JP4275477B2 - Method for producing molded article having cured resin layer and hydraulic transfer device - Google Patents

Method for producing molded article having cured resin layer and hydraulic transfer device Download PDF

Info

Publication number
JP4275477B2
JP4275477B2 JP2003204478A JP2003204478A JP4275477B2 JP 4275477 B2 JP4275477 B2 JP 4275477B2 JP 2003204478 A JP2003204478 A JP 2003204478A JP 2003204478 A JP2003204478 A JP 2003204478A JP 4275477 B2 JP4275477 B2 JP 4275477B2
Authority
JP
Japan
Prior art keywords
active energy
hydraulic transfer
transfer
resin layer
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003204478A
Other languages
Japanese (ja)
Other versions
JP2004130778A (en
JP2004130778A5 (en
Inventor
利郎 有賀
寛知 永田
秀幸 古田
真司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2003204478A priority Critical patent/JP4275477B2/en
Publication of JP2004130778A publication Critical patent/JP2004130778A/en
Publication of JP2004130778A5 publication Critical patent/JP2004130778A5/ja
Application granted granted Critical
Publication of JP4275477B2 publication Critical patent/JP4275477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Decoration By Transfer Pictures (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水圧転写により硬化樹脂層が転写された成形品である水圧転写体の製造方法、前記製造方法に適した水圧転写用水槽、及び水圧転写装置に関する。本発明の水圧転写体製造方法、水圧転写用水槽及び水圧転写装置は、意匠性と表面強度を要求される家庭電化製品や自動車部材などの装飾成形品の製造に特に有用である。
【0002】
【従来の技術】
水圧転写法は意匠性に富む装飾層を複雑な三次元形状の成形品に付与できる方法であるが、水圧転写後にさらに水圧転写した装飾層に硬化性樹脂を保護層としてスプレー塗装する必要がある。このため、水圧転写法による成形品の製造は、製造工程が煩雑であると共に水圧転写設備の他に塗装設備も必要であることからコスト高であり、水圧転写法で製造される成形品は高級品に限られていた。
【0003】
この煩雑さとコスト高を解消するために、水圧転写法によって、被転写体に硬化性樹脂層を装飾層と共に転写する試みがなされており、例えば、特開昭64−22378号公報には、電離放射線の照射または熱で硬化する樹脂塗工層を有する水圧転写用シートと該水圧転写用シートを用いて、被転写体に未硬化状態の塗工層および装飾層を転写し、次いで水溶性もしくは水膨潤性の支持体フィルムを水洗で除去した後、電離放射線または熱で該塗工層を硬化させる、硬化樹脂層を有する成形品(水圧転写体)の製造方法が開示されている。しかし、得られた成形品は、硬化性樹脂層を塗装した成形品に比べて、その光沢や表面平滑性が低いという問題点があった。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、水圧転写による優れた光沢と表面平滑性を有する硬化樹脂層を有する成形品の製造方法、該製造方法に適した水圧転写用水槽および水圧転写用装置を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討した結果、水圧転写体上の支持体フィルムを水洗して除去する際に、転写された未硬化の硬化性樹脂層に微細な水洗痕が生じ、得られる成形体の光沢と表面平滑性が著しく低下することを見出した。
【0006】
すなわち硬化性樹脂層は、未硬化状態では、表面硬度が非常に低く、わずかな水流でも表面に水流による痕残りが生じる。したがって、水洗に十分耐えるだけの表面硬度に水溶性支持体を除去する前に硬化させる必要がある。一方、ここで過度に硬化させると、硬化性樹脂には活性剤が残留しているため、硬化性樹脂の急激な硬化によりシワやクラックが発生したり、表面の硬化によって、後の乾燥工程で十分に活性剤を除去できないといった問題が発生する。 そこで、本発明者らは硬化性樹脂層を含む転写層を水圧転写した後、水圧転写体上の支持体フィルムを除去する前に活性エネルギー線照射を行い、硬化性樹脂層の一部を硬化させることにより、支持体フィルム除去による硬化性樹脂層表面の荒れ発生を抑制し、さらに第2照射工程で最終硬化レベルにまで硬化させる活性エネルギー線量を照射することにより、塗装並みの光沢と表面平滑性を有する成形品が得られることを見出し、さらに、該製造方法に適した水圧転写用水槽と水圧転写装置を見いだすことにより本発明を完成するに至った。
【0007】
すなわち、本発明は、
水溶性もしくは水膨潤性の樹脂から成る支持体フィルムと、前記支持体フィルム上に設けた有機溶剤に溶解可能な疎水性の転写層を有し、前記転写層が活性エネルギー線照射で硬化可能な硬化性樹脂層を有する水圧転写用フィルムを、前記転写層を上にして水に浮かべ、前記水圧転写フィルムに被転写体を押し付け、有機溶剤によって活性化させた前記転写層を前記被転写体に転写した後、前記被転写体に転写された前記水圧転写フィルムから前記支持体フィルムを除去した後、活性エネルギー線を照射して、転写された硬化性樹脂層を硬化させる水圧転写体の製造方法であって、
前記被転写体に前記転写層を水圧転写後であって、前記支持体フィルム除去前に活性エネルギー線を照射して、前記硬化性樹脂層の一部を硬化させる工程を有することを特徴とする水圧転写体の製造方法を提供する。
【0008】
また、本発明は、
水槽の底と壁の少なくとも一部に活性エネルギー線照射用の窓を有することを特徴とする水圧転写用水槽を提供する。
また、本発明は、
水槽の底と壁の少なくとも一部に活性エネルギー線照射用の窓を有する水圧転写用水槽と、前記窓を通して水圧転写用水槽内の水圧転写体に活性エネルギー線を照射可能な活性エネルギー線照射装置とを備えた水圧転写装置を提供する。
【0009】
【発明の実施の形態】
本発明に用いる水圧転写用フィルムは、水溶性もしくは水膨潤性の樹脂から成る支持体フィルムと前記支持体フィルム上に設けられた有機溶剤に溶解可能な疎水性の転写層から成り、前記転写層は前記支持体フィルム上に設けられた透明な活性エネルギー線硬化性樹脂層と該活性エネルギー線硬化樹脂層上に設けられていても良い装飾層とからなる。
【0010】
水溶性もしくは水膨潤性の樹脂から成る支持体フィルム(以下、支持体フィルムと略す)としては、例えば、PVA(ポリビニルアルコール)、ポリビニルピロリドン、アセチルセルロース、ポリアクリルアミド、アセチルブチルセルロース、ゼラチン、にかわ、アルギン酸ナトリウム、ヒドロキシエチルセルロース、カルボキシメチルセルロース等のフィルムが使用できる。なかでも一般に水圧転写用フィルムとして用いられているPVAフィルムが水に溶解し易く、入手が容易で、硬化性樹脂層の印刷にも適しており、特に好ましい。また、用いる支持体フィルムの厚みは10〜200μm程度が好ましい。
【0011】
水圧転写用フィルムの転写層は、活性エネルギー線照射で硬化可能な硬化性樹脂層(以下、硬化性樹脂層と略す)を有する。転写層は該硬化性樹脂層と共に該硬化性樹脂層上に設けた印刷インキ皮膜または塗料皮膜から成る装飾層(以下、装飾層と略す)を有していても良い。
【0012】
水圧転写体の装飾層の意匠性が良く発現できることから、硬化性樹脂層は透明であることが好ましい。但し、水圧転写体の要求特性によるが、基本的に得られる水圧転写体の装飾層の色や柄が透けて見えれば良く、硬化性樹脂層は完全に透明であることを要せず、透明から半透明なものまでを含む。また、着色されていてもよい。
【0013】
硬化性樹脂層は、硬化前であっても常温で皮膜を形成し、活性エネルギー線照射で硬化可能な樹脂を含有するものであり、具体的には下記の(1)と(2)が挙げられる。
(1)活性エネルギー線硬化性樹脂を含む硬化性樹脂層。
(2)活性エネルギー線硬化性樹脂と非重合性の熱可塑性樹脂を含む硬化性樹脂層。
【0014】
次に、硬化性樹脂層の上記具体的構成(1)と(2)について説明する。
(1)活性エネルギー線硬化性樹脂を含む硬化性樹脂層
活性エネルギー線硬化性樹脂は、1分子中に活性エネルギー線によって硬化可能な重合性基や構造単位を有するオリゴマーとポリマーである。ここでいう活性エネルギー線とは紫外線と電子線であり、これらにより硬化するオリゴマーとポリマーはいずれも使用可能であるが、特に紫外線硬化性樹脂が好適である。
紫外線源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等が用いられる。
【0015】
活性エネルギー線によって硬化可能な重合性基や構造単位は、例えば、(メタ)アクリロイル基、スチリル基、ビニルエステル、ビニルエーテル、マレイミド基などの重合性不飽和二重結合を有する基や構造単位が挙げられ、なかでも、(メタ)アクリロイル基が好ましい。なかでも、1分子中に3つ以上の(メタ)アクリロイル基を有する活性エネルギー線硬化性のオリゴマーまたはポリマーが好ましい。より具体的には、1分子中に3つ以上の(メタ)アクリロイル基を有する質量平均分子量が300〜1万、より好ましくは300〜5000の活性エネルギー線硬化性のオリゴマーまたはポリマーが好ましく用いられる。
【0016】
(メタ)アクリロイル基を有するオリゴマーまたはポリマーは、塗料用樹脂として使用されるものであれば問題なく使用することができ、具体例を挙げれば、ポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリアクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリアルキレングリコールポリ(メタ)アクリレート、ポリエーテル(メタ)アクリレート等が挙げられ、中でもポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレートおよびエポキシ(メタ)アクリレートが好ましく用いられる。
【0017】
なかでも、ポリオール、水酸基含有(メタ)アクリレートおよびポリイソシアネートの反応生成物として得られるポリウレタン(メタ)アクリレートが表面特性に優れることから好ましく、1分子中に3つ以上の(メタ)アクリロイル基を有する質量平均分子量が300〜1万、より好ましくは300〜5000の紫外線硬化型のポリウレタン(メタ)アクリレートが活性エネルギー線硬化性樹脂として特に好ましく用いられる。
【0018】
これらの活性エネルギー線硬化性樹脂を含む硬化性樹脂層には、必要に応じて慣用の光重合開始剤や光増感剤が含まれて良い。光重合開始剤の代表的なものとしては、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシル−フェニルケトンの如きアセトフェノン系化合物;ベンゾイン、ベンゾインイソプロピルエーテルの如きベンゾイン系化合物;2,4,6−トリメチルベンゾインジフェニルホスフィンオキシドの如きアシルホスフィンオキシド系化合物;ベンゾフェノン、o−ベンゾイル安息香酸メチル−4−フェニルベンゾフェノンの如きベンゾフェノン系化合物;2,4−ジメチルチオキサントンの如きチオキサントン系化合物;4,4′−ジエチルアミノベンゾフェノンの如きアミノベンゾフェノン系化合物;ポリエーテル系マレイミドカルボン酸エステル化合物などが挙げられ、これらは併用して使用することもできる。
【0019】
光重合開始剤の使用量は用いる活性エネルギー線硬化性樹脂に対して、通常、0.1〜15質量%、好ましくは0.5〜8質量%である。光増感剤としては、例えば、トリエタノールアミン、4−ジメチルアミノ安息香酸エチルの如きアミン類が挙げられる。さらに、ベンジルスルホニウム塩やベンジルピリジニウム塩、アリールスルホニウム塩などのオニウム塩は、光カチオン開始剤として知られており、これらの開始剤を用いることも可能であり、上記の光重合開始剤と併用することもできる。
【0020】
(2)活性エネルギー線硬化性樹脂と非重合性の熱可塑性樹脂を含む硬化性樹脂層
活性エネルギー線硬化性樹脂と非重合性の熱可塑性樹脂を含む硬化性樹脂層は上述した活性エネルギー線硬化性樹脂と非重合性の熱可塑性樹脂を含む。非重合性の熱可塑性樹脂を活性エネルギー線硬化性樹脂と併せて用いることは硬化性樹脂層の粘着性低減とガラス転移温度(Tg)の向上および硬化性樹脂層の凝集破壊強度の向上に極めて効果的である。但し、硬化性樹脂層に含ませる熱可塑性樹脂の量が多いと硬化性樹脂の硬化反応を阻害するので、硬化性樹脂層の全樹脂量100質量部に対して熱可塑性樹脂は70質量部を超えない範囲で添加することが好ましい。
【0021】
非重合性の熱可塑性樹脂は用いる活性エネルギー線硬化性樹脂に相溶できるものであり、具体例としては、ポリメタアクリレート、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリエステルなどが挙げられる。これらはホモポリマーまたは複数のモノマーが共重合したものであって良い。
なかでも、ポリスチレンおよびポリメタアクリレートは、Tgが高く硬化性樹脂層の粘着性低減に適しているために好ましく、特にポリメチルメタアクリレートを主成分としたポリメタアクリレートが透明性、耐溶剤性および耐擦傷性に優れる点で好ましい。
【0022】
また、熱可塑性樹脂の分子量とTgは塗膜形成能に大きな影響を与える。硬化性樹脂の流動性を抑制し、かつ硬化性樹脂層の有機溶剤による活性化を容易にするために、熱可塑性樹脂の質量平均分子量は好ましくは3,000〜40万、より好ましくは1万〜20万であり、Tgは好ましくは35℃〜200℃、より好ましくは35℃〜150℃である。Tgが35℃付近の比較的低いTgを有する熱可塑性樹脂を用いる場合は、熱可塑性樹脂の質量平均分子量は10万以上であることが好ましい。
【0023】
活性エネルギー線硬化性樹脂と非重合性の熱可塑性樹脂を含む硬化性樹脂層としては、これらのなかでも、1分子中に3つ以上の(メタ)アクリロイル基を有する質量平均分子量300〜1万、より好ましくは300〜5000である活性エネルギー線硬化性樹脂と、この活性エネルギー線硬化性樹脂に相溶するTgが35℃〜200℃、好ましくは35℃〜150℃で、質量平均分子量が3000〜40万、好ましくは1万〜20万である非重合性の熱可塑性樹脂を含有する硬化性樹脂層が好ましい。さらに、前記活性エネルギー線硬化性樹脂が、1分子中に3つ以上の(メタ)アクリロイル基を有するポリウレタン(メタ)アクリレートであり、非重合性の熱可塑性樹脂がポリメタアクリレート、特にポリメチルメタアクリレートである硬化性樹脂層がとりわけ好ましい。
【0024】
次に、装飾層について説明する。
装飾層の形成に用いる印刷インキまたは塗料は、有機溶剤によって活性化されることにより、被転写体に転写層を転写する際に十分な柔軟性が得られることが好ましく、特にグラビア印刷インキが好ましい。また絵柄のない着色層を塗工によって形成することもできる。
【0025】
印刷インキまたは塗料に用いるワニス用樹脂は、アクリル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ウレア樹脂、エポキシ樹脂、ポリエステル樹脂、ビニル樹脂(塩ビ、酢ビ共重合樹脂)、ビニリデン樹脂(ビニリデンクロライド、ビニリデンフルオネート)、エチレン−ビニルアセテート樹脂、ポリオレフィン樹脂、塩素化オレフィン樹脂、エチレン−アクリル樹脂、石油系樹脂、セルロース誘導体樹脂などの熱可塑性樹脂が好ましく用いられる。
【0026】
装飾層中の着色剤は、顔料が好ましく、無機系顔料、有機系顔料のいずれも使用が可能である。また、金属切削粒子のペーストや蒸着金属膜から得られる金属細片を顔料として含んだ金属光沢インキの使用も可能である。これらの金属としては、アルミニウム、金、銀、真鍮、チタン、クロム、ニッケル、ニッケルクロームおよびステンレス等が好ましく用いられる。これらの金属細片は、分散性、酸化防止やインキ層の強度向上のためにエポキシ樹脂、ポリウレタン、アクリル樹脂、ニトロセルロース等のセルロース誘導体で表面処理されていても良い。
【0027】
装飾層の形成方法は、グラビア印刷の他にオフセット印刷、スクリーン印刷、インクジェット印刷、熱転写印刷などを用いることができる。装飾層の乾燥膜、インクジェット印刷、熱転写印刷などを用いることができる。装飾層の乾燥膜厚は0.5〜15μmであることが好ましく、更に好ましくは1〜7μmである。
【0028】
なお、意匠性、展延性を阻害しない限り、活性エネルギー線硬化性樹脂層および装飾層中に消泡剤、沈降防止剤、顔料分散剤、流動性改質剤、ブロッキング防止剤、帯電防止剤、酸化防止剤、光安定化剤、紫外線吸収剤などの慣用の各種添加剤を加えても構わない。
【0029】
また、本発明の製造方法に用いる水圧転写用フィルムは、転写層上に転写層との界面で剥離可能な剥離性フィルムを有する水圧転写用フィルムであっても良い。転写層上に転写層との界面で剥離可能な剥離性フィルムを有する水圧転写用フィルムは、ブロッキングが抑制され、保存安定性に優れる。水圧転写に際しては剥離性フィルムを剥離した後、従来の水圧転写用フィルムと同様に用いられる。
【0030】
活性エネルギー線硬化性樹脂層または活性エネルギー線硬化性樹脂層と装飾層とから成る転写層は、水圧転写される前に散布される有機溶剤で活性化され、十分に可溶化もしくは柔軟化されることが必要である。ここで言う活性化とは、転写層に有機溶剤からなる活性化剤を塗布または散布することにより、転写層を構成する樹脂を完全には溶解せずに可溶化させ、水圧転写に際して親水性の支持体フィルムから疎水性の転写層の剥離を容易にすると共に、転写層に柔軟性を付与することにより転写層の被転写体の三次元曲面への追従性と密着性を向上させることを意味する。この活性化は、転写層を水圧転写用フィルムから被転写体へ転写する際に、これらの転写層が柔軟化され、被転写体の三次元曲面へ十分に追従できる程度に行われれば良い。活性化剤による転写層の活性化は、水圧転写用フィルムを水に浮かべた後に行っても良いし、水に浮かべる前に行っても良い。
【0031】
活性化剤は、従来の水圧転写に用いる活性化剤と同様な有機溶媒を用いることができ、具体的には、トルエン、キシレン、ブチルセロソルブ、ブチルカルビトールアセテート、カルビトール、カルビトールアセテート、セロソルブアセテート、メチルイソブチルケトン、酢酸エチル、酢酸イソブチル、イソブチルアルコール、イソプロピルアルコール、n−ブタノール、ソルフィットアセテートなど及びそれらの混合物が挙げられる。
【0032】
活性化剤中に印刷インキ又は塗料と成形品との密着性を高めるために、若干の樹脂成分を含ませてもよい。例えば、ポリウレタン、アクリル樹脂、エポキシ樹脂といった、インキのバインダーに類似の構造のものを1〜10%含ませることによって密着性が高まることがある。
【0033】
水圧転写を行う水槽中の水は、転写の際に水圧転写用フィルムの転写層を被転写体の三次元曲面に密着させる水圧媒体として働く他、支持体フィルムを膨潤または溶解させるものであり、具体的には、水道水、蒸留水、イオン交換水などの水で良く、また用いる支持体フィルムによっては、水にホウ酸等の無機塩類を10%以下、またはアルコール類を50%以下溶解させてもよい。但し、活性エネルギー線照射を水中にある水圧転写体に対して行う場合には、活性エネルギー線の照射効果が損なわれないよう、水槽の水が透明であることが好ましい。
【0034】
本発明の製造方法は、従来の水圧転写方法と同様に、水槽内の水中で被転写体に転写層を水圧転写した後、得られた水圧転写体上の支持体フィルムを除去する前に活性エネルギー線照射により、転写された活性エネルギー線硬化性樹脂層の少なくとも一部を硬化させ、次いで得られた水圧転写体上の支持体フィルムを除去することを特徴とする。
以下に、本発明の製造方法の概略を記載する。
【0035】
(1)水圧転写用フィルムを支持体フィルムを下にして水圧転写用水槽内の水に浮かべ、前記支持体フィルムを水で溶解もしくは膨潤させる。
(2)水圧転写用フィルムの転写層に有機溶媒を噴霧することにより転写層を活性化させる。なお、この活性化は、水圧転写用フィルムを水に浮かべる前に、転写層に有機溶媒を塗布または噴霧することにより行ってもよい。
(3)前記水圧転写用フィルムの転写層に被転写体を押しつけながら、前記被転写体と水圧転写用フィルムを水中に沈めて行き、水圧によって前記転写層を前記被転写体に密着させて被転写体へ転写する。
(4)(第1段硬化工程)得られた水圧転写体に活性エネルギー線を照射して、前記水圧転写体の活性エネルギー線硬化性樹脂層の少なくとも一部を硬化させる。
(5)前記水圧転写体上に残存する支持体フィルムを水洗等により除去する。
(6)(第2段硬化工程)前記水圧転写体を乾燥させ、さらに活性エネルギー線を照射して、前記水圧転写体の活性エネルギー線硬化性樹脂層を完全に硬化させる。
【0036】
上記(4)(第1段硬化工程)での活性エネルギー線照射は、水圧転写体を水から取りだして行っても、水中にある水圧転写体に活性エネルギー線を照射(以後、水中照射と称する)して行ってもよい。前者では、水圧転写体を水槽から引き上げる際に、支持体フィルムが重力によって水圧転写体の一部に偏り、活性エネルギー線硬化性樹脂層の表面に窪みを作ることがある。これに対して、後者の水中にある水圧転写体に活性エネルギー線を照射する方法では、活性エネルギー線硬化性樹脂層に一様の水圧がかかっているため、活性エネルギー線硬化性樹脂層が平滑な状態で活性エネルギー線を照射することができ、硬化樹脂層の表面平滑性が高く、より優れた鮮映性を有する水圧転写体を得ることができる。
【0037】
上記(4)(第1段硬化工程)での活性エネルギー線の照射量として、活性エネルギー線硬化性樹脂層の最終硬化に必要なエネルギー線量を照射してしまうと、活性剤を含んだ活性エネルギー線硬化性樹脂層が溶剤などを含んだまま一気に硬化し、硬化性樹脂層の表面に凹凸が生じたり、クラックが生じやすい。このため、上記(4)(第1段硬化工程)での活性エネルギー線の照射量は、活性エネルギー線硬化性樹脂層の表面に凹凸を生じず、かつ支持体フィルムを水洗などで除去により水洗い痕ができない程度の硬化度に抑えることが好ましい。活性エネルギー線の照射量は、活性エネルギー線硬化性樹脂層の最終硬化に必要な活性エネルギー線照射量の40%以下が好ましく、より好ましくは0.1%〜25%である。ここでいう最終硬化とは、最終塗膜が所望の物性値(たとえば鉛筆硬度F)に達する最低限の照射による硬化レベルを示すものであり、反応性基が完全消失するレベルを示すものではない。この硬化レベルに達する照射量の40%以上の照射量では、一般的に溶剤含有による硬化過多で上記欠陥が生じやすい。また、0.1%以下では、水流による水洗時の水洗痕が生じやすい。
また、所望の物性値を得るために、さらに過剰の照射を必要とする場合には、上記の範囲の限りでなく、その場合は、0.5mJ/cm2以上100mJ/cm2以下の範囲で第1段硬化工程を行うことにより、水洗痕やクラックなどの欠陥のない表面状態を得ることができる。すなわち、この段階での硬化はいわゆる半硬化の状態であることが好ましい。この後、水圧転写体から支持体フィルムを除去し、該水圧転写体を乾燥させて活性剤を除去した後、さらに、前記水圧転写体に活性エネルギー線を照射して、水圧転写体の活性エネルギー線硬化性樹脂層を更に最終硬化状態まで硬化させる。
【0038】
活性エネルギー線硬化性樹脂層がUV硬化型樹脂組成物からなる場合は、支持体フィルムを水洗などで除去しても、凹凸が生じにくい程度に活性エネルギー線硬化性樹脂層を硬化させるためには、活性エネルギー線硬化性樹脂層を構成する樹脂組成物に、表面硬化特性に優れた光重合開始剤を用いることも好ましい。具体的には、350nm以下の短波長側で光重合開始剤として有効に働くアセトフェノン誘導体が挙げられる。また、最終的に活性エネルギー線硬化性樹脂層を最終硬化状態まで硬化させることが必要であるから、上記の表面硬化特性に優れた開始剤と共に、深部硬化性に優れた光重合開始剤、例えば、400nm以上の長波長側で有効に働く光重合開始剤であるフォスフィンオキサイドやアントラキノン誘導体などを併用することがより好ましい。
【0039】
活性エネルギー線の光源を適宜、選択することも有効であり、水銀灯のような短波長UV光源を用いることが表面硬化には有利であり、支持体フィルム除去後の完全硬化のためのUV照射には、内部硬化に優れた長波長光源のメタルハライドランプを光源として用いることが好ましい。
【0040】
水圧転写体に対する活性エネルギー線の照射は、水圧転写用水槽の開放された上方から、水中または水上に取り出した水圧転写体に対して行う方法であって良い。しかし、活性エネルギー線硬化性樹脂層は、水圧転写用水槽の開放された水面上方から見て、水圧転写体の下部に位置するので、該活性エネルギー線硬化性樹脂層に水圧転写用水槽の開放された上方から活性エネルギー線を効果的に照射するためには、水圧転写体を水中もしくは水上で活性エネルギー線照射に適した角度まで回転させる必要があり、被転写体を水中に押し入れる機器などを用いて該水圧転写体を回転させて、活性エネルギー線を照射することができる。この方法では、水圧転写体の真下部分は、なお活性エネルギー線を照射しにくいが、水圧転写用水槽内に複数の活性エネルギー線の反射鏡を配置することにより、該底部分にも活性エネルギー線を照射することができる。
【0041】
より好ましい活性エネルギー線の照射方法は、水圧転写用水槽として、底と壁の少なくとも一部に活性エネルギー線照射用の窓を有する水槽を用い、前記活性エネルギー線照射用の窓を通して、水中にある水圧転写体に活性エネルギー線を照射する方法である。この場合、上記窓は光透過性材料からなるものが好ましい。また、必要に応じて、水圧転写体を水中で回転させることや、水圧転写用水槽内に反射鏡を配置することにより、活性エネルギー線照射の効率を高めることができる。前記の窓は耐水性構造とすることは必須であるが、その大きさは目的とする水圧転写体の大きさや形状に応じて適宜、設定すればよい。
【0042】
本発明は、上述した水圧転写による硬化樹脂層を有する成形品の製造方法に適した、底と壁の少なくとも一部に活性エネルギー線照射用の窓を有することを特徴とする水圧転写用水槽を提供する。前記窓用の材料としては、活性エネルギー線が透過すれば特に制限はないが、ガラス、石英または透明樹脂などの活性エネルギー線の透過率が高い素材が好ましい。
【0043】
本発明の水圧転写用水槽は、水圧転写を行う水圧転写用区域と水圧転写体に活性エネルギー線を照射する活性エネルギー線照射用区域を有し、前記活性エネルギー線照射用区域の水槽の底と壁の少なくとも一部に活性エネルギー線照射用の窓が備えられた水槽が好ましい。本発明の水圧転写用水槽は、さらに好ましくは、上記の窓を備えた上に、前記水圧転写用区域と活性エネルギー線照射用区域との境界に水圧転写体に活性エネルギー線を照射する際に、水圧転写前の水圧転写用フィルムに活性エネルギー線が照射されるのを防止するための活性エネルギー線遮蔽板が設けられている水槽である。
【0044】
前記遮蔽板は、活性エネルギー線照射区域で照射した活性エネルギー線が転写前または転写中の水圧転写用フィルムの活性エネルギー線硬化性樹脂層を硬化させないように遮る仕切り板であり、水圧転写体が水圧転写用区域から活性エネルギー線照射用区域に移送された際に、水圧転写体の移送と連動して電動で閉じられてもよいし、活性エネルギー線照射用区域に移送された水圧転写体に活性エネルギー線が照射される際に、照射に先だって電動で閉じられてもよい。また、可動式であっても、固定式であっても良い。水圧転写体に活性エネルギー線が照射された後は、水圧転写体は支持体フィルムを除去するために、水圧転写用水槽から外部に移送され、同時に前記遮蔽板が開かれて、次の被転写体が水圧転写用区域に移送されると共に、新たな水圧転写体が水圧転写用区域から活性エネルギー線照射用区域に移送されることにより連続的に水圧転写体の製造が可能である。
【0045】
可動式の遮蔽板は、水中で水圧転写体に活性エネルギー線を照射する場合は、水圧転写用フィルムの進行方向に対して直角な水槽の横方向の断面幅と水圧転写用水槽の上部から底部までの縦長さを有し、水圧転写用フィルムの進行方向に対して直角に設けられた一枚板からなり、水槽壁面に沿って垂直方向に上下に可動できて、水圧転写用区域への活性エネルギー線を遮断できるものでよい。
【0046】
さらに、必要に応じて水槽上部を、活性エネルギー線を遮蔽できるフィルムなどで遮蔽してもよい。前記遮蔽板の材質は用いる活性エネルギー線を遮蔽できればよく、特に制限されないが、水槽中の水や溶解している成分で腐食しない材質であることが好ましい。
【0047】
本発明の水圧転写装置は、上述の水槽の底と壁の少なくとも一部に活性エネルギー線照射用の窓を有する水圧転写用水槽と、前記窓を通して水圧転写用水槽内の水圧転写体に活性エネルギー線を照射可能な活性エネルギー線照射装置を備えた水圧転写装置である。さらに、好ましくは、水圧転写用水槽が上述の水圧転写を行う水圧転写用区域と水圧転写体に活性エネルギー線を照射する活性エネルギー線照射用区域を有し、前記水圧転写用区域と活性エネルギー線照射用区域との境界に、水圧転写体に活性エネルギー線を照射する際に、水圧転写前の水圧転写用フィルムに活性エネルギー線が照射されるのを防止する遮蔽板が設けられている水圧転写用水槽である水圧転写用装置である。また、前記活性エネルギー線照射装置に、さらに前記可動式の遮蔽板と連動したシャッターを備えることも好ましい。このシャッターによって照射線量の制御も可能となる。
【0048】
水圧転写体からの支持体フィルムの除去は、従来の水圧転写方法と同様に水流で支持体フィルムを溶解もしくは剥離して除去する。次いで、水圧転写体を乾燥させた後に、さらに活性エネルギー線照射を行い、前記活性エネルギー線硬化性樹脂層を最終硬化状態まで硬化させる。
【0049】
本発明の製造方法が適用できる被転写体は、その表面に硬化性樹脂層や装飾層を十分に密着させられるものが好ましく、必要に応じて被転写体表面にプライマー層を設ける。プライマー層を形成する樹脂は、プライマー層として慣用の樹脂を特に制限なく用いることができ、ウレタン樹脂、エポキシ樹脂、アクリル樹脂などが挙げられる。また、密着性の良好なABS樹脂やSBSゴムなどの溶剤吸収性の高い樹脂成分からなる被転写体にはプライマー層を設けることは不要である。被転写体の材質は、必要に応じて防水加工を施すことにより水中に沈めても形状が崩れない防水性があれば、金属、プラスチック、木材、パルプモールド、ガラス等のいずれであっても良く特に限定されない。
【0050】
本発明の製造方法により製造される水圧転写体の具体例としては、テレビ、ビデオ、エアコン、ラジオカセット、携帯電話、冷蔵庫等の家庭電化製品;パーソナルコンピューター、ファックスやプリンター等のOA機器;ファンヒーターやカメラなどの家庭製品のハウジング部分;テーブル、タンス、柱などの家具部材;バスタブ、システムキッチン、扉、窓枠などの建築部材;電卓、電子手帳などの雑貨;自動車内装パネル、自動車やオートバイの外板、ホイールキャップ、スキーキャリヤ、自動車用キャリアバッグなどの車内外装品;ゴルフクラブ、スキー板、スノーボード、ヘルメット、ゴーグルなどのスポーツ用品;広告用立体像、看板、モニュメントなどが挙げられ、曲面を有しかつ意匠性を必要とする成形品に特に有用に用いられ、極めて広い分野で使用可能である。
【実施例】
以下に、実施例をもって、本発明を具体的に説明するが、これらに何ら制限されるものではない。
【0051】
(水圧転写体の試験方法)
各実施例及び比較例で得られたサンプルを用いて下記の各種物性試験を行った。
【0052】
(表面光沢評価)
JIS-K5400「7.6鏡面光沢度」に従い、60°鏡面光沢度を測定した。
【0053】
(耐引掻き傷性)
JIS-K5401「塗膜用鉛筆引き掻き試験機」を用いて塗膜強度を測定した。芯の長さは3mm塗膜綿との角度45度、荷重1Kg、引き掻き速度0.5mm/分、引き掻き長さ3mm、使用鉛筆は三菱ユニとした。
【0054】
(耐溶剤試験)
メチルエチルケトン(MEK)を含ませた脱脂綿で1Kgの加重でラビング試験機にかけた。
【0055】
(参考例1)(活性エネルギー線硬化性樹脂組成物A1の調製)
ペンタエリスリトール2モル当量とヘキサメチレンジイソシアネート7モル当量とヒドロキシエチルメタクリレート6モル当量を60℃で反応して得られる平均6官能ウレタンアクリレート(質量平均分子量890、略称;UA1)65部とロームアンドハース社製のアクリル樹脂、商品名パラロイドA−11(Tg100℃、質量平均分子量125,000)35部とチバガイギー社製光重合開始剤イルガキュア184(アセトフェノン系光重合開始剤)を全樹脂量に対して3%、チバガイギー社製光重合開始剤イルガキュア819フォスフィンオキサイドを全樹脂量に対して1%を有機溶剤(酢酸エチル:メチルエチルケトン1:1)に溶解し、固形分量が40質量%になるように調製して、活性エネルギー線硬化性樹脂組成物A1を得た。
【0056】
(参考例2)(水圧転写用フィルムB1の作製)
アイセロ化学株式会社製のポリビニルアルコールフィルム(厚さ30μm)をA3サイズにカットし、これに参考例1の硬化性樹脂組成物A1をバーコーターで固形分膜厚20μmになるように塗布した。60℃で2分乾燥して、エネルギー線硬化性樹脂層を有する水圧転写用フィルムB1を得た。
【0057】
(参考例3)(水圧転写用フィルムB2の作製)
アイセロ化学株式会社製のポリビニルアルコールフィルム(厚さ30μm)に参考例1の活性エネルギー線硬化性樹脂組成物A1をグラビアコーター(7色機刷り)で固形分膜厚8μm(70線グラビア版で2版印刷)になるように印刷した。さらに、その上に、大日本インキ化学工業株式会社製ウレタンインキ(商品名:ユニビアA)で柄層、ベタ層を計4版分重ね印刷した。60℃で乾燥して、活性エネルギー線硬化性樹脂層と装飾層を有する水圧転写用フィルムB2を得た。
【0058】
(参考例4)(水圧転写用フィルムB3の作製)
東洋紡株式会社製の無延伸ポリプロピレンフィルム(30μm)に、大日本インキ製ウレタンインキ(商品名:ユニビアA)を用い、グラビア4色印刷機で木目柄(厚さ3μm)を印刷して印刷フィルムCを得た。
アイセロ化学株式会社製のポリビニルアルコールフィルム(厚さ30μm)に参考例1の活性エネルギー線硬化性樹脂組成物A1をリップコーターで固形分膜厚20μmになるように塗布した。60℃で2分乾燥した後、このフィルムの活性エネルギー線硬化性樹脂層と印刷フィルムCの印刷インキ層を合わせて、60℃で加熱ラミネートし、ラミネートしたフィルムを巻き取って保管した。水圧転写に際して、得られたフィルムからポリプロピレンフィルムを剥離し、活性エネルギー線硬化性樹脂層と装飾層を有する水圧転写用フィルムB3を得た。
【0059】
(実施例1)
水槽下部の壁に設けたガラス製の窓と、その窓から水槽内に紫外線を照射できるように備えた80W/cmの出力の高圧水銀ランプを有するアクリル樹脂製の透明な水槽に25℃の温水を入れ、水圧転写用フィルムB1の硬化樹脂層側を上にして水に浮かべた。1分30秒後、活性剤(キシレン:MIBK:酢酸ブチル:イソプロパノール5:2:2:1)を40g/m噴霧し、ABS製自動車内装パネルを水圧転写用フィルムの硬化性樹脂層面に押しつけながら水中へ沈めて、硬化性樹脂層からなる転写層をABS製自動車内装パネルに水圧転写した。
得られた水圧転写体を水から引き上げることなく、転写後30秒後に、高圧水銀ランプを3秒間点灯し36mJ/cmの照射量の紫外線を水圧転写体に照射した。この水圧転写体を水から引き上げ、水で洗浄することによりPVAフィルムを除去した後、70℃で30分乾燥し、さらに200mJ/cmの照射量でUV照射を2回行い、硬化性樹脂層を最終硬化させた。表面平滑性と光沢に優れた成形品を得た。
【0060】
(実施例2)
実施例1と同様な方法で、水圧転写用フィルムB1をABS製自動車内装パネルに水圧転写し、得られた水圧転写体を水から引き上げることなく、転写後30秒後に、高圧水銀ランプを点灯し1mJ/cmの照射量の紫外線を水圧転写体に照射した。この水圧転写体を水から引き上げ、水で洗浄することによりPVAフィルムを除去した後、70℃で30分乾燥し、さらに300mJ/cmの照射量でUV照射を行い、硬化性樹脂層を最終硬化させた。表面平滑性と光沢に優れた成形品を得た。
【0061】
(実施例3)
実施例1で用いた水圧転写用水槽に30℃の温水を入れ、水圧転写用フィルムB2の装飾層側を上にして水に浮かべた。2分30秒後、実施例1と同じ活性剤を38g/m噴霧し、A4サイズのプライマー付鋼板を水圧転写用フィルムの装飾層に押しつけながら水中へ沈め、硬化樹脂層と装飾層からなる転写層をプライマー付鋼板に水圧転写した。得られた水圧転写体を水から引き上げることなく、転写後30秒後に高圧水銀ランプを3秒間点灯し36mJ/cmの照射量の紫外線を水圧転写体表面に照射した。この水圧転写体を水から引き上げ、水で洗浄することによりPVAフィルムを除去した後、70℃で30分乾燥し、さらに200mJ/cmの照射量でUV照射を2回行い、硬化性樹脂層を最終硬化させた。表面平滑性と光沢に優れた装飾成形品を得た。
【0062】
(実施例4)
水圧転写区域と、左右の壁と底部に活性エネルギー線照射用のガラス製の窓を設けた照射区域を有するステンレス製の大型水槽に30℃の温水を入れ、装飾層側を上にして水圧転写用フィルムB3を浮かべた。1分30秒後、実施例1と同じ活性剤を40g/m噴霧し、プライマー付鋼板で成形された石油ファンヒータハウジングを装飾層面に押しつけながら水中へ沈め、硬化樹脂層と装飾層からなる転写層を被転写体に水圧転写した。得られた水圧転写体を水から引き上げることなく水中を照射区域まで移動させ、転写後30秒後に高圧水銀ランプによる6mJ/cmの照射量の紫外線を前記の窓を通して該水圧転写体に照射した。水圧転写体を水から引き上げ、流水で洗浄することによりPVAフィルムを剥離した後、120℃で30分乾燥し、メタルハライドランプを用いて、300mJ/cmの照射量のUV照射を行って、最終硬化させた。その結果、優れた表面平滑性と光沢を有する硬化性樹脂層と鮮明な装飾を具備した加飾成形品が得られた。
【0063】
(比較例1)
実施例1と同様の水槽と、水圧転写用フィルムB1を用いて、実施例1と同様にABS製自動車内装パネルに硬化性樹脂層を水圧転写した。水圧転写後、実施例1と同様に水洗によってPVAフィルムを除去し、水圧転写体を60℃で30分乾燥してから400mJ/cmのUV照射を行って硬化樹脂層を硬化させた。
【0064】
(比較例2)
実施例1と同様の水槽を用いて、水圧転写用フィルムB1を用いて、実施例1と同様にABS製自動車内装パネルに転写層を水圧転写した。得られた水圧転写体を水から引き上げることなく、転写後30秒後に、高圧水銀ランプを用いて0.2mJ/cmの照射量の紫外線を水圧転写体に照射した。この水圧転写体を水から引き上げ、水で洗浄することによりPVAフィルムを除去した後、70℃で30分乾燥し、さらに300mJ/cmの照射量でUV照射を行い、硬化性樹脂層を最終硬化させ、装飾成形品を得た。
(比較例3)
実施例1と同様の水槽を用いて、水圧転写用フィルムB1を用いて、実施例1と同様にABS製自動車内装パネルに転写層を水圧転写した。得られた水圧転写体を水から引き上げることなく、転写後30秒後に、高圧水銀ランプを用いて150mJ/cmの照射量の紫外線を水圧転写体に照射した。この水圧転写体を水から引き上げ、水で洗浄することによりPVAフィルムを除去した後、70℃で30分乾燥し、さらに150mJ/cmの照射量でUV照射を行い、硬化性樹脂層を最終硬化させ、装飾成形品を得た。
(比較例4)
実施例1と同様の水槽を用いて、水圧転写用フィルムB1を用いて、実施例1と同様にABS製自動車内装パネルに転写層を水圧転写した。得られた水圧転写体を水から引き上げることなく、転写後30秒後に、高圧水銀ランプを用いて300mJ/cmの照射量の紫外線を水圧転写体に照射した。この水圧転写体を水から引き上げ、水で洗浄することによりPVAフィルムを除去した後、70℃で30分乾燥し、装飾成形品を得た。
【0065】
実施例及び比較例で得られた成形品の評価結果を表1にまとめた。
【0066】
【表1】

Figure 0004275477
【0067】
表1に示したように、実施例で得られた成形物と比べて、比較例1と2で得られた成形物は、硬化樹脂層の保護機能は大きく変わらないものの、表面に水洗痕が見られ、光沢が低く意匠性が低いものであった。比較例3で得られた成形物は活性剤を含んだまま硬化性樹脂層を多量の紫外線で硬化させたため、細かい硬化収縮皺が発生した。さらに、乾燥工程により活性剤が除去されると硬化性樹脂層が部分的に白濁し、外観を損なってしまった。比較例4で得られた成形物は活性剤を含んだまま最終硬化と同等の紫外線で硬化したため、全体に硬化収縮が発生し、水圧転写体の縁部は印刷層ごと収縮してしまった。また、比較例3と同様に乾燥工程の後、硬化性樹脂層が白濁してしまい、外観を損なってしまった。これらの白濁した部分は、耐溶剤性試験後、やや膨れが観察された。
【0068】
【発明の効果】
本発明の製造方法は、優れた光沢と表面平滑性を有する硬化樹脂層を有する成形品や、優れた光沢、表面平滑性および鮮明な絵柄模様を有する成形品を提供することができる。また、本発明は優れた光沢と表面平滑性を有する硬化樹脂層を有する成形品や、優れた光沢、表面平滑性および鮮明な絵柄模様を有する成形品の製造に適した水圧転写用水槽、およびそれを用いた水圧転写装置を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a hydraulic transfer body, which is a molded product having a cured resin layer transferred by hydraulic transfer, a water transfer tank suitable for the manufacturing method, and a hydraulic transfer device. The method for producing a hydraulic transfer body, the hydraulic transfer tank and the hydraulic transfer apparatus of the present invention are particularly useful for the production of decorative molded products such as home appliances and automobile members that require design and surface strength.
[0002]
[Prior art]
The hydraulic transfer method is a method that can apply a decorative layer rich in design to a molded article having a complicated three-dimensional shape. However, after the hydraulic transfer, it is necessary to spray-apply a curable resin as a protective layer to the decorative layer that has been hydraulically transferred. . For this reason, the manufacture of molded products by the hydraulic transfer method is costly because the manufacturing process is complicated and painting equipment is required in addition to the hydraulic transfer equipment, and the molded products manufactured by the hydraulic transfer method are expensive. It was limited to goods.
[0003]
In order to eliminate this complexity and high cost, attempts have been made to transfer a curable resin layer together with a decorative layer to a transfer medium by a hydraulic transfer method. For example, Japanese Patent Application Laid-Open No. 64-22378 discloses ionization. Using a hydraulic transfer sheet having a resin coating layer that is cured by irradiation of radiation or heat and the hydraulic transfer sheet, an uncured coating layer and a decorative layer are transferred to a transfer target, and then water-soluble or A method for producing a molded article (hydraulic transfer body) having a cured resin layer in which the coating layer is cured with ionizing radiation or heat after removing the water-swellable support film with water is disclosed. However, the obtained molded product has a problem that its gloss and surface smoothness are low as compared with a molded product coated with a curable resin layer.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a method for producing a molded article having a cured resin layer having excellent gloss and surface smoothness by water pressure transfer, a water pressure transfer water tank and a water pressure transfer device suitable for the method. There is to do.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that when the support film on the hydraulic transfer body is removed by washing with water, fine transferred washing marks are formed on the transferred uncured curable resin layer. As a result, it was found that the gloss and surface smoothness of the resulting molded article were significantly reduced.
[0006]
That is, the curable resin layer has an extremely low surface hardness in an uncured state, and a trace of water flow remains on the surface even with a slight water flow. Therefore, it is necessary to cure the water-soluble support before removing the water-soluble support to a surface hardness sufficient to withstand washing with water. On the other hand, since the activator remains in the curable resin if it is excessively cured here, wrinkles and cracks are generated due to rapid curing of the curable resin, or the surface is cured in a later drying step. There arises a problem that the active agent cannot be removed sufficiently. Therefore, the inventors of the present invention have performed transfer of the transfer layer including the curable resin layer by hydraulic pressure, and then irradiation with active energy rays before removing the support film on the hydraulic transfer body to cure a part of the curable resin layer. By suppressing the occurrence of roughening of the surface of the curable resin layer due to the removal of the support film, and by irradiating an active energy dose that is cured to the final curing level in the second irradiation step, the gloss and surface smoothness equivalent to painting are achieved. The present inventors have found that a molded article having the properties can be obtained, and have found the water pressure transfer water tank and the water pressure transfer device suitable for the production method, and have completed the present invention.
[0007]
That is, the present invention
It has a support film made of a water-soluble or water-swellable resin and a hydrophobic transfer layer that can be dissolved in an organic solvent provided on the support film, and the transfer layer can be cured by irradiation with active energy rays. A hydraulic transfer film having a curable resin layer is floated on water with the transfer layer facing up, the transferred material is pressed against the hydraulic transfer film, and the transfer layer activated by an organic solvent is applied to the transferred material. After transferring, after removing the support film from the hydraulic transfer film transferred to the transfer object, a method for producing a hydraulic transfer body in which the transferred curable resin layer is cured by irradiation with active energy rays Because
The method includes a step of curing a part of the curable resin layer by irradiating active energy rays after the transfer layer is hydraulically transferred to the transfer target and before removing the support film. A method for producing a hydraulic transfer member is provided.
[0008]
The present invention also provides:
Provided is a water pressure transfer water tank characterized by having an active energy ray irradiation window on at least a part of a bottom and a wall of the water tank.
The present invention also provides:
A hydraulic transfer water tank having an active energy ray irradiation window on at least a part of a bottom and a wall of the water tank, and an active energy ray irradiation apparatus capable of irradiating an active energy ray through the window to a hydraulic transfer body in the hydraulic transfer water tank And a hydraulic transfer device.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The hydraulic transfer film used in the present invention comprises a support film made of a water-soluble or water-swellable resin and a hydrophobic transfer layer that can be dissolved in an organic solvent provided on the support film. Consists of a transparent active energy ray-curable resin layer provided on the support film and a decorative layer which may be provided on the active energy ray-curable resin layer.
[0010]
Examples of the support film made of a water-soluble or water-swellable resin (hereinafter abbreviated as support film) include PVA (polyvinyl alcohol), polyvinyl pyrrolidone, acetyl cellulose, polyacrylamide, acetyl butyl cellulose, gelatin, Films such as sodium alginate, hydroxyethyl cellulose, carboxymethyl cellulose and the like can be used. Among them, a PVA film generally used as a hydraulic transfer film is particularly preferable because it is easily dissolved in water, easily available, and suitable for printing a curable resin layer. The thickness of the support film used is preferably about 10 to 200 μm.
[0011]
The transfer layer of the hydraulic transfer film has a curable resin layer (hereinafter abbreviated as curable resin layer) that can be cured by irradiation with active energy rays. The transfer layer may have a decorative layer (hereinafter abbreviated as a decorative layer) made of a printing ink film or a paint film provided on the curable resin layer together with the curable resin layer.
[0012]
The curable resin layer is preferably transparent because the design of the decorative layer of the hydraulic transfer body can be expressed well. However, depending on the required characteristics of the hydraulic transfer body, it is sufficient that the color and pattern of the decorative layer of the obtained hydraulic transfer body can be seen basically, and the curable resin layer does not need to be completely transparent and is transparent. To translucent materials. Moreover, it may be colored.
[0013]
The curable resin layer contains a resin that forms a film at room temperature even before curing and is curable by irradiation with active energy rays. Specifically, the following (1) and (2) are listed. It is done.
(1) A curable resin layer containing an active energy ray-curable resin.
(2) A curable resin layer containing an active energy ray-curable resin and a non-polymerizable thermoplastic resin.
[0014]
Next, the specific configurations (1) and (2) of the curable resin layer will be described.
(1) Curable resin layer containing active energy ray curable resin
The active energy ray-curable resin is an oligomer or polymer having a polymerizable group or a structural unit curable by active energy rays in one molecule. The active energy rays referred to here are ultraviolet rays and electron rays, and both oligomers and polymers that are cured by these can be used, but ultraviolet curable resins are particularly suitable.
As the ultraviolet ray source, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like is used.
[0015]
Examples of polymerizable groups and structural units that can be cured by active energy rays include groups and structural units having a polymerizable unsaturated double bond such as a (meth) acryloyl group, a styryl group, a vinyl ester, a vinyl ether, and a maleimide group. Of these, a (meth) acryloyl group is preferred. Of these, an active energy ray-curable oligomer or polymer having three or more (meth) acryloyl groups in one molecule is preferable. More specifically, an active energy ray-curable oligomer or polymer having a mass average molecular weight of 300 to 10,000, more preferably 300 to 5,000, having three or more (meth) acryloyl groups in one molecule is preferably used. .
[0016]
The oligomer or polymer having a (meth) acryloyl group can be used without any problem as long as it is used as a coating resin. Specific examples include polyurethane (meth) acrylate, polyester (meth) acrylate, poly Examples include acrylic (meth) acrylate, epoxy (meth) acrylate, polyalkylene glycol poly (meth) acrylate, polyether (meth) acrylate, and polyurethane (meth) acrylate, polyester (meth) acrylate, and epoxy (meth) acrylate. Is preferably used.
[0017]
Among them, a polyurethane (meth) acrylate obtained as a reaction product of a polyol, a hydroxyl group-containing (meth) acrylate and a polyisocyanate is preferable because of excellent surface characteristics, and has three or more (meth) acryloyl groups in one molecule. An ultraviolet curable polyurethane (meth) acrylate having a mass average molecular weight of 300 to 10,000, more preferably 300 to 5,000 is particularly preferably used as the active energy ray curable resin.
[0018]
The curable resin layer containing these active energy ray-curable resins may contain a conventional photopolymerization initiator or photosensitizer as necessary. Typical photopolymerization initiators include acetophenone compounds such as diethoxyacetophenone and 1-hydroxycyclohexyl-phenyl ketone; benzoin compounds such as benzoin and benzoin isopropyl ether; 2,4,6-trimethylbenzoin diphenylphosphine. Acylphosphine oxide compounds such as oxides; Benzophenone, o-benzoylbenzoic acid methyl-4-phenylbenzophenone compounds such as methyl-4-phenylbenzophenone; Thioxanthone compounds such as 2,4-dimethylthioxanthone; Amino compounds such as 4,4'-diethylaminobenzophenone Examples thereof include benzophenone compounds; polyether maleimide carboxylic acid ester compounds, and the like, and these can be used in combination.
[0019]
The usage-amount of a photoinitiator is 0.1-15 mass% normally with respect to the active energy ray curable resin to be used, Preferably it is 0.5-8 mass%. Examples of the photosensitizer include amines such as triethanolamine and ethyl 4-dimethylaminobenzoate. Furthermore, onium salts such as benzylsulfonium salt, benzylpyridinium salt, and arylsulfonium salt are known as photocationic initiators, and these initiators can also be used, and are used in combination with the above photopolymerization initiators. You can also.
[0020]
(2) A curable resin layer containing an active energy ray-curable resin and a non-polymerizable thermoplastic resin
The curable resin layer containing the active energy ray-curable resin and the non-polymerizable thermoplastic resin contains the active energy ray-curable resin and the non-polymerizable thermoplastic resin described above. Using a non-polymerizable thermoplastic resin together with an active energy ray curable resin is extremely effective in reducing the tackiness of the curable resin layer, improving the glass transition temperature (Tg), and improving the cohesive failure strength of the curable resin layer. It is effective. However, if the amount of the thermoplastic resin to be included in the curable resin layer is large, the curing reaction of the curable resin is inhibited. Therefore, the thermoplastic resin should be 70 parts by mass with respect to 100 parts by mass of the total resin of the curable resin layer. It is preferable to add in the range which does not exceed.
[0021]
The non-polymerizable thermoplastic resin is compatible with the active energy ray curable resin to be used, and specific examples include polymethacrylate, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, and polyester. It is done. These may be a homopolymer or a copolymer of a plurality of monomers.
Among them, polystyrene and polymethacrylate are preferable because they have high Tg and are suitable for reducing the adhesiveness of the curable resin layer, and in particular, polymethacrylate mainly composed of polymethyl methacrylate is transparent, solvent resistant, and It is preferable at the point which is excellent in abrasion resistance.
[0022]
Further, the molecular weight and Tg of the thermoplastic resin have a great influence on the film-forming ability. In order to suppress the fluidity of the curable resin and facilitate activation of the curable resin layer with an organic solvent, the mass average molecular weight of the thermoplastic resin is preferably 3,000 to 400,000, more preferably 10,000. The Tg is preferably 35 ° C to 200 ° C, more preferably 35 ° C to 150 ° C. When using a thermoplastic resin having a relatively low Tg of around 35 ° C., the mass average molecular weight of the thermoplastic resin is preferably 100,000 or more.
[0023]
Among these, the curable resin layer containing the active energy ray-curable resin and the non-polymerizable thermoplastic resin has a mass average molecular weight of 300 to 10,000 having three or more (meth) acryloyl groups in one molecule. More preferably, the active energy ray-curable resin is 300 to 5,000, and the Tg compatible with the active energy ray curable resin is 35 ° C to 200 ° C, preferably 35 ° C to 150 ° C, and the mass average molecular weight is 3000. A curable resin layer containing a non-polymerizable thermoplastic resin of ˜400,000, preferably 10,000 to 200,000 is preferred. Further, the active energy ray-curable resin is a polyurethane (meth) acrylate having three or more (meth) acryloyl groups in one molecule, and the non-polymerizable thermoplastic resin is a polymethacrylate, particularly polymethylmethacrylate. A curable resin layer that is an acrylate is particularly preferred.
[0024]
Next, the decoration layer will be described.
The printing ink or paint used for forming the decorative layer is preferably activated by an organic solvent, so that sufficient flexibility is obtained when transferring the transfer layer to the transfer target, and gravure printing ink is particularly preferable. . A colored layer having no pattern can also be formed by coating.
[0025]
Varnish resins used for printing ink or paint are acrylic resin, polyurethane resin, polyamide resin, urea resin, epoxy resin, polyester resin, vinyl resin (vinyl chloride, vinyl acetate copolymer resin), vinylidene resin (vinylidene chloride, vinylidene fluoride) ), Thermoplastic resins such as ethylene-vinyl acetate resin, polyolefin resin, chlorinated olefin resin, ethylene-acrylic resin, petroleum resin, and cellulose derivative resin are preferably used.
[0026]
The colorant in the decorative layer is preferably a pigment, and any of inorganic pigments and organic pigments can be used. It is also possible to use a metallic gloss ink containing a metal fine particle obtained from a paste of metal cutting particles or a deposited metal film as a pigment. As these metals, aluminum, gold, silver, brass, titanium, chromium, nickel, nickel chrome, stainless steel and the like are preferably used. These metal strips may be surface-treated with a cellulose derivative such as an epoxy resin, polyurethane, acrylic resin, or nitrocellulose in order to improve dispersibility, oxidation prevention, and ink layer strength.
[0027]
As a method for forming the decoration layer, offset printing, screen printing, inkjet printing, thermal transfer printing, and the like can be used in addition to gravure printing. A dry film of the decoration layer, inkjet printing, thermal transfer printing, or the like can be used. The dry film thickness of the decorative layer is preferably 0.5 to 15 μm, more preferably 1 to 7 μm.
[0028]
In addition, as long as design properties and spreadability are not impaired, an anti-foaming agent, an anti-settling agent, a pigment dispersant, a fluidity modifier, an anti-blocking agent, an antistatic agent in the active energy ray-curable resin layer and the decorative layer, Various conventional additives such as antioxidants, light stabilizers and ultraviolet absorbers may be added.
[0029]
The hydraulic transfer film used in the production method of the present invention may be a hydraulic transfer film having a peelable film that can be peeled off at the interface with the transfer layer on the transfer layer. The hydraulic transfer film having a peelable film that can be peeled off at the interface with the transfer layer on the transfer layer is suppressed in blocking and excellent in storage stability. In the hydraulic transfer, the peelable film is peeled off and then used in the same manner as a conventional hydraulic transfer film.
[0030]
The active energy ray curable resin layer or the transfer layer composed of the active energy ray curable resin layer and the decorative layer is activated with an organic solvent sprayed before being hydraulically transferred, and is sufficiently solubilized or softened. It is necessary. The activation referred to herein means that the resin constituting the transfer layer is solubilized without being completely dissolved by applying or spraying an activator made of an organic solvent to the transfer layer, and is hydrophilic during hydraulic transfer. This means that the hydrophobic transfer layer can be easily peeled off from the support film, and the transfer layer can be made flexible to improve the followability and adhesion of the transfer layer to the 3D curved surface of the transfer target. To do. This activation may be performed to such an extent that when the transfer layer is transferred from the hydraulic transfer film to the transfer target, these transfer layers are softened and can sufficiently follow the three-dimensional curved surface of the transfer target. The activation of the transfer layer with the activator may be performed after the hydraulic transfer film is floated on water or may be performed before it is floated on water.
[0031]
As the activator, an organic solvent similar to the activator used in conventional hydraulic transfer can be used. Specifically, toluene, xylene, butyl cellosolve, butyl carbitol acetate, carbitol, carbitol acetate, cellosolve acetate , Methyl isobutyl ketone, ethyl acetate, isobutyl acetate, isobutyl alcohol, isopropyl alcohol, n-butanol, sorbite acetate, and the like, and mixtures thereof.
[0032]
In order to enhance the adhesion between the printing ink or paint and the molded product, a slight resin component may be included in the activator. For example, adhesion may be increased by including 1 to 10% of an ink binder having a similar structure such as polyurethane, acrylic resin, or epoxy resin.
[0033]
The water in the water tank that performs the hydraulic transfer functions as a hydraulic medium that closely adheres the transfer layer of the hydraulic transfer film to the three-dimensional curved surface of the transfer object during transfer, and also swells or dissolves the support film. Specifically, water such as tap water, distilled water, and ion exchange water may be used. Depending on the support film used, 10% or less of inorganic salts such as boric acid or 50% or less of alcohols are dissolved in water. May be. However, when active energy ray irradiation is performed on a hydraulic transfer body in water, the water in the water tank is preferably transparent so that the irradiation effect of the active energy rays is not impaired.
[0034]
The production method of the present invention is similar to the conventional hydraulic transfer method in that it is activated after the transfer layer is hydraulically transferred to the transfer medium in water in a water tank and before the support film on the obtained hydraulic transfer body is removed. It is characterized in that at least a part of the transferred active energy ray-curable resin layer is cured by energy ray irradiation, and then the support film on the obtained hydraulic transfer body is removed.
Below, the outline of the manufacturing method of this invention is described.
[0035]
(1) The hydraulic transfer film is floated on the water in the water tank for hydraulic transfer with the support film facing down, and the support film is dissolved or swollen with water.
(2) The transfer layer is activated by spraying an organic solvent onto the transfer layer of the hydraulic transfer film. This activation may be performed by applying or spraying an organic solvent on the transfer layer before the hydraulic transfer film is floated on water.
(3) While pressing the transfer object against the transfer layer of the hydraulic transfer film, the transfer object and the hydraulic transfer film are submerged in water, and the transfer layer is brought into close contact with the transfer object by water pressure. Transfer to the transfer body.
(4) (First-stage curing step) The obtained hydraulic transfer body is irradiated with active energy rays to cure at least a part of the active energy ray-curable resin layer of the hydraulic transfer body.
(5) The support film remaining on the hydraulic transfer body is removed by washing or the like.
(6) (Second-stage curing step) The hydraulic transfer body is dried and further irradiated with active energy rays to completely cure the active energy ray-curable resin layer of the hydraulic transfer body.
[0036]
The active energy ray irradiation in the above (4) (first-stage curing step) is performed by irradiating the hydraulic transfer body in water with the active energy ray even if the hydraulic transfer body is taken out of water (hereinafter referred to as underwater irradiation). ). In the former, when the hydraulic transfer body is pulled up from the water tank, the support film may be biased to a part of the hydraulic transfer body due to gravity, and a depression may be formed on the surface of the active energy ray curable resin layer. On the other hand, in the latter method in which the active energy ray is irradiated onto the hydraulic transfer member in water, the active energy ray curable resin layer is smooth because the active energy ray curable resin layer is uniformly applied with water pressure. In such a state, the active energy ray can be irradiated, the surface of the cured resin layer is high, and a hydraulic transfer body having more excellent sharpness can be obtained.
[0037]
When the energy dose required for the final curing of the active energy ray-curable resin layer is irradiated as the active energy ray irradiation amount in the above (4) (first stage curing step), the active energy containing the activator The linear curable resin layer is cured at a stretch while containing a solvent and the like, and the surface of the curable resin layer is likely to have irregularities or cracks. Therefore, the irradiation amount of the active energy ray in the above (4) (first-stage curing step) does not cause unevenness on the surface of the active energy ray-curable resin layer, and the support film is washed with water by removing it with water or the like. It is preferable to suppress the degree of curing to such an extent that no marks can be formed. The irradiation amount of the active energy ray is preferably 40% or less, more preferably 0.1% to 25% of the active energy ray irradiation amount necessary for the final curing of the active energy ray-curable resin layer. The term “final curing” as used herein refers to the level of curing by the minimum irradiation at which the final coating film reaches a desired physical property value (for example, pencil hardness F), and does not indicate the level at which the reactive group completely disappears. . At an irradiation amount of 40% or more of the irradiation amount that reaches this curing level, the above defects are likely to occur due to excessive curing due to the inclusion of a solvent. Moreover, if it is 0.1% or less, washing marks are easily generated during washing with a water flow.
In addition, in order to obtain a desired physical property value, when excessive irradiation is required, it is not limited to the above range, and in that case, 0.5 mJ / cm 2 More than 100mJ / cm 2 By performing the first stage curing step in the following range, a surface state free from defects such as washing marks and cracks can be obtained. That is, the curing at this stage is preferably a so-called semi-cured state. Thereafter, the support film is removed from the hydraulic transfer member, the active member is removed by drying the hydraulic transfer member, and then the active energy ray is irradiated to the hydraulic transfer member to obtain the active energy of the hydraulic transfer member. The linear curable resin layer is further cured to a final cured state.
[0038]
When the active energy ray-curable resin layer is made of a UV curable resin composition, in order to cure the active energy ray-curable resin layer to such an extent that unevenness is less likely to occur even if the support film is removed by washing or the like. It is also preferable to use a photopolymerization initiator excellent in surface curing characteristics for the resin composition constituting the active energy ray-curable resin layer. Specifically, an acetophenone derivative that works effectively as a photopolymerization initiator on the short wavelength side of 350 nm or less can be mentioned. In addition, since it is necessary to finally cure the active energy ray-curable resin layer to a final cured state, a photopolymerization initiator having excellent deep curability, for example, an initiator having excellent surface curing characteristics, for example, More preferably, phosphine oxide, an anthraquinone derivative, or the like, which is a photopolymerization initiator that works effectively on the long wavelength side of 400 nm or more, is used in combination.
[0039]
It is also effective to select the light source of the active energy ray as appropriate, and it is advantageous for surface curing to use a short wavelength UV light source such as a mercury lamp, and for UV irradiation for complete curing after removing the support film. Is preferably a long-wavelength light source metal halide lamp excellent in internal curing.
[0040]
Irradiation of the active energy ray to the hydraulic transfer member may be performed on the hydraulic transfer member taken out from or into the water from the upper side of the water tank for hydraulic transfer. However, since the active energy ray curable resin layer is located below the hydraulic transfer body when viewed from above the open water surface of the hydraulic transfer water tank, the active energy ray curable resin layer is opened to the hydraulic transfer water tank. In order to effectively irradiate the active energy ray from above, it is necessary to rotate the hydraulic transfer body to an angle suitable for active energy ray irradiation in water or on water, and a device that pushes the transfer object into the water. The hydraulic transfer member can be rotated by using an active energy ray. In this method, the portion directly below the hydraulic transfer body is still difficult to irradiate with active energy rays, but by arranging a plurality of active energy ray reflecting mirrors in the water tank for hydraulic transfer, the active energy rays are also applied to the bottom portion. Can be irradiated.
[0041]
A more preferable active energy ray irradiation method uses a water tank having an active energy ray irradiation window on at least a part of a bottom and a wall as a water pressure transfer water tank, and is in water through the active energy ray irradiation window. This is a method of irradiating an active energy ray to a hydraulic transfer member. In this case, the window is preferably made of a light transmissive material. Moreover, the efficiency of active energy ray irradiation can be improved by rotating a hydraulic transfer body in water as needed, and arrange | positioning a reflective mirror in the water tank for hydraulic transfer. Although it is essential that the window has a water-resistant structure, the size of the window may be appropriately set according to the size and shape of the target hydraulic transfer body.
[0042]
The present invention provides a water tank for hydraulic transfer, characterized in that it has a window for irradiating active energy rays on at least a part of a bottom and a wall, which is suitable for the method of manufacturing a molded article having a cured resin layer by hydraulic transfer described above. provide. The material for the window is not particularly limited as long as it transmits active energy rays, but a material having a high transmittance of active energy rays such as glass, quartz, or transparent resin is preferable.
[0043]
The water pressure transfer water tank of the present invention has a water pressure transfer area for performing water pressure transfer and an area for active energy ray irradiation for irradiating the water pressure transfer body with active energy rays, and the bottom of the water tank in the area for active energy ray irradiation, A water tank provided with an active energy ray irradiation window on at least a part of the wall is preferable. The water pressure transfer water tank of the present invention is more preferably provided with the above-mentioned window, and when irradiating the hydraulic transfer body with active energy rays at the boundary between the water pressure transfer area and the active energy ray irradiation area. The water tank is provided with an active energy ray shielding plate for preventing the active energy ray from being irradiated to the hydraulic transfer film before the hydraulic transfer.
[0044]
The shielding plate is a partition plate that shields the active energy ray irradiated in the active energy ray irradiation area so as not to cure the active energy ray-curable resin layer of the hydraulic transfer film before or during the transfer. When transferred from the hydraulic transfer area to the active energy ray irradiation area, it may be electrically closed in conjunction with the transfer of the hydraulic transfer body, or to the hydraulic transfer body transferred to the active energy ray irradiation area. When the active energy ray is irradiated, it may be electrically closed prior to the irradiation. Further, it may be movable or fixed. After the active energy ray is irradiated to the hydraulic transfer body, the hydraulic transfer body is transferred to the outside from the water tank for hydraulic transfer in order to remove the support film, and at the same time, the shielding plate is opened, and the next transferred object is transferred. The body is transferred to the hydraulic transfer area, and a new hydraulic transfer body is transferred from the hydraulic transfer area to the active energy ray irradiation area, whereby the hydraulic transfer body can be continuously produced.
[0045]
When irradiating an active energy ray to a hydraulic transfer body in water, the movable shielding plate has a transverse cross-sectional width of the water tank perpendicular to the advancing direction of the hydraulic transfer film and the top to bottom of the hydraulic transfer water tank. It has a vertical length of up to 1, and is composed of a single plate provided at right angles to the direction of travel of the hydraulic transfer film. It can be moved vertically up and down along the water tank wall surface and is active in the hydraulic transfer area. It may be one that can cut off energy rays.
[0046]
Furthermore, you may shield the upper part of a water tank with the film etc. which can shield an active energy ray as needed. The material of the shielding plate is not particularly limited as long as it can shield the active energy ray to be used, but is preferably a material that does not corrode with water or dissolved components in the aquarium.
[0047]
The hydraulic transfer device of the present invention includes a hydraulic transfer water tank having an active energy ray irradiation window on at least a part of the bottom and wall of the water tank, and an active energy to the hydraulic transfer body in the hydraulic transfer water tank through the window. It is the hydraulic transfer apparatus provided with the active energy ray irradiation apparatus which can irradiate a line | wire. Further, preferably, the water pressure transfer water tank has a water pressure transfer area for performing the above water pressure transfer and an active energy ray irradiation area for irradiating the water pressure transfer body with an active energy ray, the water pressure transfer area and the active energy ray. Hydraulic transfer is provided with a shielding plate that prevents the active energy rays from being irradiated to the hydraulic transfer film before the hydraulic transfer when irradiating the active energy rays to the hydraulic transfer body at the boundary with the irradiation area. This is a water pressure transfer device which is a water tank. Moreover, it is preferable that the active energy ray irradiating device further includes a shutter interlocked with the movable shielding plate. The exposure dose can be controlled by this shutter.
[0048]
The support film is removed from the hydraulic transfer body by dissolving or peeling the support film with a water flow in the same manner as in the conventional hydraulic transfer method. Next, after the hydraulic transfer body is dried, irradiation with active energy rays is further performed to cure the active energy ray-curable resin layer to a final cured state.
[0049]
The transferred object to which the production method of the present invention can be applied is preferably one in which a curable resin layer or a decorative layer is sufficiently adhered to the surface, and a primer layer is provided on the transferred object surface as necessary. As the resin forming the primer layer, a conventional resin can be used as the primer layer without particular limitation, and examples thereof include a urethane resin, an epoxy resin, and an acrylic resin. In addition, it is not necessary to provide a primer layer on a transfer object composed of a resin component having high solvent absorbability such as ABS resin or SBS rubber having good adhesion. The material of the transferred material may be any of metal, plastic, wood, pulp mold, glass, etc., as long as it has a waterproof property so that its shape does not collapse even if it is submerged in water by applying a waterproof process. There is no particular limitation.
[0050]
Specific examples of the hydraulic transfer body manufactured by the manufacturing method of the present invention include home appliances such as a television, a video, an air conditioner, a radio cassette, a mobile phone, and a refrigerator; OA equipment such as a personal computer, a fax machine and a printer; a fan heater Housing parts for household products such as cameras and cameras; furniture components such as tables, chests, and pillars; building components such as bathtubs, system kitchens, doors, and window frames; miscellaneous goods such as calculators and electronic notebooks; automobile interior panels, automobiles and motorcycles Interior and exterior products such as outer plates, wheel caps, ski carriers, and automobile carrier bags; sports equipment such as golf clubs, skis, snowboards, helmets, and goggles; 3D images for advertising, signs, monuments, etc. Especially useful for molded products that have design properties. It can be used in a very wide range of fields.
【Example】
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0051]
(Test method for hydraulic transfer body)
The following various physical property tests were conducted using the samples obtained in each Example and Comparative Example.
[0052]
(Surface gloss evaluation)
According to JIS-K5400 “7.6 Specular Gloss”, the 60 ° specular gloss was measured.
[0053]
(Scratch resistance)
The coating film strength was measured using JIS-K5401 “Pencil scratch tester for coating film”. The length of the core was 45 degrees with a 3 mm coated cotton, the load was 1 kg, the scratching speed was 0.5 mm / min, the scratching length was 3 mm, and the pencil used was Mitsubishi Uni.
[0054]
(Solvent resistance test)
Absorbent cotton containing methyl ethyl ketone (MEK) was subjected to a rubbing tester with a weight of 1 kg.
[0055]
(Reference Example 1) (Preparation of active energy ray-curable resin composition A1)
Rohm and Haas Co., Ltd., 65 parts average hexafunctional urethane acrylate (mass average molecular weight 890, abbreviated as UA1) obtained by reacting 2 molar equivalents of pentaerythritol, 7 molar equivalents of hexamethylene diisocyanate and 6 molar equivalents of hydroxyethyl methacrylate at 60 ° C. 3 parts of an acrylic resin manufactured by trade name, Paraloid A-11 (Tg 100 ° C., mass average molecular weight 125,000) 35 parts and Ciba Geigy photopolymerization initiator Irgacure 184 (acetophenone photopolymerization initiator) 1% of Ciba Geigy photopolymerization initiator Irgacure 819 phosphine oxide is dissolved in an organic solvent (ethyl acetate: methyl ethyl ketone 1: 1) with respect to the total resin amount to prepare a solid content of 40% by mass. Then, an active energy ray-curable resin composition A1 was obtained.
[0056]
(Reference Example 2) (Preparation of hydraulic transfer film B1)
A polyvinyl alcohol film (thickness 30 μm) manufactured by Aicero Chemical Co., Ltd. was cut into A3 size, and curable resin composition A1 of Reference Example 1 was applied thereto with a bar coater so as to have a solid film thickness of 20 μm. It dried at 60 degreeC for 2 minute (s), and obtained hydraulic transfer film B1 which has an energy-beam curable resin layer.
[0057]
(Reference Example 3) (Preparation of hydraulic transfer film B2)
The active energy ray-curable resin composition A1 of Reference Example 1 is applied to a polyvinyl alcohol film (thickness 30 μm) manufactured by Aicero Chemical Co., Ltd. with a gravure coater (7-color machine printing) and a solid content film thickness 8 μm (2 in a 70-line gravure plate). Printing). Furthermore, a pattern layer and a solid layer were printed in a total of four layers with urethane ink (trade name: Univia A) manufactured by Dainippon Ink & Chemicals, Inc. It dried at 60 degreeC and obtained film B2 for hydraulic transfer which has an active energy ray curable resin layer and a decoration layer.
[0058]
(Reference Example 4) (Preparation of hydraulic transfer film B3)
Printed film C by printing a grain pattern (thickness 3 μm) on a gravure 4-color printing machine using Toyobo Co., Ltd. unstretched polypropylene film (30 μm) with urethane ink (trade name: Univia A) manufactured by Dainippon Ink. Got.
The active energy ray-curable resin composition A1 of Reference Example 1 was applied to a polyvinyl alcohol film (thickness 30 μm) manufactured by Aicero Chemical Co., Ltd. with a lip coater so as to have a solid film thickness of 20 μm. After drying at 60 ° C. for 2 minutes, the active energy ray-curable resin layer of this film and the printing ink layer of the printing film C were combined, heat-laminated at 60 ° C., and the laminated film was wound up and stored. At the time of hydraulic transfer, the polypropylene film was peeled from the obtained film to obtain a hydraulic transfer film B3 having an active energy ray-curable resin layer and a decorative layer.
[0059]
(Example 1)
25 ° C warm water in a transparent water tank made of acrylic resin having a glass window provided on the wall at the bottom of the water tank and a high-pressure mercury lamp with an output of 80 W / cm so that ultraviolet light can be irradiated into the water tank from the window And floated in water with the cured resin layer side of the hydraulic transfer film B1 facing up. After 1 minute and 30 seconds, 40 g / m of activator (xylene: MIBK: butyl acetate: isopropanol 5: 2: 2: 1) 2 Spraying was performed, and the ABS automobile interior panel was submerged in water while being pressed against the curable resin layer surface of the hydraulic transfer film, and the transfer layer composed of the curable resin layer was hydraulically transferred to the ABS automobile interior panel.
Without lifting the obtained hydraulic transfer body from the water, the high pressure mercury lamp was lit for 3 seconds 30 seconds after the transfer, and 36 mJ / cm 2 The hydraulic transfer body was irradiated with an ultraviolet ray having a dose of. The PVA film was removed by pulling up the hydraulic transfer body from water and washing with water, and then dried at 70 ° C. for 30 minutes, and further 200 mJ / cm. 2 UV irradiation was performed twice with the irradiation amount of, and the curable resin layer was finally cured. A molded product having excellent surface smoothness and gloss was obtained.
[0060]
(Example 2)
In the same manner as in Example 1, the hydraulic transfer film B1 was hydraulically transferred to the ABS automobile interior panel, and the high pressure mercury lamp was turned on 30 seconds after the transfer without lifting the resulting hydraulic transfer body from the water. 1mJ / cm 2 The hydraulic transfer body was irradiated with an ultraviolet ray having a dose of. The PVA film is removed by pulling up the hydraulic transfer body from water and washing with water, and then drying at 70 ° C. for 30 minutes, and further 300 mJ / cm. 2 UV irradiation was performed with the irradiation amount of, and the curable resin layer was finally cured. A molded product having excellent surface smoothness and gloss was obtained.
[0061]
(Example 3)
Hot water at 30 ° C. was put into the water tank for hydraulic transfer used in Example 1, and floated on water with the decorative layer side of the film B2 for hydraulic transfer facing up. After 2 minutes and 30 seconds, 38 g / m of the same active agent as in Example 1 was used. 2 Spraying was performed, and the A4-sized primer-coated steel sheet was submerged in water while being pressed against the decorative layer of the hydraulic transfer film, and the transfer layer composed of the cured resin layer and the decorative layer was hydraulically transferred to the primer-coated steel sheet. Without pulling up the obtained hydraulic transfer body from the water, the high pressure mercury lamp was lit for 3 seconds 30 seconds after the transfer, and 36 mJ / cm 2 The surface of the hydraulic transfer body was irradiated with an ultraviolet ray having an irradiation amount of. The PVA film was removed by pulling up the hydraulic transfer body from water and washing with water, and then dried at 70 ° C. for 30 minutes, and further 200 mJ / cm. 2 UV irradiation was performed twice with the irradiation amount of, and the curable resin layer was finally cured. A decorative molded article having excellent surface smoothness and gloss was obtained.
[0062]
(Example 4)
Hot water at 30 ° C is placed in a large water tank made of stainless steel that has a water pressure transfer area and an irradiation area with glass windows for active energy ray irradiation on the left and right walls and bottom, and water pressure transfer with the decorative layer side up Film B3 was floated. After 1 minute and 30 seconds, 40 g / m of the same active agent as in Example 1 was used. 2 The oil fan heater housing, which was sprayed and formed of a steel plate with a primer, was submerged in water while being pressed against the decorative layer surface, and the transfer layer composed of the cured resin layer and the decorative layer was hydraulically transferred to the transfer target. The obtained hydraulic transfer body was moved through the water to the irradiation area without lifting it from the water, and 30 m after the transfer, 6 mJ / cm by a high pressure mercury lamp. 2 The water pressure transfer body was irradiated with ultraviolet rays of the amount of irradiation through the window. The PVA film is peeled off by pulling up the hydraulic transfer body from water and washing with running water, and then drying at 120 ° C. for 30 minutes, and using a metal halide lamp, 300 mJ / cm. 2 The final curing was performed by performing UV irradiation with an irradiation amount of. As a result, a decorative molded product having a curable resin layer having excellent surface smoothness and gloss and a clear decoration was obtained.
[0063]
(Comparative Example 1)
A curable resin layer was hydraulically transferred to an ABS automobile interior panel in the same manner as in Example 1, using the same water tank as in Example 1 and the hydraulic transfer film B1. After the water pressure transfer, the PVA film was removed by washing with water in the same manner as in Example 1. The water pressure transfer body was dried at 60 ° C. for 30 minutes and then 400 mJ / cm. 2 The cured resin layer was cured by UV irradiation.
[0064]
(Comparative Example 2)
Using the same water tank as in Example 1, the transfer layer was hydraulically transferred to the ABS automobile interior panel in the same manner as in Example 1 using the hydraulic transfer film B1. Without lifting the obtained hydraulic transfer body from the water, 30 m after the transfer, 0.2 mJ / cm using a high-pressure mercury lamp. 2 The hydraulic transfer body was irradiated with an ultraviolet ray having a dose of. The PVA film is removed by pulling up the hydraulic transfer body from water and washing with water, and then drying at 70 ° C. for 30 minutes, and further 300 mJ / cm. 2 UV irradiation was performed at an irradiation amount of, and the curable resin layer was finally cured to obtain a decorative molded product.
(Comparative Example 3)
Using the same water tank as in Example 1, the transfer layer was hydraulically transferred to the ABS automobile interior panel in the same manner as in Example 1 using the hydraulic transfer film B1. Without lifting the obtained hydraulic transfer body from the water, after 30 seconds from the transfer, using a high-pressure mercury lamp, 150 mJ / cm 2 The hydraulic transfer body was irradiated with an ultraviolet ray having a dose of. The PVA film was removed by pulling up the hydraulic transfer body from water and washing with water, and then dried at 70 ° C. for 30 minutes, and further 150 mJ / cm. 2 UV irradiation was performed at an irradiation amount of, and the curable resin layer was finally cured to obtain a decorative molded product.
(Comparative Example 4)
Using the same water tank as in Example 1, the transfer layer was hydraulically transferred to the ABS automobile interior panel in the same manner as in Example 1 using the hydraulic transfer film B1. Without lifting the obtained hydraulic transfer body from the water, 30 seconds after the transfer, 300 mJ / cm using a high pressure mercury lamp. 2 The hydraulic transfer body was irradiated with an ultraviolet ray having a dose of. The PVA film was removed by pulling up the hydraulic transfer body from water and washing with water, and then dried at 70 ° C. for 30 minutes to obtain a decorative molded product.
[0065]
The evaluation results of the molded products obtained in Examples and Comparative Examples are summarized in Table 1.
[0066]
[Table 1]
Figure 0004275477
[0067]
As shown in Table 1, the molded products obtained in Comparative Examples 1 and 2 compared with the molded products obtained in the Examples, although the protective function of the cured resin layer is not greatly changed, the surface has water washing marks. The gloss was low and the design was low. In the molded product obtained in Comparative Example 3, since the curable resin layer was cured with a large amount of ultraviolet rays while containing the activator, fine curing shrinkage wrinkles occurred. Furthermore, when the activator was removed by the drying process, the curable resin layer was partially clouded and the appearance was impaired. Since the molded product obtained in Comparative Example 4 contained an activator and was cured with an ultraviolet ray equivalent to the final curing, curing shrinkage occurred overall, and the edges of the hydraulic transfer body were shrunk together with the printing layer. Moreover, the curable resin layer became cloudy after the drying process similarly to the comparative example 3, and the external appearance was impaired. These clouded portions were slightly swollen after the solvent resistance test.
[0068]
【The invention's effect】
The production method of the present invention can provide a molded product having a cured resin layer having excellent gloss and surface smoothness, and a molded product having excellent gloss, surface smoothness and a clear pattern. The present invention also provides a hydraulic transfer water tank suitable for the production of a molded article having a cured resin layer having excellent gloss and surface smoothness, and a molded article having excellent gloss, surface smoothness and a clear pattern, and A hydraulic transfer device using the same can be provided.

Claims (5)

水溶性もしくは水膨潤性の樹脂から成る支持体フィルムと、前記支持体フィルム上に設けた有機溶剤に溶解可能な疎水性の転写層を有し、前記転写層が活性エネルギー線照射で硬化可能な硬化性樹脂層を有する水圧転写用フィルムを、前記転写層を上にして水に浮かべ、前記水圧転写フィルムに被転写体を押し付け、有機溶剤によって活性化させた前記転写層を前記被転写体に転写した後、前記被転写体に転写された前記水圧転写フィルムから前記支持体フィルムを除去した後、活性エネルギー線を照射して、転写された硬化性樹脂層を硬化させる水圧転写体の製造方法であって、
前記被転写体に前記転写層を水圧転写後であって、前記支持体フィルム除去前に活性エネルギー線を照射して、前記硬化性樹脂層を半硬化させる工程を有することを特徴とする水圧転写体の製造方法。
It has a support film made of a water-soluble or water-swellable resin and a hydrophobic transfer layer that can be dissolved in an organic solvent provided on the support film, and the transfer layer can be cured by irradiation with active energy rays. A hydraulic transfer film having a curable resin layer is floated on water with the transfer layer facing up, the transferred material is pressed against the hydraulic transfer film, and the transfer layer activated by an organic solvent is applied to the transferred material. After transferring, after removing the support film from the hydraulic transfer film transferred to the transfer object, a method for producing a hydraulic transfer body in which the transferred curable resin layer is cured by irradiation with active energy rays Because
Hydraulic transfer, comprising: a step of semi-curing the curable resin layer by irradiating an active energy ray after the transfer layer is transferred onto the transfer target body and before the support film is removed. Body manufacturing method.
前記硬化性樹脂層を半硬化させる工程で照射する活性エネルギー線の照射強度が、前記硬化性樹脂層を硬化させるのに要する活性エネルギー線の照射強度の0.1%〜40%である請求項1記載の硬化樹脂層を有する水圧転写体の製造方法。The irradiation intensity of active energy rays irradiated in the step of semi-curing the curable resin layer is 0.1% to 40% of the irradiation intensity of active energy rays required to cure the curable resin layer. A method for producing a hydraulic transfer body having the cured resin layer according to 1. 前記転写層が前記硬化性樹脂層と、印刷インキ皮膜または塗料皮膜からなる装飾層で構成される請求項1または2に記載の硬化樹脂層を有する水圧転写体の製造方法。  The manufacturing method of the hydraulic transfer body which has the cured resin layer of Claim 1 or 2 with which the said transfer layer is comprised with the said curable resin layer and the decoration layer which consists of a printing ink membrane | film | coat or a coating film. 前記硬化性樹脂層を半硬化させる工程が、水中にある水圧転写体に、活性エネルギー線を照射して前記硬化性樹脂層を半硬化させる請求項1から3のいずれかに記載の硬化樹脂層を有する水圧転写体の製造方法。 The cured resin layer according to any one of claims 1 to 3, wherein the step of semi-curing the curable resin layer semi-cures the curable resin layer by irradiating a hydraulic transfer body in water with active energy rays. A method for producing a hydraulic transfer body having: 前記水槽が底と壁の少なくとも一部に活性エネルギー線照射用の窓を有し、前記窓を通して、水中にある前記水圧転写体に活性エネルギー線を照射する請求項4に記載の水圧転写体の製造方法。  The hydraulic transfer body according to claim 4, wherein the water tank has a window for irradiating active energy rays on at least a part of a bottom and a wall, and irradiates the hydraulic energy transfer body in water through the windows with the active energy rays. Production method.
JP2003204478A 2002-08-09 2003-07-31 Method for producing molded article having cured resin layer and hydraulic transfer device Expired - Fee Related JP4275477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003204478A JP4275477B2 (en) 2002-08-09 2003-07-31 Method for producing molded article having cured resin layer and hydraulic transfer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002232929 2002-08-09
JP2003204478A JP4275477B2 (en) 2002-08-09 2003-07-31 Method for producing molded article having cured resin layer and hydraulic transfer device

Publications (3)

Publication Number Publication Date
JP2004130778A JP2004130778A (en) 2004-04-30
JP2004130778A5 JP2004130778A5 (en) 2006-09-07
JP4275477B2 true JP4275477B2 (en) 2009-06-10

Family

ID=32300959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003204478A Expired - Fee Related JP4275477B2 (en) 2002-08-09 2003-07-31 Method for producing molded article having cured resin layer and hydraulic transfer device

Country Status (1)

Country Link
JP (1) JP4275477B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200519173A (en) * 2003-09-30 2005-06-16 Dainippon Ink & Chemicals Film for hydraulic transfer printing and hydraulic transfer printing compound
JP5009094B2 (en) * 2007-08-28 2012-08-22 株式会社タイカ Water pressure transfer method, water pressure transfer device and water pressure transfer product
JP5083022B2 (en) * 2008-05-09 2012-11-28 豊田合成株式会社 Hydraulic transfer method
EP2457740B1 (en) 2009-07-23 2015-12-16 Taica Corporation Method and product of hydraulic transfer

Also Published As

Publication number Publication date
JP2004130778A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP3691030B2 (en) Water pressure transfer film and method for producing water pressure transfer body using the same
TW200936397A (en) Decorated products and process for producing the same
JP4696492B2 (en) Water pressure transfer film and water pressure transfer body
US20070042163A1 (en) Film for hydraulic transfer and hydraulically transferred body
JP4437245B2 (en) Water pressure transfer film and water pressure transfer body
JP4275477B2 (en) Method for producing molded article having cured resin layer and hydraulic transfer device
JP4617515B2 (en) Laminated film for decorating three-dimensional molded products, its production method, and its use
JP4710570B2 (en) Hydraulic transfer film and hydraulic transfer body
JP2005132014A (en) Activator for hydraulic transfer and method for manufacturing hydraulic transfer medium
JP4277650B2 (en) Water pressure transfer film and water pressure transfer body
JP2005246960A (en) Film for hydraulic transfer, and hydraulic transfer body using it
JP2006264126A (en) Hydraulic transfer film and hydraulic transfer medium
JP4020113B2 (en) Water pressure transfer film and water pressure transfer body
JP2006346884A (en) Hydraulic transfer film and hydraulically transferred body
JP2007062320A (en) Hydraulic transfer film and hydraulic transfer body
JP2006159671A (en) Hydraulic transfer film and hydraulic transfer medium
JP2007055244A (en) Film for hydraulic transfer, method for producing hydraulic transfer body and hydraulic transfer body
JP2004291439A (en) Hydraulic transfer film and method for manufacturing hydraulic transfer member using the same
JP2006123392A (en) Method for manufacturing hydraulic transfer film
JP2007223065A (en) Manufacturing method of hydraulically transferred body and giving method of hydraulic nature thereto
JP3373441B2 (en) Photocurable sheet and molded article using the same
JPH0858016A (en) Matte decorative sheet having scratch resistance
JP2005297429A (en) Film for hydraulic pressure transfer and hydraulic pressure transfer body
JP4013787B2 (en) Water pressure transfer film and water pressure transfer body
JP2005212340A (en) Manufacturing method for mat tone hydraulic transfer body

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees