JP4276419B2 - Powder for continuous casting of steel - Google Patents

Powder for continuous casting of steel Download PDF

Info

Publication number
JP4276419B2
JP4276419B2 JP2002317324A JP2002317324A JP4276419B2 JP 4276419 B2 JP4276419 B2 JP 4276419B2 JP 2002317324 A JP2002317324 A JP 2002317324A JP 2002317324 A JP2002317324 A JP 2002317324A JP 4276419 B2 JP4276419 B2 JP 4276419B2
Authority
JP
Japan
Prior art keywords
powder
steel
viscosity
continuous casting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002317324A
Other languages
Japanese (ja)
Other versions
JP2004148376A (en
Inventor
敏之 梶谷
重典 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002317324A priority Critical patent/JP4276419B2/en
Publication of JP2004148376A publication Critical patent/JP2004148376A/en
Application granted granted Critical
Publication of JP4276419B2 publication Critical patent/JP4276419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造において鋳型内に添加する鋼の連続鋳造用パウダーに関するものである。
【0002】
【従来の技術】
鋼の連続鋳造においては、鋳型内に注入された溶鋼表面上に連続鋳造用パウダーを添加する。連続鋳造用パウダーはモールドパウダー、あるいは単にパウダーとも呼ばれ、高温の溶鋼に加熱されて溶融し、鋳型と凝固シェルの間に流入する。パウダーは主として、鋳型内溶鋼表面の保温および酸化防止、溶鋼中から浮上した非金属介在物の吸収、鋳型と凝固シェル間に流入するスラグフィルムによる潤滑作用、このフィルムによる鋳片よりの抜熱の制御を行うことを目的とする。これによって、優れた表面性状の鋳片を得るとともに、溶融したパウダーが溶鋼中に巻き込まれにくく、正常で良好な鋳片を製造する。
【0003】
ところで、連続鋳造操業時には、操業条件の如何又はその変化による局所的な湯面変動に起因し、あるいは鋳型内に注入された溶鋼の注入流がメニスカス近傍で溶融したパウダーと溶鋼との界面を乱し、パウダーを溶鋼中に巻き込み、凝固シェルヘ付着したりする場合がある。特に高速連続鋳造においては注入流の流速が大きくなるので、パウダーを巻き込みやすくなる。巻き込まれたパウダーが鋳片に付着したままの状態で圧延を行うと、伸展されて冷延鋼板の表面欠陥の原因となるため、連続鋳造用パウダーには、鋳造中にパウダー巻き込みを起こさない性質を有することが要請される。
【0004】
高粘性のパウダーを用いることにより、鋳型内溶鋼流動によるパウダーの巻き込みを防止することができ、パウダー巻き込みに起因する欠陥発生が低減されることが知られている。特に炭素濃度が0.01質量%以下であるIF鋼(Interstitial Free鋼)は、パウダー巻き込みに起因する鋳片及び冷延鋼板の表面欠陥が発生しやすい。極低炭素鋼は鋳造時の溶鋼表面付近に生成する凝固シェル先端の爪が長くなりやすく、この爪が原因でパウダー巻き込みが発生しやすいと考えられる。
【0005】
特許文献1においては、極低炭素鋼用のモールドパウダーとして、1300℃におけるパウダーの粘度を3poise以上とすることで、高速鋳造においてもモールドパウダーの巻き込みを低減できる点が記載されている。
【0006】
【特許文献1】
特開平10−263767号公報
【0007】
【発明が解決しようとする課題】
極低炭素鋼用のモールドパウダーに粘度3poise以上の高粘性パウダーを使用することにより、溶鋼中へのモールドパウダーの巻き込みの頻度を減らすことは可能になった。ただし、鋳片へのパウダー巻き込みが皆無になるわけではない。モールドパウダーの粘度を上げた結果として、一部残存する巻き込みパウダーが、この鋳片を用いて製造した鋼板をプレス成形するに際し、プレス割れの原因となり易くなるという現象が発生することとなった。
【0008】
本発明は、極低炭素鋼の連続鋳造において、パウダー巻き込みを防止しつつ、一部巻き込まれたパウダーがプレス割れの原因とならないような鋼の連続鋳造用パウダーを提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明の要旨とするところは以下の通りである。
(1)CaO/SiO21.11〜1.2の範囲であり、ZrO2:1〜7質量%、Al 2 3 :2〜10質量%を含有し、1300℃における粘度が3.5〜10poiseであり、Al含有量0.01〜0.06質量%の極低炭Alキルド鋼の連続鋳造に用いることを特徴とする鋼の連続鋳造用パウダー。
(2)さらにB23:1〜7質量%を含有することを特徴とする上記(1)に記載の鋼の連続鋳造用パウダー
【0010】
【発明の実施の形態】
極低炭Alキルド鋼の連続鋳造において、溶融金属中に巻き込まれたパウダーは、その成分中のSiO2が溶鋼中のAlによって還元され、かわりにAl23が生成し、パウダーはCaO−Al23の2元系介在物となる。CaO−Al232元系介在物中のCaO:Al23比と介在物の融点との関係についてみると、CaO:Al23比が1.1近傍で介在物の融点が最も低くなる。
【0011】
従来、モールドパウダーの粘度を上げ、1300℃における粘度を3poise以上にするためには、パウダー成分における塩基度(CaO/SiO2)を0.8程度の低塩基度とすることによって実現していた。低塩基度でSiO2含有量が多いパウダーが溶鋼中に巻き込まれると、Alによって還元されAl23となるべきSiO2が多いので、Al23含有量が多く、CaO:Al23比が1.1よりも低いCaO−Al23系介在物となる。このような組成の介在物は融点が高く、その後の圧延段階において介在物が破砕されにくい性質を有する。従来、高粘性パウダーを用いることによってパウダー巻き込みが減少するものの皆無とはならず、パウダー巻き込み起因介在物がプレス割れの原因となっていたのは、以上のように残存したパウダーの融点が高いのが原因であった。
【0012】
一方、パウダーの1300℃粘度を3poise以上に確保しつつパウダーの塩基度を上げることができれば、パウダー中のSiO2含有量が減少し、Alで還元された後の介在物中のCaO:Al23比が増加し、最も融点の低いCaO:Al23=1.1近傍の値を実現することが可能になる。
【0013】
脱酸生成物としてのアルミナの浮上によってもパウダー中のAl23は増加するが、増加代は無視できるほど小さく、同様に溶鋼中でのアルミナ系介在物とパウダー系介在物の合体によるパウダー系介在物中のAl23増加も非常に小さい。
【0014】
本発明は、以上の知見に基づいてなされたものであり、1300℃における粘度が3〜10poiseとしつつ、塩基度(CaO/SiO2)を1.1〜1.2の範囲とすることにより、極低炭素鋼の連続鋳造においてパウダーの巻き込みを減少し、たとえ溶鋼中に巻き込まれても融点の低い介在物を生成し、プレス割れの少ない良好な品質の鋳片を製造することを可能にした。
【0015】
パウダーの塩基度を1.1〜1.2としたのは、この範囲であればAlで還元された後の介在物中のCaO:Al23比を最適な1.13付近に保持することが可能であり、介在物の融点を低く保つことができるからである。塩基度を1.1以上とすることで介在物の融点を十分に低くすることができ、また塩基度を1.2以下とすることで介在物の融点を十分に低くすることができるとともに粘度の低下しすぎを抑制することができる。
【0016】
パウダーの1300℃での粘度を3poise以上としたのは、これによって連続鋳造時のパウダー巻き込みを低減することが可能だからである。また粘度を10poise以下としたのは、この範囲であれば鋳型と凝固シェルの間隙へのパウダー流入が適正に行われ、鋳片の鋳型との潤滑が正常に保たれるからである。粘度を10poise未満とするとより好ましい。
【0017】
パウダーの粘度を上記のような高粘度に保持しつつ、塩基度を1.1〜1.2の範囲とするための手段として、本発明においては、ZrO2:1〜7質量%とB23:1〜7質量%の一方又は両方を含有することとすると好ましい。ZrO2やB23にはパウダーの粘度を上昇させる働きがあり、塩基度1.1以上の高塩基度でありながら高粘性を実現することが可能になる。
【0018】
ZrO2含有量を1%以上としたのは、これによってZrO2によるパウダーの粘度上昇効果を得ることができるからであり、7%以下としたのは、さらに添加量を増やすとZrO2の大きな結晶が析出しパウダーの特性が不均一になるからである。ZrO2含有量は3〜7%とするとより好ましい。
【0019】
23含有量を1%以上としたのは、これによってB23によるパウダーの粘度上昇効果を得ることができるからであり、7%以下としたのは、さらに添加するとパウダーの融点が低下し鋳型内伝熱が不良になるからである。B23含有量は3〜7%とするとより好ましい。
【0020】
本発明のモールドパウダーは、CaO、SiO2を主成分とし、好ましくは上記の通りZrO2とB23の一方または両方を含む。さらに、凝固温度や粘度等を調整するために、例えばAl23、Na2O、F、MgO、Li2O等を添加することができる。これらの成分の添加量は、この発明で規定している要件を具備する範囲内で目的に応じ所望量を任意に選べばよい。なお、これらの添加物は、従来のモールドパウダーに含まれているものである。
【0021】
Al23含有量は2〜10%の範囲が好ましい。Al23が高すぎるとパウダーの粘度を上げることができるが、溶鋼と反応した後のCaO:Al23比が低くなり介在物の融点が高くなる。Al23が低すぎるとパウダーの凝固温度が高くなり鋳型潤滑不良を招く。
【0022】
介在物中にZrO2が含有されていると、介在物の破砕性が向上する効果が生まれる。介在物中において、ZrO2は樹枝状晶として微細に析出するため、非常に容易に破砕されるのである。従って、ZrO2を含有するモールドパウダーについては、介在物の破砕性を良好にするためのパウダーのCaO/SiO2比率範囲を1.1〜1.2から1.0〜1.2の範囲に拡大する効果を有する。
【0023】
本発明の鋼の連続鋳造用パウダーは、上記知見に基づき、CaO/SiO2が1.0〜1.2の範囲であり、ZrO2:1〜7質量%を含有し、1300℃における粘度が3〜10poiseであることとすることにより、良好な結果を得ることができた。
【0024】
ZrO2含有量を1%以上としたのは、これによりZrO2の介在物破砕性改善効果を発揮することができ、塩基度の下限を1.1から1.0に拡大することが可能になるからである。7%以下としたのは、それ以上添加すると微細ではなく巨大なZrO2結晶が晶出するからである。ZrO2は、塩基度を確保しつつ粘度を上昇させる効果をも有する。ZrO2含有量は3〜7%とするとより好ましい。塩基度の上限、粘度の範囲については、前記本発明の限定理由と同様の理由による。
【0025】
上記本発明はさらに、B23:1〜7質量%を含有することとすると好ましい。B23は塩基度を確保しつつ粘度を上昇させる効果を有するからである。B23含有量は3〜7%とするとより好ましい。
【0026】
本発明のモールドパウダーは、極低炭Alキルド鋼の連続鋳造に用いると好適である。極低炭Alキルド鋼とは、炭素濃度が0.01質量%以下であり、さらに、Si:0.03%以下、Al:0.01〜0.06%である。
【0027】
本発明においてはさらに、本発明のモールドパウダーを使用しつつ鋳型内の電磁攪拌を用いると好ましい。電磁攪拌によって、鋳型内への溶鋼の供給に伴う必然的に生じる溶鋼流動とは独立に鋳型内溶鋼に流動を付与することで、熱の供給不足の部位に熱を供給し均一化することによって、パウダーの流入を促進して、高粘度パウダーを用いてより高速での鋳造が可能となる。また、電磁攪拌によってメニスカス近傍の溶鋼流れの淀み部をなくすことができ、淀み部起因のパウダー流入不良をも解消することができる。本発明では十分に粘性の高いパウダーを使用することが可能なので、電磁攪拌によって溶鋼流動が増大してもパウダー巻き込みが増えるおそれはない。
【0028】
電磁攪拌を行うとともに本発明の高粘度のパウダーを用いることで、パウダーの巻き込みなしに攪拌推力を増加させて溶鋼流速を上げることが可能となり、鋳型内に侵入してきた介在物の凝固シェルへの捕捉防止が可能となり、パウダー系以外の欠陥、例えばタンディッシュから持ち込まれたスラグやアルミナ等の介在物も低減する。
【0029】
【実施例】
転炉にて溶製した溶鋼300tonを、RHにて所定の成分濃度に調整した極低炭素鋼の溶鋼を、タンディッシュ、浸漬ノズルを介して垂直曲げ型の連続鋳造機で、厚み250mm、幅1600mmの鋳片に鋳造した。溶鋼成分範囲を表1に示す。鋳造速度を1.5m/minとした。鋳片は1200℃で加熱した後に通常の方法で熱間圧延を行い、さらに冷間で圧延した。
【0030】
【表1】

Figure 0004276419
【0031】
鋳造に使用した連続鋳造用パウダーの成分、性質及び鋳造結果を表2に示す。
【0032】
パウダーの粘性は1300℃での粘性を用いた。粘度測定にあたっては、回転円筒法を用いた。測定対象パウダーを700℃にて60分間脱炭処理した試料を黒鉛坩堝に挿入し1400℃にて10〜15分間予備溶解した後鉄坩堝に移し、縦型管状炉(エレマ炉)に入れ、E型粘度計のローターをスラグ中に浸漬し、1300℃で30分間安定させた後、ローターを回転させ粘性抵抗によるトルクを測定し、粘度を求めた。なおE型粘度計は事前に標準粘度液にて較正しておく。
【0033】
介在物個数については、鋳片の介在物集積帯にあたる部位(表面から40〜50mm)から鋳片(1kg)を切り出して、スライム溶解法によって鉄を溶解し、介在物を抽出した。介在物の個数測定にあたってはアルミナクラスターは無視し、球形のパウダー系介在物のみをカウントした。
【0034】
介在物組成については、スライム法によって抽出した介在物を樹脂に埋め込み、SEM−EDX法によって介在物組成の定量分析を行った。
【0035】
プレス割れ成績については、製品となった0.8mm厚の鋼板を、100mmφの球状のダイを用いて32mm張り出させたときの割れ発生枚数比率を評点化し、プレス割れ評点とした。プレス割れ評点は、プレス割れ発生枚数比率0.2%未満を◎◎、プレス割れ発生枚数比率0.2%以上1%未満を◎、プレス割れ発生枚数率1%以上3%未満を○、プレス割れ発生枚数率3%以上5%未満を△、プレス割れ発生枚数率5%以上を×とした。
【0036】
【表2】
Figure 0004276419
【0037】
本発明例No.13は、パウダー中にZrO2あるいはZrO 2 及び23を含有させ、パウダーの塩基度を1.11以上としつつパウダーの粘度を3.5poise以上としているものである。鋳片へのパウダー巻き込みは非常に少なく、なおかつ鋳片に巻き込まれた介在物中のCaO/Al23比が0.98と高いので、製造した鋼板のプレス割れ成績は非常に良好であった。特に本発明例No.3は、ZrO2とB23を両方含有した結果として、粘度を4.6まで上昇させることができ、パウダー巻き込みによる介在物の個数が極めて少なく、結果としてプレス割れ評点も最も良好な結果であった。
【0040】
比較例No.6は、パウダーの塩基度が1.0以上1.1未満であり、パウダーの粘度を3poise以上とし、ZrO2を含有していない。その結果、介在物組成におけるCaO/Al23比はやや低く、プレス割れ評点がやや劣る結果となっている。
【0041】
比較例No.7、8は、粘度を4poiseとしてパウダー巻き込みの低減を図っているが、パウダー塩基度が1未満であり、パウダー巻き込み起因の介在物組成におけるCaO/Al23比が低く、プレス割れ評点が△という結果であった。
【0042】
比較例No.9、10は、パウダー塩基度は1.1以上であるが、パウダー粘度が2poise以下の非常に低い粘度であり、鋳造中におけるパウダー巻き込みに起因して介在物個数が極めて多く、その結果としてプレス割れ評点も×であって非常に悪い結果となった。
【0043】
本実施例においては垂直曲げ型連続鋳造設備を使用したが、湾曲型及び垂直型連続鋳造設備においても同様の効果が得られる。
【0044】
また、本実施例では自動車用の薄鋼板用の鋳片製造にあたっての例で述べたが、本技術の本質とするところは、パウダーの巻き込みによって生じる欠陥を防止することであり、缶用鋼板、鋼管など他の鋼種の鋳片を製造する場合にも有効である。
【0045】
【発明の効果】
本発明の鋼の連続鋳造用パウダーは、1300℃での粘度を3poise以上に確保しつつ塩基度を1.1〜1.2の範囲とすることにより、鋳造中のパウダー巻き込みの低減と、パウダー巻き込みに起因する介在物の破砕性の向上を両立させ、プレス割れの少ない良好な品質の鋼製品を製造可能にする。
【0046】
本発明の鋼の連続鋳造用パウダーはまた、ZrO2を含有して1300℃での粘度を3poise以上に確保しつつ塩基度を1.0〜1.2の範囲とすることにより、同様の効果を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder for continuous casting of steel added to a mold in continuous casting of steel.
[0002]
[Prior art]
In continuous casting of steel, powder for continuous casting is added on the surface of molten steel poured into a mold. The powder for continuous casting is also called mold powder or simply powder, and is heated and melted by high-temperature molten steel and flows between the mold and the solidified shell. The powder is mainly used for heat insulation and oxidation prevention on the molten steel surface in the mold, absorption of non-metallic inclusions floating from the molten steel, lubrication by the slag film flowing between the mold and the solidified shell, and heat removal from the slab by this film. The purpose is to control. As a result, a slab having excellent surface properties is obtained, and the molten powder is not easily caught in the molten steel, thereby producing a normal and good slab.
[0003]
By the way, during continuous casting operation, the molten steel injected flow into the mold is disturbed by the molten steel injected near the meniscus due to local fluctuations in the molten metal surface due to the operating conditions or changes in the operating conditions. In some cases, the powder is entangled in the molten steel and adheres to the solidified shell. In particular, in high-speed continuous casting, the flow rate of the injection flow increases, so that it becomes easy to entrain powder. If rolling is performed while the entrained powder is still attached to the slab, it will be stretched and cause surface defects in the cold-rolled steel sheet. Is required to have
[0004]
It is known that by using a highly viscous powder, it is possible to prevent the entrainment of the powder due to the molten steel flow in the mold, and to reduce the occurrence of defects due to the entrainment of the powder. In particular, IF steel (Interstitial Free steel) having a carbon concentration of 0.01% by mass or less is liable to cause surface defects of slabs and cold-rolled steel sheets due to powder entrainment. In ultra-low carbon steel, the claw at the tip of the solidified shell generated near the surface of the molten steel during casting tends to be long, and this claw is considered to cause powder entrainment.
[0005]
Patent Document 1 describes that, as a mold powder for extremely low carbon steel, the powder powder at 1300 ° C. has a viscosity of 3 poise or more, so that the entrainment of mold powder can be reduced even in high-speed casting.
[0006]
[Patent Document 1]
JP-A-10-263767 [0007]
[Problems to be solved by the invention]
By using a highly viscous powder having a viscosity of 3 poise or more as a mold powder for extremely low carbon steel, it has become possible to reduce the frequency of the mold powder being entrained in the molten steel. However, powder entrainment in the slab is not completely eliminated. As a result of increasing the viscosity of the mold powder, a phenomenon has occurred in which part of the entrained powder tends to cause press cracking when a steel sheet produced using this cast piece is press-formed.
[0008]
An object of the present invention is to provide a powder for continuous casting of steel in which the partially entrained powder does not cause press cracking while preventing entrainment of powder in continuous casting of ultra-low carbon steel.
[0009]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) is in the range of CaO / SiO 2 is 1.11 ~1.2, ZrO 2: 1~7 wt%, Al 2 O 3: containing 2 to 10 wt%, a viscosity at 1300 ° C. is 3. A powder for continuous casting of steel, characterized in that it is used for continuous casting of ultra-low-carbon Al-killed steel having an Al content of 0.01 to 0.06% by mass with 5 to 10 poise.
(2) The powder for continuous casting of steel according to (1) above, further containing B 2 O 3 : 1 to 7% by mass .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In continuous casting of ultra-low-carbon Al killed steel, the powder entrained in the molten metal is reduced in its constituent SiO 2 by Al in the molten steel, and Al 2 O 3 is generated instead. It becomes a binary inclusion of Al 2 O 3 . CaO-Al 2 O 3 in binary inclusions CaO: Looking at the relationship between the melting point of Al 2 O 3 ratio and inclusions, CaO: Al 2 O 3 ratio of the melting point of inclusions in the vicinity 1.1 The lowest.
[0011]
Conventionally, in order to increase the viscosity of the mold powder and increase the viscosity at 1300 ° C. to 3 poise or more, it has been realized by setting the basicity (CaO / SiO 2 ) in the powder component to a low basicity of about 0.8. . When powder with low basicity and high SiO 2 content is entrained in molten steel, there is much SiO 2 that should be reduced by Al to become Al 2 O 3 , so there is a high Al 2 O 3 content and CaO: Al 2 O 3 CaO—Al 2 O 3 inclusions with a ratio of less than 1.1. Inclusions having such a composition have a high melting point, and the inclusions are less likely to be crushed in the subsequent rolling stage. Conventionally, the use of high-viscosity powder reduces powder entrainment, but it is not completely absent. Inclusions caused by entrainment of powder cause press cracking. Was the cause.
[0012]
On the other hand, if the basicity of the powder can be increased while ensuring the 1300 ° C. viscosity of the powder at 3 poise or more, the content of SiO 2 in the powder decreases, and the CaO: Al 2 in the inclusion after reduction with Al As the O 3 ratio increases, a value near CaO: Al 2 O 3 = 1.1 having the lowest melting point can be realized.
[0013]
Al 2 O 3 in the powder also increases due to the floating of alumina as a deoxidation product, but the increase is negligibly small. Similarly, the powder is a combination of alumina inclusions and powder inclusions in molten steel. The increase in Al 2 O 3 in the system inclusions is also very small.
[0014]
The present invention has been made based on the above findings, and by setting the basicity (CaO / SiO 2 ) in the range of 1.1 to 1.2 while the viscosity at 1300 ° C. is 3 to 10 poise, Reduced powder entrainment in continuous casting of ultra-low carbon steel, produced inclusions with a low melting point even when entrained in molten steel, making it possible to produce good quality slabs with few press cracks .
[0015]
If the basicity of the powder is set to 1.1 to 1.2, the CaO: Al 2 O 3 ratio in the inclusion after reduction with Al is maintained in the vicinity of the optimum 1.13 within this range. This is because the melting point of the inclusion can be kept low. When the basicity is 1.1 or more, the melting point of the inclusion can be sufficiently lowered, and when the basicity is 1.2 or less, the melting point of the inclusion can be sufficiently lowered and the viscosity is increased. Can be suppressed.
[0016]
The reason why the viscosity of the powder at 1300 ° C. is set to 3 poise or more is that it is possible to reduce powder entrainment during continuous casting. The reason why the viscosity is set to 10 poise or less is that if it is within this range, the powder is properly introduced into the gap between the mold and the solidified shell, and the slab mold is properly lubricated. More preferably, the viscosity is less than 10 poise.
[0017]
In the present invention, ZrO 2 : 1 to 7% by mass and B 2 are used as means for keeping the basic viscosity within a range of 1.1 to 1.2 while maintaining the viscosity of the powder as described above. It is preferable to include one or both of O 3 : 1 to 7% by mass. ZrO 2 and B 2 O 3 have a function of increasing the viscosity of the powder, and it is possible to realize a high viscosity while having a high basicity of 1.1 or more.
[0018]
The reason why the ZrO 2 content is 1% or more is that it is possible to obtain the effect of increasing the viscosity of the powder by ZrO 2 , and the reason why the ZrO 2 content is 7% or less is that when the addition amount is further increased, the ZrO 2 content increases. This is because crystals precipitate and the characteristics of the powder become non-uniform. The ZrO 2 content is more preferably 3 to 7%.
[0019]
The reason why the B 2 O 3 content is set to 1% or more is that the effect of increasing the viscosity of the powder by B 2 O 3 can be obtained, and the reason why it is set to 7% or less is that the melting point of the powder when added further. This is because the heat transfer in the mold becomes poor. The B 2 O 3 content is more preferably 3 to 7%.
[0020]
The mold powder of the present invention contains CaO and SiO 2 as main components, and preferably contains one or both of ZrO 2 and B 2 O 3 as described above. Furthermore, for example, Al 2 O 3 , Na 2 O, F, MgO, Li 2 O and the like can be added to adjust the solidification temperature, viscosity, and the like. The amount of these components to be added may be arbitrarily selected according to the purpose within the range satisfying the requirements defined in the present invention. These additives are included in conventional mold powders.
[0021]
The Al 2 O 3 content is preferably in the range of 2 to 10%. If the Al 2 O 3 is too high, the viscosity of the powder can be increased, but the CaO: Al 2 O 3 ratio after reacting with the molten steel is lowered and the melting point of the inclusion is increased. If Al 2 O 3 is too low, the solidification temperature of the powder becomes high, resulting in poor mold lubrication.
[0022]
When ZrO 2 is contained in the inclusion, an effect of improving the friability of the inclusion is produced. In the inclusions, ZrO 2 precipitates finely as dendritic crystals and is therefore very easily crushed. Therefore, for the mold powder containing ZrO 2 , the CaO / SiO 2 ratio range of the powder for improving the crushability of inclusions is in the range of 1.1 to 1.2 to 1.0 to 1.2. Has the effect of expanding.
[0023]
Based on the above knowledge, the powder for continuous casting of steel of the present invention has a CaO / SiO 2 range of 1.0 to 1.2, contains ZrO 2 : 1 to 7% by mass, and has a viscosity at 1300 ° C. A favorable result was able to be obtained by setting it as 3-10 poise.
[0024]
The reason why the ZrO 2 content is set to 1% or more is that the effect of improving the inclusion crushability of ZrO 2 can be exhibited, and the lower limit of basicity can be expanded from 1.1 to 1.0. Because it becomes. The reason why it is set to 7% or less is that when it is added more than that, a large ZrO 2 crystal is crystallized instead of being fine. ZrO 2 also has the effect of increasing the viscosity while ensuring basicity. The ZrO 2 content is more preferably 3 to 7%. About the upper limit of basicity and the range of a viscosity, it is based on the reason similar to the limitation reason of the said invention.
[0025]
The present invention preferably further contains B 2 O 3 : 1 to 7% by mass. This is because B 2 O 3 has the effect of increasing the viscosity while securing the basicity. The B 2 O 3 content is more preferably 3 to 7%.
[0026]
The mold powder of the present invention is preferably used for continuous casting of ultra-low carbon Al killed steel. The extremely low-carbon Al killed steel has a carbon concentration of 0.01% by mass or less, Si: 0.03% or less, and Al: 0.01-0.06%.
[0027]
In the present invention, it is further preferable to use electromagnetic stirring in the mold while using the mold powder of the present invention. By applying magnetic flow to the molten steel in the mold independently of the inevitably generated molten steel flow accompanying the supply of molten steel into the mold by electromagnetic stirring, by supplying heat to the insufficient heat supply site and making it uniform By promoting the inflow of the powder, it becomes possible to perform casting at a higher speed using the high viscosity powder. Moreover, the stagnation part of the molten steel flow in the vicinity of the meniscus can be eliminated by electromagnetic stirring, and the powder inflow failure caused by the stagnation part can be eliminated. In the present invention, a sufficiently viscous powder can be used. Therefore, even if the molten steel flow is increased by electromagnetic stirring, there is no possibility that the powder entrainment will increase.
[0028]
By performing the magnetic stirring and using the high viscosity powder of the present invention, it becomes possible to increase the stirring thrust without entraining the powder and increase the flow velocity of the molten steel, and the inclusions that have penetrated into the mold to the solidified shell Capturing can be prevented, and defects other than the powder system, for example, inclusions such as slag and alumina brought in from the tundish are reduced.
[0029]
【Example】
300ton of molten steel melted in a converter, adjusted to a predetermined component concentration with RH, is a continuous casting machine of vertical bending type through a tundish and immersion nozzle, with a thickness of 250mm, width Cast into a 1600 mm slab. The molten steel component range is shown in Table 1. The casting speed was 1.5 m / min. The slab was heated at 1200 ° C. and then hot-rolled by a normal method and further cold-rolled.
[0030]
[Table 1]
Figure 0004276419
[0031]
Table 2 shows the components, properties and casting results of the powder for continuous casting used for casting.
[0032]
The viscosity at 1300 ° C. was used as the viscosity of the powder. In measuring the viscosity, the rotating cylinder method was used. A sample obtained by decarburizing the powder to be measured at 700 ° C. for 60 minutes was inserted into a graphite crucible, preliminarily melted at 1400 ° C. for 10 to 15 minutes, transferred to an iron crucible, placed in a vertical tubular furnace (Elema furnace), and E The rotor of the type viscometer was immersed in slag and stabilized at 1300 ° C. for 30 minutes, and then the rotor was rotated to measure the torque due to viscous resistance to determine the viscosity. The E-type viscometer is calibrated with a standard viscosity solution in advance.
[0033]
As for the number of inclusions, a slab (1 kg) was cut out from a portion (40 to 50 mm from the surface) corresponding to the inclusion accumulation zone of the slab, and iron was dissolved by a slime dissolution method to extract inclusions. In measuring the number of inclusions, alumina clusters were ignored, and only spherical powder-type inclusions were counted.
[0034]
As for the inclusion composition, inclusions extracted by the slime method were embedded in the resin, and the inclusion composition was quantitatively analyzed by the SEM-EDX method.
[0035]
Regarding the press cracking results, the ratio of the number of cracks when the 0.8 mm-thick steel sheet as a product was extended by 32 mm using a spherical die of 100 mmφ was scored and used as a press crack score. The press crack score is ◎◎ when the ratio of press crack occurrence is less than 0.2%, ◎ When the ratio of press crack occurrence is 0.2% or more and less than 1%, ◎ When the ratio of press crack occurrence is 1% or more and less than 3%, ○ The crack generation number ratio of 3% or more and less than 5% was evaluated as Δ, and the press crack generation ratio of 5% or more was evaluated as ×.
[0036]
[Table 2]
Figure 0004276419
[0037]
Invention Example No. In Nos. 1 and 3, ZrO 2 or ZrO 2 and B 2 O 3 are contained in the powder, and the viscosity of the powder is 3.5 poise or more while the basicity of the powder is 1.11 or more. Since the powder entrainment in the slab is very small, and the CaO / Al 2 O 3 ratio in the inclusions entrained in the slab is as high as 0.98, the press cracking performance of the manufactured steel sheet was very good. It was. In particular, Invention Example No. 3 can increase the viscosity to 4.6 as a result of containing both ZrO 2 and B 2 O 3 , the number of inclusions due to powder entrainment is extremely small, and as a result, the press crack score is also the best Met.
[0040]
Comparative Example No. In No. 6, the basicity of the powder is 1.0 or more and less than 1.1, the viscosity of the powder is 3 poise or more, and ZrO 2 is not contained. As a result, the CaO / Al 2 O 3 ratio in the inclusion composition is slightly low, and the press crack score is slightly inferior.
[0041]
Comparative Example No. 7 and 8 are intended to reduce powder entrainment with a viscosity of 4 poise, but the powder basicity is less than 1, the CaO / Al 2 O 3 ratio in the inclusion composition resulting from powder entrainment is low, and the press crack rating is The result was Δ.
[0042]
Comparative Example No. Nos. 9 and 10 have a powder basicity of 1.1 or more, but a very low viscosity with a powder viscosity of 2 poise or less, and the number of inclusions is extremely high due to the entrainment of powder during casting. The crack score was x, which was very bad.
[0043]
Although the vertical bending type continuous casting equipment is used in this embodiment, the same effect can be obtained in the curved type and vertical type continuous casting equipment.
[0044]
Further, in this example, the example of manufacturing a slab for a thin steel sheet for automobiles was described, but the essence of the present technology is to prevent defects caused by entrainment of powder, It is also effective when producing slabs of other steel types such as steel pipes.
[0045]
【The invention's effect】
The powder for continuous casting of the steel of the present invention reduces powder entrainment during casting by maintaining the viscosity at 1300 ° C. to 3 poise or more and the basicity in the range of 1.1 to 1.2. It is possible to improve the friability of inclusions caused by entrainment and to manufacture steel products of good quality with few press cracks.
[0046]
The steel continuous casting powder of the present invention also contains ZrO 2 and has the same effect by keeping the viscosity at 1300 ° C. at 3 poise or higher and the basicity in the range of 1.0 to 1.2. Can be obtained.

Claims (2)

CaO/SiO21.11〜1.2の範囲であり、ZrO2:1〜7質量%、Al 2 3 :2〜10質量%を含有し、1300℃における粘度が3.5〜10poiseであり、Al含有量0.01〜0.06質量%の極低炭Alキルド鋼の連続鋳造に用いることを特徴とする鋼の連続鋳造用パウダー。In the range of CaO / SiO 2 is 1.11 ~1.2, ZrO 2: 1~7 wt%, Al 2 O 3: containing 2 to 10 wt%, a viscosity at 1300 ° C. is 3.5 ~10Poise A powder for continuous casting of steel, characterized by being used for continuous casting of ultra-low-carbon Al-killed steel having an Al content of 0.01 to 0.06% by mass. さらにB23:1〜7質量%を含有することを特徴とする請求項1に記載の鋼の連続鋳造用パウダー。Further B 2 O 3: Continuous casting powder steel according to claim 1, characterized in that it contains 1-7 wt%.
JP2002317324A 2002-10-31 2002-10-31 Powder for continuous casting of steel Expired - Lifetime JP4276419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317324A JP4276419B2 (en) 2002-10-31 2002-10-31 Powder for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317324A JP4276419B2 (en) 2002-10-31 2002-10-31 Powder for continuous casting of steel

Publications (2)

Publication Number Publication Date
JP2004148376A JP2004148376A (en) 2004-05-27
JP4276419B2 true JP4276419B2 (en) 2009-06-10

Family

ID=32460753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317324A Expired - Lifetime JP4276419B2 (en) 2002-10-31 2002-10-31 Powder for continuous casting of steel

Country Status (1)

Country Link
JP (1) JP4276419B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100623908B1 (en) * 2004-06-23 2006-09-19 스톨베르그 앤드 삼일 주식회사 Fluorine-free mold flux for the continuous casting of steel and method for producing the same
JP4626522B2 (en) * 2006-01-11 2011-02-09 住友金属工業株式会社 Mold powder for continuous casting and continuous casting method for plain steel
JP5226423B2 (en) * 2008-08-12 2013-07-03 日鐵住金建材株式会社 Powder for continuous casting of steel
KR20120092708A (en) * 2010-01-21 2012-08-21 신닛뽄세이테쯔 카부시키카이샤 Mould powder for continuous casting of steel
CN107282903B (en) * 2016-12-30 2019-04-05 西峡龙成冶金材料有限公司 A kind of continuous super low carbon steel casting crystallizer protecting residue
CN112756573B (en) * 2020-12-24 2022-06-17 芜湖新兴铸管有限责任公司 Casting powder for engineering machinery bucket tooth steel and preparation method thereof
JP7464865B2 (en) 2022-06-17 2024-04-10 品川リフラクトリーズ株式会社 Mold powder and method for continuous casting of steel using same

Also Published As

Publication number Publication date
JP2004148376A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4276419B2 (en) Powder for continuous casting of steel
JP2008087046A (en) Continuous casting method for medium-carbon steel
JP4430638B2 (en) Mold powder for continuous casting of high aluminum steel
JPS6346142B2 (en)
JP4010929B2 (en) Mold additive for continuous casting of steel
JPH10263767A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP5835153B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP3317258B2 (en) Mold powder for continuous casting of high Mn round section slabs
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JPS646859B2 (en)
JP3806364B2 (en) Mold powder for continuous casting of steel and continuous casting method
JP2005177848A (en) Center defect reducing method of continuously cast steel slab
JP4392364B2 (en) Method for producing ultra-low carbon steel
JP3261554B2 (en) Continuous casting powder of Cu and Sn steel containing
JP2004122139A (en) Method for continuously casting extra-low carbon steel and mold powder for continuous casting
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JP2004009064A (en) Method for producing continuously cast slab
JP3532097B2 (en) Manufacturing method of continuous cast slab with excellent cleanliness
JP3238073B2 (en) Front powder for continuous casting of steel
JP3660811B2 (en) Steel wire rod and manufacturing method thereof
JP2010240711A (en) Continuous casting method of medium-carbon steel
JP6578940B2 (en) Mold powder for continuous casting
JP2004322140A (en) Continuous casting method for steel
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070514

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term