the heat exchanger for hot water supply. Further, according to the present embodiment, the high-temperature and high-pressure refrigerant can be guided to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the hot water supply heat exchanger, so that defrosting of the heat source side heat exchanger can be performed. It can be done in a short time. Moreover, according to this Embodiment, the hot water storage operation | movement by the heat exchanger for hot water supply, the boiling of a bath by a heat exchanger for baths, and a heat retention operation can be performed simultaneously. Further, according to the present embodiment, it is possible to perform heating in the hot water supply heat exchanger by using the waste heat of the bath warm water by the bath heat exchanger and, for example, atmospheric heat by the heat source side heat exchanger. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
According to the invention 6th In the heat pump device according to the embodiment, the refrigerant discharged from the compressor is circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in this order to exchange the heat for hot water supply. A hot water supply heating operation mode in which heat is radiated by a heat exchanger and absorbed by a heat source side heat exchanger, and a refrigerant discharged from the compressor is used as a heat exchanger for a bath, a first expansion valve, a heat exchanger for hot water supply, and a second The hot water hot water alone use bathtub heating operation mode in which it is circulated in order to the bypass pipe of the water, radiated by the heat exchanger for bath, and absorbed by the heat exchanger for hot water supply The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, A hot water bath heating operation mode in which heat is dissipated by a heat exchanger for hot water supply and heat is absorbed by a heat source side heat exchanger; Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. As the boiling water temperature rises, the amount of refrigerant in the high-pressure region The To do more. According to the present embodiment, in a heat pump device including a hot water supply heat exchanger and a bath heat exchanger, the hot water storage operation is performed by the hot water supply heat exchanger without flowing high-temperature and high-pressure refrigerant through the bath heat exchanger. It can be performed. Therefore, it is possible to eliminate wasteful heat dissipation in the bath heat exchanger and to prevent the hardness component of the bath water from depositing and adhering as a scale on the heat transfer surface of the bath heat exchanger. It is possible to prevent performance degradation of the heat exchanger and clogging of the flow path. Moreover, according to this Embodiment, the hot water supply hot water stored by the heat exchanger for hot water supply can be utilized for a heating with the heat exchanger for baths. Therefore, when the atmospheric temperature is low, for example, by using hot water stored in the midnight time zone, it is possible to perform efficient bath boiling and heat insulation operation. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
According to the invention 7th In the heat pump device according to the embodiment, the refrigerant discharged from the compressor is sequentially circulated through the heat exchanger for bath, the first expansion valve, the heat exchanger for hot water supply, and the second bypass pipe, and heat exchange for bath Heat is dissipated by a heat sink and absorbed by a heat exchanger for hot water supply Hot water supply Hot water single-use bathtub heating operation mode and the refrigerant discharged from the compressor are circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in this order, and the heat source side heat exchange. With defrosting operation mode to dissipate heat The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, A hot water bath heating operation mode in which heat is dissipated by a heat exchanger for hot water supply and heat is absorbed by a heat source side heat exchanger; Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. , Bathtub As the water boiling temperature rises, the amount of refrigerant in the high-pressure region The To do more. According to the present embodiment, the hot water hot water stored by the hot water heat exchanger can be used for heating by the bath heat exchanger. Therefore, when the atmospheric temperature is low, for example, by using hot water stored in the midnight time zone, it is possible to perform efficient bath boiling and heat insulation operation. Further, according to the present embodiment, the high-temperature and high-pressure refrigerant can be led to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the bath heat exchanger, so that the defrosting of the heat source side heat exchanger can be reduced. It can be done in a short time. Also, by not flowing high-temperature and high-pressure refrigerant through the bath heat exchanger during the defrosting operation, the hardness component of the bath water can be prevented from depositing as a scale on the heat transfer surface of the bath heat exchanger. It is possible to prevent deterioration of the performance of the heat exchanger for bath due to adhesion and clogging of the flow path. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
According to the invention 8th In the heat pump device according to the embodiment, the refrigerant discharged from the compressor is circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in this order to exchange the heat for hot water supply. A hot water supply heating operation mode in which heat is radiated by a heat exchanger and absorbed by a heat source side heat exchanger, and a refrigerant discharged from the compressor is used as a heat exchanger for a bath, a first expansion valve, a heat exchanger for hot water supply, and a second Circulate through the bypass pipe in order, dissipate heat with a heat exchanger for bath, and absorb heat with a heat exchanger for hot water supply Hot water supply Hot water single-use bathtub heating operation mode and the refrigerant discharged from the compressor are circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in this order, and the heat source side heat exchange. With defrosting operation mode to dissipate heat The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, A hot water bath heating operation mode in which heat is dissipated by a heat exchanger for hot water supply and heat is absorbed by a heat source side heat exchanger; Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. , Bathtub As the water boiling temperature rises, the refrigerant in the high-pressure side region The To increase the amount. According to the present embodiment, in a heat pump device including a hot water supply heat exchanger and a bath heat exchanger, the hot water storage operation is performed by the hot water supply heat exchanger without flowing high-temperature and high-pressure refrigerant through the bath heat exchanger. It can be performed. Therefore, it is possible to eliminate wasteful heat dissipation in the bath heat exchanger and to prevent the hardness component of the bath water from depositing and adhering as a scale on the heat transfer surface of the bath heat exchanger. It is possible to prevent performance degradation of the heat exchanger and clogging of the flow path. Moreover, according to this Embodiment, the hot water supply hot water stored by the heat exchanger for hot water supply can be utilized for a heating with the heat exchanger for baths. Therefore, when the atmospheric temperature is low, for example, by using hot water stored in the midnight time zone, it is possible to perform efficient bath boiling and heat insulation operation. Further, according to the present embodiment, the high-temperature and high-pressure refrigerant can be led to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the bath heat exchanger, so that the defrosting of the heat source side heat exchanger can be reduced. It can be done in a short time. Also, by not flowing high-temperature and high-pressure refrigerant through the bath heat exchanger during the defrosting operation, the hardness component of the bath water can be prevented from depositing as a scale on the heat transfer surface of the bath heat exchanger. It is possible to prevent deterioration of the performance of the heat exchanger for bath due to adhesion and clogging of the flow path. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
According to the invention 9th The embodiment of the seventh Or 8th In the heat pump device according to the embodiment, the refrigerant discharged from the compressor is circulated in sequence to the heat exchanger for bath, the first expansion valve, the heat exchanger for hot water supply, the second expansion valve, and the heat source side heat exchanger And hot water storage combined hot / cold bathtub heating operation mode in which heat is radiated by the heat exchanger for bath and absorbed by the heat exchanger for hot water supply and the heat source side heat exchanger. According to the present embodiment, the hot water supply hot water stored by the hot water supply heat exchanger and, for example, the atmospheric heat from the heat source side heat exchanger can be used together to perform heating in the bath heat exchanger. Therefore, when the outside air temperature is not so high, efficient heat recovery can be performed because atmospheric heat is used while effectively using hot water and hot water.
According to the invention 10th In the heat pump device according to the embodiment, the refrigerant discharged from the compressor is circulated in sequence to the heat exchanger for bath, the first expansion valve, the heat exchanger for hot water supply, the second expansion valve, and the heat source side heat exchanger. The hot water bath heating operation mode in which heat is radiated by the heat exchanger for bath and hot water exchanger and absorbed by the heat source side heat exchanger, and the refrigerant discharged from the compressor is used for the first bypass pipe and hot water supply. A hot water supply heating operation mode in which the heat exchanger, the second expansion valve, and the heat source side heat exchanger are circulated in order, the heat is radiated by the hot water supply heat exchanger, and the heat is absorbed by the heat source side heat exchanger, and the compressor is discharged. Circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, and the second bypass pipe in order, dissipate heat in the bath heat exchanger, and in the hot water heat exchanger Hot water storage hot water alone to absorb heat The bathtub heating operation mode and the refrigerant discharged from the compressor A heat exchanger for water, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger in order, dissipate heat in the heat exchanger for bath, Hot water storage hot water combined bath heating operation mode in which heat is absorbed by the heat source side heat exchanger, and refrigerant discharged from the compressor, the first bypass pipe, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger And defrosting operation mode in which heat is circulated in order and radiated by the heat source side heat exchanger , Have Carbon dioxide is used as the refrigerant, and the high pressure side is operated in a state exceeding the critical pressure. In the hot water bath heating operation mode, By controlling the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve by the first expansion valve and the second expansion valve, the amount of refrigerant in the high pressure side region is controlled. , Bathtub As the water boiling temperature rises, the amount of refrigerant in the high-pressure region The To do more. According to the present embodiment, in a heat pump device including a hot water supply heat exchanger and a bath heat exchanger, the hot water storage operation is performed by the hot water supply heat exchanger without flowing high-temperature and high-pressure refrigerant through the bath heat exchanger. It can be performed. Therefore, it is possible to eliminate wasteful heat dissipation in the bath heat exchanger and to prevent the hardness component of the bath water from depositing and adhering as a scale on the heat transfer surface of the bath heat exchanger. It is possible to prevent performance degradation of the heat exchanger and clogging of the flow path. Moreover, according to this Embodiment, the hot water supply hot water stored by the heat exchanger for hot water supply can be utilized for a heating with the heat exchanger for baths. Therefore, when the atmospheric temperature is low, for example, by using hot water stored in the midnight time zone, it is possible to perform efficient bath boiling and heat insulation operation. Further, according to the present embodiment, the high-temperature and high-pressure refrigerant can be led to the heat source side heat exchanger without flowing the high-temperature and high-pressure refrigerant to the bath heat exchanger, so that the defrosting of the heat source side heat exchanger can be reduced. It can be done in a short time. Also, by not flowing high-temperature and high-pressure refrigerant through the bath heat exchanger during the defrosting operation, the hardness component of the bath water can be prevented from depositing as a scale on the heat transfer surface of the bath heat exchanger. It is possible to prevent deterioration of the performance of the heat exchanger for bath due to adhesion and clogging of the flow path. Moreover, according to this Embodiment, the hot water storage operation | movement by the heat exchanger for hot water supply, the boiling of a bath by a heat exchanger for baths, and a heat retention operation can be performed simultaneously. Moreover, according to this Embodiment, the hot water supply hot water stored by the hot water supply heat exchanger and the heat source side heat exchanger can be used in combination with, for example, atmospheric heat, and the heating in the bath heat exchanger can be performed. Therefore, when the outside air temperature is not so high, efficient heat recovery can be performed because atmospheric heat is used while effectively using hot water and hot water. Further, according to the present embodiment, when the intermediate pressure is controlled in accordance with the boiling temperature of hot water, it is possible to obtain an optimum amount of refrigerant and perform highly efficient hot water heating operation.
According to the invention 11th The first to third embodiments are 6th From 8th In the heat pump device according to the embodiment, the third on-off valve is provided in the outlet side pipe of the heat source side heat exchanger, and the refrigerant flowing through the second bypass pipe is not allowed to flow into the heat source side heat exchanger. . According to the present embodiment, when the atmospheric temperature is lower than the temperature of the refrigerant flowing through the second bypass pipe, a part of the refrigerant flowing through the second bypass pipe flows into the heat source side heat exchanger. Therefore, it is possible to prevent a reduction in heating capacity due to a decrease in the amount of circulating refrigerant.
According to the invention 12th The embodiment of 1st to 10th In the heat pump device according to the embodiment, the operation of the circulation pump connected to the use side pipe of the heat exchanger for bath is stopped in the hot water bath heating operation mode or the hot water bath heating operation mode combined with bath hot water. According to the present embodiment, the function of the bath heat exchanger can be stopped as necessary, and the operation mode can be continued even when the bath heat exchanger is not used.
According to the invention 13th The embodiment of From the first First Zero In the heat pump device according to the embodiment, the operation of the circulation pump connected to the use side pipe of the hot water supply heat exchanger is stopped in the hot water bath heating operation mode. According to the present embodiment, the function of the hot water heat exchanger can be stopped as necessary, and the operation mode can be continued even when the hot water heat exchanger is not used.
According to the invention 14th The embodiment of 4th , 5th , 9th Or 10th In the heat pump device according to the embodiment, the operation of the blower fan disposed in the heat source side heat exchanger is stopped in the bathtub hot water combined hot water supply heating operation mode. According to the present embodiment, the function of the heat source side heat exchanger can be stopped as necessary, and the operation mode can be continued even when the heat source side heat exchanger is not used.
[0008]
【Example】
Hereinafter, a heat pump device according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a heat pump apparatus according to the present embodiment.
The heat pump apparatus according to this embodiment includes a compressor 11, a hot water supply heat exchanger 12, a first expansion valve 21, a bath heat exchanger 13, a second expansion valve 22, a heat source side heat exchanger 14, and an on-off valve. The refrigeration cycle is configured by connecting the pipes 23 in an annular fashion in order. In this refrigeration cycle, a first bypass pipe 15 that connects the discharge side pipe of the compressor 11 and the inlet side pipe of the bath heat exchanger 13 to bypass the hot water supply heat exchanger 12 and the expansion valve 21; A second bypass pipe 16 that connects the outlet side pipe of the bath heat exchanger 13 and the suction side pipe of the compressor 11 and bypasses the expansion valve 22 and the heat source side heat exchanger 14 is provided. The first bypass pipe 15 includes an opening / closing valve 24, and the second bypass pipe 16 includes an opening / closing valve 25. The heat source side heat exchanger 14 includes a blower fan 14a.
The use-side piping of the hot water supply heat exchanger 12 has a hot water supply tank 31 for storing hot water and low-temperature water in the hot water supply tank 31 led to the hot water supply heat exchanger 12, and hot water heated by the hot water supply heat exchanger 12 is supplied It is connected to a hot water supply circuit 33 provided with a circulation pump 32 for returning to the tank 31. A hot water supply pipe 34 is connected to the lower part of the hot water supply tank 31, and a hot water supply pipe 35 is connected to the upper part of the hot water supply tank 31.
On the other hand, the use side piping of the bath heat exchanger 13 guides the bathtub 41 and the low-temperature water of the bathtub 41 to the bath heat exchanger 13, and returns the hot water heated by the bath heat exchanger 13 to the bathtub 41. It connects to the bathtub circuit 43 provided with the circulation pump 42 for.
The hot water supply tank 31 includes temperature detection means such as a thermistor, and is provided with hot water detection means 51 for detecting the amount of remaining hot water or the boiling temperature in the tank. The bathtub circuit 43 includes temperature detection means such as a thermistor, and is provided with bathtub water detection means 52 that detects the temperature in the bathtub 41 or the temperature of the bathtub water flowing out of the bathtub 41. Further, in the vicinity of the heat source side heat exchanger 14, there is provided a heat source side temperature detection means 53 configured by temperature detection means such as a thermistor and detecting, for example, an atmospheric temperature as a heat source.
[0009]
The operation control means 60 inputs detection signals from the hot water supply detection means 51, the bath water detection means 52, and the heat source side temperature detection means 53, the throttle amount control of the expansion valves 21 and 22, and the circulation amounts of the circulation pumps 32 and 42. Control, opening / closing control of the opening / closing valves 23, 24, and 25 and capacity control of the compressor 11 are performed. Although not shown, as other input means, a discharge side pipe of the compressor 11, an outlet side pipe of the hot water supply heat exchanger 12, or an intermediate pressure pipe between the expansion valve 21 and the expansion valve 22, respectively. By providing the temperature detection means 54, 55, 56, capacity control in the hot water heat exchanger 12 by high pressure control, capacity control in the bath heat exchanger 13 by intermediate pressure control, discharge pressure control in the compressor 11 It is preferable to perform safety control according to.
In order to obtain high temperature water on the use side piping side of the hot water supply heat exchanger 12 and the bath heat exchanger 13, it is preferable that the refrigeration cycle is operated at a pressure exceeding the critical pressure using carbon dioxide as a refrigerant.
[0010]
Below, the control in each operation mode of the heat pump apparatus by a present Example is demonstrated.
First, basic control of the two expansion valves 21 and 22 will be described.
When using carbon dioxide as a refrigerant and operating at a pressure exceeding the critical pressure, it is necessary to appropriately control the high pressure.
The pressure between the expansion valve 21 and the expansion valve 22 is maintained at an intermediate pressure between the high pressure and the low pressure of the refrigeration cycle, and the refrigerant density is reduced in the high pressure side region, the intermediate pressure side region, and the low pressure side region. Decrease in the process. Since the space of the refrigerant circuit (including the bath heat exchanger 13) sandwiched between the expansion valve 21 and the expansion valve 22 is constant, the amount of refrigerant in the intermediate pressure side region also changes as the intermediate pressure increases or decreases. . Therefore, when the intermediate pressure is lowered, the amount of refrigerant in the intermediate pressure side region decreases, and the surplus refrigerant moves to the high pressure side region. Further, when the intermediate pressure is increased, the amount of refrigerant in the intermediate pressure side region increases, and the refrigerant necessary for increasing the density moves from the high pressure side region. Thus, the amount of refrigerant in the high pressure side region changes with the change in the intermediate pressure, and therefore, when the intermediate pressure is controlled by the expansion valves 21 and 22, the amount of refrigerant in the high pressure side region can be controlled. it can. The amount of refrigerant in the high pressure side region needs to be increased as the boiling temperature of the hot water is raised. Therefore, when the intermediate pressure is controlled in accordance with the boiling temperature of the hot water, it is possible to obtain an optimum refrigerant amount and perform a highly efficient hot water heating operation.
The intermediate pressure shown in the present embodiment is formed by a forced pressure reducing action using a pressure reducing means such as the expansion valves 21 and 22 provided to obtain a predetermined pressure reducing width, and has a predetermined pressure in the refrigeration cycle. This pressure is maintained or controlled to a value, and does not indicate a pressure drop caused by a heat exchanger or piping pressure loss.
[0011]
Next, the hot water bath heating operation mode will be described.
In the hot water bath heating operation mode, the refrigerant discharged from the compressor 11 is supplied to the hot water heat exchanger 12, the first expansion valve 21, the bath heat exchanger 13, the second expansion valve 22, and the heat source side heat exchanger. 14 in order, heat is radiated by the heat exchanger 12 for hot water supply and the heat exchanger 13 for bath, and is absorbed by the heat source side heat exchanger 14.
Therefore, the on / off valve 23 is opened and the on / off valve 24 and the on / off valve 25 are closed by the operation control means 60.
In order to increase the total heat radiation amount in the hot water supply heat exchanger 12 and the bath heat exchanger 13, the operation control means 60 increases the rotational speed of the compressor 11 or the rotational speed of the blower fan 14a. increase.
The amount of heat released by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 54. When a sufficient amount or temperature of hot water storage can be secured by a signal from the hot water supply detection means 51, the capacity of the circulation pump 32 is reduced or stopped.
The amount of heat released in the bath heat exchanger 13 is controlled by input signals from the bathtub water detection means 52 and the temperature detection means 55. When the temperature in the bathtub approaches a predetermined temperature or reaches a predetermined temperature by the signal from the bathtub water detection means 52, the capacity of the circulation pump 42 is reduced or stopped.
For example, when it is desired to boil the bathtub 41 at an early stage, or when it is desired to boil the bathtub 41 at an early stage and the amount of heat absorbed by the heat source side heat exchanger 14 is small, or when the need for hot water supply to the hot water supply tank 31 is small By reducing or stopping the capacity of the circulation pump 32, the amount of heat dissipated in the heat exchanger 12 for hot water supply is reduced, or by adjusting the opening degree of the expansion valves 21 and 22, the intermediate pressure is increased. The amount of heat released by the heat exchanger 13 is increased. Moreover, when increasing the heat radiation amount in the heat exchanger 13 for baths, the capacity of the circulation pump 42 is increased.
[0012]
Next, the bath heating operation mode will be described.
In the bath heating operation mode, the refrigerant discharged from the compressor 11 is sequentially circulated through the first bypass pipe 15, the bath heat exchanger 13, the second expansion valve 22, and the heat source side heat exchanger 14 for bath use. Heat is dissipated by the heat exchanger 13 and heat is absorbed by the heat source side heat exchanger 14.
Therefore, the opening / closing valve 23 is opened and the expansion valve 21 and the opening / closing valve 25 are closed by the operation control means 60. Further, the circulation pump 32 is stopped.
In order to increase the amount of heat release in the bath heat exchanger 13, the operation control means 60 increases the rotation speed of the compressor 11, increases the rotation speed of the blower fan 14a, or increases the capacity of the circulation pump 42. Increase.
The amount of heat released in the bath heat exchanger 13 is controlled by input signals from the bathtub water detection means 52 and the temperature detection means 55. When the temperature in the bathtub approaches a predetermined temperature or reaches a predetermined temperature by the signal from the bathtub water detection means 52, the capacity of the circulation pump 42 is reduced or stopped.
[0013]
Next, the bathtub hot water single use hot water supply heating operation mode will be described.
In the hot water supply heating operation mode using only the hot water in the bathtub, the refrigerant discharged from the compressor 11 is sequentially circulated through the hot water heat exchanger 12, the first expansion valve 21, the bath heat exchanger 13, and the second bypass pipe 16. Then, heat is dissipated by the heat exchanger 12 for hot water supply, and heat is absorbed by the heat exchanger 13 for bath.
Therefore, the on / off valve 25 is opened and the on / off valve 23, the on / off valve 24, and the expansion valve 22 are closed by the operation control means 60.
In order to increase the heat radiation amount in the hot water supply heat exchanger 12, the operation control means 60 increases the rotational speed of the compressor 11 or increases the throttle amount of the expansion valve 21.
The amount of heat released by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 54. When a sufficient amount or temperature of hot water storage can be secured by a signal from the hot water supply detection means 51, the capacity of the circulation pump 32 is reduced or stopped.
The amount of heat absorbed in the bath heat exchanger 13 is controlled by input signals from the bath water detection means 52 and the temperature detection means 55. When the temperature in the bathtub decreases due to a signal from the bathtub water detection means 52, the amount of expansion of the expansion valve 21 is increased. In order to increase the amount of heat absorbed by the bath heat exchanger 13, the capacity of the circulation pump 42 is increased.
The end of the bath hot water single-use hot water supply heating operation mode can be performed by comparing the temperature detected by the bath water detecting means 52 with the temperature detected by the heat source side temperature detecting means 53. If the detected temperature falls below the temperature detected by the heat source side temperature detecting means 53 and the hot water supply to the hot water supply tank 31 is necessary continuously, switch to the hot water bath heating operation mode or the hot water heating operation mode combined with bath hot water. Continue driving. In this case, the refrigerant is circulated in the hot water bath heating operation mode or the bathtub hot water combined hot water supply heating operation mode, but the circulation pump 42 is stopped.
[0014]
Next, a hot water supply heating operation mode in combination with a bathtub hot water will be described.
In the hot water heating operation mode combined with hot water in the bathtub, the refrigerant discharged from the compressor 11 is used as the heat exchanger 12 for hot water supply, the first expansion valve 21, the heat exchanger 13 for bath, the second expansion valve 22, and the heat source side heat. It is made to distribute | circulate to the exchanger 14 in order, is radiated with the heat exchanger 12 for hot water supply, and is made to absorb heat with the heat exchanger 13 for baths, and the heat source side heat exchanger 14.
Therefore, the on / off valve 23 is opened and the on / off valve 24 and the on / off valve 25 are closed by the operation control means 60.
In order to increase the heat radiation amount in the hot water supply heat exchanger 12, the operation control means 60 increases the rotation speed of the compressor 11, increases the throttle amount of the expansion valve 21, and sets the rotation speed of the blower fan 14a. Increase or increase the capacity of the circulation pump 42.
The amount of heat released by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 54. When a sufficient amount or temperature of hot water storage can be secured by a signal from the hot water supply detection means 51, the capacity of the circulation pump 32 is reduced or stopped.
The amount of heat absorbed in the bath heat exchanger 13 is controlled by input signals from the bath water detection means 52 and the temperature detection means 55. When the temperature in the bathtub decreases due to a signal from the bathtub water detection means 52, the amount of expansion of the expansion valve 21 is increased. In order to increase the amount of heat absorbed by the bath heat exchanger 13, the capacity of the circulation pump 42 is increased.
The amount of heat absorbed by the heat source side heat exchanger 14 is controlled by an input signal from the temperature detecting means 53. For example, when the atmospheric temperature decreases due to a signal from the temperature detection means 53, the throttle amount of the expansion valve 22 is increased. Moreover, in order to increase the heat absorption amount in the heat source side heat exchanger 14, the rotation speed in the ventilation fan 14a is increased.
In this bathtub warm water combined hot water supply heating operation mode, the capacity of the circulation pump 42, the rotational speed of the blower fan 14a, and the rotation speed of the blower fan 14a are determined by comparing the detected temperature of the bathtub water detecting means 52 and the detected temperature of the heat source side temperature detecting means 53. The opening degree of the expansion valves 21 and 22 is adjusted. For example, when the temperature detected by the bath water detecting means 52 is lower than the temperature detected by the heat source side temperature detecting means 53, the capacity of the circulation pump 42 is reduced or stopped, and the temperature detected by the heat source side temperature detecting means 53 is reduced. When the temperature detected by the bathtub water detection means 52 is lower than the detected temperature, the rotational speed of the blower fan 14a is reduced or stopped.
[0015]
Next, the defrosting operation mode will be described.
In the defrosting operation mode, the refrigerant discharged from the compressor 11 is circulated through the first bypass pipe 15, the bath heat exchanger 13, the second expansion valve 22, and the heat source side heat exchanger 14 in order, and the heat source side. Heat is dissipated by the heat exchanger 14.
Therefore, the opening / closing valve 23 and the opening / closing valve 24 are opened by the operation control means 60, and the opening / closing valve 25 and the expansion valve 21 are closed.
In order to increase the heat radiation amount in the heat source side heat exchanger 14, the operation control means 60 increases the rotation speed of the compressor 11, increases the throttle amount of the expansion valve 21, or stops the circulation pump 42. It is preferable that
[0016]
Hereinafter, a heat pump device according to another embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a circuit configuration diagram of the heat pump apparatus according to the present embodiment.
The heat pump device according to the present embodiment includes a compressor 11, a bath heat exchanger 13, a first expansion valve 21, a hot water supply heat exchanger 12, a second expansion valve 22, a heat source side heat exchanger 14, and an on-off valve. The refrigeration cycle is configured by connecting the pipes 23 in an annular fashion in order. The refrigeration cycle includes a first bypass pipe 15 that connects the discharge-side pipe of the compressor 11 and the inlet-side pipe of the hot water supply heat exchanger 12 to bypass the bath heat exchanger 13 and the expansion valve 21; A second bypass pipe 16 that connects the outlet side pipe of the hot water supply heat exchanger 12 and the suction side pipe of the compressor 11 and bypasses the expansion valve 22 and the heat source side heat exchanger 14 is provided. The first bypass pipe 15 includes an opening / closing valve 24, and the second bypass pipe 16 includes an opening / closing valve 25. The heat source side heat exchanger 14 includes a blower fan 14a.
The use-side piping of the bath heat exchanger 13 is used to guide the bath 41 and the low-temperature water in the bath 41 to the bath heat exchanger 13 and return the hot water heated by the bath heat exchanger 13 to the bath 41. A hot water supply circuit 43 including a circulation pump 42 is connected.
On the other hand, the use-side piping of the hot water supply heat exchanger 12 leads the hot water supply tank 31 for storing hot water and the low temperature water of the hot water supply tank 31 to the hot water supply heat exchanger 12, and is heated by the hot water supply heat exchanger 12. It is connected to a bathtub circuit 33 having a circulation pump 32 for returning hot water to the hot water supply tank 31. A hot water supply pipe 34 is connected to the lower part of the hot water supply tank 31, and a hot water supply pipe 35 is connected to the upper part of the hot water supply tank 31.
The bathtub 41 includes temperature detection means such as a thermistor, and is provided with hot water supply detection means 52 for detecting the amount of remaining hot water or the boiling temperature in the tank. The hot water supply circuit 33 includes temperature detection means such as a thermistor, and is provided with bathtub water detection means 51 for detecting the temperature in the hot water supply tank 31 or the temperature of the bathtub water flowing out of the hot water supply tank 31. Further, in the vicinity of the heat source side heat exchanger 14, there is provided a heat source side temperature detection means 53 configured by temperature detection means such as a thermistor and detecting, for example, an atmospheric temperature as a heat source.
[0017]
The operation control means 60 inputs detection signals from the hot water supply detection means 51, the bath water detection means 52, and the heat source side temperature detection means 53, the throttle amount control of the expansion valves 21 and 22, and the circulation amounts of the circulation pumps 32 and 42. Control, opening / closing control of the opening / closing valves 23, 24, and 25 and capacity control of the compressor 11 are performed. In addition, as other input means, the temperature detection means 54, the discharge side pipe of the compressor 11, the outlet side pipe of the bath heat exchanger 13, or the intermediate pressure pipe between the expansion valve 21 and the expansion valve 22, respectively. By providing 55 and 56, capacity control in the heat exchanger 13 for bath by high pressure control, capacity control in the heat exchanger 12 for hot water supply by intermediate pressure control, and safety control by control of discharge pressure from the compressor 11 are performed. It is preferable.
In order to obtain high temperature water on the use side piping side of the bath heat exchanger 13 and the hot water supply heat exchanger 12, it is preferable that the refrigeration cycle is operated at a pressure exceeding the critical pressure using carbon dioxide as a refrigerant.
[0018]
Below, the control in each operation mode of the heat pump apparatus by a present Example is demonstrated.
First, basic control of the two expansion valves 21 and 22 will be described.
When using carbon dioxide as a refrigerant and operating at a pressure exceeding the critical pressure, it is necessary to appropriately control the high pressure.
The pressure between the expansion valve 21 and the expansion valve 22 is maintained at an intermediate pressure between the high pressure and the low pressure of the refrigeration cycle, and the refrigerant density is reduced in the high pressure side region, the intermediate pressure side region, and the low pressure side region. Decrease in the process. Since the space of the refrigerant circuit (including the hot water supply heat exchanger 12) sandwiched between the expansion valve 21 and the expansion valve 22 is constant, the amount of refrigerant in the intermediate pressure side region also changes as the intermediate pressure increases or decreases. . Therefore, when the intermediate pressure is lowered, the amount of refrigerant in the intermediate pressure side region decreases, and the surplus refrigerant moves to the high pressure side region. Further, when the intermediate pressure is increased, the amount of refrigerant in the intermediate pressure side region increases, and the refrigerant necessary for increasing the density moves from the high pressure side region. Thus, the amount of refrigerant in the high pressure side region changes with the change in the intermediate pressure, and therefore, when the intermediate pressure is controlled by the expansion valves 21 and 22, the amount of refrigerant in the high pressure side region can be controlled. it can. The amount of refrigerant in the high pressure side region needs to be increased as the boiling temperature of the bath water rises. Therefore, when the intermediate pressure is controlled according to the boiling temperature of the bath water, an optimal amount of refrigerant can be obtained and a highly efficient bath water heating operation can be performed.
The intermediate pressure shown in the present embodiment is formed by a forced pressure reducing action using a pressure reducing means such as the expansion valves 21 and 22 provided to obtain a predetermined pressure reducing width, and has a predetermined pressure in the refrigeration cycle. This pressure is maintained or controlled to a value, and does not indicate a pressure drop caused by a heat exchanger or piping pressure loss.
[0019]
Next, the hot water bath heating operation mode will be described.
In the hot water bath heating operation mode, the refrigerant discharged from the compressor 11 is used as the bath heat exchanger 13, the first expansion valve 21, the hot water heat exchanger 12, the second expansion valve 22, and the heat source side heat exchanger. The heat exchanger 13 and the hot water supply heat exchanger 12 dissipate heat and the heat source side heat exchanger 14 absorbs heat.
Therefore, the on / off valve 23 is opened and the on / off valve 24 and the on / off valve 25 are closed by the operation control means 60.
In order to increase the total heat radiation in the heat exchanger 13 for bath and the heat exchanger 12 for hot water supply, the operation control means 60 increases the rotation speed of the compressor 11 or increases the rotation speed of the blower fan 14a. Let
The amount of heat dissipated in the bath heat exchanger 13 is controlled by input signals from the bathtub water detection means 52 and the temperature detection means 54. When the temperature in the bathtub approaches a predetermined temperature or reaches a predetermined temperature by the signal from the bathtub water detection means 52, the capacity of the circulation pump 42 is reduced or stopped.
The amount of heat released by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 55. When a sufficient amount or temperature of hot water storage can be secured by a signal from the hot water supply detection means 51, the capacity of the circulation pump 32 is reduced or stopped.
For example, when it is desired to boil the hot water supply tank 31 at an early stage, or when it is desired to boil the hot water supply tank 31 at an early stage, when the amount of heat absorbed by the heat source side heat exchanger 14 is small, or when the need for hot water supply to the bathtub 41 is small Reduce the heat dissipation in the heat exchanger 13 for bath by reducing or stopping the capacity of the circulation pump 42, or increase the intermediate pressure by adjusting the opening of the expansion valves 21 and 22, Increasing the amount of heat dissipated in the hot water heat exchanger 12. Moreover, when increasing the amount of heat radiation in the hot water supply heat exchanger 12, the capacity of the circulation pump 32 is increased.
[0020]
Next, the hot water supply heating operation mode will be described.
In the hot water supply heating operation mode, the refrigerant discharged from the compressor 11 is passed through the first bypass pipe 15, the hot water supply heat exchanger 12, the second expansion valve 22, and the heat source side heat exchanger 14 in order to supply hot water. Heat is dissipated by the heat exchanger 12, and heat is absorbed by the heat source side heat exchanger.
Therefore, the opening / closing valve 23 is opened and the expansion valve 21 and the opening / closing valve 25 are closed by the operation control means 60. Further, the circulation pump 32 is stopped.
In order to increase the heat radiation amount in the hot water supply heat exchanger 12, the operation control means 60 increases the rotation speed of the compressor 11, increases the rotation speed of the blower fan 14a, or increases the capacity of the circulation pump 32. Increase.
The amount of heat released by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 55. When a sufficient amount or temperature of hot water storage water can be secured in the hot water supply tank 31 by the signal from the hot water detection means 51, the capacity of the circulation pump 32 is reduced or stopped.
[0021]
Next, the hot water storage hot water single use hot water supply heating operation mode will be described.
In the hot water storage hot water heating operation mode using hot water stored alone, the refrigerant discharged from the compressor 11 is sequentially circulated through the bath heat exchanger 13, the first expansion valve 21, the hot water heat exchanger 12, and the second bypass pipe 16. The heat is dissipated by the heat exchanger 13 for bath and the heat is absorbed by the heat exchanger 12 for hot water supply.
Therefore, the on / off valve 25 is opened and the on / off valve 23, the on / off valve 24, and the expansion valve 22 are closed by the operation control means 60.
In order to increase the heat radiation amount in the bath heat exchanger 13, the operation control means 60 increases the rotational speed of the compressor 11 or increases the throttle amount of the expansion valve 21.
The amount of heat dissipated in the bath heat exchanger 13 is controlled by input signals from the bathtub water detection means 52 and the temperature detection means 54. When the temperature in the bathtub approaches a predetermined temperature or reaches a predetermined temperature by the signal from the bathtub water detection means 52, the capacity of the circulation pump 32 is reduced or stopped.
The amount of heat absorbed by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 55. When the temperature in the hot water supply tank 31 decreases due to a signal from the hot water detection means 51, the throttle amount of the expansion valve 21 is increased. In order to increase the amount of heat absorbed by the hot water supply heat exchanger 12, the capacity of the circulation pump 32 is increased.
The end of the hot water storage hot water heating operation mode using hot water storage can be performed by comparing the detected temperature of the hot water detection means 51 with the detected temperature of the heat source side temperature detection means 53, for example, the detected temperature of the hot water detection means 51. If the water temperature falls below the temperature detected by the heat source side temperature detecting means 53 and the hot water supply to the bathtub 41 is necessary, the operation is continued by switching to the hot water bath heating operation mode or the hot water storage hot water combined hot water heating operation mode. To do. In this case, the refrigerant is circulated in the hot water bath heating operation mode or the hot water storage hot water heating operation mode in combination with the hot water storage hot water, but the circulation pump 32 is stopped.
[0022]
Next, hot water storage hot water combined hot water supply heating operation mode will be described.
In the hot water storage hot water supply heating operation mode, the refrigerant discharged from the compressor 11 is used as the bath heat exchanger 13, the first expansion valve 21, the hot water heat exchanger 12, the second expansion valve 22, and the heat source side heat. It is made to distribute | circulate to the exchanger 14 in order, is radiated with the heat exchanger 13 for baths, and is made to absorb heat with the heat exchanger 12 for hot water supply, and the heat source side heat exchanger 14.
Therefore, the on / off valve 23 is opened and the on / off valve 24 and the on / off valve 25 are closed by the operation control means 60.
In order to increase the amount of heat released in the bath heat exchanger 13, the operation control means 60 increases the rotation speed of the compressor 11, increases the throttle amount of the expansion valve 21, and sets the rotation speed of the blower fan 14a. Increase or increase the capacity of the circulation pump 32.
The amount of heat dissipated in the bath heat exchanger 13 is controlled by input signals from the bathtub water detection means 52 and the temperature detection means 54. When the bath water at a predetermined temperature is secured by the signal from the bath water detection means 52, the capacity of the circulation pump 42 is reduced or stopped.
The amount of heat absorbed by the hot water supply heat exchanger 12 is controlled by input signals from the hot water supply detection means 51 and the temperature detection means 55. When the temperature in the hot water supply tank 31 decreases due to a signal from the hot water detection means 51, the throttle amount of the expansion valve 21 is increased. In order to increase the amount of heat absorbed by the hot water supply heat exchanger 12, the capacity of the circulation pump 32 is increased.
The amount of heat absorbed by the heat source side heat exchanger 14 is controlled by an input signal from the temperature detecting means 53. For example, when the atmospheric temperature decreases due to a signal from the temperature detection means 53, the throttle amount of the expansion valve 22 is increased. Moreover, in order to increase the heat absorption amount in the heat source side heat exchanger 14, the rotation speed in the ventilation fan 14a is increased.
In this hot water storage hot water combined use hot water heating operation mode, by comparing the temperature detected by the hot water detection means 51 and the temperature detected by the heat source side temperature detection means 53, the capacity of the circulation pump 32, the rotational speed of the blower fan 14a, the expansion The opening degree of the valves 21 and 22 is adjusted. For example, when the temperature detected by the hot water supply detecting means 51 is lower than the temperature detected by the heat source side temperature detecting means 53, the capacity of the circulation pump 32 is lowered or stopped, and the temperature detected by the heat source side temperature detecting means 53 becomes the hot water supply temperature. When the temperature is lower than the temperature detected by the detection means 51, the rotational speed of the blower fan 14a is reduced or stopped.
[0023]
Next, the defrosting operation mode will be described.
In the defrosting operation mode, the refrigerant discharged from the compressor 11 is passed through the first bypass pipe 15, the hot water supply heat exchanger 12, the second expansion valve 22, and the heat source side heat exchanger 14 in order, and the heat source side Heat is dissipated by the heat exchanger 14.
Therefore, the opening / closing valve 23 and the opening / closing valve 24 are opened by the operation control means 60, and the opening / closing valve 25 and the expansion valve 21 are closed.
In order to increase the heat radiation amount in the heat source side heat exchanger 14, the operation control means 60 increases the number of rotations of the compressor 11, increases the throttle amount of the expansion valve 21, or stops the circulation pump 32. It is preferable that
[0024]
In the above-described embodiment, the case has been described where water in the hot water supply tank 31 is circulated in the use side piping of the hot water supply heat exchanger 12. However, a heat exchanger is provided in the hot water supply tank 31, and this heat exchanger is provided. It is also possible to independently configure a hot water supply circuit in which the user side pipe is connected and to circulate a heat medium such as water, refrigerant, or oil in the hot water supply circuit.
Moreover, although the said Example demonstrated the case where the water in the bathtub 41 was distribute | circulated to the utilization side piping of the heat exchanger 13 for baths, the heat exchanger which heat-exchanges with the water in the bathtub 41 was provided, and this A bathtub circuit in which the heat exchanger and the use side piping are connected may be configured independently, and a heat medium such as water, refrigerant, or oil may be circulated in the bathtub circuit.
Moreover, in the said Example, although the heat exchanger 12 for hot water supply was demonstrated for the hot water storage of the hot water supply tank 31, and the heat exchanger 13 for baths was used for the heat insulation of the bathtub 41, as with the hot water supply tank 31 and the bathtub 41, It may be used for a warming device or facility, a heating device or facility, or a heating device or facility, such as a warm water pool, a hot water storage tank, or a heating device such as floor heating, which requires heat insulation. .
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it is possible to perform boiling of a bath and heat insulation operation with a heat exchanger for bath without flowing high-temperature and high-pressure refrigerant into the heat exchanger for hot water supply.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a heat pump device according to an embodiment of the present invention.
FIG. 2 is a circuit configuration diagram of a heat pump device according to another embodiment of the present invention.
[Explanation of symbols]
11 Compressor
12 Heat exchanger for hot water supply
13 Heat exchanger for bath
14 Heat source side heat exchanger
14a Blower fan
15 First bypass pipe
16 Second bypass pipe
21 First expansion valve
22 Second expansion valve
23 On-off valve
24 On-off valve
25 On-off valve
31 Hot water tank
32 Circulation pump
33 Hot water supply circuit
41 Bathtub
42 Circulation pump
43 Bathtub Circuit

Claims (14)

圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger connected in an annular fashion in order by piping;
A first bypass pipe that connects a discharge side pipe of the compressor and an inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the bath heat exchanger and the suction side pipe of the compressor to bypass the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the bath heat exchanger A bath heating operation mode for radiating heat and absorbing heat in the heat source side heat exchanger;
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, and the second bypass pipe, in the hot water supply heat exchanger. Dissipate heat and absorb heat in the bath heat exchanger.
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with an increase in boiling temperature of the hot water, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger connected in an annular fashion in order by piping;
A first bypass pipe that connects a discharge side pipe of the compressor and an inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the bath heat exchanger and the suction side pipe of the compressor to bypass the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, and the second bypass pipe, in the hot water supply heat exchanger. Dissipate heat and absorb heat in the bath heat exchanger.
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat,
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with an increase in boiling temperature of the hot water, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger connected in an annular fashion in order by piping;
A first bypass pipe that connects a discharge side pipe of the compressor and an inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the bath heat exchanger and the suction side pipe of the compressor to bypass the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the bath heat exchanger A bath heating operation mode for radiating heat and absorbing heat in the heat source side heat exchanger;
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, and the second bypass pipe, in the hot water supply heat exchanger. Dissipate heat and absorb heat in the bath heat exchanger.
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat,
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with an increase in boiling temperature of the hot water, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器及び前記熱源側熱交換器にて吸熱させる浴槽温水併用給湯加熱運転モードを有することを特徴とする請求項1から請求項3のいずれかに記載のヒートポンプ装置。  The refrigerant discharged from the compressor is circulated in order through the heat exchanger for hot water supply, the first expansion valve, the heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger, 4. The hot water heating operation mode combined with hot water in a bathtub is used to radiate heat in a heat exchanger for hot water supply and absorb heat in the heat exchanger for bath and the heat source side heat exchanger. 5. A heat pump device according to claim 1. 圧縮機、給湯用熱交換器、第1の膨張弁、風呂用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記風呂用熱交換器の入口側配管とを接続して前記給湯用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記風呂用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器及び前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、及び前記第2のバイパス管に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器にて吸熱させる浴槽温水単独利用給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記給湯用熱交換器、前記第1の膨張弁、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記風呂用熱交換器及び前記熱源側熱交換器にて吸熱させる浴槽温水併用給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記風呂用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a hot water supply heat exchanger, a first expansion valve, a bath heat exchanger, a second expansion valve, and a heat source side heat exchanger connected in an annular fashion in order by piping;
A first bypass pipe that connects a discharge side pipe of the compressor and an inlet side pipe of the bath heat exchanger to bypass the hot water supply heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the bath heat exchanger and the suction side pipe of the compressor to bypass the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is circulated in order through the heat exchanger for hot water supply, the first expansion valve, the heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger, Dissipating heat with a heat exchanger for hot water supply and the heat exchanger for bath, and hot water bath heating operation mode for absorbing heat with the heat source side heat exchanger,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the bath heat exchanger A bath heating operation mode for radiating heat and absorbing heat in the heat source side heat exchanger;
The refrigerant discharged from the compressor is circulated in order through the hot water supply heat exchanger, the first expansion valve, the bath heat exchanger, and the second bypass pipe, in the hot water supply heat exchanger. Dissipate heat and absorb heat in the bath heat exchanger.
The refrigerant discharged from the compressor is circulated in order through the heat exchanger for hot water supply, the first expansion valve, the heat exchanger for bath, the second expansion valve, and the heat source side heat exchanger, A hot water supply heating operation mode combined with hot water in a bathtub that radiates heat with a heat exchanger for hot water supply and absorbs heat with the heat exchanger for bath and the heat source side heat exchanger,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the bath heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with an increase in boiling temperature of the hot water, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる給湯温水単独利用風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、給湯水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger connected in an annular manner in order by piping;
A first bypass pipe connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the hot water supply heat exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is sequentially circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger, and the hot water supply heat exchanger A hot water supply heating operation mode in which heat is dissipated and absorbed by the heat source side heat exchanger,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, and the second bypass pipe in this order, in the bath heat exchanger. Dissipate heat and absorb heat with the hot water supply heat exchanger, hot water hot water alone use bath heating operation mode,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with an increase in boiling temperature of the hot water, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる給湯温水単独利用風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger connected in an annular manner in order by piping;
A first bypass pipe connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the hot water supply heat exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, and the second bypass pipe in this order, in the bath heat exchanger. Dissipate heat and absorb heat in the hot water supply heat exchanger, hot water supply hot water alone use bath heating operation mode,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with increasing boiling of bath water temperature, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる給湯温水単独利用風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger connected in an annular manner in order by piping;
A first bypass pipe connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the hot water supply heat exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is sequentially circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger, and the hot water supply heat exchanger A hot water supply heating operation mode in which heat is dissipated and absorbed by the heat source side heat exchanger,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, and the second bypass pipe in this order, in the bath heat exchanger. Dissipate heat and absorb heat in the hot water supply heat exchanger, hot water supply hot water alone use bath heating operation mode,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with increasing boiling of bath water temperature, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器及び前記熱源側熱交換器にて吸熱させる貯湯温水併用風呂加熱運転モードを有することを特徴とする請求項7又は請求項8に記載のヒートポンプ装置。The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, is radiating at the bath heat exchanger, according to claim 7 or claim 8 characterized in that it has a hot-water heated combination bath heating operation mode in which endothermic in the hot water supply heat exchanger and the heat source-side heat exchanger Heat pump device. 圧縮機、風呂用熱交換器、第1の膨張弁、給湯用熱交換器、第2の膨張弁、及び熱源側熱交換器を配管で順に環状に接続し、
圧縮機の吐出側配管と前記給湯用熱交換器の入口側配管とを接続して前記風呂用熱交換器及び前記第1の膨張弁をバイパスする第1のバイパス管と、
前記給湯用熱交換器の出口側配管と前記圧縮機の吸入側配管とを接続して前記第2の膨張弁及び前記熱源側熱交換器をバイパスする第2のバイパス管とを有し、前記第1のバイパス管には第1の開閉弁を、前記第2のバイパス管には第2の開閉弁を備えたヒートポンプ装置であって、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器及び前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記給湯用熱交換器にて放熱させ、前記熱源側熱交換器にて吸熱させる給湯加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、及び前記第2のバイパス管に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器にて吸熱させる貯湯温水単独利用風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記風呂用熱交換器、前記第1の膨張弁、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記風呂用熱交換器にて放熱させ、前記給湯用熱交換器及び前記熱源側熱交換器にて吸熱させる貯湯温水併用風呂加熱運転モードと、
前記圧縮機を吐出した冷媒を、前記第1のバイパス管、前記給湯用熱交換器、前記第2の膨張弁、及び前記熱源側熱交換器に順に流通させ、前記熱源側熱交換器にて放熱させる除霜運転モードと、
を有し、
冷媒として二酸化炭素を用い、高圧側では臨界圧を越える状態で運転し、
前記給湯風呂加熱運転モードでは、前記第1の膨張弁と前記第2の膨張弁の間に挟まれる冷媒回路の中間圧力を、前記第1の膨張弁と前記第2の膨張弁によって制御することで、高圧側領域での冷媒量を制御し、浴槽水の沸き上げ温度の上昇に伴い、前記高圧側領域での冷媒量多くすることを特徴とするヒートポンプ装置。
A compressor, a heat exchanger for bath, a first expansion valve, a heat exchanger for hot water supply, a second expansion valve, and a heat source side heat exchanger connected in an annular manner in order by piping;
A first bypass pipe connecting the discharge side pipe of the compressor and the inlet side pipe of the hot water supply heat exchanger to bypass the bath heat exchanger and the first expansion valve;
A second bypass pipe for connecting the outlet side pipe of the hot water supply heat exchanger and the suction side pipe of the compressor and bypassing the second expansion valve and the heat source side heat exchanger; A heat pump device having a first on-off valve in the first bypass pipe and a second on-off valve in the second bypass pipe,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, Dissipating heat in the heat exchanger for bath and the heat exchanger for hot water supply, and hot water bath heating operation mode for absorbing heat in the heat source side heat exchanger,
The refrigerant discharged from the compressor is sequentially circulated through the first bypass pipe, the hot water supply heat exchanger, the second expansion valve, and the heat source side heat exchanger, and the hot water supply heat exchanger A hot water supply heating operation mode in which heat is dissipated and absorbed by the heat source side heat exchanger,
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water supply heat exchanger, and the second bypass pipe in this order, in the bath heat exchanger. Dissipate heat and absorb hot water in the hot water supply heat exchanger.
The refrigerant discharged from the compressor is circulated through the bath heat exchanger, the first expansion valve, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger in order, The bath heating operation mode with hot water storage hot water used to radiate heat in the heat exchanger for bath and absorb heat in the heat exchanger for hot water supply and the heat source side heat exchanger,
The refrigerant discharged from the compressor is circulated in order through the first bypass pipe, the hot water heat exchanger, the second expansion valve, and the heat source side heat exchanger, and in the heat source side heat exchanger Defrosting operation mode to dissipate heat,
Have
Use carbon dioxide as the refrigerant, operate on the high pressure side above the critical pressure,
In the hot water bath heating operation mode, the intermediate pressure of the refrigerant circuit sandwiched between the first expansion valve and the second expansion valve is controlled by the first expansion valve and the second expansion valve. in controls amount of the refrigerant in the high pressure side region, with increasing boiling of bath water temperature, the heat pump apparatus characterized by increasing the amount of refrigerant in the high pressure side region.
前記熱源側熱交換器の出口側配管に第3の開閉弁を設け、前記第2のバイパス管を流れる冷媒を前記熱源側熱交換器に流入させない構成としたことを特徴とする請求項1から請求項3、又は請求項6から請求項8のいずれかに記載のヒートポンプ装置。The third on-off valve is provided in the outlet side pipe of the heat source side heat exchanger, and the refrigerant flowing through the second bypass pipe is configured not to flow into the heat source side heat exchanger. The heat pump apparatus according to claim 3 or any one of claims 6 to 8 . 前記給湯風呂加熱運転モード又は前記浴槽温水併用給湯加熱運転モードにおいて、前記風呂用熱交換器の利用側配管に接続された循環ポンプの運転を停止することを特徴とする請求項1から請求項10のいずれかに記載のヒートポンプ装置。In the hot water supply bath heating operation mode or the bathtub hot-water combination hot water heating operation mode, claims 1 to 10, characterized in that to stop the operation of the connected circulation pump to the usage-side pipe of the heat exchanger for the bath The heat pump device according to any one of the above. 前記給湯風呂加熱運転モードにおいて、前記給湯用熱交換器の利用側配管に接続された循環ポンプの運転を停止することを特徴とする請求項1から請求項10のいずれかに記載のヒートポンプ装置。In the hot water supply bath heating operation mode, the heat pump apparatus according to any one of claims 1 0 to claim 1, characterized in that to stop the operation of the connected circulation pump to the usage-side pipe of the heat exchanger for the hot water supply . 前記浴槽温水併用給湯加熱運転モードにおいて、前記熱源側熱交換器に配置された送風ファンの運転を停止することを特徴とする請求項4請求項5請求項9、及び請求項10のいずれかに記載のヒートポンプ装置。The operation of the blower fan arranged in the heat source side heat exchanger is stopped in the bath hot water combined hot water supply heating operation mode, or any one of claims 4 , 5 , 9 , and 10 . A heat pump device according to claim 1.
JP2003104732A 2003-04-09 2003-04-09 Heat pump equipment Expired - Fee Related JP4279035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104732A JP4279035B2 (en) 2003-04-09 2003-04-09 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104732A JP4279035B2 (en) 2003-04-09 2003-04-09 Heat pump equipment

Publications (2)

Publication Number Publication Date
JP2004309044A JP2004309044A (en) 2004-11-04
JP4279035B2 true JP4279035B2 (en) 2009-06-17

Family

ID=33467443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104732A Expired - Fee Related JP4279035B2 (en) 2003-04-09 2003-04-09 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP4279035B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920622B2 (en) * 2008-04-01 2012-04-18 三菱電機株式会社 Heat pump water heater
JP5760390B2 (en) * 2010-11-02 2015-08-12 株式会社Ihi Heat pump and control method thereof
FR3009612B1 (en) * 2013-08-09 2018-12-07 Zodiac Pool Care Europe SYSTEM AND METHOD FOR CONTROLLING HEAT PUMP FOR SWIMMING POOL

Also Published As

Publication number Publication date
JP2004309044A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
EP2151633B1 (en) Hot water circulation system associated with heat pump and method for controlling the same
US7228695B2 (en) Heat pump type hot water supply device
CN102326040A (en) Heat pump system
WO2009142004A1 (en) Heating system
JP5958411B2 (en) HEAT PUMP SYSTEM AND ITS CONTROL DEVICE
JP4254648B2 (en) Heating system
WO2009096256A1 (en) Hot-water supply heater
JP4287677B2 (en) Refrigeration cycle equipment
JP4279035B2 (en) Heat pump equipment
JP4492634B2 (en) Heat pump system
JP4194220B2 (en) Bath equipment
JP2007155275A (en) Heat pump hot water feeder
JP4194213B2 (en) Hot water storage hot water source
JP4156387B2 (en) Water heater
JP4019943B2 (en) Heat pump water heater
JP4567909B2 (en) Heat pump type water heater
JP3841051B2 (en) Heat pump water heater
JP4493231B2 (en) Heating medium circulation type heating device
JP4133593B2 (en) Hot water storage hot water heater
JP2004278987A (en) Heat pump type water heater
JP2008045826A (en) Hot-water storage type hot water supply heater
JP4169454B2 (en) Hot water storage hot water source
JP4004049B2 (en) Heat pump water heater
JP3851847B2 (en) Hot water storage hot water source
JP4007174B2 (en) Heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees