JP4275512B2 - Dielectric resonator, dielectric filter, and wireless communication device - Google Patents

Dielectric resonator, dielectric filter, and wireless communication device Download PDF

Info

Publication number
JP4275512B2
JP4275512B2 JP2003391085A JP2003391085A JP4275512B2 JP 4275512 B2 JP4275512 B2 JP 4275512B2 JP 2003391085 A JP2003391085 A JP 2003391085A JP 2003391085 A JP2003391085 A JP 2003391085A JP 4275512 B2 JP4275512 B2 JP 4275512B2
Authority
JP
Japan
Prior art keywords
dielectric
conductor
dielectric substrate
frequency signal
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003391085A
Other languages
Japanese (ja)
Other versions
JP2005159440A (en
Inventor
博道 吉川
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003391085A priority Critical patent/JP4275512B2/en
Publication of JP2005159440A publication Critical patent/JP2005159440A/en
Application granted granted Critical
Publication of JP4275512B2 publication Critical patent/JP4275512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、ミリ波帯で利用される誘電体共振器及び誘電体フィルタ並びにこの誘電体フィルタを用いた無線通信機器に関するものである。   The present invention relates to a dielectric resonator and a dielectric filter used in the millimeter wave band, and a wireless communication device using the dielectric filter.

近年、ミリ波帯において無線LANなどの通信システムが検討されており、それに用いる受動素子の研究も盛んに行われている。
現在、ミリ波帯における受動素子の課題は、小型化、低コスト化である。低コスト化に対して問題となっているのは、小さな寸法に対する量産可能な加工精度である。通常、マイクロ波帯で大量生産している技術をミリ波へ応用しようとすると部品が小さくなりすぎるため、量産可能な加工精度では、寸法のばらつきが大きくなってしまう。このため、部品の単価が高くなるという結果となってしまっていた。
In recent years, communication systems such as a wireless LAN have been studied in the millimeter wave band, and research on passive elements used therefor has been actively conducted.
Currently, the challenge of passive devices in the millimeter wave band is to reduce the size and cost. The problem for cost reduction is processing accuracy that can be mass-produced for small dimensions. Usually, if the technology that is mass-produced in the microwave band is applied to millimeter waves, the parts become too small, and therefore the dimensional variation becomes large with the machining accuracy capable of mass production. For this reason, the unit price of the parts was high.

従来、マイクロ波及びミリ波帯において用いられている共振器として、TE010モード誘電体装荷空洞共振器がある(特許文献1参照)。この共振器は、図6に示されるように、金属導体2b,3a,3bで囲まれた空洞共振器の中央部に誘電体基板1が配置された構造になっている。この構造では、電界が誘電体に集中するため、マイクロ波帯では非常に都合が良く、共振器の小型化のために盛んに用いられてきた。   Conventionally, as a resonator used in the microwave and millimeter wave bands, there is a TE010 mode dielectric loaded cavity resonator (see Patent Document 1). As shown in FIG. 6, this resonator has a structure in which a dielectric substrate 1 is arranged at the center of a cavity resonator surrounded by metal conductors 2b, 3a, 3b. This structure is very convenient in the microwave band because the electric field concentrates on the dielectric, and has been actively used for miniaturization of the resonator.

また、この誘電体共振器はミリ波帯用の誘電体フィルタにも利用されている。この共振器を複数個結合させた誘電体フィルタが構成されている。この構造の一例を図7に示す。図7では、空洞共振器が2段縦に配列され、それぞれ電界の強い部分に誘電体基板1a,1bが配置されている。
特開平8-265015号公報
The dielectric resonator is also used for a dielectric filter for millimeter wave band. A dielectric filter is formed by coupling a plurality of these resonators. An example of this structure is shown in FIG. In FIG. 7, the cavity resonators are vertically arranged in two stages, and the dielectric substrates 1a and 1b are arranged in the portions where the electric field is strong.
JP-A-8-265015

しかしながら、前記誘電体装荷空洞共振器やそれを用いた誘電体フィルタを設計する場合、ミリ波帯に用いようとするとサイズが小さくなりすぎ、作製上の精度の限界が問題となっている。
そこで誘電体への電界の集中を抑えるために、誘電体を薄くすると、寸法精度が問題になり、誘電体の強度も弱くなる。
However, when designing the dielectric-loaded cavity resonator and the dielectric filter using the dielectric resonator, the size becomes too small if it is used in the millimeter wave band, and the limit of manufacturing accuracy becomes a problem.
Therefore, if the dielectric is made thin in order to suppress the concentration of the electric field on the dielectric, the dimensional accuracy becomes a problem, and the strength of the dielectric becomes weak.

そこで、本発明は、上記の構造のように誘電体を電界の強い場所へ配置するのではなく、弱い場所へ配置することにより、共振周波数の上昇が実現でき、その結果、共振周波数の設計精度を向上できる誘電体共振器及び誘電体フィルタ並びにこの誘電体フィルタを用いた無線通信機器を提供することを目的とする。
また、本発明は、製造工程を簡略化でき、低コスト化できる誘電体共振器及び誘電体フィルタ並びにこの誘電体フィルタを用いた無線通信機器を提供することを目的とする。
Therefore, according to the present invention, the resonant frequency can be increased by arranging the dielectric in a weak place instead of placing it in a place where the electric field is strong as in the above structure. As a result, the design accuracy of the resonant frequency can be increased. It is an object of the present invention to provide a dielectric resonator and a dielectric filter capable of improving the frequency, and a wireless communication device using the dielectric filter.
Another object of the present invention is to provide a dielectric resonator and a dielectric filter that can simplify the manufacturing process and reduce costs, and a wireless communication device using the dielectric filter.

(1)本発明者は、上記課題に対して検討を重ねた結果、導体板上に誘電体板を配置し、誘電体板上に有底筒状導体を、その開口部が前記誘電体板に接触するように載置した。そしてこの共振器を複数個用意し、共振部へ高周波信号を入力する入力電極と高周波信号を取り出す出力電極を持つ誘電体フィルタを発明した。
すなわち本発明の誘電体共振器は、下部導体と下部導体に接触して配置された誘電体基板と、筒状導体及び上部導体からなる有底筒状導体とを有し、前記有底筒状導体の、前記上部導体と反対側にある開口端が前記誘電体基板に接触するように設置されて、前記下部導体と前記有底筒状導体とによって囲まれた共振用の空洞が形成されていることを特徴とする。
(1) As a result of repeated studies on the above problems, the present inventor has arranged a dielectric plate on a conductor plate, a bottomed cylindrical conductor on the dielectric plate, and an opening portion of the dielectric plate. Was placed in contact with. A plurality of the resonators are prepared, and a dielectric filter having an input electrode for inputting a high frequency signal to the resonance portion and an output electrode for extracting the high frequency signal has been invented.
That dielectric resonator of the present invention includes a lower conductive body, a dielectric substrate disposed in contact with the lower conductor, and a bottomed tubular conductor made of a cylindrical conductor and the upper conductor, the chromatic An opening end of the bottom cylindrical conductor opposite to the upper conductor is disposed so as to contact the dielectric substrate, and a resonance cavity surrounded by the lower conductor and the bottomed cylindrical conductor is provided. It is formed.

本発明の誘電体共振器では、空洞内の電界が、下部電極面でゼロになるところを利用している。このため、誘電体基板に蓄積される電界エネルギーを、従来の共振器に比べて小さくすることができる。同じ条件(誘電体の比誘電率、誘電体厚み、空洞の高さ、開口部直径等)で設計した場合、従来の共振器に比べてサイズを非常に小さくしなくても、共振周波数を高く設計でき、ミリ波帯の共振器として適している。つまり、従来のミリ波帯の共振器に比べて開口部のサイズを大きくできる利点がある。したがって、従来より容易に誘電体共振器の製作が可能となる。   The dielectric resonator according to the present invention utilizes the fact that the electric field in the cavity becomes zero on the lower electrode surface. For this reason, the electric field energy accumulated in the dielectric substrate can be reduced as compared with the conventional resonator. When designed under the same conditions (dielectric constant, dielectric thickness, cavity height, opening diameter, etc.), the resonant frequency can be increased without having to make the size very small compared to conventional resonators. Designed and suitable as a millimeter-wave resonator. That is, there is an advantage that the size of the opening can be increased as compared with the conventional millimeter-wave band resonator. Therefore, it is possible to manufacture a dielectric resonator more easily than in the past.

使用する周波数において、電波を空間の中に閉じこめて共振させるためには、誘電体共振器の周囲は導体で遮蔽された構造であることが必要である。
の例として、前記支持部材が筒状導体、例えば円筒状導体であり、前記上部導体が筒状導体の底面を形成するとともに、その筒状導体の開口端を、前記誘電体基板に接触させている構造が示される。
In order to confine a radio wave in a space and resonate at a frequency to be used, the periphery of the dielectric resonator needs to have a structure shielded by a conductor.
Examples of this, the support member is tubular conductor, for example, a cylindrical conductor, together with the upper conductor forms a bottom surface of the cylindrical conductor, the open end of the tubular conductor is brought into contact with the dielectric substrate The structure is shown.

らに、前記誘電体基板を挟んで、前記下部導体と前記支持部材の端面との間に形成される導波路から電波が漏れ出さないために、前記誘電体基板は、共振周波数の高周波信号の伝搬を減衰させるような厚み及び比誘電率を持っていることが必要である。 Et al is said to sandwich the dielectric substrate, for radio waves from the waveguide formed between the end face of the support member and the lower conductor does not leak, the dielectric substrate, the resonant frequency RF signal It is necessary to have a thickness and a relative dielectric constant so as to attenuate the propagation of.

(2)また、本発明者は、誘電体共振器を1個又は複数個用意し、共振部へ高周波信号を入力する入力電極と、高周波信号を出力する出力電極とを形成して、誘電体フィルタを実現した。
すなわち、本発明の誘電体フィルタは、下部導体及び上部導体と、前記下部導体に接触して配置された誘電体基板とを有し、前記誘電体基板と前記上部導体とが、支持部材を介して対向し、その間に共振空間が形成され、前記共振空間に高周波信号を入力する入力電極と、前記共振空間から高周波信号を取り出す出力電極とを備え、前記入力電極又は出力電極の、少なくとも一方又は両方は、コプナ線路、ストリップ線路、同軸線路、又は非放射性の線路で形成されていることを特徴とする。
(2) In addition, the inventor prepares one or more dielectric resonators, forms an input electrode for inputting a high frequency signal to the resonance part, and an output electrode for outputting the high frequency signal, and forms a dielectric Realized the filter.
That is, the dielectric filter of the present invention includes a lower conductor and an upper conductor, and a dielectric substrate disposed in contact with the lower conductor, and the dielectric substrate and the upper conductor are interposed via a support member. A resonance space is formed between the input electrode and the input electrode for inputting a high-frequency signal to the resonance space; and an output electrode for extracting the high-frequency signal from the resonance space, and at least one of the input electrode and the output electrode, or both Kopu Les over Na line, strip line, characterized in that it is formed by a coaxial line, or non-radioactive line.

前記共振空間が複数個形成され、いずれかの共振空間に高周波信号を入力する同軸線路で形成された入力電極と、他の共振空間から高周波信号を出力する同軸線路で形成された出力電極とを備えるものであってもよい。この構成によれば、誘電体共振器が横方向に並列に形成されるので、従来の約半分の高さで誘電体フィルタの実現が可能となる。 A plurality of the resonance spaces are formed, and an input electrode formed by a coaxial line that inputs a high frequency signal to any one of the resonance spaces, and an output electrode formed by a coaxial line that outputs a high frequency signal from another resonance space It may be provided. According to this configuration, since the dielectric resonators are formed in parallel in the horizontal direction, it is possible to realize a dielectric filter at about half the height of the conventional one.

前記誘電体基板を挟んで、前記下部導体と前記支持部材の端面との間に形成される導波路において、前記誘電体基板は、電波の漏出を防止するために、共振周波数の高周波信号の伝搬を減衰させるような厚み及び比誘電率を持っていることが好ましい。
また本発明の誘電体フィルタは、下部導体及び上部導体と、前記下部導体に接触して配置された第1の誘電体基板と、前記上部導体に接触して配置された第2の誘電体基板とを有し、前記第1の誘電体基板と前記第2の誘電体基板とが、支持部材を介して対向し、その間に共振空間が形成され、前記共振空間に高周波信号を入力する入力電極と、前記共振空間から高周波信号を取り出す出力電極とを備え、前記入力電極又は出力電極の、少なくとも一方又は両方は、コプナ線路、ストリップ線路、同軸線路、又は非放射性の線路で形成されていることを特徴とする。
In the waveguide formed between the lower conductor and the end face of the support member across the dielectric substrate, the dielectric substrate propagates a high-frequency signal having a resonance frequency in order to prevent leakage of radio waves. It is preferable to have a thickness and a relative dielectric constant that attenuates.
The dielectric filter of the present invention includes a lower conductor and an upper conductor, a first dielectric substrate disposed in contact with the lower conductor, and a second dielectric substrate disposed in contact with the upper conductor. The first dielectric substrate and the second dielectric substrate are opposed to each other via a support member, a resonance space is formed therebetween, and an input electrode for inputting a high frequency signal to the resonance space If, and an output electrode for taking out the high-frequency signal from said resonant space, the input electrode or output electrode, at least one or both, Kopu Les over Na line, strip line, formed by the coaxial line, or non-radioactive lines It is characterized by.

この誘電体フィルタは、誘電体共振器が縦に並べられた構造であり、誘電体フィルタの横幅を小さくすることができる。
使用する周波数において、電波を空間の中に閉じこめて共振させるためには、誘電体共振器の周囲は導体で遮蔽されることが必要である。の例として、前記支持部材が筒状導体、例えば円筒状導体であり、その筒状導体の両開口端を、前記2枚の誘電体基板に接触させている構造が示される
This dielectric filter has a structure in which dielectric resonators are vertically arranged, and the lateral width of the dielectric filter can be reduced.
At a frequency to be used, in order to resonate trapped radio waves into space, surrounding dielectric resonators are required and Turkey are shielded by a conductor. Examples of this, the support member is a tubular conductor, for example, cylindrical conductor, both open ends of the tubular conductor, the two are brought into contact with the dielectric substrate structure is shown.

さらに、前記誘電体基板を挟んで、前記上部導体又は下部導体と前記支持部材の端面との間に形成される導波路から電波が漏れ出さないために、前記誘電体基板は、共振周波数の高周波信号の伝搬を減衰させるような厚み及び比誘電率を持っていることが必要である Further, in order to prevent radio waves from leaking from the waveguide formed between the upper conductor or the lower conductor and the end face of the support member with the dielectric substrate interposed therebetween, the dielectric substrate has a high frequency of a resonance frequency. It is necessary to have a thickness and a relative dielectric constant that attenuate signal propagation .

記誘電体フィルタを無線通信機器に搭載することにより、低コスト、小型で性能の優れたミリ波レーダ、無線LAN、ホットスポット、アドホック無線システムなどの無線通信機器を提供することができる。 By mounting the pre Symbol dielectric filter in a wireless communication device, it is possible to provide a low cost, excellent millimeter wave radar small in performance, a wireless LAN, hot spot, a wireless communication device such as an ad hoc wireless systems.

本発明によれば、導体板上に誘電体板を配置し、該誘電体板上に、開口部が前記誘電体板側となるように、有底筒状導体を載置した誘電体共振器を提供でき、この誘電体共振器を用いることで、特にミリ波帯において、低コスト、小型化、高性能化が期待できる誘電体フィルタ及び無線通信機器を実現することができる。   According to the present invention, a dielectric resonator is provided with a dielectric plate disposed on a conductor plate, and a bottomed cylindrical conductor placed on the dielectric plate so that the opening is on the dielectric plate side. By using this dielectric resonator, it is possible to realize a dielectric filter and a wireless communication device that can be expected to be low in cost, downsized, and high in performance, particularly in the millimeter wave band.

以下、本発明の実施の形態を、添付図面を参照しながら詳細に説明する。
図1は、本発明の誘電体共振器の一例を示す縦断面図である。この図1において、誘電体共振器は、グランドとなる下部導体3の上に、誘電体基板1を配置し、誘電体基板1の上に、開口部4を有した有底筒状導体2を、その開口端が誘電体基板1と接触するように設置している。有底筒状導体2は、底板2aと円筒側板(支持部材に該当する)2bとからなる。したがって、下部導体3と有底筒状導体2とにより、金属で囲まれた共振用の空洞を形成する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a longitudinal sectional view showing an example of a dielectric resonator according to the present invention. In FIG. 1, the dielectric resonator has a dielectric substrate 1 disposed on a lower conductor 3 serving as a ground, and a bottomed cylindrical conductor 2 having an opening 4 on the dielectric substrate 1. The opening end of the dielectric substrate 1 is in contact with the dielectric substrate 1. The bottomed cylindrical conductor 2 includes a bottom plate 2a and a cylindrical side plate (corresponding to a support member) 2b. Therefore, the lower conductor 3 and the bottomed cylindrical conductor 2 form a resonance cavity surrounded by metal.

下部導体3、有底筒状導体2の底板2aはともに平面図示して円板形状を有し、互いに平行に配列されている。有底筒状導体2で構成される空洞の直径をD、高さをH、誘電体基板1の厚みをtとする。
また、有底筒状導体2の円筒側板2bには、同軸線5が空洞内に挿入されている。これにより誘電体共振器の励振および検波を、同軸線5の先端に取り付けられたループアンテナ6を介して行うことができる。
The lower conductor 3 and the bottom plate 2a of the bottomed cylindrical conductor 2 are both shown in plan view and have a disk shape, and are arranged in parallel to each other. The diameter of the cavity constituted by the bottomed cylindrical conductor 2 is D, the height is H, and the thickness of the dielectric substrate 1 is t.
A coaxial line 5 is inserted into the cavity on the cylindrical side plate 2 b of the bottomed cylindrical conductor 2. Thus, excitation and detection of the dielectric resonator can be performed via the loop antenna 6 attached to the tip of the coaxial line 5.

なお、信号の出し入れ電極を、同軸線に限らず、コプナ線路、ストリップ線路、マイクロストリップ線路、又は非放射性の線路で形成してもよい。
この誘電体共振器は、TE010モードを利用しており、電界は、誘電体共振器の下部導体3の表面でゼロになり、それから上方向に増大する。このため、下部導体3に接して配置された誘電体基板1に蓄積されるTE010モードの電界エネルギーは、図6に示した従来のTE010モード誘電体共振器の誘電体基板1に蓄積される電界エネルギーに比べて小さくなる。
Note that the out electrodes of the signal is not limited to the coaxial line, Kopu les over Na lines, strip lines may be formed by a microstrip line, or non-radioactive line.
This dielectric resonator utilizes the TE010 mode, and the electric field becomes zero on the surface of the lower conductor 3 of the dielectric resonator and then increases upward. For this reason, the electric field energy of the TE010 mode accumulated in the dielectric substrate 1 disposed in contact with the lower conductor 3 is the electric field accumulated in the dielectric substrate 1 of the conventional TE010 mode dielectric resonator shown in FIG. Smaller than energy.

このため、同じ条件(誘電体厚み、比誘電率、空洞の高さH、開口部直径D等)で設計した場合、本発明の誘電体共振器は、従来のTE010モード誘電体共振器に比べて周波数を高く設計でき、ミリ波帯の誘電体共振器として適している。周波数が同じであれば、従来の誘電体共振器に比べて空洞の高さHを高くし、開口部のサイズDを大きくできる利点がある。   Therefore, when designed under the same conditions (dielectric thickness, relative dielectric constant, cavity height H, opening diameter D, etc.), the dielectric resonator of the present invention is compared with the conventional TE010 mode dielectric resonator. Therefore, it can be designed to have a high frequency and is suitable as a dielectric resonator in the millimeter wave band. If the frequency is the same, there is an advantage that the height H of the cavity can be increased and the size D of the opening can be increased as compared with the conventional dielectric resonator.

この結果、誘電体共振器製造時の加工誤差に対する要求が緩和され、誘電体共振器の製造が容易になる。
前記有底筒状導体2の円筒側板2bは、底板2aと一体に形成されていてもよく、別々に形成されてもよい。円筒側板2bは、別々に形成する場合、導体でも誘電体でもよい。円筒側板2bが誘電体である場合、その高さ(H−t)は、使用する周波数において、上下導体2a,3間を電磁波が横方向に伝搬する場合に、伝搬モードが遮断領域となるような高さに選ぶことが好ましい。これは、空洞内の電波が上下導体2a,3間から漏れ出すのを防ぐためである。
As a result, the demand for processing errors in manufacturing the dielectric resonator is relaxed, and the manufacture of the dielectric resonator is facilitated.
The cylindrical side plate 2b of the bottomed cylindrical conductor 2 may be formed integrally with the bottom plate 2a or may be formed separately. The cylindrical side plate 2b may be a conductor or a dielectric when formed separately. When the cylindrical side plate 2b is a dielectric, its height (Ht) is such that the propagation mode becomes a cut-off region when electromagnetic waves propagate in the horizontal direction between the upper and lower conductors 2a and 3 at the frequency used. It is preferable to select a high height. This is to prevent radio waves in the cavity from leaking between the upper and lower conductors 2a, 3.

ここで、誘電体基板1の厚みt及びその比誘電率εについて説明する。誘電体基板1は、共振周波数の高周波信号を減衰させるような値に選ばれる。詳しくいえば、誘電体基板1は、下部導体3と有底筒状導体2の開口端2cとで挟み込まれた平行平板の構造となっている。平行平板の端から電波が飛び出さないためには、平行平板の遮断周波数fcを超えない周波数領域で設計を行う必要がある。従来のマイクロ波帯では、あまり考慮する必要がなかったが、ミリ波帯では波長が短いので、誘電体基板1の厚みtが厚く、比誘電率εが高い試料では、遮断周波数fcを超える場合も生じる。平行平板の遮断周波数fcは、次式で表される(μは透磁率)。
fc=1/2t√(με)
したがって、誘電体基板1の厚みt、比誘電率εは、使用する周波数がカットオフ周波数fcを超えないように選ぶ必要がある。
Here, the thickness t of the dielectric substrate 1 and its relative dielectric constant ε will be described. The dielectric substrate 1 is selected to have a value that attenuates a high frequency signal having a resonance frequency. Specifically, the dielectric substrate 1 has a parallel plate structure sandwiched between the lower conductor 3 and the open end 2 c of the bottomed cylindrical conductor 2. In order to prevent radio waves from jumping out from the end of the parallel plate, it is necessary to design in a frequency region that does not exceed the cutoff frequency fc of the parallel plate. In the conventional microwave band, it was not necessary to consider much, but since the wavelength is short in the millimeter wave band, a sample having a thick dielectric substrate 1 having a large thickness t and a high relative dielectric constant ε exceeds the cutoff frequency fc. Also occurs. The cutoff frequency fc of the parallel plate is expressed by the following formula (μ is magnetic permeability).
fc = 1 / 2t√ (με)
Therefore, it is necessary to select the thickness t and the relative dielectric constant ε of the dielectric substrate 1 so that the frequency to be used does not exceed the cutoff frequency fc.

前記誘電体基板1には、例えば、ガラスエポキシ樹脂などの有機系誘電体基板、又は、セラミック材料などの無機系誘電体基板が用いられる。
特に、セラミック材料を用いれば、セラミック誘電体の比誘電率は通常5から25と、樹脂基板に比べて高いので、誘電体層を薄くでき、素子の小型化に有効である。また、セラミック材料を用いると、一般に、樹脂基板に比べて誘電損失が低いため、誘電体フィルタの高Q化に対して有効である。
As the dielectric substrate 1, for example, an organic dielectric substrate such as glass epoxy resin or an inorganic dielectric substrate such as ceramic material is used.
In particular, if a ceramic material is used, the dielectric constant of the ceramic dielectric is usually 5 to 25, which is higher than that of the resin substrate. Therefore, the dielectric layer can be made thin, which is effective for miniaturization of the element. In addition, when a ceramic material is used, since the dielectric loss is generally lower than that of the resin substrate, it is effective for increasing the Q of the dielectric filter.

前記導体材料は、金、銀、銅などである。
図2(a)は、本発明の誘電体フィルタの基本構造の一例を示す縦断面図である。また、図2(b)に本発明の誘電体フィルタの斜視図を示す。
これらの図2(a)(b)において、下部導体3上に誘電体基板1を配置し、誘電体基板1上に、直方体の形状を有し、2つの開口部4a,4bを持った有底導体2を設置した構造となっている。2つの開口部4a,4bは、誘電体基板1を介して所望の結合係数が得られるような距離xを有して配置されている。なお、この誘電体フィルタへの信号入力および誘電体フィルタからの信号出力は、図1と同様、有底導体2の側面から行うことができる。
The conductor material is gold, silver, copper or the like.
FIG. 2A is a longitudinal sectional view showing an example of the basic structure of the dielectric filter of the present invention. FIG. 2B is a perspective view of the dielectric filter of the present invention.
2 (a) and 2 (b), the dielectric substrate 1 is disposed on the lower conductor 3, and the dielectric substrate 1 has a rectangular parallelepiped shape and has two openings 4a and 4b. The bottom conductor 2 is installed. The two openings 4 a and 4 b are arranged with a distance x through which the desired coupling coefficient can be obtained via the dielectric substrate 1. The signal input to the dielectric filter and the signal output from the dielectric filter can be performed from the side surface of the bottomed conductor 2 as in FIG.

この誘電体フィルタをミリ波帯へ応用する場合、2つの誘電体共振器が所定の関係の共振周波数を持つようにする必要がある。なお前記「所定の関係」は誘電体フィルタの使用目的によって異なる。共振周波数が同一の場合もあり、共振周波数がずれている場合もある。
この誘電体フィルタは、図1を用いて説明したように、開口部の設計値Dに対する寸法許容度が緩やかなので、寸法の加工精度が同じであれば、共振周波数の精度が従来よりも改善されている。したがって、特性の揃った歩留まりの良い誘電体フィルタを製作することができる。
When this dielectric filter is applied to the millimeter wave band, it is necessary that the two dielectric resonators have a predetermined resonance frequency. The “predetermined relationship” varies depending on the purpose of use of the dielectric filter. The resonance frequency may be the same or the resonance frequency may be shifted.
As described with reference to FIG. 1, the dielectric filter has a moderate dimensional tolerance with respect to the design value D of the opening. Therefore, if the dimensional processing accuracy is the same, the accuracy of the resonance frequency is improved as compared with the conventional case. ing. Therefore, it is possible to manufacture a dielectric filter with uniform characteristics and good yield.

この誘電体フィルタにおいても、支持部材、すなわち有底導体2の側面2bは、底板2aと一体に形成されていてもよいが、別々に形成されてもよい。別々に形成する場合、円筒側板2bは、導体でも誘電体でもよく、誘電体とする場合は、前述したように、その高さ(H−t)を、使用する周波数において上下導体2a,3間を電磁波が横方向に漏洩しないような高さに選ぶことが好ましい。また、誘電体基板1の厚みt及びその比誘電率εについても、前述したように、誘電体基板1の端から電波が漏洩しないように選ぶ必要がある。   Also in this dielectric filter, the supporting member, that is, the side surface 2b of the bottomed conductor 2 may be formed integrally with the bottom plate 2a, or may be formed separately. When separately formed, the cylindrical side plate 2b may be a conductor or a dielectric, and when it is a dielectric, as described above, its height (Ht) is set between the upper and lower conductors 2a and 3 at the frequency to be used. Preferably, the height is selected so that electromagnetic waves do not leak laterally. Also, the thickness t of the dielectric substrate 1 and its relative dielectric constant ε must be selected so that radio waves do not leak from the end of the dielectric substrate 1 as described above.

図3は、本発明の誘電体フィルタのさらに他の構造の一例を示す縦断面図である。この図3において、下部導体板3a上に誘電体基板1aを配置し、誘電体基板上1aに円筒導体2bを、その開口端が誘電体基板上1aに接するように設置している。また、上部導体板3bに第2の誘電体基板1bを配置し、この第2の誘電体基板1bを前記円筒導体2bの他の開口端に接触させている。このように、第1の誘電体基板1aと第2の誘電体基板1bが対向して配置された構造となっている。第1の誘電体基板1aと第2の誘電体基板1bは、所望の結合係数が得られるような距離yを有して対向して配置される。   FIG. 3 is a longitudinal sectional view showing an example of still another structure of the dielectric filter of the present invention. In FIG. 3, a dielectric substrate 1a is disposed on a lower conductor plate 3a, a cylindrical conductor 2b is disposed on the dielectric substrate 1a, and an opening end thereof is in contact with the dielectric substrate 1a. The second dielectric substrate 1b is disposed on the upper conductor plate 3b, and the second dielectric substrate 1b is brought into contact with the other open end of the cylindrical conductor 2b. Thus, the first dielectric substrate 1a and the second dielectric substrate 1b are arranged to face each other. The first dielectric substrate 1a and the second dielectric substrate 1b are arranged to face each other with a distance y that provides a desired coupling coefficient.

円筒導体2bは、導体でも誘電体でもよい。誘電体であるときはそれ自体遮蔽効果がないので、円筒導体2bの高さyを、使用する周波数において、上下導体3a,3b間を電磁波が横方向に伝搬する場合に伝搬モードが遮断領域となるような高さに選ぶ必要がある。
この図3の誘電体フィルタは、縦に並べられた誘電体共振器の結合を利用した構造であり、図2の構造に比べて、誘電体フィルタの横幅を小さくすることができる。また、誘電体基板1a,1bの厚みt及びその比誘電率εについても、前述したように、誘電体基板1の端から電波が漏洩しないように選ぶ必要がある。
The cylindrical conductor 2b may be a conductor or a dielectric. Since it is not a shielding effect when it is a dielectric, when the electromagnetic wave propagates in the horizontal direction between the upper and lower conductors 3a and 3b at the frequency to be used, the propagation mode becomes the cutoff region. It is necessary to choose such a height.
The dielectric filter of FIG. 3 has a structure using coupling of dielectric resonators arranged vertically, and the lateral width of the dielectric filter can be reduced as compared with the structure of FIG. Further, it is necessary to select the thickness t of the dielectric substrates 1a and 1b and the relative dielectric constant ε so that radio waves do not leak from the end of the dielectric substrate 1 as described above.

図4は、本発明の誘電体フィルタのさらに他の構造の一例を示す縦断面図である。この構造は、図2と図3の誘電体フィルタを組み合わせた構造となっている。
この図4において、導体板3a上に誘電体基板1aを配置し、その上に2つの貫通した斜め円筒空洞を有する直方体状の導体7を設置している。導体7の上端に第2の誘電体基板1bを配置し、さらにその上に導体板3bを配置している。
FIG. 4 is a longitudinal sectional view showing an example of still another structure of the dielectric filter of the present invention. This structure is a combination of the dielectric filters shown in FIGS.
In FIG. 4, a dielectric substrate 1a is disposed on a conductor plate 3a, and a rectangular parallelepiped conductor 7 having two oblique cylindrical cavities passing therethrough is disposed thereon. A second dielectric substrate 1b is disposed on the upper end of the conductor 7, and a conductor plate 3b is disposed thereon.

この構造においても、直方体状の導体7は金属でも誘電体でもよく、誘電体であるときはそれ自体遮蔽効果がないので、空洞の高さyを、使用する周波数において、上下導体3a,3b間を電磁波が横方向に伝搬して漏れ出さないような寸法に選ぶ必要がある。また、誘電体基板1a,1bの厚みt及びその比誘電率εについても、前述したように、誘電体基板1a,1bの端から電波が漏洩しないように選ぶ必要がある。   Also in this structure, the rectangular parallelepiped conductor 7 may be a metal or a dielectric, and when it is a dielectric, it does not itself have a shielding effect, so the height y of the cavity is set between the upper and lower conductors 3a and 3b at the frequency to be used. Must be selected so that the electromagnetic waves do not leak through the lateral direction. Also, the thickness t of the dielectric substrates 1a and 1b and the relative dielectric constant ε thereof must be selected so that radio waves do not leak from the ends of the dielectric substrates 1a and 1b as described above.

図4の誘電体フィルタにおいて、高周波信号は、導体7の左側に挿入された同軸線5の先端ループアンテナ6から、開口部4aへ結合し、誘電体基板1bを介して開口部4bへと結合し、導体7の右側に挿入された同軸線5の先端ループアンテナ6から取り出される。これにより誘電体共振器が四段の接続された誘電体フィルタを実現することができる。
以上のように、本発明の共振器及び誘電体フィルタは、特にミリ波帯において最も効果があり、低コストが期待できる。
In the dielectric filter of FIG. 4, a high frequency signal is coupled from the tip loop antenna 6 of the coaxial line 5 inserted on the left side of the conductor 7 to the opening 4a, and is coupled to the opening 4b via the dielectric substrate 1b. Then, it is taken out from the tip loop antenna 6 of the coaxial line 5 inserted on the right side of the conductor 7. Thereby, a dielectric filter in which dielectric resonators are connected in four stages can be realized.
As described above, the resonator and the dielectric filter of the present invention are most effective particularly in the millimeter wave band, and low cost can be expected.

以上で、本発明の実施の形態を説明したが、本発明の実施は、前記の形態に限定されるものではなく、本発明の範囲内で種々の変更を施すことが可能である。   Although the embodiments of the present invention have been described above, the embodiments of the present invention are not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.

図1に示した構造の単一共振器の設計および測定を行った。空洞の直径D=11.86mm、高さH=6.56mm、誘電体の厚みt=0.63mm、比誘電率ε=9.4とした。計算値は共振周波数f0=35.53GHzとなる。
実際に共振器を試作し、ネットワークアナライザを用いて測定を行った。空洞の寸法の測定結果は、D=11.864mm、H=6.565mmであり、誘電体にはサファイアを用い、その厚みtの測定結果は、0.626mmである。
A single resonator having the structure shown in FIG. 1 was designed and measured. The cavity diameter D was 11.86 mm, the height H was 6.56 mm, the dielectric thickness t was 0.63 mm, and the relative dielectric constant ε was 9.4. The calculated value is the resonance frequency f0 = 35.53 GHz.
A resonator was actually fabricated and measured using a network analyzer. The measurement result of the dimension of the cavity is D = 11.864 mm and H = 6.565 mm, sapphire is used as the dielectric, and the measurement result of the thickness t is 0.626 mm.

この共振器の挿入損失の周波数応答を図5に示す。このとき、測定値は、f0=35.57GHzとなった。計算値とずれの主な原因は、誘電体の比誘電率である。誘電体の比誘電率を正確に知ることができれば、f0のずれはもっと小さくなると予想される。
この結果、この共振器を用いて、ミリ波帯における誘電体フィルタが十分に実現可能になることがわかった。
The frequency response of the insertion loss of this resonator is shown in FIG. At this time, the measured value was f0 = 35.57 GHz. The main cause of the deviation from the calculated value is the dielectric constant of the dielectric. If the relative permittivity of the dielectric can be accurately known, the shift of f0 is expected to be smaller.
As a result, it was found that a dielectric filter in the millimeter wave band can be sufficiently realized using this resonator.

本発明の誘電体共振器の基本構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the basic structure of the dielectric resonator of this invention. (a)は本発明の誘電体フィルタの構造例を示す縦断面図である。(b)は誘電体フィルタの斜視図である。(A) is a longitudinal cross-sectional view which shows the structural example of the dielectric material filter of this invention. (B) is a perspective view of a dielectric filter. 本発明の誘電体フィルタのさらに他の構造の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the further another structure of the dielectric material filter of this invention. 本発明の誘電体フィルタのさらに他の構造の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the further another structure of the dielectric material filter of this invention. 本発明の誘電体共振器の実施例にかかる、挿入損失の周波数応答の実測グラフである。It is an actual measurement graph of the frequency response of insertion loss concerning the Example of the dielectric resonator of this invention. 従来のTEモード誘電体装荷空洞共振器の構造図の一例を示す断面図である。It is sectional drawing which shows an example of the structural drawing of the conventional TE mode dielectric material loading cavity resonator. 従来のTEモード誘電体フィルタの構造図の一例を示す断面図である。It is sectional drawing which shows an example of the structural drawing of the conventional TE mode dielectric filter.

符号の説明Explanation of symbols

1、1a、1b 誘電体基板
2 有底筒状導体
2b 支持部材
3、3a、3b 導体板
4 円筒空洞
5 同軸線
6 ループアンテナ
DESCRIPTION OF SYMBOLS 1, 1a, 1b Dielectric board | substrate 2 Bottomed cylindrical conductor 2b Support member 3, 3a, 3b Conductor plate 4 Cylindrical cavity 5 Coaxial line 6 Loop antenna

Claims (11)

下部導体と、該下部導体に接触して配置された誘電体基板と、筒状導体及び上部導体からなる有底筒状導体とを有し、
前記有底筒状導体の、前記上部導体と反対側にある開口端が前記誘電体基板に接触するように設置されて、前記下部導体と前記有底筒状導体とによって囲まれた共振用の空洞が形成されていることを特徴とする誘電体共振器。
A lower conductor, a dielectric substrate disposed in contact with the lower conductor, and a bottomed cylindrical conductor composed of a cylindrical conductor and an upper conductor;
An opening end of the bottomed cylindrical conductor opposite to the upper conductor is disposed so as to contact the dielectric substrate, and is surrounded by the lower conductor and the bottomed cylindrical conductor. A dielectric resonator characterized in that a cavity is formed.
前記筒状導体が円筒状導体である請求項1記載の誘電体共振器。   The dielectric resonator according to claim 1, wherein the cylindrical conductor is a cylindrical conductor. 前記誘電体基板を挟んで、前記下部導体と前記有底筒状導体との間に形成される導波路において、前記誘電体基板は、共振周波数の高周波信号の伝搬を減衰させるような厚み及び比誘電率を持っている請求項1又は請求項2に記載の誘電体共振器。   In the waveguide formed between the lower conductor and the bottomed cylindrical conductor across the dielectric substrate, the dielectric substrate has a thickness and ratio that attenuates the propagation of a high-frequency signal at a resonance frequency. The dielectric resonator according to claim 1 or 2, wherein the dielectric resonator has a dielectric constant. 下部導体及び上部導体と、前記下部導体に接触して配置された誘電体基板とを有し、
前記誘電体基板と前記上部導体とが、支持部材を介して対向し、その間に共振空間が形成され、
前記共振空間に高周波信号を入力する入力電極と、前記共振空間から高周波信号を取り出す出力電極とを備え、
前記入力電極又は出力電極の、少なくとも一方又は両方は、コプナ線路、ストリップ線路、同軸線路、又は非放射性の線路で形成されていることを特徴とする誘電体フィルタ。
A lower conductor and an upper conductor, and a dielectric substrate disposed in contact with the lower conductor;
The dielectric substrate and the upper conductor face each other via a support member, and a resonance space is formed between them,
An input electrode for inputting a high-frequency signal to the resonance space; and an output electrode for extracting a high-frequency signal from the resonance space;
Of the input electrode or output electrode, at least one or both, the dielectric filter, wherein Kopu les over Na line, strip line, in that it is formed by a coaxial line, or non-radioactive line.
前記共振空間が複数個形成されており、前記入力電極はいずれかの前記共振空間に高周波信号を入力し、前記出力電極は他の前記共振空間から高周波信号を取り出すとともに、前記入力電極及び前記出力電極は同軸線路で形成されている請求項4記載の誘電体フィルタ。 Wherein and resonance space is plural number, enter the high-frequency signal the input electrode to one of said resonant space, the output electrode is taken out of the high-frequency signal from the other of said resonant space, the input electrode and the output The dielectric filter according to claim 4 , wherein the electrode is formed of a coaxial line . 前記誘電体基板を挟んで、前記下部導体と前記支持部材の端面との間に形成される導波路において、前記誘電体基板は、共振周波数の高周波信号の伝搬を減衰させるような厚み及び比誘電率を持っている請求項4又は請求項5に記載の誘電体フィルタ。   In the waveguide formed between the lower conductor and the end surface of the support member across the dielectric substrate, the dielectric substrate has a thickness and relative dielectric constant that attenuates propagation of a high-frequency signal having a resonance frequency. 6. The dielectric filter according to claim 4, wherein the dielectric filter has a rate. 下部導体及び上部導体と、前記下部導体に接触して配置された第1の誘電体基板と、前記上部導体に接触して配置された第2の誘電体基板とを有し、
前記第1の誘電体基板と前記第2の誘電体基板とが、支持部材を介して対向し、その間に共振空間が形成され、
前記共振空間に高周波信号を入力する入力電極と、前記共振空間から高周波信号を取り出す出力電極とを備え、
前記入力電極又は出力電極の、少なくとも一方又は両方は、コプナ線路、ストリップ線路、同軸線路、又は非放射性の線路で形成されていることを特徴とする誘電体フィルタ。
A lower conductor and an upper conductor; a first dielectric substrate disposed in contact with the lower conductor; and a second dielectric substrate disposed in contact with the upper conductor;
The first dielectric substrate and the second dielectric substrate are opposed to each other via a support member, and a resonance space is formed therebetween,
An input electrode for inputting a high-frequency signal to the resonance space; and an output electrode for extracting a high-frequency signal from the resonance space;
Of the input electrode or output electrode, at least one or both, the dielectric filter, wherein Kopu les over Na line, strip line, in that it is formed by a coaxial line, or non-radioactive line.
前記支持部材が筒状導体であり、その筒状導体の両側の開口端を、前記第1および第2の誘電体基板に接触させている請求項7記載の誘電体フィルタ。   8. The dielectric filter according to claim 7, wherein the support member is a cylindrical conductor, and open ends on both sides of the cylindrical conductor are in contact with the first and second dielectric substrates. 前記筒状導体が円筒状導体である請求項8記載の誘電体フィルタ。   The dielectric filter according to claim 8, wherein the cylindrical conductor is a cylindrical conductor. 前記第1の誘電体基板を挟んで、前記下部導体と前記支持部材の端面との間にそれぞれ形成される導波路、及び前記第2の誘電体基板を挟んで、前記上部導体と前記支持部材の端面との間に形成される導波路において、前記第1及び第2の誘電体基板は、共振周波数の高周波信号の伝搬を減衰させるような厚み及び比誘電率を持っている請求項7〜請求項9のいずれかに記載の誘電体フィルタ。   Waveguides respectively formed between the lower conductor and the end face of the support member across the first dielectric substrate, and the upper conductor and the support member across the second dielectric substrate 8. The waveguide formed between the first and second dielectric substrates, wherein the first and second dielectric substrates have a thickness and a relative dielectric constant so as to attenuate the propagation of a high-frequency signal having a resonance frequency. The dielectric filter according to claim 9. 前記請求項4〜請求項10のいずれかに記載の誘電体フィルタを搭載した無線通信機器。   A wireless communication device equipped with the dielectric filter according to any one of claims 4 to 10.
JP2003391085A 2003-11-20 2003-11-20 Dielectric resonator, dielectric filter, and wireless communication device Expired - Fee Related JP4275512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003391085A JP4275512B2 (en) 2003-11-20 2003-11-20 Dielectric resonator, dielectric filter, and wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003391085A JP4275512B2 (en) 2003-11-20 2003-11-20 Dielectric resonator, dielectric filter, and wireless communication device

Publications (2)

Publication Number Publication Date
JP2005159440A JP2005159440A (en) 2005-06-16
JP4275512B2 true JP4275512B2 (en) 2009-06-10

Family

ID=34718264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003391085A Expired - Fee Related JP4275512B2 (en) 2003-11-20 2003-11-20 Dielectric resonator, dielectric filter, and wireless communication device

Country Status (1)

Country Link
JP (1) JP4275512B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5451509B2 (en) * 2010-04-27 2014-03-26 京セラ株式会社 Thickness measurement method

Also Published As

Publication number Publication date
JP2005159440A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
CN110098453B (en) Radio frequency filter
US20110001584A1 (en) Radio-frequency filter device using dielectric waveguide with multiple resonant modes
US7746191B2 (en) Waveguide to microstrip line transition having a conductive footprint for providing a contact free element
US8957820B2 (en) Antenna element-waveguide converter and radio communication device using the same
US20050099242A1 (en) Input/output coupling structure for dielectric waveguide
US20100188171A1 (en) Inductive coupling in transverse electromagnetic mode
US20020041221A1 (en) Tunable bandpass filter
TW201140937A (en) Microwave transition device between a microstrip line and a rectangular waveguide
KR101812490B1 (en) Designs and methods to implement surface mounting structures of SIW
JP2005260570A (en) Microstripline waveguide converter
JP3478219B2 (en) Resonator, resonance element, resonator device, filter, duplexer, and communication device
Wang et al. Compact 60 GHz low‐temperature cofired ceramic filter with quasi‐elliptic bandpass response
JP4042800B2 (en) High frequency circuit device and transmission / reception device
EP3633786B1 (en) Filter device and filter
JP4275512B2 (en) Dielectric resonator, dielectric filter, and wireless communication device
CN110752425A (en) Band-pass filter and communication device
US6356168B1 (en) Sheet-metal filter
US10707546B2 (en) Dielectric filter unit comprising three or more dielectric blocks and a transmission line for providing electromagnetically coupling among the dielectric resonators
JP4079944B2 (en) Waveguide E-plane RF bandpass filter with pseudo-elliptical response
US20160118704A1 (en) Low-loss continuously tunable filter and resonator thereof
JP4280160B2 (en) Dielectric resonator, dielectric filter, and high-frequency module
EP2808940B1 (en) Artificial dielectric resonator and artificial dielectric filter using same
JP6144456B2 (en) High frequency module
CN110739511A (en) Tunable probe for high performance cross-coupled RF filters
KR101645671B1 (en) High frequency filter with cross-arranged step impedance resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20081127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees