JP4276689B2 - Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition - Google Patents

Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition Download PDF

Info

Publication number
JP4276689B2
JP4276689B2 JP2007303746A JP2007303746A JP4276689B2 JP 4276689 B2 JP4276689 B2 JP 4276689B2 JP 2007303746 A JP2007303746 A JP 2007303746A JP 2007303746 A JP2007303746 A JP 2007303746A JP 4276689 B2 JP4276689 B2 JP 4276689B2
Authority
JP
Japan
Prior art keywords
surface treatment
cationic electrodeposition
electrodeposition coating
ions
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007303746A
Other languages
Japanese (ja)
Other versions
JP2008291345A (en
Inventor
俊雄 印部
浩史 亀田
コルベルク,トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Nippon Paint Holdings Co Ltd
Original Assignee
Nippon Paint Co Ltd
Nippon Paint Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007303746A priority Critical patent/JP4276689B2/en
Application filed by Nippon Paint Co Ltd, Nippon Paint Holdings Co Ltd filed Critical Nippon Paint Co Ltd
Priority to EP07850971.8A priority patent/EP2112251B1/en
Priority to AU2007335382A priority patent/AU2007335382B2/en
Priority to PL07850971.8T priority patent/PL2112251T3/en
Priority to ES07850971.8T priority patent/ES2581988T3/en
Priority to PCT/JP2007/074536 priority patent/WO2008075738A1/en
Priority to MX2009006618A priority patent/MX2009006618A/en
Priority to KR1020097015212A priority patent/KR101539708B1/en
Priority to BRPI0721139-2A priority patent/BRPI0721139B1/en
Priority to CA2672854A priority patent/CA2672854C/en
Priority to US12/077,429 priority patent/US20080230394A1/en
Publication of JP2008291345A publication Critical patent/JP2008291345A/en
Application granted granted Critical
Publication of JP4276689B2 publication Critical patent/JP4276689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/60Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of tin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、金属表面処理液、特にカチオン電着塗装に適した金属表面処理液、および金属表面処理方法に関する。   The present invention relates to a metal surface treatment liquid, particularly a metal surface treatment liquid suitable for cationic electrodeposition coating, and a metal surface treatment method.

種々の金属基材に対して防食性を付与するため、従来から表面処理が行われている。特に自動車を構成する金属基材に対しては、リン酸亜鉛処理が一般的に用いられてきた。しかし、このリン酸亜鉛処理は、副生成物としてスラッジが発生する問題を有している。このため、リン酸亜鉛を使用しない、次世代の表面処理が求められており、ジルコニウムイオンによる表面処理はそのひとつである(例えば、特許文献1参照)。   Conventionally, surface treatment has been performed to impart corrosion resistance to various metal substrates. In particular, zinc phosphate treatment has been generally used for metal substrates constituting automobiles. However, this zinc phosphate treatment has a problem that sludge is generated as a by-product. For this reason, the next generation surface treatment which does not use zinc phosphate is calculated | required, and the surface treatment by a zirconium ion is one of them (for example, refer patent document 1).

一方、高い防食性が必要とされる、自動車を構成する金属基材に対しては、表面処理後にカチオン電着塗装が施される。カチオン電着塗装が施される理由として、カチオン電着塗装で得られる塗膜が防食性に優れていることに加え、複雑な形状を有する自動車ボディに対して、隅々まで塗装することができるという性質、いわゆる「つきまわり性」を有していることが大きい。   On the other hand, a cationic base electrodeposition coating is applied after the surface treatment to a metal base material constituting an automobile, which requires high anticorrosion properties. The reason why the cationic electrodeposition coating is applied is that the coating film obtained by the cationic electrodeposition coating is excellent in anticorrosion, and can be applied to every corner of an automobile body having a complicated shape. That is, it has a so-called “throwing power”.

ところが、最近になって、上記ジルコニウムイオンによる表面処理を行った金属基材にカチオン電着塗装を行った場合、上記つきまわり性において十分な効果が得られにくい場合があり、例えば冷延鋼板に対するつきまわり性が充分でない場合があることがわかってきた。このように、カチオン電着塗装を行った場合に、つきまわり性が充分でないと、充分な防食性を得ることはできない。
特開2004−218070号公報
However, recently, when cationic electrodeposition coating is performed on a metal base material that has been surface-treated with zirconium ions, it may be difficult to obtain a sufficient effect on the throwing power. It has been found that the throwing power may not be sufficient. Thus, when cationic electrodeposition coating is performed, sufficient corrosion resistance cannot be obtained unless the throwing power is sufficient.
Japanese Patent Application Laid-Open No. 2004-218070

本発明は、表面処理した金属基材に対して、カチオン電着塗装を行った場合、充分なつきまわり性の発現が可能であり、防食性に優れている、ジルコニウムイオンによる表面処理を提供することを目的とする。   The present invention provides a surface treatment with zirconium ions that can exhibit sufficient throwing power and is excellent in anticorrosion properties when cationic electrodeposition is applied to a surface-treated metal substrate. With the goal.

本発明は、以下のものである。
(1)ジルコニウムイオン、および、錫イオンを含む、pHが1.5〜6.5のカチオン電着塗装用金属表面処理液であって、前記ジルコニウムイオンの濃度が10〜10000ppm、かつ、前記ジルコニウムイオンに対する錫イオンの濃度比が質量換算で0.005〜1である、カチオン電着塗装用金属表面処理液。
The present invention is as follows.
(1) A metal surface treatment liquid for cationic electrodeposition coating containing zirconium ions and tin ions and having a pH of 1.5 to 6.5, wherein the concentration of the zirconium ions is 10 to 10,000 ppm, and the zirconium A metal surface treatment solution for cationic electrodeposition coating, wherein the concentration ratio of tin ions to ions is 0.005 to 1 in terms of mass.

(2)上記(1)カチオン電着塗装用金属表面処理液として、さらにポリアミン化合物を含むカチオン電着塗装用金属表面処理液。   (2) A metal surface treatment liquid for cationic electrodeposition coating further comprising a polyamine compound as the metal surface treatment liquid for cationic electrodeposition coating (1).

(3)上記(1)〜(2)のカチオン電着塗装用金属表面処理液として、さらに銅イオンを含むカチオン電着塗装用金属表面処理液。   (3) A metal surface treatment liquid for cationic electrodeposition coating further containing copper ions as the metal surface treatment liquid for cationic electrodeposition coating of (1) to (2) above.

(4)上記(1)〜(3)のカチオン電着塗装用金属表面処理液として、さらにフッ素イオンを含み、pHが3.0である場合のフリーなフッ素イオン量が0.1〜50ppmであるカチオン電着塗装用金属表面処理液。   (4) The metal surface treatment liquid for cationic electrodeposition coating of (1) to (3) above further contains fluorine ions, and the free fluorine ion amount is 0.1 to 50 ppm when the pH is 3.0. A metal surface treatment solution for cationic electrodeposition coating.

(5)上記(1)〜(4)のカチオン電着塗装用金属表面処理液として、さらにキレート化合物を含むカチオン電着塗装用金属表面処理液。   (5) A metal surface treatment solution for cationic electrodeposition coating further containing a chelate compound as the metal surface treatment solution for cationic electrodeposition coating of (1) to (4) above.

(6)上記(5)のカチオン電着塗装用金属表面処理液として、キレート化合物が、スルホン酸であるカチオン電着塗装用金属表面処理液。   (6) The metal surface treatment liquid for cationic electrodeposition coating in which the chelate compound is sulfonic acid as the metal surface treatment liquid for cationic electrodeposition coating of (5) above.

(7)上記(1)〜(6)のカチオン電着塗装用金属表面処理液として、さらに酸化剤を含むカチオン電着塗装用金属表面処理液。   (7) A metal surface treatment solution for cationic electrodeposition coating further comprising an oxidizing agent as the metal surface treatment solution for cationic electrodeposition coating of (1) to (6) above.

(8)更にアルミニウムイオンおよび/またはインジウムイオンを含む、(1)〜(7)のいずれかに記載のカチオン電着塗装用金属表面処理液。   (8) The metal surface treatment solution for cationic electrodeposition coating according to any one of (1) to (7), further comprising aluminum ions and / or indium ions.

(9)上記(1)〜(8)のカチオン電着塗装用金属表面処理液を用いて、金属基材に対して表面処理を行う工程を含む金属表面処理方法。   (9) A metal surface treatment method including a step of performing a surface treatment on a metal substrate using the metal surface treatment liquid for cationic electrodeposition coating according to (1) to (8) above.

(10)上記(9)の金属表面処理方法で得られる、表面処理による皮膜が形成された金属基材。   (10) A metal substrate on which a film is formed by surface treatment, obtained by the metal surface treatment method of (9) above.

(11)上記(10)の金属基材に形成された皮膜におけるジルコニウム/錫の元素比率が質量換算で1/10〜10/1である金属基材。   (11) A metal substrate in which the element ratio of zirconium / tin in the film formed on the metal substrate of (10) is 1/10 to 10/1 in terms of mass.

(12)上記(1)〜(8)のカチオン電着塗装用金属表面処理液を用いて、金属基材に対して表面処理を行う工程と、前記表面処理が行われた金属基材に対してカチオン電着塗装を行う工程とを含む、カチオン電着塗装方法。   (12) Using the metal surface treatment liquid for cationic electrodeposition coating described in (1) to (8) above, a step of performing a surface treatment on a metal substrate, and a step of performing the surface treatment on the metal substrate A method of cationic electrodeposition coating, comprising a step of performing cationic electrodeposition coating.

(13)上記(12)のカチオン電着塗装方法で得られる、カチオン電着塗装された金属基材。   (13) A cationic electrodeposition-coated metal substrate obtained by the cationic electrodeposition coating method of (12) above.

すなわち、本発明のカチオン電着塗装用金属表面処理液は、ジルコニウムイオンおよび錫イオンを含む、pHが1.5〜6.5の化成処理液であって、上記ジルコニウムイオンの濃度が10〜10000ppm、かつ、上記ジルコニウムイオンに対する錫イオンの含有量が質量換算で0.005〜1である。また、さらに、ポリアミン化合物、銅イオン、フッ素イオン、キレート化合物、酸化剤、防錆剤を含んでいてもよい。フッ素イオンを含む場合、pHが3.0のときのフリーなフッ素イオン量が0.1〜50ppmであってよい。   That is, the metal surface treatment solution for cationic electrodeposition coating of the present invention is a chemical conversion treatment solution containing zirconium ions and tin ions and having a pH of 1.5 to 6.5, and the concentration of the zirconium ions is 10 to 10,000 ppm. And content of the tin ion with respect to the said zirconium ion is 0.005-1 in mass conversion. Furthermore, a polyamine compound, copper ions, fluorine ions, chelate compounds, oxidizing agents, and rust inhibitors may be included. When fluorine ions are included, the amount of free fluorine ions when the pH is 3.0 may be 0.1 to 50 ppm.

本発明の金属表面処理方法は、先の金属表面処理液を用いて、金属基材に対して表面処理を行う工程を含むものである。   The metal surface treatment method of the present invention includes a step of performing a surface treatment on a metal substrate using the previous metal surface treatment liquid.

本発明の表面処理された金属基材には、先の表面処理により得られた皮膜が形成されている。その皮膜におけるジルコニウム/錫の元素比率は質量換算で1/10〜10/1であってよい。   A film obtained by the previous surface treatment is formed on the surface-treated metal substrate of the present invention. The element ratio of zirconium / tin in the film may be 1/10 to 10/1 in terms of mass.

本発明のカチオン電着塗装方法は、先の金属表面処理液を用いて、金属基材に対して表面処理を行う工程と、上記表面処理が行われた金属基材に対してカチオン電着塗装を行う工程とを含んでいる。   The cationic electrodeposition coating method of the present invention includes a step of performing a surface treatment on a metal substrate using the previous metal surface treatment solution, and a cationic electrodeposition coating on the metal substrate subjected to the surface treatment. The process of performing.

本発明のカチオン電着塗装された金属基材は、先の塗装方法で得られるものである。   The metal substrate coated with cationic electrodeposition according to the present invention is obtained by the previous coating method.

本発明のカチオン電着塗装用金属表面処理液は、ジルコニウムイオンに加えて、錫イオンを含むことで、この処理液により化成皮膜を形成した後にカチオン電着塗装を行った場合につきまわり性が向上するものと考えられる。その理由は明確ではないものの、以下のように考えられる。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention contains tin ions in addition to zirconium ions, so that the throwing power is improved when cationic electrodeposition coating is performed after forming a chemical conversion film with this treatment liquid. It is thought to do. Although the reason is not clear, it can be considered as follows.

すなわち、ジルコニウムイオンを単独で用いた場合、その酸化物皮膜の形成は、酸性雰囲気下で金属基材がエッチングされると同時に行われるものと考えられる。ところが、冷延鋼板上には、シリカのほか、ケイ素や炭素を含有する化合物の偏析物などが存在しており、そのような部分にはエッチングが行われにくい。このため、ジルコニウム酸化物による皮膜形成は均一に行われず、皮膜が形成されなかった部分が存在する。皮膜が形成された部分と形成されなかった部分とでは電流の流れ方が異なることから、電着が均一に行われず、その結果、充分なつきまわり性が得られないと考えられる。   That is, when zirconium ions are used alone, the formation of the oxide film is considered to be performed simultaneously with the etching of the metal substrate in an acidic atmosphere. However, on the cold-rolled steel sheet, there are segregated materials of compounds containing silicon and carbon in addition to silica, and such portions are difficult to be etched. For this reason, the film formation by a zirconium oxide is not performed uniformly, but the part in which the film was not formed exists. Since the current flow is different between the portion where the film is formed and the portion where the film is not formed, electrodeposition is not performed uniformly, and as a result, it is considered that sufficient throwing power cannot be obtained.

ここに、錫イオンが存在した場合には、さらに以下のように考えられる。錫イオンはジルコニウムイオンに比べて鋼板上の影響を受けにくいため、基材上に酸化物皮膜を形成しやすい。錫イオンがジルコニウムイオンの析出しにくい部分に特異的に皮膜を形成するわけではないが、錫イオンは特定の部分に対して酸化物皮膜を形成したりしなかったりということがない。その結果、錫イオンはジルコニウムイオンが皮膜形成できなかった部分を補って皮膜形成を行っていることとなる。   Here, when tin ions are present, it is considered as follows. Since tin ions are less susceptible to influence on the steel plate than zirconium ions, it is easy to form an oxide film on the substrate. Although tin ions do not specifically form a film on the portion where zirconium ions are difficult to precipitate, tin ions do not form or do not form an oxide film on a specific portion. As a result, the tin ions compensate for the portion where the zirconium ions could not form a film, thereby forming the film.

本発明のカチオン電着塗装用金属表面処理液は、ポリアミン化合物を含むことによって、カチオン電着塗膜に対する密着性を向上させることができ、その結果、より厳しい条件であるSDT試験をもクリアすることが可能となる。また、本発明のカチオン電着塗装用金属表面処理液は、銅イオンを含むことによって、防食性を向上させることができる。その理由は明確ではないが、皮膜形成時に銅とジルコニウムとの間に何らかの相互作用が働いているのではないかと考えられる。さらに、本発明のカチオン電着塗装用金属表面処理液は、ジルコニウム以外の金属を多量に含む場合、キレート化合物を含むことにより、安定してジルコニウム酸化物皮膜を形成することができる。これは、キレート化合物が、ジルコニウムよりも析出しやすい金属イオンを捕捉しているためであると考えられる。   By including a polyamine compound, the metal surface treatment liquid for cationic electrodeposition coating of the present invention can improve adhesion to the cationic electrodeposition coating film, and as a result, clears the SDT test which is a more severe condition. It becomes possible. Moreover, the metal surface treatment liquid for cationic electrodeposition coating of the present invention can improve corrosion resistance by containing copper ions. The reason is not clear, but it is thought that some interaction is acting between copper and zirconium during film formation. Furthermore, when the metal surface treatment liquid for cationic electrodeposition coating of the present invention contains a large amount of metal other than zirconium, it can stably form a zirconium oxide film by containing a chelate compound. This is presumably because the chelate compound captures metal ions that precipitate more easily than zirconium.

本発明のカチオン電着塗装用金属表面処理液は、ジルコニウムイオンおよび錫イオンを含む、pHが1.5〜6.5の化成処理液である。   The metal surface treatment solution for cationic electrodeposition coating of the present invention is a chemical conversion treatment solution containing zirconium ions and tin ions and having a pH of 1.5 to 6.5.

上記ジルコニウムイオンの濃度は10〜10000ppmである。10ppm未満だとジルコニウム皮膜の析出が十分でないため充分な防食性が得られず、10000ppmを超えても、ジルコニウム被膜の析出量が増加しない上、塗膜密着性が低下してSDT等の防食性能が劣るおそれがあり、それに見合うだけの効果が得られない。好ましい下限値および上限値は、それぞれ、100ppmおよび500ppmである。   The concentration of the zirconium ions is 10 to 10000 ppm. If it is less than 10 ppm, sufficient corrosion resistance cannot be obtained because the deposition of the zirconium film is not sufficient, and even if it exceeds 10000 ppm, the deposited amount of the zirconium film does not increase, and the adhesion of the coating film decreases to prevent corrosion performance such as SDT. May be inferior, and the effect corresponding to it may not be obtained. The preferable lower limit value and upper limit value are 100 ppm and 500 ppm, respectively.

なお、本明細書における金属イオンの濃度についての表記は、錯体や酸化物を形成している場合において、その錯体や酸化物中の金属原子のみに着目した、金属元素換算濃度で表すものとする。例えば、錯イオンZrF 2−(分子量205)100ppmのジルコニウムの金属元素換算濃度は100×(91/205)の計算により44ppmと算出される。なお、本発明のカチオン電着塗装用金属表面処理液において金属化合物(ジルコニウム化合物、錫化合物、銅化合物その他の金属化合物)は、一部が酸化物など非イオンの状態で存在しているとしてもその割合はごくわずかであり、ほぼ金属イオンとして存在すると考えられる。従って、本明細書における金属イオン濃度は、一部が非イオンとして存在しているか否かにかかわらず、100%解離して金属イオンとして存在する場合の金属イオン濃度をいう。 In addition, the description about the density | concentration of the metal ion in this specification shall represent with the metal element conversion density | concentration which paid its attention only to the metal atom in the complex or oxide, when the complex or oxide is formed. . For example, the metal element equivalent concentration of zirconium of complex ion ZrF 6 2− (molecular weight 205) 100 ppm is calculated to be 44 ppm by calculation of 100 × (91/205). In the metal surface treatment solution for cationic electrodeposition coating of the present invention, even if a part of the metal compound (zirconium compound, tin compound, copper compound or other metal compound) exists in a nonionic state such as an oxide. The ratio is negligible and is considered to exist almost as a metal ion. Therefore, the metal ion concentration in the present specification refers to the metal ion concentration when 100% dissociates and exists as a metal ion regardless of whether or not a part of the metal ion exists as a non-ion.

本発明のカチオン電着塗装用金属表面処理液に含まれる錫イオンは、2価のカチオンであることが好ましい。これ以外の価数では、目的とする効果が得られないおそれがある。ただし、錫イオンは2価のカチオンに限られず、金属基材上に析出しうるものであれば本発明に用いることができる。例えば、錫イオンが錯体を形成している場合は4価のカチオンである場合があるが、これも本発明に用いることができる。上記錫イオンの濃度は、上記ジルコニウムイオンの濃度に対して、質量換算で0.005〜1である。0.005未満だと添加の効果が得られず、1を超えると、ジルコニウムが析出しにくくなるおそれがある。好ましい下限値および上限値は、それぞれ、0.02および0.2である。ただし、ジルコニウムイオンおよび錫イオンの合計量が少なすぎると、本発明の効果が得られないおそれがあるため、本発明の金属表面処理液中の上記ジルコニウムイオンの濃度と錫イオンの濃度との合計が、15ppm以上であることが好ましい。   The tin ions contained in the metal surface treatment solution for cationic electrodeposition coating of the present invention are preferably divalent cations. At other valences, the intended effect may not be obtained. However, the tin ion is not limited to a divalent cation, and any tin ion that can be deposited on a metal substrate can be used in the present invention. For example, when a tin ion forms a complex, it may be a tetravalent cation, which can also be used in the present invention. The density | concentration of the said tin ion is 0.005-1 in mass conversion with respect to the density | concentration of the said zirconium ion. If it is less than 0.005, the effect of addition cannot be obtained, and if it exceeds 1, zirconium may be difficult to precipitate. Preferred lower and upper limits are 0.02 and 0.2, respectively. However, since the effect of the present invention may not be obtained if the total amount of zirconium ions and tin ions is too small, the total of the concentration of zirconium ions and the concentration of tin ions in the metal surface treatment liquid of the present invention. However, it is preferable that it is 15 ppm or more.

本発明の金属表面処理液中の錫イオンの含有量としては、1〜100ppmであることが好ましい。1ppm未満である場合には、ジルコニウムが皮膜を形成できなかった部分に対する錫の析出が不十分となり、SDT等の防食性が劣りやすい。100ppmを超えるとジルコニウム皮膜が析出しにくくなり、防食性および塗装外観が劣りやすい。上記含有量は5〜100ppmがより好ましく、5〜50ppmがさらに好ましい。   As content of the tin ion in the metal surface treatment liquid of this invention, it is preferable that it is 1-100 ppm. When it is less than 1 ppm, the precipitation of tin on the portion where zirconium cannot form a film becomes insufficient, and the anticorrosion properties such as SDT tend to be poor. When it exceeds 100 ppm, the zirconium film is difficult to deposit, and the corrosion resistance and the coating appearance are likely to be inferior. The content is more preferably 5 to 100 ppm, and further preferably 5 to 50 ppm.

本発明のカチオン電着塗装用金属表面処理液は、そのpHが1.5〜6.5である。1.5未満では、金属基材のエッチングが充分に行われないため、皮膜量が少なくなり、充分な防食性を得ることができない。また、処理液の安定性が充分でないおそれがある。一方、6.5を超えると、エッチングが過剰となり充分な皮膜形成ができなくなる場合や、皮膜の付着量および膜厚が不均一となって、塗装外観等に悪影響を与えたりするおそれがある。上記下限値および上限値は、それぞれ2.0および5.5であることが好ましく、2.5および5.0であることがさらに好ましい。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention has a pH of 1.5 to 6.5. If it is less than 1.5, the metal substrate is not sufficiently etched, so that the amount of the film is reduced and sufficient anticorrosion properties cannot be obtained. In addition, the stability of the treatment liquid may not be sufficient. On the other hand, if it exceeds 6.5, etching may be excessive and sufficient film formation may not be possible, or the amount and thickness of the film may be uneven, which may adversely affect the appearance of the coating. The lower limit value and the upper limit value are preferably 2.0 and 5.5, respectively, and more preferably 2.5 and 5.0.

本発明のカチオン電着塗装用金属表面処理液は、表面処理後に形成されるカチオン電着塗膜との密着性を高めるために、さらにポリアミン化合物を含んでいてもよい。本発明において用いられるポリアミン化合物は、アミノ基を有する有機分子であることに本質的な意味があると考えられる。すなわち、以下は推測ではあるが、アミノ基は、金属基板上に皮膜として析出するジルコニウム酸化物や当該金属基板との化学的作用により、当該皮膜中に取り込まれると考えられる。また、有機分子であるポリアミン化合物は当該皮膜が形成された金属基板上に設けられる塗膜との密着性に寄与すると考えられる。従って、アミノ基を有する有機分子であるポリアミン化合物を用いると、金属基板と当該塗膜との密着性が格段に向上し、優れた耐食性が得られるようになる。上記ポリアミン化合物としては、アミノシランの加水分解縮合体、ポリビニルアミン、ポリアリルアミン、アミノ基を有する水溶性フェノール樹脂等が挙げられる。自由にアミンの量が調整可能なことから、アミノシランの加水分解縮合体が好ましい。従って、本発明のカチオン電着塗装用金属表面処理液としては、例えば、ジルコニウムイオン、錫イオン、およびアミノシランの加水分解縮合体を含むカチオン電着塗装用金属表面処理液、ジルコニウムイオン、錫イオン、およびポリアリルアミンを含むカチオン電着塗装用金属表面処理液、ジルコニウムイオン、錫イオン、およびアミノ基を有する水溶性フェノール樹脂を含むカチオン電着塗装用金属表面処理液が挙げられる。また、これらのカチオン電着塗装用金属表面処理液に、後述するフッ素を含有してもよい。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention may further contain a polyamine compound in order to enhance the adhesion with the cationic electrodeposition coating film formed after the surface treatment. The polyamine compound used in the present invention is considered to have an essential meaning in that it is an organic molecule having an amino group. That is, although the following is speculated, it is considered that the amino group is incorporated into the film by a chemical action with zirconium oxide deposited as a film on the metal substrate or the metal substrate. Moreover, it is thought that the polyamine compound which is an organic molecule contributes to adhesiveness with the coating film provided on the metal substrate in which the said film | membrane was formed. Therefore, when a polyamine compound which is an organic molecule having an amino group is used, the adhesion between the metal substrate and the coating film is remarkably improved, and excellent corrosion resistance can be obtained. Examples of the polyamine compound include aminosilane hydrolyzed condensates, polyvinylamine, polyallylamine, and water-soluble phenol resins having an amino group. An aminosilane hydrolyzed condensate is preferred because the amount of amine can be adjusted freely. Accordingly, the metal surface treatment liquid for cationic electrodeposition coating of the present invention includes, for example, a metal surface treatment liquid for cationic electrodeposition coating containing a hydrolysis condensate of zirconium ion, tin ion, and aminosilane, zirconium ion, tin ion, And a metal surface treatment solution for cationic electrodeposition coating containing polyallylamine and a metal surface treatment solution for cationic electrodeposition coating containing a water-soluble phenol resin having zirconium ions, tin ions and amino groups. Moreover, you may contain the fluorine mentioned later in these metal surface treatment liquids for cationic electrodeposition coating.

上記アミノシランの加水分解縮合体は、アミノシラン化合物を加水分解縮合して得られるものである。上記アミノシラン化合物として、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)−エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)−プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、3−ウレイドプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3−イソシアネートプロピルトリエトキシシラン等のアミノ基を有するシランカップリング剤を挙げることができる。また、市販されているものとして、「KBM−403」、「KBM−602」、「KBM−603」、「KBE−603」、「KBM−903」、「KBE−903」、「KBE−9103」、「KBM−573」、「KBP−90」(いずれも商品名、信越化学工業社製)、「XS1003」(商品名、チッソ社製)等を使用することができる。   The aminosilane hydrolyzed condensate is obtained by hydrolytic condensation of an aminosilane compound. Examples of the aminosilane compound include vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycol. Sidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldi Ethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (amino Ethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl- N- (1,3-dimethyl-butylidene) -propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, 3-ureidopropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane It can be mentioned silane coupling agent having an amino group of emissions, and the like. Moreover, as what is marketed, "KBM-403", "KBM-602", "KBM-603", "KBE-603", "KBM-903", "KBE-903", "KBE-9103" , “KBM-573”, “KBP-90” (both trade names, manufactured by Shin-Etsu Chemical Co., Ltd.), “XS1003” (trade names, manufactured by Chisso Corporation), and the like can be used.

上記アミノシランの加水分解縮合は、当業者によく知られた方法により行うことができる。具体的には、少なくとも1種のアミノシラン化合物にアルコキシシリル基が加水分解するのに必要な水を加え、必要に応じて加熱撹拌することにより行うことができる。なお、用いる水の量によって縮合度を制御することができる。   Hydrolysis condensation of the aminosilane can be performed by methods well known to those skilled in the art. Specifically, it can be carried out by adding water necessary for hydrolyzing an alkoxysilyl group to at least one aminosilane compound, and heating and stirring as necessary. The degree of condensation can be controlled by the amount of water used.

上記アミノシランの加水分解縮合体の縮合度は高いほうが、ジルコニウムが酸化物として析出する際に、その中に取り込まれやすい傾向にあるため、好ましい。例えば、アミノシランの全量中、2量体以上のアミノシランの割合が質量換算で40%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることがさらに好ましく、80%以上であることがよりさらに好ましい。このため、アミノシランを加水分解縮合反応で反応させる際には、溶媒としてアルコールおよび酢酸等の触媒を含む水性溶媒を用いる等、アミノシランがより加水分解しやすく、縮合しやすい条件下で反応させることが好ましい。また、アミノシラン濃度が比較的高い条件で反応させることによって、縮合度の高い加水分解縮合体が得られる。具体的にはアミノシラン濃度が5質量%以上50質量%以下の範囲で加水分解縮合させることが好ましい。なお、縮合度は、29Si−NMR測定により求めることができる。 The higher the degree of condensation of the aminosilane hydrolyzed condensate, the more preferable it is because zirconium tends to be taken into it when it precipitates as an oxide. For example, in the total amount of aminosilane, the proportion of aminosilane of dimer or higher is preferably 40% or more in terms of mass, more preferably 50% or more, further preferably 70% or more, 80% More preferably, it is more than the above. For this reason, when aminosilane is reacted in a hydrolysis-condensation reaction, the reaction may be performed under conditions where aminosilane is more easily hydrolyzed and condensed, such as using an aqueous solvent containing a catalyst such as alcohol and acetic acid. preferable. Moreover, the hydrolysis condensate with a high condensation degree is obtained by making it react on conditions with a comparatively high aminosilane density | concentration. Specifically, it is preferable to hydrolyze and condense the aminosilane concentration in the range of 5% by mass or more and 50% by mass or less. Incidentally, the degree of condensation can be determined by 29 Si-NMR measurement.

上記ポリビニルアミンおよびポリアリルアミンとしては、市販されているものを使用することができる。ポリビニルアミンの例として、「PVAM−0595B」(商品名、三菱化学社製)等を、ポリアリルアミンの例として、「PAA−01」、「PAA−10C」、「PAA−H−10C」、「PAA−D−41HCl」(いずれも商品名、日東紡績社製)等をそれぞれ挙げることができる。   As said polyvinylamine and polyallylamine, what is marketed can be used. Examples of polyvinylamine include “PVAM-0595B” (trade name, manufactured by Mitsubishi Chemical Corporation), and examples of polyallylamine include “PAA-01”, “PAA-10C”, “PAA-H-10C”, “ PAA-D-41HCl "(both trade names, manufactured by Nitto Boseki Co., Ltd.) and the like.

上記ポリアミン化合物の分子量は、150〜500000であることが好ましい。150未満だと充分な密着性を有する化成皮膜が得られないおそれがある。分子量が500000を超える場合には皮膜形成を阻害するおそれがある。さらに好ましい下限値および上限値は、それぞれ5000および70000である。なお、上記ポリアミン化合物は、アミノ基の量が多すぎると皮膜に悪影響を及ぼすおそれがあり、少なすぎるとアミノ基による皮膜との密着性向上の効果が得られにくいため、固形分1gあたり0.1ミリモル以上17ミリモル以下の1級及び/又は2級アミノ基を有することが好ましく、固形分1gあたり3ミリモル以上15ミリモル以下の1級及び/又は2級アミノ基を有することが好ましい。   The molecular weight of the polyamine compound is preferably 150 to 500,000. If it is less than 150, a chemical conversion film having sufficient adhesion may not be obtained. If the molecular weight exceeds 500,000, film formation may be hindered. Further preferred lower and upper limits are 5000 and 70000, respectively. If the amount of amino groups is too large, the polyamine compound may adversely affect the film. If the amount is too small, the effect of improving adhesion to the film due to amino groups is difficult to obtain. It preferably has 1 to 17 mmol of primary and / or secondary amino groups, and preferably has 3 to 15 mmol of primary and / or secondary amino groups per gram of solid content.

なお、ポリアミン化合物の固形分1gあたりの1級及び/又は2級アミノ基のモル数は、下記数式(1)により求めることができる。   In addition, the number of moles of primary and / or secondary amino groups per 1 g of the solid content of the polyamine compound can be obtained by the following mathematical formula (1).

Figure 0004276689
Figure 0004276689

(数式中、ポリアミン化合物と、官能基A及び/又は官能基Bを有する化合物との固形分質量比を、m:nとすると、官能基A及び/又は官能基Bを有する化合物1gあたりの官能基A及び/又は官能基Bのミリモル数をYとし、上記官能基A及び/又は官能基Bを有する化合物が金属表面処理用組成物に含有されていない場合のポリアミン化合物1gあたりに含まれる1級及び/又は2級アミノ基のミリモル数をXとした。)。   (In the formula, when the mass ratio of the solid content of the polyamine compound and the compound having the functional group A and / or the functional group B is m: n, the functionality per 1 g of the compound having the functional group A and / or the functional group B 1 is included per gram of polyamine compound when the number of millimoles of the group A and / or the functional group B is Y and the compound having the functional group A and / or the functional group B is not contained in the metal surface treatment composition. X is the number of millimoles of primary and / or secondary amino groups).

本発明のカチオン電着塗装用金属表面処理液における上記ポリアミン化合物の含有量は、表面処理液中に含まれるジルコニウムの金属換算質量に対して、1〜200%とすることができる。1%未満だと目的とする効果が得られず、200%を超えると皮膜が充分に形成されないおそれがある。当該含有量の上限値としては、120%がより好ましく、100%がより好ましく、80%が更に好ましく、60%がより更に好ましい。   Content of the said polyamine compound in the metal surface treatment liquid for cationic electrodeposition coating of this invention can be 1 to 200% with respect to the metal conversion mass of the zirconium contained in a surface treatment liquid. If it is less than 1%, the intended effect cannot be obtained, and if it exceeds 200%, a film may not be sufficiently formed. As an upper limit of the content, 120% is more preferable, 100% is more preferable, 80% is further preferable, and 60% is still more preferable.

本発明のカチオン電着塗装用金属表面処理液は、さらに防食性を向上させるため、銅イオンを含んでいてよい。上記銅イオンの量は、上記錫イオンの濃度に対して、10〜100%となる濃度であることが好ましい。10%未満では目的とする効果が得られないおそれがあり、錫イオンの濃度を超えると、錫イオンの場合と同様にジルコニウムが析出しにくくなるおそれがある。本発明のカチオン電着塗装用金属表面処理液としては、例えば、ジルコニウムイオン、錫イオンおよび銅イオンを含むカチオン電着塗装用金属表面処理液が挙げられる。この場合、さらに後述するフッ素イオンを含有することができ、上記ポリアミン化合物を含有することができる。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention may further contain copper ions in order to further improve the corrosion resistance. The amount of the copper ions is preferably a concentration that is 10 to 100% with respect to the concentration of the tin ions. If it is less than 10%, the intended effect may not be obtained, and if the concentration of tin ions is exceeded, zirconium may be difficult to precipitate as in the case of tin ions. Examples of the metal surface treatment liquid for cationic electrodeposition coating of the present invention include a metal surface treatment liquid for cationic electrodeposition coating containing zirconium ions, tin ions and copper ions. In this case, the fluorine ion mentioned later can be contained further and the said polyamine compound can be contained.

本発明のカチオン電着塗装用金属表面処理液には、フッ素イオンが含まれていることが好ましい。上記フッ素イオンの濃度はpHによって変化するので、特定のpHにおけるフリーなフッ素イオン量を規定することとする。本発明では、pHが3.0である場合のフリーなフッ素イオン量が0.1〜50ppmである。0.1ppm未満では、金属基材のエッチングが充分に行われないため、皮膜量が少なくなり、充分な防食性を得ることができない。また、処理液の安定性が充分でないおそれがある。50ppmを超えると、エッチングが過剰となり充分な皮膜形成ができなくなる場合や、皮膜の付着量および膜厚が不均一となって、塗装外観等に悪影響を与えたりするおそれがある。好ましい下限値および上限値は、それぞれ、0.5ppmおよび10ppmである。本発明のカチオン電着塗装用金属表面処理液としては、例えば、ジルコニウムイオン、錫イオン、およびフッ素イオンを含むカチオン電着塗装用金属表面処理液が挙げられる。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention preferably contains fluorine ions. Since the fluorine ion concentration varies depending on the pH, the amount of free fluorine ions at a specific pH is defined. In the present invention, the amount of free fluorine ions when the pH is 3.0 is 0.1 to 50 ppm. If it is less than 0.1 ppm, the metal substrate is not sufficiently etched, so that the amount of coating is reduced and sufficient corrosion resistance cannot be obtained. In addition, the stability of the treatment liquid may not be sufficient. If it exceeds 50 ppm, etching may be excessive and sufficient film formation may not be possible, or the coating amount and film thickness may be uneven, which may adversely affect the appearance of the coating. Preferred lower and upper limits are 0.5 ppm and 10 ppm, respectively. Examples of the metal surface treatment solution for cationic electrodeposition coating of the present invention include a metal surface treatment solution for cationic electrodeposition coating containing zirconium ions, tin ions, and fluorine ions.

本発明のカチオン電着塗装用金属表面処理液は、キレート化合物を含んでいてもよい。キレート化合物を含むことで、当該処理液中でジルコニウム以外の金属の析出を抑制し、ジルコニウム酸化物の皮膜を安定に形成することができる。上記キレート化合物として、アミノ酸、アミノカルボン酸、フェノール化合物、芳香族カルボン酸、スルホン酸、アスコルビン酸等を挙げることができる。なお、従来からキレート剤として知られているクエン酸やグルコン酸等の水酸基を有するカルボン酸は、本発明ではその機能を充分に発現することができない。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain a chelate compound. By including a chelate compound, precipitation of metals other than zirconium in the treatment liquid can be suppressed, and a zirconium oxide film can be stably formed. Examples of the chelate compound include amino acids, aminocarboxylic acids, phenol compounds, aromatic carboxylic acids, sulfonic acids, and ascorbic acids. In addition, the carboxylic acid having a hydroxyl group such as citric acid and gluconic acid, which has been conventionally known as a chelating agent, cannot sufficiently exhibit its function in the present invention.

上記アミノ酸としては、各種天然アミノ酸および合成アミノ酸の他、1分子中に少なくとも1つのアミノ基および少なくとも1つの酸基(カルボキシル基やスルホン酸基等)を有するアミノ酸を広く利用することができる。この中でも、アラニン、グリシン、グルタミン酸、アスパラギン酸、ヒスチジン、フェニルアラニン、アスパラギン、アルギニン、グルタミン、システイン、ロイシン、リジン、プロリン、セリン、トリプトファン、バリン、および、チロシン、ならびに、これらの塩からなる群から選択される少なくとも一種を好ましく使用することができる。また、アミノ酸に光学異性体が存在する場合、L体、D体、ラセミ体を問わず、いずれも好適に使用することができる。   As the amino acid, in addition to various natural amino acids and synthetic amino acids, amino acids having at least one amino group and at least one acid group (such as a carboxyl group or a sulfonic acid group) in one molecule can be widely used. Among them, selected from the group consisting of alanine, glycine, glutamic acid, aspartic acid, histidine, phenylalanine, asparagine, arginine, glutamine, cysteine, leucine, lysine, proline, serine, tryptophan, valine, tyrosine, and salts thereof. At least one of the above can be preferably used. In addition, when an amino acid has an optical isomer, any of L-form, D-form, and racemate can be suitably used.

また、上記アミノカルボン酸としては、上記アミノ酸以外で、1分子中にアミノ基とカルボキシル基との両方の官能基を有する化合物が広く利用可能である。この中でも、ジエチレントリアミン5酢酸(DTPA)、ヒドロキシエチルエチレンジアミン3酢酸(HEDTA)、トリエチレンテトラアミン6酢酸(TTHA)、1,3−プロパンジアミン4酢酸(PDTA)、1,3−ジアミノ−6−ヒドロキシプロパン4酢酸(DPTA−OH)、ヒドロキシエチルイミノ2酢酸(HIDA)、ジヒドロキシエチルグリシン(DHEG)、グリコールエーテルジアミン4酢酸(GEDTA)、ジカルボキシメチルグルタミン酸(CMGA)、(S,S)−エチレンジアミンジコハク酸(EDDS)、エチレンジアミン4酢酸(EDTA)、ニトリロ3酢酸(NTA)および、これらの塩からなる群から選択される少なくとも一種を好ましく使用することができる。   Moreover, as said aminocarboxylic acid, the compound which has the functional group of both an amino group and a carboxyl group in 1 molecule other than the said amino acid is widely available. Among these, diethylenetriaminepentaacetic acid (DTPA), hydroxyethylethylenediaminetriacetic acid (HEDTA), triethylenetetraaminehexaacetic acid (TTHA), 1,3-propanediaminetetraacetic acid (PDTA), 1,3-diamino-6-hydroxy Propane 4 acetic acid (DPTA-OH), hydroxyethyliminodiacetic acid (HIDA), dihydroxyethyl glycine (DHEG), glycol ether diamine tetraacetic acid (GEDTA), dicarboxymethyl glutamic acid (CMGA), (S, S) -ethylenediamine di At least one selected from the group consisting of succinic acid (EDDS), ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and salts thereof can be preferably used.

さらに、上記フェノール化合物としては、2個以上のフェノール性水酸基を有する化合物、これらを基本骨格とするフェノール系化合物を挙げることができる。前者の例として、カテコール、没食子酸、ピロガロール、タンニン酸等が挙げられる。一方、後者の例として、フラボン、イソフラボン、フラボノール、フラバノン、フラバノール、アントシアニジン、オーロン、カルコン、エピガロカテキンガレート、ガロカテキン、テアフラビン、ダイズイン、ゲニスチン、ルチン、ミリシトリン等のフラボノイド、タンニン、カテキン等を包含するポリフェノール系化合物、ポリビニルフェノールや水溶性レゾール、ノボラック樹脂等、リグニン等を挙げることができる。中でも、タンニン、没食子酸、カテキンおよびピロガロールが特に好ましい。   Furthermore, examples of the phenol compound include compounds having two or more phenolic hydroxyl groups and phenolic compounds having these as a basic skeleton. Examples of the former include catechol, gallic acid, pyrogallol, tannic acid and the like. On the other hand, examples of the latter include flavonoids such as flavone, isoflavone, flavonol, flavanone, flavanol, anthocyanidin, aurone, chalcone, epigallocatechin gallate, gallocatechin, theaflavin, soybean in, genistin, rutin, myricitrin, tannin, catechin, etc. Examples thereof include polyphenol compounds, polyvinylphenol, water-soluble resols, novolac resins, and lignin. Of these, tannin, gallic acid, catechin and pyrogallol are particularly preferred.

また、上記スルホン酸としては、メタスルホン酸、イセチオン酸、タウリン、ナフタレンジスルホン酸、アミノナフタレンジスルホン酸、スルホサリチル酸、ナフタレンスルホン酸ホルムアルデヒド縮合物、アルキルナフタレンスルホン酸等および、これらの塩からなる群から選択される少なくとも一種を好ましく使用することができる。   The sulfonic acid is selected from the group consisting of metasulfonic acid, isethionic acid, taurine, naphthalene disulfonic acid, amino naphthalene disulfonic acid, sulfosalicylic acid, naphthalene sulfonic acid formaldehyde condensate, alkyl naphthalene sulfonic acid, and the like, and salts thereof. At least one of the above can be preferably used.

スルホン酸を用いると、化成処理後の被処理物の塗装性・耐食性が向上しうる。そのメカニズムは明らかではないが、次の2つの理由が考えられる。   When sulfonic acid is used, the paintability and corrosion resistance of the object to be treated after the chemical conversion treatment can be improved. The mechanism is not clear, but there are two possible reasons.

まず一つは、鋼板等の被処理物の表面にはシリカ偏析物等があり表面組成が不均一であるため、化成処理におけるエッチングされにくい部分があるが、スルホン酸を添加することによりそのようなエッチングされにくい部分を特にエッチングすることができ、その結果、被処理物表面に均一な金属酸化膜が形成されやすくなるものと推測される。すなわち、スルホン酸は、エッチング促進剤として作用するものと推測される。   First of all, the surface of an object to be treated such as a steel plate has a segregated silica, etc., and the surface composition is non-uniform, so there is a portion that is difficult to be etched in chemical conversion treatment. It is presumed that a portion that is difficult to be etched can be particularly etched, and as a result, a uniform metal oxide film is easily formed on the surface of the object to be processed. That is, sulfonic acid is presumed to act as an etching accelerator.

もう一つは、化成処理時においては化成反応により発生しうる水素ガスが、界面の反応を妨げている可能性があり、スルホン酸は復極作用として水素ガスを取り除き、反応を促進しているものと推測される。   The other is that during the chemical conversion treatment, hydrogen gas that may be generated by the chemical conversion reaction may interfere with the reaction at the interface, and sulfonic acid removes the hydrogen gas as a depolarizing action and promotes the reaction. Presumed to be.

中でも、タウリンを用いると、アミノ基とスルホン基を両方もっている点で好ましい。スルホン酸の含有量としては、0.1〜10000ppmが好ましく、1〜1000ppmがより好ましい。当該含有量が0.1ppm未満であると、効果が得られにくく、10000ppmを超えるとジルコニウムの析出を阻害する可能性がある。   Of these, taurine is preferred because it has both an amino group and a sulfone group. As content of a sulfonic acid, 0.1-10000 ppm is preferable and 1-1000 ppm is more preferable. If the content is less than 0.1 ppm, it is difficult to obtain the effect, and if it exceeds 10000 ppm, precipitation of zirconium may be inhibited.

アスコルビン酸を用いると、化成処理によって被処理物表面にジルコニウム酸化物、錫酸化物等の金属酸化膜が均一に形成され、塗装性、耐食性が向上しうる。そのメカニズムは明らかではないが、化成処理におけるエッチング作用が鋼板等の被処理物に対して均一に行われ、その結果、当該エッチングされた部分にジルコニウム酸化物および/または錫酸化物が析出して全体として均一な金属酸化膜が形成されるものと推測される。また、錫が何らかの影響により金属界面において錫金属として析出しやすくなる結果、当該錫金属の析出部位にジルコニウム酸化物が析出し、全体として被処理物に対する表面被覆性が向上するものと推測される。アスコルビン酸の含有量としては、5〜5000ppmが好ましく、20〜200ppmがより好ましい。当該含有量が5ppm未満であると、効果が得られにくく、5000ppmを超えるとジルコニウムの析出を阻害する可能性がある。   When ascorbic acid is used, a metal oxide film such as zirconium oxide or tin oxide is uniformly formed on the surface of the object to be processed by chemical conversion treatment, and paintability and corrosion resistance can be improved. Although the mechanism is not clear, the etching action in the chemical conversion treatment is uniformly performed on the workpiece such as a steel plate, and as a result, zirconium oxide and / or tin oxide is precipitated in the etched portion. It is estimated that a uniform metal oxide film is formed as a whole. In addition, as a result of tin being easily precipitated as tin metal at the metal interface due to some influence, it is estimated that zirconium oxide is precipitated at the deposition site of the tin metal, and the surface coverage on the object to be processed is improved as a whole. . As content of ascorbic acid, 5-5000 ppm is preferable and 20-200 ppm is more preferable. If the content is less than 5 ppm, it is difficult to obtain the effect, and if it exceeds 5000 ppm, precipitation of zirconium may be inhibited.

上記キレート剤を含む場合、その含有量は、ジルコニウム以外の錫イオンおよび銅イオンなどのその他のカチオンの合計濃度に対して、0.5〜10倍の濃度であることが好ましい。0.5倍未満では、目的とする効果が得られず、10倍を超えると皮膜形成に悪影響を及ぼすおそれがある。   When the chelating agent is included, the content thereof is preferably 0.5 to 10 times the total concentration of other cations such as tin ions and copper ions other than zirconium. If it is less than 0.5 times, the intended effect cannot be obtained, and if it exceeds 10 times, film formation may be adversely affected.

本発明のカチオン電着塗装用金属表面処理液は、さらに窒素、硫黄および/またはフェノール系防錆剤を含有させることができる。当該防錆剤は、金属表面に防食皮膜を形成し腐食を抑制しうるものである。窒素、硫黄、フェノール系防錆剤としては、ヒドロキノン、エチレン尿素、キノリノール、チオ尿素、ベンゾトリアゾール等、およびこれらの塩からなる群より選択される少なくとも一種を用いることができる。本発明のカチオン電着塗装用金属表面処理液に窒素、硫黄、フェノール系防錆剤を用いた場合は、化成処理によって被処理物表面にジルコニウム酸化物、錫酸化物等の金属酸化膜が均一に形成され、塗装性、耐食性が向上しうる。そのメカニズムは明らかではないが、次のことが推測される。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention can further contain nitrogen, sulfur and / or a phenolic rust inhibitor. The said rust preventive agent can form a corrosion prevention film on the metal surface and can suppress corrosion. As the nitrogen, sulfur, and phenolic rust preventive agent, at least one selected from the group consisting of hydroquinone, ethylene urea, quinolinol, thiourea, benzotriazole, and salts thereof can be used. When nitrogen, sulfur, or phenolic rust inhibitor is used in the metal surface treatment solution for cationic electrodeposition coating of the present invention, the metal oxide film such as zirconium oxide and tin oxide is uniformly formed on the surface of the object to be treated by chemical conversion treatment. The paintability and corrosion resistance can be improved. The mechanism is not clear, but the following is presumed.

すなわち、鋼板表面にはシリカ偏析物などがあり表面組成が不均一であるため、化成処理においてエッチングされて化成皮膜が形成される部分と、エッチング挙動が違うために化成皮膜が形成されず鉄酸化物となってしまう部分がある。窒素、硫黄、フェノール系防錆剤は、化成処理中に化成皮膜が形成されなかった部分に吸着して金属界面を被覆することで一次防錆性を向上させ、結果として、化成処理後の被処理物の塗装性、耐食性を向上させることができるものと推測される。   In other words, because the surface of the steel sheet has silica segregation and the surface composition is non-uniform, the chemical film is not formed and the iron oxide is not formed because the etching behavior is different from the part where the chemical film is etched in the chemical conversion treatment. There is a part that becomes a thing. Nitrogen, sulfur, and phenolic rust preventives improve primary rust prevention by adsorbing to the part where the chemical conversion film was not formed during the chemical conversion treatment and covering the metal interface. It is presumed that the paintability and corrosion resistance of the treated product can be improved.

また、化成皮膜において銅が過剰に析出した場合には、この銅がカソード基点となって電気的に不均一な化成皮膜となることがあるが、当該過剰な銅の析出部位に防錆剤を吸着させることにより、化成処理後の被処理物において均一な電着塗装性が得られ、耐食性を向上させることができるものと推測される。   In addition, when copper is excessively deposited in the chemical conversion film, this copper may become a cathode base point and become an electrically non-uniform chemical conversion film, but a rust inhibitor is added to the excessive copper precipitation site. By making it adsorb | suck, it is estimated that uniform electrodeposition coating property is obtained in the to-be-processed object after chemical conversion treatment, and corrosion resistance can be improved.

窒素、硫黄および/またはフェノール系防錆剤の含有量としては、0.1〜10000ppmが好ましく、1〜1000ppmがより好ましい。当該含有量が0.1ppm未満であると、効果が得られにくく、10000ppmを超えるとジルコニウムの析出を阻害する可能性がある。   As content of nitrogen, sulfur, and / or a phenol type rust preventive agent, 0.1-10000 ppm is preferable and 1-1000 ppm is more preferable. If the content is less than 0.1 ppm, it is difficult to obtain the effect, and if it exceeds 10000 ppm, precipitation of zirconium may be inhibited.

本発明のカチオン電着塗装用金属表面処理液は、さらにアルミニウムイオンおよび/またはインジウムイオンを含有していてよい。これらのカチオンは、錫イオンと同様の機能を有しているので、錫イオンだけでは効果がない場合に併用して用いることができる。中でも、アルミニウムがより好ましい。アルミニウムイオンおよび/またはインジウムイオンの含有量は、10〜1000ppmが好ましく、50〜500ppmがより好ましく、100〜300ppmがさらに好ましい。上記アルミニウムイオンおよびインジウムイオンの量は、ジルコニウムイオンの濃度に対して、例えば、2〜1000%に相当する濃度とすることができる。本発明のカチオン電着塗装用金属表面処理液としては、ジルコニウムイオン、錫イオン、およびアルミニウムイオンを含むカチオン電着塗装用金属表面処理液が挙げられ、さらに後述するフッ素を含有することができ、また、後述するポリアミン化合物を含有することができる。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention may further contain aluminum ions and / or indium ions. Since these cations have the same function as tin ions, they can be used in combination when only the tin ions are not effective. Among these, aluminum is more preferable. The content of aluminum ions and / or indium ions is preferably 10 to 1000 ppm, more preferably 50 to 500 ppm, and still more preferably 100 to 300 ppm. The amount of aluminum ions and indium ions can be set to a concentration corresponding to, for example, 2 to 1000% with respect to the concentration of zirconium ions. Examples of the metal surface treatment liquid for cationic electrodeposition coating of the present invention include a metal surface treatment liquid for cationic electrodeposition coating containing zirconium ions, tin ions, and aluminum ions, and can further contain fluorine described later. Moreover, the polyamine compound mentioned later can be contained.

本発明のカチオン電着塗装用金属表面処理液は、上記成分以外に、種々のカチオンを含有していてもよい。上記カチオンの例として、マグネシウム、亜鉛、カルシウム、ガリウム、鉄、マンガン、ニッケル、コバルト、銀などが挙げられる。これら以外にも、pH調製の目的で加えられる、塩基や酸から由来したり、上記成分のカウンターイオンとして含まれたりするカチオンやアニオンが存在する。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain various cations in addition to the above components. Examples of the cation include magnesium, zinc, calcium, gallium, iron, manganese, nickel, cobalt, silver and the like. In addition to these, there are cations and anions that are added for the purpose of pH adjustment and are derived from bases and acids, or are included as counter ions of the above components.

本発明のカチオン電着塗装用金属表面処理液は、上記各成分そのもの、および/または、これを含有する化合物を水に投入して混合することで製造することができる。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention can be produced by introducing the above components themselves and / or a compound containing the same into water and mixing them.

上記ジルコニウムイオンを供給する化合物として、例えば、フッ化ジルコン酸、フッ化ジルコン酸カリウムおよびフッ化ジルコン酸アンモニウム等のフッ化ジルコン酸の塩、フッ化ジルコニウム、酸化ジルコニウム、酸化ジルコニウムコロイド、硝酸ジルコニル、ならびに炭酸ジルコニウム等を挙げることができる。   Examples of the compound supplying the zirconium ion include, for example, fluorinated zirconic acid salts such as fluorinated zirconic acid, potassium fluorinated zirconate and ammonium fluorinated zirconate, zirconium fluoride, zirconium oxide, zirconium oxide colloid, zirconyl nitrate, And zirconium carbonate.

また、錫イオンを供給する化合物として、例えば、硫酸錫、酢酸錫、フッ化錫、塩化錫、硝酸錫等を挙げることができる。一方、フッ素イオンを供給する化合物として、例えば、フッ化水素酸、フッ化アンモニウム、フッ化ホウ素酸、フッ化水素アンモニウム、フッ化ナトリウム、フッ化水素ナトリウム等のフッ化物を挙げることができる。また、錯フッ化物を供給源とすることも可能であり、例えば、ヘキサフルオロケイ酸塩、具体的には、ケイフッ化水素酸、ケイフッ化水素酸亜鉛、ケイフッ化水素酸マンガン、ケイフッ化水素酸マグネシウム、ケイフッ化水素酸ニッケル、ケイフッ化水素酸鉄、ケイフッ化水素酸カルシウム等を挙げることができる。また、ジルコニウムイオンを供給する化合物で錯フッ化物であるものであってもよい。さらに銅イオンを供給する化合物として、酢酸銅、硝酸銅、硫酸銅、塩化銅等を、アルミニウムイオンを供給する化合物として、硝酸アルミニウム、フッ化アルミニウム等を、また、インジウムイオンを供給する化合物として硝酸インジウム、塩化インジウム等を、それぞれ挙げることができる。   Examples of the compound that supplies tin ions include tin sulfate, tin acetate, tin fluoride, tin chloride, and tin nitrate. On the other hand, examples of the compound that supplies fluorine ions include fluorides such as hydrofluoric acid, ammonium fluoride, fluorinated boronic acid, ammonium hydrogen fluoride, sodium fluoride, and sodium hydrogen fluoride. It is also possible to use a complex fluoride as a supply source, for example, hexafluorosilicate, specifically, silicofluoric acid, zinc silicofluoride, manganese silicofluoride, silicohydrofluoric acid. Examples thereof include magnesium, nickel silicohydrofluoride, iron silicohydrofluorate, calcium silicohydrofluoride, and the like. Further, it may be a compound that supplies zirconium ions and is a complex fluoride. Furthermore, copper acetate, copper nitrate, copper sulfate, copper chloride, etc. are used as the compounds that supply copper ions, aluminum nitrate, aluminum fluoride, etc. are used as the compounds that supply aluminum ions, and nitric acid is used as the compound that supplies indium ions. Examples thereof include indium and indium chloride.

本発明のカチオン電着塗装用金属表面処理液は、これらを混合した後、硝酸、硫酸等の酸性化合物、及び、水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基性化合物を使用して、所定のpH値になるよう、調整することができる。   The metal surface treatment liquid for cationic electrodeposition coating according to the present invention is prepared by mixing these, and then using an acidic compound such as nitric acid and sulfuric acid, and a basic compound such as sodium hydroxide, potassium hydroxide and ammonia. It can adjust so that it may become pH value of.

本発明のカチオン電着塗装用金属表面処理液は、酸化剤を含んでいてもよい。酸化剤としては特に硝酸、亜硝酸、過酸化水素、臭素酸等およびこれらの塩からなる群より選択される少なくとも一種であることが好ましい。当該酸化剤は、被処理物の表面に金属酸化膜を均一に形成させ、被処理物の塗装性、耐食性を向上させることができる。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention may contain an oxidizing agent. The oxidizing agent is preferably at least one selected from the group consisting of nitric acid, nitrous acid, hydrogen peroxide, bromic acid and the like and salts thereof. The oxidizing agent can uniformly form a metal oxide film on the surface of the object to be processed, and can improve the paintability and corrosion resistance of the object to be processed.

そのメカニズムは明らかではないが、当該酸化剤を所定量用いることにより、化成処理におけるエッチング作用が鋼板等の被処理物に対して均一に行われ、当該エッチングされた部分にジルコニウム酸化物および/または錫酸化物が析出して全体として均一な金属酸化膜が形成されるものと推測される。また、当該所定量の酸化剤により、錫が金属界面において錫金属として析出し易くなり、当該錫金属の析出部位にジルコニウム酸化物が析出し、全体として被処理物に対する表面被覆性が向上するものと推測される。   Although the mechanism is not clear, by using a predetermined amount of the oxidizing agent, the etching action in the chemical conversion treatment is uniformly performed on the workpiece such as a steel plate, and zirconium oxide and / or in the etched portion. It is presumed that tin oxide precipitates to form a uniform metal oxide film as a whole. In addition, the predetermined amount of the oxidizing agent facilitates precipitation of tin as tin metal at the metal interface, and zirconium oxide is deposited at the deposition site of the tin metal, thereby improving the surface coverage of the object as a whole. It is guessed.

このような作用を奏させるためには、各酸化剤の含有量は次のとおりである。すなわち、硝酸の含有量としては100〜100000ppmが好ましく、1000〜20000ppmがより好ましく、2000〜10000ppmがさらに好ましい。亜硝酸、臭素酸の含有量としては5〜5000ppmが好ましく、20〜200ppmがより好ましい。亜硝酸、臭素酸の含有量としては5〜5000ppmが好ましく、20〜200ppmがより好ましい。過酸化水素の含有量としては1〜1000ppmが好ましく、5〜100ppmがより好ましい。各含有量が下限値未満であると、上記効果が得られにくく、上限値を超えるとジルコニウムの析出を阻害する可能性がある。   In order to exert such an action, the content of each oxidizing agent is as follows. That is, the nitric acid content is preferably 100 to 100,000 ppm, more preferably 1000 to 20000 ppm, and still more preferably 2000 to 10,000 ppm. As content of nitrous acid and bromic acid, 5-5000 ppm is preferable and 20-200 ppm is more preferable. As content of nitrous acid and bromic acid, 5-5000 ppm is preferable and 20-200 ppm is more preferable. As content of hydrogen peroxide, 1-1000 ppm is preferable and 5-100 ppm is more preferable. When each content is less than the lower limit, the above effect is hardly obtained, and when the content exceeds the upper limit, precipitation of zirconium may be hindered.

本発明の金属表面処理方法は、先の金属表面処理液を用いて、金属基材に対して表面処理を行う工程を含むものである。   The metal surface treatment method of the present invention includes a step of performing a surface treatment on a metal substrate using the previous metal surface treatment liquid.

上記金属基材としては、カチオン電着可能なものであれば、特に限定されるものではないが、例えば、鉄系金属基材、アルミニウム系金属基材、亜鉛系金属基材等を挙げることができる。   The metal substrate is not particularly limited as long as it can be cationically electrodeposited. Examples thereof include iron-based metal substrates, aluminum-based metal substrates, and zinc-based metal substrates. it can.

鉄系金属基材としては、例えば、冷延鋼板、熱延鋼板、軟鋼板、高張力鋼板等を挙げることができる。また、アルミニウム系金属基材としては、例えば、5000番系アルミニウム合金、6000番系アルミニウム合金、アルミニウム系の電気めっき、溶融めっき、蒸着めっき等のアルミニウムめっき鋼板等を挙げることができる。また、亜鉛系金属基材としては、例えば、亜鉛めっき鋼板、亜鉛−ニッケルめっき鋼板、亜鉛−チタンめっき鋼板、亜鉛−マグネシウムめっき鋼板、亜鉛−マンガンめっき鋼板等の亜鉛系の電気めっき、溶融めっき、蒸着めっき鋼板等の亜鉛または亜鉛系合金めっき鋼板等を挙げることができる。なお、上記高張力鋼板としては、強度や製法により多種多様なグレードが存在し、例えば、JSC400J、JSC440P、JSC440W、JSC590R、JSC590T、JSC590Y、JSC780T、JSC780Y、JSC980Y、JSC1180Y等を挙げることができる。   Examples of the iron-based metal base material include a cold-rolled steel plate, a hot-rolled steel plate, a mild steel plate, and a high-tensile steel plate. Examples of the aluminum-based metal base material include a 5000-series aluminum alloy, a 6000-series aluminum alloy, aluminum-plated steel sheets such as aluminum-based electroplating, hot dipping, and vapor deposition plating. In addition, as the zinc-based metal substrate, for example, zinc-based electroplating such as galvanized steel sheet, zinc-nickel plated steel sheet, zinc-titanium plated steel sheet, zinc-magnesium plated steel sheet, zinc-manganese plated steel sheet, hot dipping, Examples include zinc or zinc-based alloy-plated steel sheets such as vapor-deposited steel sheets. The high-strength steel sheet has various grades depending on strength and manufacturing method, and examples thereof include JSC400J, JSC440P, JSC440W, JSC590R, JSC590T, JSC590Y, JSC780T, JSC780Y, JSC980Y, and JSC1180Y.

また、上記金属基材として、鉄系、アルミニウム系、亜鉛系等の複数種類の金属の組み合わせ(異種金属同士の接合部及び接触部を含む)からなる金属基材に対しても、同時に適用することができる。   Moreover, it applies simultaneously also to the metal base material which consists of a combination (including the junction part and contact part of dissimilar metals) of multiple types, such as iron type, aluminum type, and zinc type, as said metal base material. be able to.

上記表面処理工程は、先の金属表面処理液を上記金属基材に接触させることによって行われる。具体的な方法として、浸漬法、スプレー法、ロールコート法、流しかけ処理法等を挙げることができる。   The surface treatment step is performed by bringing the metal surface treatment liquid into contact with the metal substrate. Specific examples of the method include a dipping method, a spray method, a roll coating method, and a pouring treatment method.

上記表面処理工程における処理温度は、20〜70℃の範囲内であることが好ましい。20℃未満では、十分な皮膜形成が行われない可能性があり、70℃を超えても、それに見合う効果が期待できない。さらに好ましい下限値および上限値は、それぞれ30℃および50℃である。   The treatment temperature in the surface treatment step is preferably in the range of 20 to 70 ° C. If it is less than 20 degreeC, sufficient film formation may not be performed, and even if it exceeds 70 degreeC, the effect corresponding to it cannot be expected. Furthermore, a preferable lower limit and upper limit are 30 degreeC and 50 degreeC, respectively.

上記表面処理工程における処理時間は、2〜1100秒であることが好ましい。2秒未満では、十分な皮膜量が得られないおそれがあり、1100秒を超えても、それに見合う効果が期待できない。さらに好ましい下限値および上限値は、それぞれ30秒および120秒である。このようにして上記金属基材上に皮膜が形成される。   The treatment time in the surface treatment step is preferably 2 to 1100 seconds. If it is less than 2 seconds, there is a possibility that a sufficient amount of film cannot be obtained, and even if it exceeds 1100 seconds, an effect commensurate with it cannot be expected. Further preferred lower and upper limit values are 30 seconds and 120 seconds, respectively. In this way, a film is formed on the metal substrate.

本発明の表面処理された金属基材は先の表面処理方法で得られたものである。上記金属基材の表面には、ジルコニウムおよび銅を含む皮膜が形成されている。上記皮膜におけるジルコニウム/錫の元素比率は質量換算で1/10〜10/1であることが好ましい。この範囲外では、目的とする性能が得られないおそれがある。   The surface-treated metal substrate of the present invention is obtained by the previous surface treatment method. A film containing zirconium and copper is formed on the surface of the metal substrate. The zirconium / tin element ratio in the coating is preferably 1/10 to 10/1 in terms of mass. Outside this range, the target performance may not be obtained.

上記皮膜におけるジルコニウムの含有量は、鉄系金属基材の場合、10mg/m以上であることが好ましい。10mg/m未満だと、十分な防食性が得られない。より好ましくは20mg/m以上、さらに好ましくは30mg/m以上である。上限は特に規定されないが、皮膜量が多すぎると、防錆皮膜にクラックが発生しやすくなり、均一な皮膜を得ることが困難となる。この点で、上記皮膜におけるジルコニウムの含有量は、1g/m以下であることが好ましく、800mg/m以下であることがさらに好ましい。 In the case of an iron-based metal base material, the zirconium content in the coating is preferably 10 mg / m 2 or more. If it is less than 10 mg / m 2 , sufficient anticorrosive properties cannot be obtained. More preferably, it is 20 mg / m 2 or more, and further preferably 30 mg / m 2 or more. The upper limit is not particularly defined, but if the amount of the film is too large, cracks are likely to occur in the rust-proof film, making it difficult to obtain a uniform film. In this respect, the zirconium content in the film is preferably 1 g / m 2 or less, and more preferably 800 mg / m 2 or less.

上記皮膜が、銅イオンを含む金属表面処理液を用いて形成された場合、皮膜中の銅の含有量は、目的とする効果を得るために、0.5mg/m以上であることが好ましい。 When the film is formed using a metal surface treatment liquid containing copper ions, the copper content in the film is preferably 0.5 mg / m 2 or more in order to obtain the intended effect. .

本発明のカチオン電着塗装方法は、先の金属表面処理液を用いて、金属基材に対して表面処理を行う工程と、上記表面処理が行われた金属基材に対してカチオン電着塗装を行う工程とを含んでいる。   The cationic electrodeposition coating method of the present invention includes a step of performing a surface treatment on a metal substrate using the previous metal surface treatment solution, and a cationic electrodeposition coating on the metal substrate subjected to the surface treatment. The process of performing.

上記カチオン電着塗装方法における表面処理工程は、先の表面処理方法における表面処理工程と同じである。上記表面処理工程で得られた表面処理された金属基材は、そのまま、あるいは洗浄して、カチオン電着塗装工程に入る。   The surface treatment step in the cationic electrodeposition coating method is the same as the surface treatment step in the previous surface treatment method. The surface-treated metal substrate obtained in the surface treatment step enters the cationic electrodeposition coating step as it is or after washing.

上記カチオン電着塗装工程では、表面処理が行われた金属基材に対して、カチオン電着塗装が行われる。上記カチオン電着塗装は、カチオン電着塗料に上記表面処理が行われた金属基材を浸漬し、これを陰極として50〜450Vの電圧を所定時間印加する。電圧の印加時間は、電着条件により異なるが、一般には2〜4分である。   In the cationic electrodeposition coating step, cationic electrodeposition coating is performed on the metal base material that has been surface-treated. In the cationic electrodeposition coating, a metal substrate subjected to the above surface treatment is immersed in a cationic electrodeposition coating, and a voltage of 50 to 450 V is applied for a predetermined time using this as a cathode. The voltage application time varies depending on the electrodeposition conditions, but is generally 2 to 4 minutes.

上記カチオン電着塗料としては、一般的によく知られたものが使用できる。具体的には、エポキシ樹脂やアクリル樹脂が有するエポキシ基に、アミンやスルフィドを付加し、酢酸などの中和酸を加えることによってカチオン化したバインダー、硬化剤としてのブロックイソシアネート、および、防錆性を有する顔料を樹脂で分散した顔料分散ペーストを加えて塗料化したものが一般的である。   As the cationic electrodeposition coating, generally well-known ones can be used. Specifically, binders cationized by adding amines or sulfides to epoxy groups of epoxy resins and acrylic resins, and adding neutralizing acids such as acetic acid, blocked isocyanates as curing agents, and rust prevention In general, a pigment dispersion paste obtained by dispersing a pigment having a pigment with a resin is added to form a paint.

カチオン電着塗装工程終了後、そのまま、または水洗した後、所定温度で焼き付けることにより硬化塗膜が得られる。焼き付け条件は、用いたカチオン電着塗料の種類により異なるが、通常120〜260℃であり、140〜220℃であることが好ましい。焼き付け時間は10〜30分とすることができる。
このようにして得られるカチオン電着塗装された金属基材も、本発明の1つである。
After completion of the cationic electrodeposition coating process, a cured coating film is obtained by baking at a predetermined temperature as it is or after washing with water. Although baking conditions change with kinds of used cationic electrodeposition coating material, they are 120-260 degreeC normally, and it is preferable that it is 140-220 degreeC. The baking time can be 10 to 30 minutes.
The metal substrate coated with cationic electrodeposition obtained in this way is also one aspect of the present invention.

製造例1 アミノシランの加水分解縮合体の製造 その1
アミノシランとしてKBE603(3−アミノプロピル−トリエトキシシラン、有効濃度100%、信越化学工業社製)、5質量部を滴下漏斗から、脱イオン水47.5質量部とイソプロピルアルコール47.5質量部の混合溶媒中(溶媒温度:25℃)に60分かけて均一に滴下した後、窒素雰囲気下、25℃で24時間反応を行った。その後、反応溶液を減圧することにより、イソプロピルアルコールを蒸発させ、さらに脱イオン水を加え、有効成分5%のアミノシランの加水分解縮合体を得た。
Production Example 1 Production of Hydrolyzed Condensate of Aminosilane Part 1
As aminosilane, KBE603 (3-aminopropyl-triethoxysilane, effective concentration 100%, manufactured by Shin-Etsu Chemical Co., Ltd.), 5 parts by mass of 47.5 parts by mass of deionized water and 47.5 parts by mass of isopropyl alcohol from the dropping funnel After dropping uniformly into the mixed solvent (solvent temperature: 25 ° C.) over 60 minutes, the reaction was performed at 25 ° C. for 24 hours in a nitrogen atmosphere. Thereafter, the reaction solution was depressurized to evaporate isopropyl alcohol, and deionized water was further added to obtain a hydrolysis-condensation product of aminosilane having an active ingredient of 5%.

製造例2 アミノシランの加水分解縮合体の製造 その2
製造例1において、KBE603の量を20質量部に、脱イオン水の量を40質量部に、イソプロピルアルコールの量を40質量部に変更すること以外は同様にして、有効成分20%のアミノシランの加水分解縮合体を得た。
Production Example 2 Production of Aminosilane Hydrolysis Condensate Part 2
In Production Example 1, except that the amount of KBE603 is changed to 20 parts by mass, the amount of deionized water is changed to 40 parts by mass, and the amount of isopropyl alcohol is changed to 40 parts by mass, A hydrolysis condensate was obtained.

実施例1
ジルコニウムイオン供給源としての40%ジルコン酸水溶液、錫イオン供給源としての硫酸錫、および、フッ化水素酸を混合した後、これを希釈してジルコニウムイオン濃度が500ppm、錫イオン濃度が30ppmとなるようにするとともに、硝酸と水酸化ナトリウムとを用いてpHが3.5となるよう調整を行い、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調製した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 1
After mixing 40% zirconic acid aqueous solution as a zirconium ion supply source, tin sulfate as a tin ion supply source, and hydrofluoric acid, this was diluted to a zirconium ion concentration of 500 ppm and a tin ion concentration of 30 ppm. In addition, the pH was adjusted to 3.5 using nitric acid and sodium hydroxide to obtain a metal surface treatment solution for cationic electrodeposition coating. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例2
実施例1において、さらに製造例1で得られたアミノシランの加水分解縮合体を200ppmとなるよう加え、また、硫酸錫を酢酸錫に変えて錫イオン濃度が10ppmとなるように変更し、さらに、pHを2.75としたこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 2
In Example 1, the aminosilane hydrolysis condensate obtained in Production Example 1 was further added to 200 ppm, and tin sulfate was changed to tin acetate to change the tin ion concentration to 10 ppm. A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that the pH was 2.75. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例3
実施例1において、さらにポリアリルアミン「PAA−H−10C」(商品名、日東紡績社製)を25ppmとなるよう加え、また、ジルコニウムイオン濃度が250ppmとなるように変更し、さらに、pHを3.0としたこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液について、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 3
In Example 1, polyallylamine “PAA-H-10C” (trade name, manufactured by Nitto Boseki Co., Ltd.) was added to 25 ppm, the zirconium ion concentration was changed to 250 ppm, and the pH was further adjusted to 3 A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that it was set to 0.0. In addition, about this process liquid, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例4
実施例1において、さらに硝酸銅を銅イオン濃度が10ppmとなるよう加え、また、錫イオン濃度が10ppmとなるように変更し、さらに、pHを3.0としたこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液について、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 4
In Example 1, copper nitrate was further added so that the copper ion concentration was 10 ppm, and the tin ion concentration was changed to 10 ppm. A metal surface treatment solution for electrodeposition coating was obtained. In addition, about this process liquid, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例5
実施例4において、さらに製造例2で得られたアミノシランの加水分解縮合体を200ppmとなるよう加え、また、錫イオン濃度が30ppmとなるように変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液について、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 5
Cationic electrodeposition coating was performed in the same manner as in Example 4, except that the aminosilane hydrolysis condensate obtained in Production Example 2 was added to 200 ppm, and the tin ion concentration was changed to 30 ppm. A metal surface treatment solution was obtained. In addition, about this process liquid, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例6
実施例2において、さらに硝酸アルミニウムをアルミニウムイオン濃度が200ppmとなるよう加え、また、硫酸錫を酢酸錫に変更して、錫イオン濃度が30ppmとなるように変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 6
In the same manner as in Example 2, except that aluminum nitrate was further added to have an aluminum ion concentration of 200 ppm, and tin sulfate was changed to tin acetate to change the tin ion concentration to 30 ppm. A metal surface treatment solution for electrodeposition coating was obtained. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例7および8
実施例6において、pHを3.5および4.0とした点以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を表1に示した。
Examples 7 and 8
A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 6 except that the pH was 3.5 and 4.0. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was shown in Table 1.

実施例9〜16
実施例7において、ジルコニウムイオン濃度、錫イオン濃度、およびアルミニウムイオン濃度が表1に示した濃度となるよう、40%ジルコン酸水溶液、硫酸錫、硝酸アルミニウムの添加量を変更した点以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を表1に示した。
Examples 9-16
In Example 7, the same procedure was performed except that the addition amounts of 40% aqueous zirconate solution, tin sulfate, and aluminum nitrate were changed so that the zirconium ion concentration, tin ion concentration, and aluminum ion concentration became the concentrations shown in Table 1. Thus, a metal surface treatment solution for cationic electrodeposition coating was obtained. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was shown in Table 1.

実施例17
実施例2において、さらに硝酸インジウムをインジウムイオン濃度が200ppmとなるよう加え、また、硫酸錫をフッ化錫に変えて錫イオン濃度が30ppmとなるように変更し、さらに、pHを3.5としたこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 17
In Example 2, indium nitrate was further added to have an indium ion concentration of 200 ppm, and tin sulfate was changed to tin fluoride so that the tin ion concentration was 30 ppm. Further, the pH was set to 3.5. A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例18
実施例2において、さらにキレート剤としてジエチレントリアミン5酢酸(DTPA)を濃度が100ppmとなるよう加え、また、酢酸錫を硫酸錫に変えて錫イオン濃度が30ppmとなるように変更し、さらに、ジルコニウムイオン濃度を1000ppmに変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は10ppmであった。
Example 18
In Example 2, diethylenetriaminepentaacetic acid (DTPA) was further added as a chelating agent so as to have a concentration of 100 ppm, and tin acetate was changed to tin sulfate so that the tin ion concentration became 30 ppm. A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that the concentration was changed to 1000 ppm. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 10 ppm.

実施例19
実施例2において、さらに硝酸ナトリウムをナトリウムイオン濃度が5000ppmとなるよう加え、また、錫イオン濃度が30ppmとなるように変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 19
In Example 2, sodium nitrate was further added so that the sodium ion concentration became 5000 ppm, and the metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner except that the tin ion concentration was changed to 30 ppm. It was. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例20
実施例5において、さらにキレート剤としてのグリシンおよび硝酸銅を、それぞれ50ppmおよび銅イオン濃度が10ppmとなるよう加え、また、ポリアミンの濃度が100ppmとなるように変更したこと以外は同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液について、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度は5ppmであった。
Example 20
In Example 5, glycine and copper nitrate as chelating agents were further added to a concentration of 50 ppm and a copper ion concentration of 10 ppm, respectively, and the polyamine concentration was changed to 100 ppm. A metal surface treatment solution for electrodeposition coating was obtained. In addition, about this process liquid, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was 5 ppm.

実施例21〜31
実施例1において、表1に記載されたポリアミンを所定量加えるとともに、その他の成分の濃度を表1に記載されたように変更する以外は同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、pH3.0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表1に示した。
Examples 21-31
In Example 1, a metal surface treatment solution for cationic electrodeposition coating was prepared in the same manner except that a predetermined amount of the polyamine described in Table 1 was added and the concentrations of other components were changed as described in Table 1. I got each. In addition, about these process liquids, the free fluorine ion density | concentration at the time of measuring using a fluorine ion meter on the conditions of pH3.0 is collectively shown in Table 1.

実施例32〜50
表2に記載されたスルホン酸を所定量加えるとともに、ポリアミンその他の成分を表2のとおりにしたこと以外は実施例1と同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、pH3.0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表2に示した。
なお、表2中、ナフタレンスルホン酸−ホルムアルデヒド縮合物は、花王製デモールNL、アルキルナフタレンスルホン酸ナトリウムは、花王製ペレックスNBL、ポリスチレンスルホン酸ナトリウムは、東ソー製P−NASS−1を用いた。
Examples 32-50
A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 1 except that a predetermined amount of the sulfonic acid described in Table 2 was added and the polyamine and other components were changed as shown in Table 2. In addition, about these process liquids, the free fluorine ion density | concentration at the time of measuring using a fluorine ion meter on the conditions of pH3.0 is collectively shown in Table 2.
In Table 2, the Naphthalenesulfonic acid-formaldehyde condensate used was Kao-made Demol NL, Sodium Alkylnaphthalenesulfonate was used as Kao-Perex NBL, and Sodium Polystyrenesulfonate was used as Tosoh P-NASS-1.

実施例51
表3に記載されたアスコルビン酸を所定量加えるとともに、ポリアミンその他の成分を表3のとおりにしたこと以外は実施例1と同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、pH3.0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表3に示した。
Example 51
A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 1 except that a predetermined amount of ascorbic acid described in Table 3 was added and polyamine and other components were changed as shown in Table 3. In addition, about these process liquids, the free fluorine ion density | concentration at the time of measuring using a fluorine ion meter on the conditions of pH3.0 is collectively shown in Table 3.

実施例52〜59
表3に記載された酸化剤を所定量加えるとともに、ポリアミンその他の成分を表3のとおりにしたこと以外は実施例1と同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、pH3.0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表3に示した。
Examples 52-59
A metal surface treatment solution for cationic electrodeposition coating was obtained in the same manner as in Example 1 except that a predetermined amount of the oxidizing agent described in Table 3 was added and that the polyamine and other components were as shown in Table 3. In addition, about these process liquids, the free fluorine ion density | concentration at the time of measuring using a fluorine ion meter on the conditions of pH3.0 is collectively shown in Table 3.

実施例60〜74
実施例1において、表3に記載された窒素系防錆剤、硫黄系防錆剤、フェノール系防錆剤を所定量加えるとともに、ポリアミンその他の成分を表3のとおりにしたこと以外は実施例1と同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、pH3.0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表3に示した。
Examples 60-74
In Example 1, the nitrogen-based rust inhibitor, sulfur-based rust preventive agent, and phenol-based rust preventive agent described in Table 3 were added in predetermined amounts, and the polyamine and other components were as shown in Table 3 except that they were as shown in Table 3. In the same manner as in No. 1, metal surface treatment solutions for cationic electrodeposition coating were obtained. In addition, about these process liquids, the free fluorine ion density | concentration at the time of measuring using a fluorine ion meter on the conditions of pH3.0 is collectively shown in Table 3.

実施例75〜77
被処理物である基板を冷延鋼板(SPC)ではなく高張力鋼板を用い、表3に記載されたポリアミンその他の成分を表2のとおりにしたこと以外は実施例1と同様にして、カチオン電着塗装用金属表面処理液をそれぞれ得た。なお、これらの処理液について、pH3.0の条件下でフッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を併せて表3に示した。
Examples 75-77
The substrate to be treated was a high-tensile steel plate instead of a cold-rolled steel plate (SPC), and the same procedure as in Example 1 was repeated except that the polyamine and other components listed in Table 3 were as shown in Table 2. Each metal surface treatment solution for electrodeposition coating was obtained. In addition, about these process liquids, the free fluorine ion density | concentration at the time of measuring using a fluorine ion meter on the conditions of pH3.0 is collectively shown in Table 3.

実施例78〜106
実施例2、3、及び5〜31について、ポリアミンを添加しなかった点以外は、各実施例と同様にして、カチオン電着塗装用金属表面処理液を得た。なお、この処理液をpH3.0に調整した後、フッ素イオンメーターを用いて測定した際のフリーフッ素イオン濃度を表4に示した。
Examples 78-106
About Example 2, 3, and 5-31, except having added no polyamine, it carried out similarly to each Example, and obtained the metal surface treatment liquid for cationic electrodeposition coating. In addition, after adjusting this process liquid to pH3.0, the free fluorine ion concentration at the time of measuring using a fluorine ion meter was shown in Table 4.

比較例1〜6 比較用金属表面処理液の調製
表1、表3の記載に基づき、上記実施例に基づいて、比較用金属表面処理液をそれぞれ得た。得られた金属表面処理液について表1、表3にまとめた。
Comparative Examples 1-6 Preparation of Comparative Metal Surface Treatment Liquid Based on the descriptions in Tables 1 and 3, comparative metal surface treatment liquids were obtained based on the above examples. The obtained metal surface treatment liquids are summarized in Tables 1 and 3.

Figure 0004276689
Figure 0004276689

Figure 0004276689
Figure 0004276689

Figure 0004276689
Figure 0004276689

Figure 0004276689
Figure 0004276689

<表面処理>
金属基材として、実施例1〜74、実施例78〜106、比較例1〜5では市販の冷延鋼板(SPC、日本テストパネル社製、70mm×150mm×0.8mm)を用意し、実施例75〜77、比較例6では高張力鋼板(70mm×150mm×1.0mm)を用意し、これに対し、アルカリ脱脂処理剤として「サーフクリーナーEC92」(商品名、日本ペイント社製)を使用して、40℃で2分間、脱脂処理を行った。これを水洗槽で浸漬洗浄した後、水道水で約30秒間スプレー洗浄を行った。
<Surface treatment>
In Examples 1 to 74, Examples 78 to 106, and Comparative Examples 1 to 5, a commercially available cold-rolled steel sheet (SPC, 70 mm × 150 mm × 0.8 mm, manufactured by Nippon Test Panel Co., Ltd.) was prepared and implemented as a metal substrate. In Examples 75 to 77 and Comparative Example 6, a high-tensile steel plate (70 mm × 150 mm × 1.0 mm) is prepared, and “Surf Cleaner EC92” (trade name, manufactured by Nippon Paint Co., Ltd.) is used as an alkaline degreasing agent. The degreasing treatment was performed at 40 ° C. for 2 minutes. This was immersed and washed in a water washing tank, and then spray washed with tap water for about 30 seconds.

脱脂処理後の金属基材に、実施例および比較例で調製した金属表面処理液に、40℃で90秒間浸漬することにより表面処理を行った。ただし、実施例21および22については、それぞれ240秒間および15秒間の処理時間とした。表面処理終了後、40℃で5分以上乾燥を行い、表面処理された金属基材を得た。特に断らない限り、以下の評価では、この表面処理された金属基材を試験板として用いた。   The surface treatment was performed by immersing the metal substrate after degreasing treatment in the metal surface treatment solution prepared in Examples and Comparative Examples at 40 ° C. for 90 seconds. However, for Examples 21 and 22, the processing time was 240 seconds and 15 seconds, respectively. After completion of the surface treatment, drying was performed at 40 ° C. for 5 minutes or more to obtain a surface-treated metal substrate. Unless otherwise specified, in the following evaluation, this surface-treated metal substrate was used as a test plate.

<皮膜中の元素含有量の測定>
皮膜中に含まれる各元素の含有量は、島津製作所製蛍光X線分析装置「XRF1700」を用いて測定した。
<Measurement of element content in film>
The content of each element contained in the film was measured using a fluorescent X-ray analyzer “XRF1700” manufactured by Shimadzu Corporation.

<一次防錆>   <Primary rust prevention>

試験板を25℃の純水に5時間浸漬した後の錆の発生状態を目視観察で観察した。
○:錆の発生全く認められず
△:ごくわずかに錆発生
×:錆の発生がはっきりと確認できる
The state of rust generation after immersing the test plate in pure water at 25 ° C. for 5 hours was observed by visual observation.
○: Rust is not observed at all △: Slight rust is generated ×: Rust is clearly confirmed

<スラッジの観察>
実施例および比較例の表面処理液10Lについて、200枚のテストパネルを表面処理し、室温で30日経過した際に、スラッジの発生による濁りが表面処理液中に生じたかどうかを目視により、下記の基準で評価した。
◎:透明液体
○:わずかにうすく濁る
△:濁る
×:沈殿物(スラッジ)発生
<Observation of sludge>
With respect to the surface treatment liquid 10L of the examples and comparative examples, 200 test panels were surface-treated, and when 30 days passed at room temperature, whether or not turbidity due to the generation of sludge occurred in the surface treatment liquid was visually determined as follows. Evaluation based on the criteria.
◎: Transparent liquid ○: Slightly turbid △: Turbid ×: Precipitate (sludge) generated

<つきまわり性の評価>
つきまわり性は、特開2000−038525号公報に記載された「4枚ボックス法」により評価した。すなわち、図1に示すように、試験板1〜4を立てた状態で、間隔20mmで平行に配置し、両側面下部および底面を布粘着テープ等の絶縁体で密閉したボックス10を調整した。なお、金属材料4を除く金属材料1、2、3には下部に直径8mmの貫通穴5を設けた。
<Evaluation of throwing power>
The throwing power was evaluated by the “four-sheet box method” described in Japanese Patent Application Laid-Open No. 2000-038525. That is, as shown in FIG. 1, a box 10 was prepared in which test plates 1 to 4 were erected and arranged in parallel at an interval of 20 mm, and the lower and bottom surfaces of both sides were sealed with an insulator such as cloth adhesive tape. The metal materials 1, 2, and 3 excluding the metal material 4 were provided with through holes 5 having a diameter of 8 mm in the lower part.

このボックス10を、カチオン電着塗料「パワーニクス110」(商品名、日本ペイント社製)で満たした電着塗装容器20内に浸漬した。この場合、各貫通穴5のみからカチオン電着塗料がボックス10の内部に浸入する。   This box 10 was immersed in an electrodeposition coating container 20 filled with a cationic electrodeposition paint “Powernics 110” (trade name, manufactured by Nippon Paint Co., Ltd.). In this case, the cationic electrodeposition paint penetrates into the inside of the box 10 only from each through hole 5.

マグネチックスターラーでカチオン電着塗料を攪拌しながら、各試験板1〜4を電気的に接続し、試験板1との距離が150mmとなるように対極21を配置した。各試験板1〜4を陰極、対極21を陽極として電圧を印加し、カチオン電着塗装を行った。塗装は、印加開始から30秒かけて目的とする電圧(210Vおよび160V)まで昇圧し、その後150秒間、その電圧を維持することにより行った。このときの浴温は30℃に調製した。   While stirring the cationic electrodeposition paint with a magnetic stirrer, the test plates 1 to 4 were electrically connected, and the counter electrode 21 was arranged so that the distance from the test plate 1 was 150 mm. A voltage was applied using each test plate 1 to 4 as a cathode and the counter electrode 21 as an anode, and cation electrodeposition coating was performed. The coating was performed by increasing the voltage to the target voltage (210 V and 160 V) over 30 seconds from the start of application, and then maintaining that voltage for 150 seconds. The bath temperature at this time was adjusted to 30 ° C.

塗装後の各試験板1〜4は水洗した後、170℃で25分間焼き付けを行った後、空冷し、対極21に最も近い試験板1のA面に形成された塗膜の膜厚と、対極21からもっとも遠い試験板4のG面に形成された塗膜の膜厚とを測定し、膜厚(G面)/膜厚(A面)の比を求めることにより、つきまわり性を評価した。この値が大きいほど、つきまわり性がよいと評価できる。合格レベルは40%以上である。   Each of the test plates 1 to 4 after painting was washed with water, baked at 170 ° C. for 25 minutes, then air-cooled, and the film thickness of the coating film formed on the A surface of the test plate 1 closest to the counter electrode 21; The film thickness of the coating film formed on the G surface of the test plate 4 farthest from the counter electrode 21 is measured, and the throwing power is evaluated by determining the ratio of film thickness (G surface) / film thickness (A surface). did. It can be evaluated that the larger the value, the better the throwing power. The passing level is 40% or more.

<塗装電圧>
実施例および比較例の表面処理液を用いて、冷延鋼板および亜鉛メッキ鋼板に対し、表面処理を行い、試験板を得た。これらの試験板に対して、先のカチオン電着塗料「パワーニクス110」を用いて、20μmの電着塗膜を得るために必要な電圧を求めた。金属基材が亜鉛メッキ鋼板の場合と冷延鋼板の場合とにおける、上記20μmの電着塗膜を得るために必要な塗装電圧の差を求めた。その差が小さいほど、表面処理皮膜として優れていることを示している。40V以下が合格である。
<Paint voltage>
Using the surface treatment liquids of Examples and Comparative Examples, surface treatment was performed on cold-rolled steel sheets and galvanized steel sheets to obtain test plates. With respect to these test plates, using the cationic electrodeposition paint “Powernics 110”, a voltage necessary for obtaining a 20 μm electrodeposition coating film was obtained. The difference of the coating voltage required in order to obtain the said electrodeposition coating film of 20 micrometers in the case where a metal base material is a galvanized steel plate and the case of a cold-rolled steel plate was calculated | required. The smaller the difference, the better the surface treatment film. 40V or less is acceptable.

なお、20μmの電着塗膜を得るために必要な電圧は以下のようにして求めた。すなわち、電着条件として、30秒で所定電圧に昇圧し、その後、150秒保持し、得られた膜厚を測定する。これを150V、200V、250Vについて行い、得られた電圧と膜厚との関係式から、20μmの膜厚が得られる電圧を求める。   In addition, the voltage required in order to obtain a 20 micrometer electrodeposition coating film was calculated | required as follows. That is, as the electrodeposition conditions, the voltage is increased to a predetermined voltage in 30 seconds, and then held for 150 seconds, and the obtained film thickness is measured. This is performed for 150V, 200V, and 250V, and a voltage at which a film thickness of 20 μm is obtained is obtained from the relational expression between the obtained voltage and the film thickness.

<塗装外観>
試験板にカチオン電着塗装を行い、得られた電着塗膜の外観を下記基準により評価した。結果を表5〜8に示す。
◎:均一な塗膜が得られている
○:ほぼ均一な塗膜が得られている
△:塗膜にややムラがある
×:塗膜にムラが認められる
<Paint appearance>
Cationic electrodeposition coating was performed on the test plate, and the appearance of the obtained electrodeposition coating film was evaluated according to the following criteria. The results are shown in Tables 5-8.
◎: Uniform coating film is obtained ○: Almost uniform coating film is obtained △: The coating film is slightly uneven ×: Unevenness is observed in the coating film

<二次密着試験(SDT)>
試験板に対して20μmの電着塗膜を形成した後に、金属素地まで達する縦平行のカットを2本入れ、55℃で240時間、5%塩化ナトリウム水溶液に浸漬した。次いで、水洗および風乾を行った後、カット部に密着テープ「エルパックLP−24」(商品名、ニチバン社製)を密着させてから、密着テープを急激に剥離した。剥離した密着テープに付着した塗料の最大幅(片側)の大きさを測定した。
◎:0mm
○:2mm未満
△:2mm以上5mm未満
×:5mm以上
<Secondary adhesion test (SDT)>
After forming a 20 μm electrodeposition coating film on the test plate, two longitudinally parallel cuts reaching the metal substrate were put and immersed in a 5% aqueous sodium chloride solution at 55 ° C. for 240 hours. Next, after washing with water and air drying, the adhesive tape “ELPACK LP-24” (trade name, manufactured by Nichiban Co., Ltd.) was adhered to the cut part, and then the adhesive tape was peeled off rapidly. The size of the maximum width (one side) of the paint adhering to the peeled adhesive tape was measured.
A: 0 mm
○: Less than 2 mm Δ: 2 mm or more and less than 5 mm ×: 5 mm or more

<サイクル腐食試験(CCT)>
試験板に対して20μmの電着塗膜を形成した後に、エッジおよび裏面をテープシールし、金属素地まで達するクロスカット疵を入れた。これを、35℃、湿度95%に保たれた塩水噴霧試験器中で、35℃に保温した5%塩化ナトリウム水溶液を2時間連続噴霧した。次いで60℃、湿度20〜30%の条件下で4時間乾燥した。これを24時間の間に3回繰り返したものを1サイクルとし、200サイクルの後に塗膜の膨れ幅(両側)を測定した。
◎:6mm未満
○:6mm以上8mm未満
△:8mm以上10mm未満
×:10mm以上
<Cycle corrosion test (CCT)>
After forming an electrodeposition coating film having a thickness of 20 μm on the test plate, the edges and the back surface were tape-sealed, and a cross-cut flaw reaching the metal substrate was put. This was continuously sprayed for 2 hours with a 5% sodium chloride aqueous solution kept at 35 ° C. in a salt spray tester maintained at 35 ° C. and humidity 95%. Subsequently, it dried for 4 hours on the conditions of 60 degreeC and humidity 20-30%. This was repeated three times over 24 hours to make one cycle, and the swelling width (both sides) of the coating film was measured after 200 cycles.
◎: Less than 6 mm ○: 6 mm or more and less than 8 mm △: 8 mm or more and less than 10 mm ×: 10 mm or more

<塩水噴霧試験(SST)>
試験板に対して20μmの電着塗膜を形成した後に、エッジおよび裏面をテープシールし、金属素地まで達するクロスカット疵を入れた。これを、35℃、湿度95%に保たれた塩水噴霧試験器中で、35℃に保温した5%塩化ナトリウム水溶液を840時間連続噴霧した。次いで、水洗および風乾を行った後、カット部に密着テープ「エルパックLP−24」(商品名、ニチバン社製)を密着させてから、密着テープを急激に剥離した。剥離した密着テープに付着した塗料の最大幅(片側)の大きさを測定した。
○:2mm未満
△:2mm以上5mm未満
×:5mm以上
<Salt spray test (SST)>
After forming an electrodeposition coating film having a thickness of 20 μm on the test plate, the edges and the back surface were tape-sealed, and a cross-cut flaw reaching the metal substrate was put. This was continuously sprayed with a 5% sodium chloride aqueous solution kept at 35 ° C. for 840 hours in a salt spray tester kept at 35 ° C. and 95% humidity. Next, after washing with water and air drying, the adhesive tape “ELPACK LP-24” (trade name, manufactured by Nichiban Co., Ltd.) was adhered to the cut part, and then the adhesive tape was peeled off rapidly. The size of the maximum width (one side) of the paint adhering to the peeled adhesive tape was measured.
○: Less than 2 mm Δ: 2 mm or more and less than 5 mm ×: 5 mm or more

評価結果を表5〜8にまとめた。   The evaluation results are summarized in Tables 5-8.

Figure 0004276689
Figure 0004276689

Figure 0004276689
Figure 0004276689

Figure 0004276689
Figure 0004276689

Figure 0004276689
Figure 0004276689

本発明のカチオン電着塗装用金属表面処理液は、カチオン電着が施される金属基材、例えば、自動車ボディや部品等に対して適用可能である。   The metal surface treatment liquid for cationic electrodeposition coating of the present invention can be applied to a metal substrate to which cationic electrodeposition is applied, for example, an automobile body or a part.

つきまわり性を評価する際に用いるボックスの一例を示す斜視図である。It is a perspective view which shows an example of the box used when evaluating throwing power. つきまわり性の評価を模式的に示す図面である。It is drawing which shows typically evaluation of throwing power.

符号の説明Explanation of symbols

1、2、3、4…試験板、5…貫通穴、10…ボックス、20…電着塗装容器、21…対極   1, 2, 3, 4 ... test plate, 5 ... through hole, 10 ... box, 20 ... electrodeposition coating container, 21 ... counter electrode

Claims (10)

金属表面処理液を用いて、鉄系金属基材に対して表面処理を行う工程と、前記表面処理が行われた金属基材を洗浄する工程と、洗浄された金属基材に対してカチオン電着塗装を行う工程とを含む、カチオン電着塗装方法であって、
前記金属表面処理液が、
ジルコニウムイオン、および、錫イオンを含む、pHが1.5〜6.5の金属表面処理液であ
前記ジルコニウムイオンの濃度が10〜10000ppm、かつ、
前記ジルコニウムイオンに対する錫イオンの濃度比が質量換算で0.005〜1である、
カチオン電着塗装方法
A step of performing a surface treatment on the iron-based metal substrate using a metal surface treatment liquid, a step of washing the metal substrate on which the surface treatment has been performed, and a cationic electrode on the washed metal substrate. A method of cationic electrodeposition coating, including a step of performing coating.
The metal surface treatment liquid is
Zirconium ions, and a tin ion, Ri metal surface treatment liquid der the pH is 1.5 to 6.5,
The concentration of the zirconium ions is 10 to 10000 ppm, and
The concentration ratio of tin ions to zirconium ions is 0.005 to 1 in terms of mass.
Cationic electrodeposition coating method .
前記金属表面処理液が、さらにポリアミン化合物を含む、請求項1記載のカチオン電着塗装方法The cationic electrodeposition coating method according to claim 1, wherein the metal surface treatment liquid further contains a polyamine compound. 前記金属表面処理液が、さらに銅イオンを含む、請求項1または2いずれかに記載のカチオン電着塗装方法The cationic electrodeposition coating method according to claim 1, wherein the metal surface treatment liquid further contains copper ions. 前記金属表面処理液が、さらにフッ素イオンを含み、pHが3.0である場合のフリーなフッ素イオン量が0.1〜50ppmである、請求項1〜3いずれかに記載のカチオン電着塗装方法The cationic electrodeposition coating according to any one of claims 1 to 3, wherein the metal surface treatment liquid further contains fluorine ions and has a free fluorine ion amount of 0.1 to 50 ppm when the pH is 3.0. Way . 前記金属表面処理液が、さらにキレート化合物を含む、請求項1〜4いずれかに記載のカチオン電着塗装方法The cationic electrodeposition coating method according to claim 1, wherein the metal surface treatment liquid further contains a chelate compound. キレート化合物が、スルホン酸である請求項5記載のカチオン電着塗装方法6. The cationic electrodeposition coating method according to claim 5, wherein the chelate compound is sulfonic acid. 前記金属表面処理液が、さらに酸化剤を含む、請求項1〜6いずれかに記載のカチオン電着塗装方法The cationic electrodeposition coating method according to claim 1, wherein the metal surface treatment liquid further contains an oxidizing agent. 前記金属表面処理液が、さらにアルミニウムイオンおよび/またはインジウムイオンを含む、請求項1〜7のいずれかに記載のカチオン電着塗装方法 The metal surface treatment solution, further to containing aluminum ions and / or indium ions, cationic electrodeposition coating process according to any one of claims 1 to 7. 請求項1〜8のいずれかに記載の方法で得られる、カチオン電着塗装された金属基材。 A metal substrate coated with cationic electrodeposition, obtained by the method according to claim 1. 表面処理により形成される皮膜におけるジルコニウム/錫の元素比率が質量換算で1/10〜10/1である請求項9記載のカチオン電着塗装された金属基材。The metal substrate coated with cationic electrodeposition according to claim 9, wherein the element ratio of zirconium / tin in the film formed by the surface treatment is 1/10 to 10/1 in terms of mass.
JP2007303746A 2006-12-20 2007-11-22 Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition Expired - Fee Related JP4276689B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2007303746A JP4276689B2 (en) 2006-12-20 2007-11-22 Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition
BRPI0721139-2A BRPI0721139B1 (en) 2006-12-20 2007-12-20 Metal surface treatment liquid for cationic electrodeposition coating, metal surface treatment method and, metal base material
PL07850971.8T PL2112251T3 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
ES07850971.8T ES2581988T3 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for metals to be coated by cationic electrodeposition
PCT/JP2007/074536 WO2008075738A1 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
MX2009006618A MX2009006618A (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition.
EP07850971.8A EP2112251B1 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
AU2007335382A AU2007335382B2 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
CA2672854A CA2672854C (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
KR1020097015212A KR101539708B1 (en) 2006-12-20 2007-12-20 Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
US12/077,429 US20080230394A1 (en) 2006-12-20 2008-03-19 Metal surface treatment liquid for cation electrodeposition coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006343621 2006-12-20
JP2007119665 2007-04-27
JP2007303746A JP4276689B2 (en) 2006-12-20 2007-11-22 Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008325630A Division JP2009084702A (en) 2006-12-20 2008-12-22 Metal surface treatment liquid for cationic electrodeposition coating

Publications (2)

Publication Number Publication Date
JP2008291345A JP2008291345A (en) 2008-12-04
JP4276689B2 true JP4276689B2 (en) 2009-06-10

Family

ID=39536365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007303746A Expired - Fee Related JP4276689B2 (en) 2006-12-20 2007-11-22 Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition

Country Status (10)

Country Link
US (1) US20080230394A1 (en)
EP (1) EP2112251B1 (en)
JP (1) JP4276689B2 (en)
AU (1) AU2007335382B2 (en)
BR (1) BRPI0721139B1 (en)
CA (1) CA2672854C (en)
ES (1) ES2581988T3 (en)
MX (1) MX2009006618A (en)
PL (1) PL2112251T3 (en)
WO (1) WO2008075738A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975378B2 (en) * 2006-06-07 2012-07-11 日本パーカライジング株式会社 Metal surface treatment liquid, surface treatment method, surface treatment material
JP2008174832A (en) * 2006-12-20 2008-07-31 Nippon Paint Co Ltd Surface treatment liquid for metal to be coated by cationic electrodeposition
CN101809200A (en) * 2007-09-27 2010-08-18 日本油漆株式会社 Method for producing surface-treated metal material and method for producing metal coated article
US7833332B2 (en) * 2007-11-02 2010-11-16 Dubois Chemicals, Inc. Coating solution for metal surfaces
JP5671210B2 (en) * 2009-01-13 2015-02-18 日本パーカライジング株式会社 Metal surface treatment method
JP5643484B2 (en) * 2009-01-13 2014-12-17 日本パーカライジング株式会社 Metal surface treatment liquid, metal surface treatment method and metal material
JP5775453B2 (en) 2009-07-02 2015-09-09 日本パーカライジング株式会社 Chemical treatment solution for chromium and fluorine-free metal surface, metal surface treatment method and metal surface coating method
DE102009028025A1 (en) 2009-07-27 2011-02-03 Henkel Ag & Co. Kgaa Multi-stage process for the treatment of metal surfaces prior to dip coating
DE102011002837A1 (en) * 2011-01-18 2012-07-19 Henkel Ag & Co. Kgaa Multi-stage pre-treatment of tinplate before painting
US9127341B2 (en) 2011-01-18 2015-09-08 Nippon Steel & Sumitomo Metal Corporation Steel sheet for container having excellent organic film performance and process for producing the same
DE102011002836A1 (en) 2011-01-18 2012-07-19 Henkel Ag & Co. Kgaa Pretreatment of tinplate before painting
JP6055263B2 (en) * 2011-10-14 2016-12-27 日本ペイント・サーフケミカルズ株式会社 Manufacturing method of automobile parts
CN103958737A (en) * 2011-10-14 2014-07-30 日本油漆株式会社 Chemical conversion coating agent
JP6146954B2 (en) 2012-03-09 2017-06-14 日本ペイント・サーフケミカルズ株式会社 Chemical conversion treatment agent and chemical conversion treatment film
DE102012220126A1 (en) * 2012-11-05 2014-05-08 Bruker Biospin Ag A magnet assembly comprising a superconducting magnet coil system and a magnetic field shaping apparatus for magnetic resonance spectroscopy
JP2014194045A (en) * 2013-03-28 2014-10-09 Nippon Paint Co Ltd Metal surface treatment agent and metal surface treatment method
WO2014163165A1 (en) 2013-04-03 2014-10-09 日本ペイント株式会社 Chemical conversion treatment agent and metal surface processing method
JP2015052168A (en) * 2014-10-20 2015-03-19 日本パーカライジング株式会社 Surface-treated metal material
JP2016125130A (en) * 2015-01-08 2016-07-11 株式会社デンソー Composite material, method for forming composite material, electrode plated by composite material, and connection structure
JP6837332B2 (en) 2016-12-28 2021-03-03 日本パーカライジング株式会社 Chemical conversion agent, manufacturing method of chemical conversion film, metal material with chemical conversion film, and coated metal material
MX2019014278A (en) * 2017-06-01 2021-02-09 Lumishield Tech Incorporated Methods and compositions for electrochemical deposition of metal rich layers in aqueous solutions.

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601560A1 (en) * 1986-01-21 1987-07-23 Herberts Gmbh AQUEOUS, HEAT-CURABLE COATING AGENT, THE USE THEREOF AND ITEMS COATED ITEMS
US5143562A (en) * 1991-11-01 1992-09-01 Henkel Corporation Broadly applicable phosphate conversion coating composition and process
JPH05163584A (en) * 1991-12-12 1993-06-29 Nippon Parkerizing Co Ltd Surface treating liquid for di can of tin plate
JPH0748677A (en) * 1993-07-05 1995-02-21 Nippon Parkerizing Co Ltd Aluminum di can and common surface treatment solution and process for tin di can
US5449415A (en) * 1993-07-30 1995-09-12 Henkel Corporation Composition and process for treating metals
US5427632A (en) * 1993-07-30 1995-06-27 Henkel Corporation Composition and process for treating metals
AU4690499A (en) * 1998-06-18 2000-01-05 Curagen Corporation Interaction of p27(kip1) with fkbp-12
JP3213586B2 (en) * 1998-07-22 2001-10-02 日本ペイント株式会社 Resin composition for cationic electrodeposition coating composition, method for producing the same, and cationic electrodeposition coating composition
US6758916B1 (en) * 1999-10-29 2004-07-06 Henkel Corporation Composition and process for treating metals
US7402214B2 (en) * 2002-04-29 2008-07-22 Ppg Industries Ohio, Inc. Conversion coatings including alkaline earth metal fluoride complexes
JP4989842B2 (en) * 2002-12-24 2012-08-01 日本ペイント株式会社 Pre-painting method
JP4276530B2 (en) * 2002-12-24 2009-06-10 日本ペイント株式会社 Chemical conversion treatment agent and surface treatment metal
BRPI0517706B1 (en) * 2004-11-10 2017-12-26 Chemetall Gmbh METHOD AND METAL SURFACE REPAIR COATING PRODUCTION PROCESS AND ADEQUATE TOOL FOR APPLICATION IN SUCH PROCESS
JP4242827B2 (en) * 2004-12-08 2009-03-25 日本パーカライジング株式会社 Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
PL1997936T3 (en) * 2006-03-01 2015-01-30 Chemetall Gmbh Composition for metal surface treatment and metal surface treatment method, and metal material
JP5213308B2 (en) * 2006-03-08 2013-06-19 日本ペイント株式会社 Metal surface treatment agent

Also Published As

Publication number Publication date
EP2112251A4 (en) 2010-04-28
CA2672854A1 (en) 2008-06-26
PL2112251T3 (en) 2016-10-31
EP2112251A1 (en) 2009-10-28
MX2009006618A (en) 2009-08-13
ES2581988T3 (en) 2016-09-08
WO2008075738A1 (en) 2008-06-26
EP2112251B1 (en) 2016-04-20
CA2672854C (en) 2016-07-12
AU2007335382B2 (en) 2012-01-19
US20080230394A1 (en) 2008-09-25
BRPI0721139A2 (en) 2014-04-01
BRPI0721139B1 (en) 2018-06-19
JP2008291345A (en) 2008-12-04
AU2007335382A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4276689B2 (en) Cationic electrodeposition coating method and metal substrate coated with cationic electrodeposition
KR101539042B1 (en) Surface pretreatment fluid for the metal to be coated by cationic electrodeposition
US8784629B2 (en) Method of producing surface-treated metal material and method of producing coated metal item
JP5201916B2 (en) Metal surface treatment method carried out as pretreatment for cationic electrodeposition coating, metal surface treatment composition used therefor, metal material excellent in throwing power of electrodeposition coating, and method for coating metal substrate
US9394621B2 (en) Method of treating surface of metal base metallic material treated by the surface treatment method and method of coating the metallic material
JP2008088552A (en) Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
WO2008029926A1 (en) Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP2008088553A (en) Method of treating surface of metal base, metallic material treated by the surface treatment method, and method of coating the metallic material
JP2009179859A (en) Method for forming multilayer coating film
JP2009084702A (en) Metal surface treatment liquid for cationic electrodeposition coating
EP2980272B1 (en) Agent for treating metal surface, and method for treating metal surface
KR101539708B1 (en) Surface pretreatment fluid for the metal to be coated by cationic electrodeposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Ref document number: 4276689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees