JP4278237B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4278237B2
JP4278237B2 JP19764099A JP19764099A JP4278237B2 JP 4278237 B2 JP4278237 B2 JP 4278237B2 JP 19764099 A JP19764099 A JP 19764099A JP 19764099 A JP19764099 A JP 19764099A JP 4278237 B2 JP4278237 B2 JP 4278237B2
Authority
JP
Japan
Prior art keywords
gas leak
leak sensor
refrigerant
absorption refrigerator
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19764099A
Other languages
Japanese (ja)
Other versions
JP2001021437A (en
Inventor
正美 間々田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19764099A priority Critical patent/JP4278237B2/en
Publication of JP2001021437A publication Critical patent/JP2001021437A/en
Application granted granted Critical
Publication of JP4278237B2 publication Critical patent/JP4278237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷凍機(吸収冷温水機、吸収ヒートポンプを含む)に関する。
【0002】
【従来の技術】
吸収冷凍機は周知のように再生器、凝縮器、蒸発器、吸収器などを順次配管接続し、ハロゲン元素系塩類(例えば、塩化リチウム、臭化リチウム)などの水溶液からなる吸収液により水などの冷媒を吸収させたり、放出させたりしながら循環させる際に、熱の授受を行って冷房などの冷却作用に供したり、暖房などの加熱作用に供したりする装置である。
【0003】
上記構成の吸収冷凍機においては、再生器、凝縮器、蒸発器、吸収器、およびそれらを連結する配管部などが鉄あるいはステンレス鋼によって形成され、冷媒に水、吸収液に塩化リチウム、臭化リチウム水溶液などが用いられていると、吸収液が機器素材の金属と反応し、防食皮膜を形成する際に水素ガスを発生する。
【0004】
また、吸収冷凍機は冷媒の速やかな蒸発を図るために全体が高真空となっているが、溶接構造物であるためピンホール・亀裂などからの大気成分の侵入は不可避であり、時間の経過と共に窒素や酸素などの大気成分が増加する。
【0005】
上記メカニズムで発生した水素ガスや、外部から機内に侵入した大気成分である窒素ガスや酸素ガスなどは冷凍機における冷却程度では凝縮することがないし、吸収液への溶解度も極めて小さいために蒸発器や吸収器の非溶液部に滞留し、次第にその濃度が高まる。このようにして機内における水素、窒素、酸素などの不凝縮ガスの濃度が高まると、冷媒の蒸発が抑制されて冷凍能力が低下する。
【0006】
このため、冷暖房の切換時などに出向いたサービス員によって、a.装置の気相部に連結した真空ポンプから排出される気泡量を検出する、b.圧力センサにより機内の圧力変化をチェックする、などしているが、これらの方法では不凝縮ガスの増加を確実に捕らえることができない。
【0007】
また、機内で増加している不凝縮ガスが、前記メカニズムで生成した水素ガスであるのか、外部から洩れ込んだ大気成分であるのかの判別ができないため、外部から洩れ込んだ大気成分の酸素に機器構成部材が長期間晒され、多様な腐食形態をとって腐食貫通と云う重大事故を招きかねないと云った不都合があった。
【0008】
【発明が解決しようとする課題】
したがって、大気成分の微小な漏れ込みでも速やかに、且つ、確実に検出できるようにする必要があり、これが解決すべき課題となっていた。
【0009】
【課題を解決するための手段】
上記課題を解決すべく本発明は、冷媒蒸気が循環する回路に、離間して支持された2本の電極と、この2本の電極の間に張架された細線とからなるガスリークセンサを、前記細線が冷媒管の内部を流れる冷媒蒸気に接触可能となるように設置した吸収冷凍機であって、前記ガスリークセンサより上流側の冷媒蒸気回路と、ガスリークセンサより下流側の冷媒蒸気回路とに開閉弁が設置された第1の構成の吸収冷凍機と、
【0014】
前記第の構成の吸収冷凍機において、開閉弁同士の間のガスリークセンサが設置された冷媒蒸気回路に排気手段を連結するようにした第の構成の吸収冷凍機と、
【0015】
前記第1又は第2の構成の吸収冷凍機において、吸収冷凍機の吸収液がハロゲン元素系を含む塩類の水溶液であるようにした第の構成の吸収冷凍機と、
を提供するものである。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明になるガスリークセンサ100は、図1に示したように絶縁性素材、例えばポリエーテルエーテルケトン樹脂製の取着部材101によって離間して支持された2本の電極102A,102Bと、この電極102A,102Bとの間に引張り応力が作用するように張架された細線103とから構成されている。
【0017】
細線103は、Niを1.5%以上含む金属、例えばSUS−304などのオーステナイト系のステンレス鋼を、例えば直径500μmに冷間引き抜き加工して、コイル状ばね状に形成したものである。
【0018】
オーステナイト系のステンレス鋼であり、しかも引張り応力が作用した状態で電極102A、102Bに支持されている細線103は、酸素と塩化物が共存する雰囲気に晒されると粒内型の応力腐食割れを生じる。
【0019】
すなわち、Niを含む金属、例えばSUS304(18−8オーステナイト系ステンレス鋼)は、例えば図4に示したように酸素濃度が高いほど割れ感受性は高く、条件(金属組成、雰囲気の塩化物濃度、作用している引張り応力の大きさ)によっては酸素濃度が1ppmでも割れを生じる。
【0020】
しかも、応力腐食割れを生じた細線103は、電極102A,102Bとで引張られているので簡単に破断する。細線103が破断しているか否かは、電圧を印加して電極102A,102B間の導通をチェックすることで簡単に分かる。
【0021】
上記構成のガスリークセンサ100は、図2に示した吸収冷凍機の開閉弁26と27との間の冷媒管14などに、例えば図3に示した要領で取り付けられる。すなわち、取着部材101の胴部外面には装着用のねじ101Aを設け、このねじ101Aを冷媒管14に取り付けたソケット32のねじ32Aに螺合させることで、ガスリークセンサ100の細線103が冷媒管14の内部を流れる冷媒蒸気に接触可能に設置される。
【0022】
図2に示した吸収冷凍機において、1はガスバーナ1Bを備えた高温再生器、2は低温再生器、3は凝縮器、4は蒸発器、5は吸収器、6は低温熱交換器、7は高温熱交換器、8〜11は吸収液管、13は吸収液ポンプ、14〜18は冷媒管、19は冷媒ポンプ、21は図示しない冷/暖房負荷に循環供給する冷水または温水が流れる冷温水管、22は冷温水ポンプ、23は冷却水管、24と25は均圧管、26〜31は開閉弁であり、この吸収冷凍機は、冷媒に水、吸収液にハロゲン元素系塩類、例えば塩化リチウムの水溶液を使用して、負荷に冷水または温水を循環供給する二重効用吸収冷凍機である。なお、ガスリークセンサ100、開閉弁26、27を含まない構成は従来周知であるので、吸収冷凍機自体の動作説明は省略する。
【0023】
そして、電極102A,102B間の導通の有無を、常時あるいは定期的(例えば、1時間毎)にチェックすることで、機内における外気成分の増加が高精度で監視される。
【0024】
すなわち、高温再生器1で吸収液から蒸発分離され、低温再生器2に向かって冷媒管14を流れている冷媒蒸気には、吸収液である塩化リチウムの蒸気も僅かに(例えば100ppm程度)含まれている。
【0025】
そして、塩化リチウムがこの程度の濃度で酸素濃度が1ppm未満であるときには細線103に応力腐食割れが発生せず、酸素濃度が1ppm以上になったときには細線103に応力腐食割れが発生し、この割れを基点にして細線103が破断するように、細線103の金属組成を決定すると共に、所要の大きさの引張り応力を細線103に作用させて形成したガスリークセンサ100においては、電極102A,102B間の導通の有無を監視するだけで、外部から機内に空気が僅かでも洩れ込むとこれを検出することができる。
【0026】
なお、ガスリークセンサ100の両側に開閉弁26、27を設置して、ガスリークセンサ100の取り付け、取り外し時に機内の真空度が下がらないようにすると共に、装着時に細線103に割れが発生しないようにする。
【0027】
さらに、開閉弁26、27との間の冷媒管14に、破線で示す真空ポンプ33と開閉弁34とを備えた真空引管35を連結し、閉弁した開閉弁26、27との間の冷媒管14にある空気を真空ポンプ33により完全に排出してガスリークセンサ100を取り付け、このガスリークセンサ100を取り付けた後にも開閉弁26、27との間の冷媒管14にある空気を真空ポンプ33により完全に排出し、その後に開閉弁26、27を開くようにすれば、細線103の装着時の割れ防止と、機内の真空度の低下防止を一層図ることができるようになる。
【0028】
また、ガスリークセンサ100は、図5に示したように、抽気装置36のエジェクター37まで吸収器5から延設した抽気管38、凝縮器3から延設した抽気管39などの途中に設けるようにしても良い。この場合も、図示していないがガスリークセンサ100の両側には開閉弁を設け、開閉弁同士の間には真空ポンプを備えた真空引管を連結することが好ましい。
【0029】
また、細線103は、冷間引き抜き加工したあと、電極102A,102Bによって単に湾曲した棒ばね状に支持するようにしても良い。細線103を湾曲させた場合には、中央線より内側の部分には圧縮応力が作用することになるが、中央線より外側の部分には引張り応力が作用するので、酸素があれば湾曲した外周部側に応力腐食割れが発生し、この部分を基点として亀裂が進展し細線103が破断するので、コイルばね状に形成したときと同様に使用できる。
【0030】
また、細線103に作用させる引張り応力は、電極102A,102B以外の適宜の部材によって加えるようにし、この引張り応力が加えられている細線103の両端に電極102A,102Bを接続するようにした構成も、細線103に引張り応力を作用させ、これに電圧を印加すると云った電極102A,102Bの作用を単に二つの部材によって行うようにしたものに過ぎないので、この構成も本発明の範疇に含まれるものである。
【0031】
また、電極102A,102Bに印加する電圧は、交流電圧であっても直流電圧であっても構わないが、直流電圧を印加されている細線103は応力腐食が起こり難くなるので、この場合は電圧を断続的(例えば、1時間毎)に印加して、電極102A,102B間の導通をチェックする。
【0032】
一方、電極102A,102Bに交流電圧を印加するときには、細線103で応力腐食が起こり難くなると云った不都合はないので、この場合は電圧を常時印加して、電極102A,102B間の導通をチェックすることができる。
【0033】
そして、ガスリークセンサ100で電極102A,102B間の導通がなくなったときには、外部から機内に空気が洩れ込んでいると云った警報が直ちに自動的に出力されるように構成することもできる。
【0034】
また、細線103は、吸収液の蒸気と、大気成分である酸素との共存雰囲気に晒されたときに割れが発生すれば良いので、使用する吸収液の組成と関連してその組成は適宜選択される。そして、Niを含むオーステナイト系ステンレス鋼においては、その応力腐食割れの感受性を高める目的で0.4%以上のCuと、1〜3%程度のMoを添加するように構成することもできる。
【0035】
また、細線103は、応力腐食割れが生じたときに、作用している引張り応力によって容易に破断する必要があるので、その太さは一般には500μm以下、好ましくは100μm以下とする。
【0036】
【発明の効果】
本発明によれば、大気成分の酸素が機内に僅かでもあると直ぐに検出することができるので、外部から機内に洩れ込んだ大気成分の酸素に機器構成部材が長期間晒されることがなくなる。このため、部材を腐食貫通すると云った重大事故を招くことがなくなった。
【図面の簡単な説明】
【図1】本発明に用いるガスリークセンサの説明図である。
【図2】本発明になる吸収冷凍機の説明図である。
【図3】ガスリークセンサの設置状態を示す説明図である。
【図4】割れの発生状況を示す説明図である。
【図5】変形実施形態の説明図である。
【符号の説明】
1 高温再生器
1B ガスバーナ
2 低温再生器
3 凝縮器
4 蒸発器
5 吸収器
6 低温熱交換器
7 高温熱交換器
8〜11 吸収液管
13 吸収液ポンプ
14〜18 冷媒管
19 冷媒ポンプ
21 冷温水管
22 冷温水ポンプ
23 冷却水管
24・25 均圧管
26〜31 開閉弁
32 ソケット
32A ねじ
33 真空ポンプ
34 開閉弁
35 真空引管
36 抽気装置
37 エジェクター
38・39 抽気管
100 ガスリークセンサ
101 取着部材
101A ねじ
102A 電極
102B 電極
103 細線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator (including an absorption chiller / heater and an absorption heat pump).
[0002]
[Prior art]
As is well known, an absorption refrigerator is connected to a regenerator, a condenser, an evaporator, an absorber, and the like in order, and water or the like is obtained by an absorbing solution composed of an aqueous solution of a halogen element salt (eg, lithium chloride, lithium bromide). When the refrigerant is circulated while being absorbed or released, it is a device that exchanges heat to provide a cooling action such as cooling or a heating action such as heating.
[0003]
In the absorption refrigerator having the above configuration, the regenerator, the condenser, the evaporator, the absorber, and the pipe portion connecting them are formed of iron or stainless steel, water as the refrigerant, lithium chloride or bromide as the absorption liquid. When a lithium aqueous solution or the like is used, the absorbing solution reacts with the metal of the device material to generate hydrogen gas when forming the anticorrosion film.
[0004]
In addition, the absorption chiller has a high vacuum as a whole in order to quickly evaporate the refrigerant. However, since it is a welded structure, intrusion of atmospheric components from pinholes and cracks is unavoidable. At the same time, atmospheric components such as nitrogen and oxygen increase.
[0005]
Hydrogen gas generated by the above mechanism and nitrogen and oxygen gas, which are atmospheric components that have entered the machine from the outside, do not condense at the cooling level in the refrigerator, and the solubility in the absorption liquid is extremely low. It stays in the non-solution part of the absorber and its concentration gradually increases. When the concentration of non-condensable gas such as hydrogen, nitrogen, oxygen, etc. in the machine increases in this way, the evaporation of the refrigerant is suppressed and the refrigeration capacity decreases.
[0006]
Therefore, a. Detecting the amount of bubbles discharged from a vacuum pump connected to the gas phase section of the apparatus, b. Although the pressure change in the machine is checked by a pressure sensor, the increase in non-condensable gas cannot be reliably captured by these methods.
[0007]
In addition, since it is impossible to determine whether the non-condensable gas increasing in the aircraft is hydrogen gas generated by the above mechanism or atmospheric components leaking from the outside, oxygen in the atmospheric components leaking from the outside can not be determined. There is an inconvenience that equipment components are exposed for a long period of time, and can take a variety of forms of corrosion, leading to serious accidents such as corrosion penetration.
[0008]
[Problems to be solved by the invention]
Therefore, it is necessary to be able to detect quickly and surely even a minute leak of atmospheric components, which has been a problem to be solved.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a gas leak sensor comprising two electrodes spaced apart and supported by a circuit in which refrigerant vapor circulates, and a thin wire stretched between the two electrodes. An absorption refrigerator that is installed so that the thin wire can come into contact with the refrigerant vapor flowing inside the refrigerant pipe, the refrigerant vapor circuit upstream of the gas leak sensor, and the refrigerant vapor circuit downstream of the gas leak sensor An absorption refrigerator having a first configuration in which an on-off valve is installed ;
[0014]
In the absorption refrigerating machine of the first configuration, a second configuration of the absorption refrigerator of gas leak sensor is adapted to couple the exhaust unit to the refrigerant vapor circuit disposed between each other off valve,
[0015]
In the absorption refrigerator of the first or second configuration, the absorption refrigerator of the third configuration in which the absorption liquid of the absorption refrigerator is an aqueous solution of a salt containing a halogen element system,
Is to provide.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the gas leak sensor 100 according to the present invention includes two electrodes 102A and 102B supported by an insulating material, for example, a mounting member 101 made of polyetheretherketone resin, and these electrodes. It is comprised from the thin wire | line 103 stretched so that a tensile stress may act between 102A, 102B.
[0017]
The thin wire 103 is formed by coiling a metal containing 1.5% or more of Ni, for example, austenitic stainless steel such as SUS-304, to a diameter of 500 μm, for example, into a coiled spring shape.
[0018]
The fine wire 103, which is an austenitic stainless steel and is supported by the electrodes 102A and 102B in a state where tensile stress is applied, causes intragranular stress corrosion cracking when exposed to an atmosphere in which oxygen and chloride coexist. .
[0019]
That is, a metal containing Ni, such as SUS304 (18-8 austenitic stainless steel), for example, as shown in FIG. 4, the higher the oxygen concentration, the higher the cracking sensitivity, and the conditions (metal composition, chloride concentration in the atmosphere, action) Depending on the magnitude of the tensile stress), cracking occurs even at an oxygen concentration of 1 ppm.
[0020]
In addition, the thin wire 103 that has undergone stress corrosion cracking is easily broken because it is pulled by the electrodes 102A and 102B. Whether or not the thin wire 103 is broken can be easily determined by applying a voltage and checking the conduction between the electrodes 102A and 102B.
[0021]
The gas leak sensor 100 having the above configuration is attached to the refrigerant pipe 14 between the on-off valves 26 and 27 of the absorption refrigerator shown in FIG. 2, for example, in the manner shown in FIG. That is, a mounting screw 101A is provided on the outer surface of the body portion of the attachment member 101, and the screw 101A is screwed into the screw 32A of the socket 32 attached to the refrigerant pipe 14, whereby the thin wire 103 of the gas leak sensor 100 is connected to the refrigerant. It is installed so as to be able to contact the refrigerant vapor flowing inside the pipe 14.
[0022]
In the absorption refrigerator shown in FIG. 2, 1 is a high temperature regenerator equipped with a gas burner 1B, 2 is a low temperature regenerator, 3 is a condenser, 4 is an evaporator, 5 is an absorber, 6 is a low temperature heat exchanger, 7 Is a high-temperature heat exchanger, 8 to 11 are absorption liquid pipes, 13 is an absorption liquid pump, 14 to 18 are refrigerant pipes, 19 is a refrigerant pump, and 21 is a cold / hot water that circulates and supplies a cold / heating load (not shown). A water pipe, 22 is a cold / hot water pump, 23 is a cooling water pipe, 24 and 25 are pressure equalizing pipes, and 26 to 31 are open / close valves. This absorption refrigerator has water as a refrigerant and a halogen element salt such as lithium chloride as an absorption liquid. This is a double-effect absorption refrigerator that circulates cold water or hot water to a load using an aqueous solution of In addition, since the structure which does not include the gas leak sensor 100 and the on-off valves 26 and 27 is conventionally known, the description of the operation of the absorption refrigerator itself is omitted.
[0023]
Then, the presence or absence of conduction between the electrodes 102A and 102B is checked regularly or periodically (for example, every hour), so that an increase in the outside air component in the machine is monitored with high accuracy.
[0024]
That is, the refrigerant vapor evaporated and separated from the absorption liquid by the high-temperature regenerator 1 and flowing through the refrigerant pipe 14 toward the low-temperature regenerator 2 includes a slight amount (for example, about 100 ppm) of lithium chloride as the absorption liquid. It is.
[0025]
When the concentration of lithium chloride is about this level and the oxygen concentration is less than 1 ppm, no stress corrosion cracking occurs in the thin wire 103, and when the oxygen concentration exceeds 1 ppm, stress corrosion cracking occurs in the thin wire 103. In the gas leak sensor 100 formed by determining the metal composition of the thin wire 103 so that the thin wire 103 breaks from the base point and applying a tensile stress of a required size to the thin wire 103, the gap between the electrodes 102A and 102B is determined. Only by monitoring the presence or absence of conduction, it is possible to detect even a slight amount of air leaking into the machine from the outside.
[0026]
The on-off valves 26 and 27 are installed on both sides of the gas leak sensor 100 so that the degree of vacuum in the machine does not decrease when the gas leak sensor 100 is attached or detached, and the fine wire 103 is not cracked when attached. .
[0027]
Further, a vacuum pipe 35 having a vacuum pump 33 and an open / close valve 34 indicated by a broken line is connected to the refrigerant pipe 14 between the open / close valves 26 and 27, and between the closed open / close valves 26 and 27. The air in the refrigerant pipe 14 is completely discharged by the vacuum pump 33 and the gas leak sensor 100 is attached. Even after the gas leak sensor 100 is attached, the air in the refrigerant pipe 14 between the on-off valves 26 and 27 is removed by the vacuum pump 33. If the on-off valves 26 and 27 are opened after that, it is possible to further prevent cracking when the thin wire 103 is attached and prevent the vacuum degree in the machine from being lowered.
[0028]
Further, as shown in FIG. 5, the gas leak sensor 100 is provided in the middle of the extraction pipe 38 extending from the absorber 5 to the ejector 37 of the extraction device 36, the extraction pipe 39 extending from the condenser 3, and the like. May be. Also in this case, although not shown, it is preferable to provide opening / closing valves on both sides of the gas leak sensor 100 and to connect a vacuum drawing pipe equipped with a vacuum pump between the opening / closing valves.
[0029]
Further, the thin wire 103 may be supported by the electrodes 102A and 102B in a curved bar spring shape after being cold drawn. When the thin wire 103 is curved, a compressive stress acts on a portion inside the center line, but a tensile stress acts on a portion outside the center line. Stress corrosion cracking occurs on the part side, and the crack progresses with this part as a base point and the thin wire 103 is broken, so that it can be used in the same manner as when it is formed in a coil spring shape.
[0030]
Further, the tensile stress applied to the thin wire 103 is applied by an appropriate member other than the electrodes 102A and 102B, and the electrodes 102A and 102B are connected to both ends of the thin wire 103 to which the tensile stress is applied. The electrode 102A, 102B, which applies a tensile stress to the thin wire 103 and applies a voltage thereto, is merely performed by two members, and this configuration is also included in the scope of the present invention. Is.
[0031]
The voltage applied to the electrodes 102A and 102B may be an AC voltage or a DC voltage. However, since the thin wire 103 to which the DC voltage is applied is less susceptible to stress corrosion, in this case, the voltage Is applied intermittently (for example, every hour) to check the continuity between the electrodes 102A and 102B.
[0032]
On the other hand, when an AC voltage is applied to the electrodes 102A and 102B, there is no inconvenience that stress corrosion is unlikely to occur at the thin wire 103. In this case, a voltage is always applied to check the continuity between the electrodes 102A and 102B. be able to.
[0033]
When the gas leak sensor 100 loses electrical continuity between the electrodes 102A and 102B, an alarm that air is leaking into the apparatus from the outside can be automatically output immediately.
[0034]
In addition, since the thin wire 103 may be cracked when exposed to the coexisting atmosphere of the absorption liquid vapor and atmospheric oxygen, its composition is appropriately selected in relation to the composition of the absorption liquid to be used. Is done. And in the austenitic stainless steel containing Ni, it can also comprise so that 0.4% or more of Cu and about 1-3% of Mo may be added in order to raise the sensitivity of the stress corrosion cracking.
[0035]
Further, since the thin wire 103 needs to be easily broken by the applied tensile stress when stress corrosion cracking occurs, its thickness is generally 500 μm or less, preferably 100 μm or less.
[0036]
【The invention's effect】
According to the present invention, since it is possible to immediately detect that the atmospheric oxygen is very small in the machine, the apparatus constituent members are not exposed to the atmospheric oxygen leaked into the machine from outside for a long period of time. For this reason, there is no longer a serious accident that the member penetrates through the corrosion.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a gas leak sensor used in the present invention.
FIG. 2 is an explanatory diagram of an absorption refrigerator according to the present invention.
FIG. 3 is an explanatory diagram showing an installation state of a gas leak sensor.
FIG. 4 is an explanatory diagram showing the occurrence of cracks.
FIG. 5 is an explanatory diagram of a modified embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 1B Gas burner 2 Low temperature regenerator 3 Condenser 4 Evaporator 5 Absorber 6 Low temperature heat exchanger 7 High temperature heat exchanger 8-11 Absorbing liquid pipe 13 Absorbing liquid pump 14-18 Refrigerant pipe 19 Refrigerant pump 21 Cold / hot water pipe 22 Cold / Hot Water Pump 23 Cooling Water Pipe 24/25 Pressure equalizing Pipe 26-31 Open / Close Valve 32 Socket 32A Screw 33 Vacuum Pump 34 Open / Close Valve 35 Vacuum Pull Pipe 36 Extraction Device 37 Ejector 38/39 Extraction Pipe 100 Gas Leak Sensor 101 Mounting Member 101A Screw 102A Electrode 102B Electrode 103 Fine wire

Claims (3)

冷媒蒸気が循環する回路に、離間して支持された2本の電極と、この2本の電極の間に張架された細線とからなるガスリークセンサを、前記細線が冷媒管の内部を流れる冷媒蒸気に接触可能となるように設置した吸収冷凍機であって、前記ガスリークセンサより上流側の冷媒蒸気回路と、ガスリークセンサより下流側の冷媒蒸気回路とに開閉弁が設置されたことを特徴とする吸収冷凍機。A gas leak sensor comprising two electrodes spaced apart and supported in a circuit in which refrigerant vapor circulates, and a thin line stretched between the two electrodes, and a refrigerant in which the thin line flows inside the refrigerant pipe An absorption refrigerator installed so as to be in contact with steam , wherein an on-off valve is installed in a refrigerant vapor circuit upstream of the gas leak sensor and a refrigerant vapor circuit downstream of the gas leak sensor. Absorption refrigerator. 開閉弁同士の間のガスリークセンサが設置された冷媒蒸気回路に排気手段が連結されたことを特徴とする請求項記載の吸収冷凍機。Absorption refrigerating machine according to claim 1, wherein the exhaust means is connected to refrigerant vapor circuit gas leak sensor is installed between each other off valve. 吸収冷凍機の吸収液が、ハロゲン元素系を含む塩類の水溶液であることを特徴とする請求項1又は2記載の吸収冷凍機。The absorption refrigerator according to claim 1 or 2 , wherein the absorption liquid of the absorption refrigerator is an aqueous solution of a salt containing a halogen element system.
JP19764099A 1999-07-12 1999-07-12 Absorption refrigerator Expired - Fee Related JP4278237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19764099A JP4278237B2 (en) 1999-07-12 1999-07-12 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19764099A JP4278237B2 (en) 1999-07-12 1999-07-12 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2001021437A JP2001021437A (en) 2001-01-26
JP4278237B2 true JP4278237B2 (en) 2009-06-10

Family

ID=16377861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19764099A Expired - Fee Related JP4278237B2 (en) 1999-07-12 1999-07-12 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4278237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178377A (en) * 2005-12-28 2007-07-12 Showa Denko Kk Gas sensor, reactive gas leak detector, and detection method
CN113029759B (en) * 2021-03-31 2022-11-01 江西中科高博科技服务有限公司 Cable performance detection device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5255693A (en) * 1975-10-31 1977-05-07 Matsushita Electric Ind Co Ltd Inflammable gas detecting element
JPS59129366A (en) * 1983-01-11 1984-07-25 株式会社日立製作所 Refrigerator
JP3213433B2 (en) * 1993-04-19 2001-10-02 東芝キヤリア株式会社 Refrigeration cycle equipment
JP3078485B2 (en) * 1995-10-12 2000-08-21 リンナイ株式会社 Contact combustion type gas sensor
JPH1183244A (en) * 1997-09-12 1999-03-26 Matsushita Refrig Co Ltd Coolant collector
JPH11118300A (en) * 1997-10-09 1999-04-30 Ebara Corp Hydrogen gas permeator for absorption refrigerator
JPH11142004A (en) * 1997-11-05 1999-05-28 Daikin Ind Ltd Refrigerating device
JPH11159922A (en) * 1997-11-27 1999-06-15 Matsushita Electric Ind Co Ltd Absorption type heat pump system

Also Published As

Publication number Publication date
JP2001021437A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
CN107289599A (en) A kind of apparatus and method for detecting air conditioner coolant amount of leakage
JP4278237B2 (en) Absorption refrigerator
JP3203555B2 (en) Absorption chiller / heater
JP2000130334A (en) Diaphragm pump, diaphragm damage detecting method, and ammonium absorbing type freezer equipped with the same
US6401465B1 (en) Absorption chiller leak detection and location and checking hydrogen removing cells
US20110088420A1 (en) Chemical State Monitor for Refrigeration System
JP3086547B2 (en) Safety device for ammonia absorption refrigerator
JP2747348B2 (en) Absorption chiller / heater controller
CN103398821B (en) A kind of station boiler tube bursting and leakage diagnostic method
CN205014709U (en) Vapour and liquid separator of air conditioner, off -premises station of air conditioner and air conditioner
JP2001041614A (en) Absorption refrigerating machine
JPH11118300A (en) Hydrogen gas permeator for absorption refrigerator
JP7281546B2 (en) Refrigerating device and temperature sensor mounting structure
JPH09303907A (en) Absorption freezer
JP3187878B2 (en) Absorption refrigerator protection device
JP3195085B2 (en) Absorption refrigerator
JP3279029B2 (en) Absorption refrigerator
JP3203552B2 (en) Absorption chiller controller
JP3258692B2 (en) Abnormality detector for absorption refrigerator
JP3258687B2 (en) Abnormality detector for absorption refrigerator
JPS6098690A (en) Cryostat
JP3253211B2 (en) Absorption chiller / heater fault diagnosis system
JPH01207184A (en) Waste liquid enricher
JP3143227B2 (en) Refrigerant freezing prevention device for absorption refrigerator
JPH06159851A (en) Absorption type freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees