JP4275121B2 - Manufacturing method of glass substrate for solar cell - Google Patents

Manufacturing method of glass substrate for solar cell Download PDF

Info

Publication number
JP4275121B2
JP4275121B2 JP2005256560A JP2005256560A JP4275121B2 JP 4275121 B2 JP4275121 B2 JP 4275121B2 JP 2005256560 A JP2005256560 A JP 2005256560A JP 2005256560 A JP2005256560 A JP 2005256560A JP 4275121 B2 JP4275121 B2 JP 4275121B2
Authority
JP
Japan
Prior art keywords
glass
solar cell
strength
cutting
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005256560A
Other languages
Japanese (ja)
Other versions
JP2006062958A (en
Inventor
英四郎 笹川
茂一 上野
泰三 藤山
和彦 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005256560A priority Critical patent/JP4275121B2/en
Publication of JP2006062958A publication Critical patent/JP2006062958A/en
Application granted granted Critical
Publication of JP4275121B2 publication Critical patent/JP4275121B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池用ガラス基板の製造方法に関する。 The present invention relates to a method for producing a glass substrate for a solar cell.

従来のアモルファスシリコン(以下、a−Siという)や微結晶シリコン、薄膜多結晶シリコンなど基板上に発電膜を形成する太陽電池は、厚いカバーガラス4と裏面カバーシート5との間に太陽電池モジュール2を挟み込む構造としている。太陽電池モジュール2は厚さ1mm程度の薄いガラス基板上に透明電極層、a−Siなどの発電層、金属電極層を順次積層してなるものである。   A conventional solar cell in which a power generation film is formed on a substrate such as amorphous silicon (hereinafter referred to as a-Si), microcrystalline silicon, or thin film polycrystalline silicon is a solar cell module between a thick cover glass 4 and a back cover sheet 5. 2 is sandwiched. The solar cell module 2 is formed by sequentially laminating a transparent electrode layer, a power generation layer such as a-Si, and a metal electrode layer on a thin glass substrate having a thickness of about 1 mm.

ラミネート処理においては、図9に示すように、複数枚例えば4枚の太陽電池モジュール2の光入射面側にはカバーガラス4を重ね合わせ太陽電池モジュールを適宜直列・並列に電気的に集電接続を行い、裏面側には裏面カバーシート5を重ね合わせ、例えば熱接着性のEVAシート3をカバーガラス4と電池モジュール2との相互間および裏面カバーシート5と電池モジュール2との相互間にそれぞれ挿入し、これを加熱加圧する。予め所定寸法として用意したカバーガラスのサイズの太陽電池となる。   In the laminating process, as shown in FIG. 9, a plurality of, for example, four solar cell modules 2 are covered with a cover glass 4 on the light incident surface side, and the solar cell modules are electrically collected and connected in series and parallel as appropriate. The back cover sheet 5 is overlaid on the back side, and for example, a heat-adhesive EVA sheet 3 is placed between the cover glass 4 and the battery module 2 and between the back cover sheet 5 and the battery module 2, respectively. Insert and heat-press it. A solar cell having a cover glass size prepared in advance as a predetermined dimension is obtained.

ところで、従来の太陽電池モジュール2は最終製品に近いサイズを想定して予め設定されているために、カバーガラス4のサイズは電池モジュール2のサイズのほぼ整数倍に固定化されている。このため規格から外れたサイズは特注品扱いとなり、コストおよび納期の面で問題があるので量産工場では実際には規格外のサイズを製造することはできない。   By the way, since the conventional solar cell module 2 is set in advance assuming a size close to the final product, the size of the cover glass 4 is fixed to approximately an integral multiple of the size of the battery module 2. For this reason, a size out of the standard is handled as a custom-made product, and there is a problem in terms of cost and delivery time, so a mass production factory cannot actually manufacture a size out of the standard.

そこで、任意サイズのカバーガラスに太陽電池機能層を直接積層し、ラミネート処理により裏面カバーシートを貼り合わせてパネル化し、パネルを切断して所望サイズに分割化することにより顧客の多様な要求に応えるようにすることが考えられる。   Therefore, a solar cell functional layer is directly laminated on a cover glass of any size, and a back cover sheet is laminated by lamination to form a panel, and the panel is cut and divided into desired sizes to meet various customer requirements. It is possible to do so.

しかし、カバーガラスを切断しようとすると周囲に亀裂が進展して細かな小断片にばらばらに分かれてしまい、切断予定線に沿ってシャープに切断することができない。これはカバーガラスの軽量化のために薄めの板厚でも十分な強度が得られるように強化ガラスを用いていることに起因しており、強化ガラスの表面に切り欠きを生じると、表層に存在する高い残留応力が切り欠きによって解消され、見掛け上の引張り強度が低下し、周囲に多数の亀裂が進展してしまうからである。このため強化ガラスを受け入れ状態のままで太陽電池機能用ガラス基板と保護用カバーガラスとに兼用して製造した後に所望サイズに分断化することが事実上できないという問題がある。   However, if an attempt is made to cut the cover glass, cracks will develop around it and it will be divided into small small pieces that cannot be cut sharply along the planned cutting line. This is due to the fact that tempered glass is used so that sufficient strength can be obtained even with a thin plate thickness to reduce the weight of the cover glass. This is because the high residual stress is eliminated by the notch, the apparent tensile strength is lowered, and a large number of cracks develop around. For this reason, there is a problem that it is practically impossible to divide the glass into a desired size after the glass is used for both the solar cell function glass substrate and the protective cover glass in the accepting state.

また、量産工場では製品サイズ毎に対応する製造ラインをもつ必要があり、異なるサイズの製品を同一の製造ラインに流すにはハンドリング装置、位置決め装置をはじめ様々な制約を受けるので、事実上は規格外の異サイズ製品を同一ラインでは製造することができない。このため顧客の種々の要求・要望に応えることができないという問題がある。   In addition, mass production plants need to have production lines that correspond to each product size, and in order to distribute products of different sizes to the same production line, there are various restrictions such as handling devices and positioning devices, so it is actually a standard. Other different size products cannot be manufactured on the same line. For this reason, there exists a problem that it cannot respond to a customer's various requests and requests.

本発明は上記の課題を解決するためになされたものであって、各種サイズに対応できる太陽電池パネルの分割化を容易にするために、ガラス基板を強化ガラスと生板ガラスとの間の最も適した強度レベルとし、基板の分断を可能とすることができる太陽電池用ガラス基板の製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and is most suitable between a tempered glass and a green glass for facilitating the division of a solar cell panel capable of accommodating various sizes. An object of the present invention is to provide a method for manufacturing a glass substrate for a solar cell, which can be divided into high strength levels and can be divided.

ガラスは圧縮に対しては強いが、引張りに対しては弱い材料である。また、ガラスの表層にはグリフィスフローと呼ばれる表面欠陥が存在するため、ガラスが破壊されるときには表層が破壊の起点となりやすい。そこで、強化ガラスでは表層に圧縮応力を人為的に付与することにより見掛け上の引張り強度を向上させている。   Glass is a material that is strong against compression but weak against tension. Further, since a surface defect called Griffith Flow exists on the surface layer of the glass, the surface layer tends to be a starting point of the breakage when the glass is broken. Therefore, in the tempered glass, the apparent tensile strength is improved by artificially applying a compressive stress to the surface layer.

強化ガラスには物理(熱)強化ガラス、化学強化ガラス、積層強化ガラスの三種類がある。例えば物理強化ガラスは、軟化点近傍温度まで昇温の後に急冷する熱処理によって表層部分に高い圧縮の残留応力を付与し、生板ガラスの2〜3倍以上の強度を有するように強化されている。このような強化ガラスの表面に切り欠きを生じると、表層の残留応力が切り欠きにより解消され、見掛け上の引張り強度が低下し、周囲に多数の亀裂が進展する結果、そのままの状態では容易に切断することができない。そこで、本発明者らは強化ガラスを切断するための方策について鋭意研究を重ねた結果、本発明を完成させるに至った。   There are three types of tempered glass: physical (thermal) tempered glass, chemically tempered glass, and laminated tempered glass. For example, physically tempered glass is tempered so as to impart a high compressive residual stress to the surface layer portion by a heat treatment that is rapidly cooled to a temperature near the softening point and then has a strength two to three times that of green glass. When notches are generated on the surface of such tempered glass, the residual stress on the surface layer is eliminated by the notches, the apparent tensile strength decreases, and a large number of cracks develop around the surface. Can't cut. Therefore, as a result of intensive studies on measures for cutting tempered glass, the present inventors have completed the present invention.

本発明に係る太陽電池用ガラス基板の製造方法は、発電機能層を保護するためのカバーとしての役割をもち、かつ該発電機能層が直接的に積層され、該発電機能層の積層後に切断されて所望の製品サイズに分割される太陽電池用ガラス基板の製造方法であって、生板ガラスを出発材料とし、前記発電機能層を積層する前に、該生板ガラスを500〜550℃の温度域に所定時間加熱保持し、その後急冷することにより、その強度を型抜きままの状態のソーダ石灰ガラスの強度の1.20倍以上から1.70倍以下までの範囲とすることを特徴とする。 The method for manufacturing a solar cell glass substrate according to the present invention has a role as a cover for protecting the power generation functional layer, and the power generation functional layer is directly laminated, and is cut after the power generation functional layer is laminated. A method of manufacturing a glass substrate for a solar cell that is divided into a desired product size, using green glass as a starting material, and before laminating the power generation functional layer, the green glass is brought to a temperature range of 500 to 550 ° C. By heating and holding for a predetermined time and then rapidly cooling, the strength is set in a range from 1.20 times to 1.70 times the strength of soda-lime glass in a state of being unmolded.

ここで「生板ガラス」とは、型抜き後に特別な処理をしない状態の無色透明のソーダ石灰ガラス(普通板ガラス)のことをいう。生板ガラスの強度は一般に5000〜10000Pa(5〜10kg/mm2)程度である。 Here, “green plate glass” refers to colorless and transparent soda-lime glass (ordinary plate glass) in a state in which no special treatment is performed after die cutting. The strength of the green glass is generally about 5000 to 10000 Pa (5 to 10 kg / mm 2 ).

ここで「強化ガラス」とは、物理(熱)強化ガラスのことをいう。物理強化ガラスの強度は生板ガラス強度の2〜3倍程度である。   Here, “tempered glass” refers to physical (heat) tempered glass. The strength of physically strengthened glass is about 2 to 3 times the strength of green glass.

「歪点」とは、粘度が4×1014poise(logη=14.5)のときの温度をいう。この歪点温度では粘性流動は事実上おこりえないので、温度が歪点以下になるとガラスから歪を除去することができなくなる。 “Strain point” refers to the temperature at which the viscosity is 4 × 10 14 poise (log η = 14.5). At this strain point temperature, viscous flow cannot practically occur, so when the temperature falls below the strain point, strain cannot be removed from the glass.

「軟化点」とは、粘度が4.5×107poise(logη=7.65)のときの温度をいう。軟化点温度に加熱すると直径0.55〜0.75mm×長さ230mmのガラス糸が1mm/分の速度で伸びるようになる。 The “softening point” refers to a temperature when the viscosity is 4.5 × 10 7 poise (log η = 7.65). When heated to the softening point temperature, a glass yarn having a diameter of 0.55 to 0.75 mm and a length of 230 mm is stretched at a rate of 1 mm / min.

ガラス組成ごとに粘度と温度との相関特性曲線がそれぞれ求められている。ソーダ石灰ガラスの相関特性曲線を用いて歪点と軟化点をそれぞれ調べてみると、歪点は約480〜510℃、軟化点は約720〜735℃となる。   A correlation characteristic curve between viscosity and temperature is determined for each glass composition. When the strain point and the softening point are examined using the correlation characteristic curve of soda-lime glass, the strain point is about 480 to 510 ° C and the softening point is about 720 to 735 ° C.

本発明では、受入れたままの状態の生板ガラスを使用する際は強度不足のため厚肉とする必要があり、重量物となって太陽電池用ガラス基板としては不適合であるため、これを500〜550℃の温度域に所定時間加熱保持し、その後急冷し、その強度を型抜きままの状態のソーダ石灰ガラスの強度の1.20倍以上から1.70倍以下までに引き上げた半強化ガラスとし、薄肉化して太陽電池用ガラスとして用いることができるようにしている。ここで、半強化処理ガラスの強度の下限値を型抜きままの状態のソーダ石灰ガラス(生板ガラス)の1.20倍とした理由は、これを下回る強度では太陽電池据付け工事のときに作業者が踏みつけて割れたり、雹や落石などの自然災害に耐えられず、保護カバーとしての機能が失われ、これを防ぐためにはガラスの板厚を厚くする必要があり、重量の増加とコストアップになるからである。一方、半強化処理ガラス強度の上限値を生板ガラスの1.70倍とした理由は、これを上回る強度では表層の残留圧縮力が過大になるため切断予定線に沿ってきれいに切断することが困難になるからである。   In the present invention, when using raw glass as received, it is necessary to make it thick due to insufficient strength, and because it is heavy and unsuitable as a glass substrate for solar cells, A semi-tempered glass that is heated and held in a temperature range of 550 ° C. for a predetermined time, and then rapidly cooled to raise its strength from 1.20 times to 1.70 times the strength of soda-lime glass in an unmolded state. It is thinned so that it can be used as glass for solar cells. Here, the reason why the lower limit value of the strength of the semi-strengthened glass is 1.20 times that of the soda-lime glass (raw glass) in the state of being unmolded is that the worker has a strength lower than this at the time of solar cell installation work. Can not withstand natural disasters such as trampling, cracking and falling rocks, and the function as a protective cover is lost.To prevent this, it is necessary to increase the thickness of the glass, which increases the weight and costs. Because it becomes. On the other hand, the reason why the upper limit of the strength of the semi-strengthened glass is 1.70 times that of the green glass is that if the strength exceeds this, the residual compressive force of the surface layer becomes excessive, and it is difficult to cut cleanly along the planned cutting line. Because it becomes.

図3は横軸に基板厚み(mm)をとり、縦軸に鋼球227g落下高さ(m)をとって、各種ガラス基板の強度をそれぞれ測定したものである。JIS規格C8938に規定された鋼球227g落下高さ試験に従って3〜8mm範囲の各種厚さの強化ガラス、半強化処理ガラス、生板ガラスの3種について強度をそれぞれ調べた結果、次のことが判明した。   In FIG. 3, the horizontal axis represents the substrate thickness (mm) and the vertical axis represents the steel ball 227g drop height (m), and the strength of each glass substrate was measured. According to the steel ball 227g drop height test specified in JIS standard C8938, the strength of three types of tempered glass, semi-tempered glass, and green glass with various thicknesses in the range of 3-8mm was examined. did.

イ)本発明の半強化処理ガラスはJIS規格に定める耐雹規格(鋼球227gを1mの高さから落下した衝撃力に耐える)を実用的な全ての板厚(3〜8mm)でクリアした。すなわち半強化処理ガラスは、板厚3mmのときに鋼球227g落下高さで1.2〜2.2m、板厚6mmのときに鋼球227g落下高さで1.5〜2.6m、板厚8mmのときに鋼球227g落下高さで2.1〜3.8mの強度を示した。   B) The semi-tempered glass of the present invention has cleared the weather resistance standard (withstands the impact force of dropping 227 g of steel balls from a height of 1 m) defined by JIS standards at all practical plate thicknesses (3 to 8 mm). . That is, the semi-tempered glass has a steel ball 227g drop height of 1.2 to 2.2 m when the plate thickness is 3 mm, and a steel ball 227 g drop height of 1.5 to 2.6 m when the plate thickness is 6 mm. When the thickness was 8 mm, the steel ball showed a strength of 2.1 to 3.8 m at a drop height of 227 g.

ロ)強化ガラス、半強化処理ガラス、生板ガラスともに板厚が厚くなるに従って強度が緩やかに増大した。すなわち板厚が3mmから8mmに厚くなると鋼球227g落下高さで約1〜1.5m上昇した。   B) The strength of the tempered glass, semi-tempered glass, and green glass increased gradually as the plate thickness increased. That is, when the plate thickness was increased from 3 mm to 8 mm, the steel ball 227 g dropped by about 1 to 1.5 m.

図3中の曲線E1は半強化処理にて基板切断可能な基板強度の下限条件を示し、曲線E2は半強化処理にて基板切断可能な基板強度の上限条件を示す。また、一点鎖線CはJIS規格に定める耐雹規格としての、鋼球227g落下高さ1mの強度を示す。   A curve E1 in FIG. 3 indicates a lower limit condition of the substrate strength that can be cut by the semi-strengthening process, and a curve E2 indicates an upper limit condition of the substrate strength that can be cut by the semi-strengthening process. Also, the alternate long and short dash line C indicates the strength of the steel ball 227g drop height 1m as the weather resistance standard defined in the JIS standard.

ガラスの破壊は、準静的な熱的過程と割れ目が急激に伸びる断熱過程との2つの相を呈し、その境界は限界破壊エネルギーGcによって決まる。本発明の半強化処理ガラスを切断するときは限界破壊エネルギーGcを超えるエネルギーを切断手段によりガラス基板に印可し、割れ目が急激に伸びる断熱過程の割れを生じさせる。これにより欠けやクラックが少ないシャープな切断面が得られる。   The destruction of glass exhibits two phases: a quasi-static thermal process and an adiabatic process in which cracks grow rapidly, and the boundary is determined by the critical fracture energy Gc. When the semi-strengthened glass of the present invention is cut, energy exceeding the critical fracture energy Gc is applied to the glass substrate by the cutting means, and a crack in the heat insulating process in which the cracks are rapidly extended is generated. As a result, a sharp cut surface with few chips and cracks can be obtained.

以上詳述したように本発明によれば、大型ガラス基板から複数の小型太陽電池を分割する際に、切断に適した半強化処理ガラス基板の製造方法を提供することができる。 As described above in detail, according to the present invention, when a plurality of small solar cells are divided from a large glass substrate, a method for producing a semi-strengthened glass substrate suitable for cutting can be provided.

また、透明電極の製膜条件を適正化することにより、製膜プロセスと半強化処理プロセスとを一括化できるので、専用の熱処理炉を新設することなく、既設の透明電極用熱処理装置を利用してガラス基板を半強化処理することができる。このため、運転コストおよび設備コストの上昇を抑制できる。   In addition, since the film forming process and the semi-strengthening process can be integrated by optimizing the film forming conditions of the transparent electrode, an existing heat treatment apparatus for transparent electrodes can be used without newly establishing a dedicated heat treatment furnace. The glass substrate can be semi-strengthened. For this reason, an increase in operating cost and equipment cost can be suppressed.

以下、添付の図面を参照しながら本発明の種々の好ましい実施の形態について説明する。   Hereinafter, various preferred embodiments of the present invention will be described with reference to the accompanying drawings.

先ず図1乃至図4を参照してアモルファスシリコン太陽電池を例とした太陽電池製造方法を説明する。   First, a solar cell manufacturing method using an amorphous silicon solar cell as an example will be described with reference to FIGS.

太陽電池製造ラインのうちの少なくとも透明電極形成工程S1から分割工程S7までの区間は、ガラス基板4が搬送路上を次々に流れるようにコンピュータ制御された全自動一貫製造ラインとして構成されている。発電検査工程S8から後の区間は、作業者が製品サイズ毎に仕分け、検査装置を用いてそれぞれ個別に検査し、封止装置を用いて封止材を太陽電池パネル周辺および端子台などのシール必要部分を注入処理し、一時保管場所に保管して封止材をエージングし、梱包装置を用いて梱包処理する半自動ラインである。   At least a section from the transparent electrode forming step S1 to the dividing step S7 in the solar cell production line is configured as a fully automatic integrated production line controlled by a computer so that the glass substrates 4 flow one after another on the conveyance path. The section after the power generation inspection step S8 is sorted by product size by the operator, individually inspected using an inspection device, and the sealing material is sealed around the solar cell panel and the terminal block using the sealing device. It is a semi-automatic line that injects necessary parts, stores them in a temporary storage place, aged sealing materials, and packs them using a packing device.

基板受入部にガラス基板4を受け入れ、基板4をロット毎に分別して一時収納庫に保管する。ガラス基板4のサイズは例えば板厚3mm×幅1000mm×長さ1000mmである。一時収納庫からガラス基板4を1枚ずつ取り出し、搬送路上に載せ、バーコード印字装置に搬送し、基板4に識別用のバーコードを印字する。さらに基板4を洗浄処理装置に搬送し、基板4を洗浄し、表面から付着異物を除去する。   The glass substrate 4 is received in the substrate receiving unit, and the substrates 4 are sorted into lots and stored in a temporary storage. The size of the glass substrate 4 is, for example, plate thickness 3 mm × width 1000 mm × length 1000 mm. The glass substrates 4 are taken out from the temporary storage one by one, placed on a conveyance path, conveyed to a barcode printing device, and a barcode for identification is printed on the substrate 4. Further, the substrate 4 is conveyed to a cleaning processing apparatus, the substrate 4 is cleaned, and the adhered foreign matter is removed from the surface.

基板4を図4に示す熱処理炉44に搬入し、約450〜500℃に予熱する。予熱した基板4を熱CVD装置(またはイオンプレーティング装置又はスパッタ装置)に搬入し、ガラス基板4の片面(洗浄面)に所定膜厚の透明電極11を積層形成する(工程S1)。最初の透明電極11の膜厚は約750nmである。   The substrate 4 is carried into a heat treatment furnace 44 shown in FIG. 4 and preheated to about 450 to 500 ° C. The preheated substrate 4 is carried into a thermal CVD apparatus (or an ion plating apparatus or a sputtering apparatus), and a transparent electrode 11 having a predetermined film thickness is formed on one side (cleaning surface) of the glass substrate 4 (step S1). The film thickness of the first transparent electrode 11 is about 750 nm.

受け入れた基板4が物理強化ガラスの場合は、上記予熱に用いた熱処理炉44により基板4を半強化処理する。基板4をベルトコンベア42に載せ、熱処理炉44内を搬送しながらヒータ45で加熱するが、基板4を急冷する必要はない。半強化処理条件は400〜550℃の温度域に20〜30分間加熱保持し、その直後に100℃/分程度の冷却速度で徐冷する。これによりガラス基板4の強度は初期強度の約50%(生板ガラスの約1.5倍)と半減し、太陽電池カバーガラスとしての必要強度を確保しつつ、分割予定線31,32に沿って切断可能な強度レベルとなる。   When the received substrate 4 is physically strengthened glass, the substrate 4 is semi-strengthened by the heat treatment furnace 44 used for the preheating. Although the substrate 4 is placed on the belt conveyor 42 and heated by the heater 45 while being conveyed in the heat treatment furnace 44, it is not necessary to rapidly cool the substrate 4. The semi-strengthening treatment condition is to heat and hold in a temperature range of 400 to 550 ° C. for 20 to 30 minutes, and immediately thereafter, gradually cool at a cooling rate of about 100 ° C./minute. As a result, the strength of the glass substrate 4 is halved to about 50% of the initial strength (about 1.5 times that of the green glass), and the required strength as a solar cell cover glass is secured along the planned dividing lines 31 and 32. It becomes the strength level that can be cut.

なお、本実施形態では透明電極形成前の予熱に用いる熱処理炉をガラス基板の半強化処理に利用するようにしているが、これとは別に設けられた他の熱処理炉を用いてガラス基板を半強化処理するようにしてもよい。また、受け入れた基板4が強化ガラスでない場合、例えば生板ガラスの1.5倍程度の強度をもつ半強化状態にある場合、および重量増加という難点があるものの必要強度を確保した生板ガラスはこの熱処理は省略できる。なお、ガラス基板4の強度は、図3に示す鋼球227g落下試験のみならずモアレ干渉縞を利用した光学的な非破壊検査によってもある程度の精度で測定することが可能である。   In this embodiment, the heat treatment furnace used for preheating before forming the transparent electrode is used for the semi-strengthening treatment of the glass substrate. However, the glass substrate is half-heated using another heat treatment furnace provided separately from this. You may make it strengthen processing. In addition, when the received substrate 4 is not tempered glass, for example, when it is in a semi-tempered state having a strength about 1.5 times that of raw glass, and the raw glass that secures the required strength although there is a problem of weight increase, this heat treatment Can be omitted. In addition, the intensity | strength of the glass substrate 4 can be measured with a certain amount of precision not only by the steel ball 227g drop test shown in FIG. 3 but by the optical nondestructive inspection using a moire interference fringe.

熱処理後、洗浄処理装置に基板4を搬送し、基板4を洗浄処理し、次いで例えばレーザーエッチング装置に基板4を搬送し、透明電極11を所定パターンにエッチングする(工程S2)。   After the heat treatment, the substrate 4 is transferred to the cleaning processing apparatus, the substrate 4 is cleaned, and then the substrate 4 is transferred to, for example, a laser etching apparatus to etch the transparent electrode 11 into a predetermined pattern (step S2).

次いで、プラズマCVD製膜装置に基板4を搬送し、パターンエッチングされた透明電極11の上にアモルファスシリコン層12を製膜する(工程S3)。a−Si層12の合計膜厚は例えば約400nmである。   Next, the substrate 4 is transferred to a plasma CVD film forming apparatus, and an amorphous silicon layer 12 is formed on the transparent electrode 11 subjected to pattern etching (step S3). The total film thickness of the a-Si layer 12 is about 400 nm, for example.

次いで、例えばレーザーエッチング装置に基板4を搬送し、a−Si層12を所定パターンにエッチングする(工程S4)。   Next, for example, the substrate 4 is conveyed to a laser etching apparatus, and the a-Si layer 12 is etched into a predetermined pattern (step S4).

次いで、イオンプレーティング装置(又はスパッタ装置またはCVD装置)に基板4を搬送し、パターンエッチングされたa−Si層12の上に例えばアルミニウムからなる金属電極13を所定厚さに積層形成する(工程S5)。金属電極13の膜厚は例えば約500nmである。   Next, the substrate 4 is conveyed to an ion plating apparatus (or a sputtering apparatus or a CVD apparatus), and a metal electrode 13 made of, for example, aluminum is laminated and formed on the a-Si layer 12 subjected to pattern etching (step). S5). The film thickness of the metal electrode 13 is about 500 nm, for example.

次いで、例えばレーザーエッチング装置に基板4を搬送し、金属電極13を所定パターンにエッチングする(工程S6)。このエッチング工程S6では後述する分割工程S7の切断予定線に沿って透明電極11までを完全除去する絶縁帯域を形成しておくことで切断面での電気的短絡を防止する。   Next, for example, the substrate 4 is conveyed to a laser etching apparatus, and the metal electrode 13 is etched into a predetermined pattern (step S6). In this etching step S6, an electrical short circuit at the cut surface is prevented by forming an insulating band that completely removes up to the transparent electrode 11 along a planned cutting line in a dividing step S7 described later.

このように基板4上に発電機能層11,12,13が順次積層形成された積層体9をラミネーター装置に搬送し、例えば熱接着性のEVAシート3および耐水性の裏面カバーシート5を積層体9の積層面に重ね合わせ、これを約150℃に加熱しながら所定圧力でプレスし、接合して一体化したパネル10とする。パネル10から外側にはみ出した接着剤をトリミングユニットで除去し、さらに架橋炉内で加熱して接着剤の架橋反応を促進させ、その後クーリングユニット内で室温まで冷却する。次いで、端子台取付部にパネル10を搬送し、透明電極11にプラス端子を取り付け、金属電極13にマイナス端子を取り付け、配線する。パネル10をエージングユニットに搬送し、接着剤を乾燥硬化させる。   Thus, the laminated body 9 in which the power generation function layers 11, 12, and 13 are sequentially laminated on the substrate 4 is conveyed to a laminator device, and, for example, the thermally adhesive EVA sheet 3 and the water-resistant back cover sheet 5 are laminated. The panel 10 is laminated on the laminated surface 9 and pressed at a predetermined pressure while being heated to about 150 ° C., and joined to form an integrated panel 10. The adhesive protruding outside from the panel 10 is removed by the trimming unit and further heated in a crosslinking furnace to promote the crosslinking reaction of the adhesive, and then cooled to room temperature in the cooling unit. Next, the panel 10 is transported to the terminal block mounting portion, the plus terminal is attached to the transparent electrode 11, the minus terminal is attached to the metal electrode 13, and wiring is performed. The panel 10 is conveyed to an aging unit, and the adhesive is dried and cured.

次いで、パネル10をカッティングマシンに搬送し、ガラス基板4の側または裏面カバーシート5の側からパネル10を一括に切断する(工程S7)。パネル10をXYテーブル上に載せ、XYテーブルとともにパネルを移動させながら切断手段によりパネル10を切断する。これによりパネル10は複数の所望サイズの太陽電池1Aに分割される。本実施例では図1の(a)に示す1枚のパネル10から図1の(b)に示す4枚の同サイズ小型太陽電池1Aを得るように等分割する。分割された太陽電池1Aのサイズはおよそ幅500mm×長さ500mmである。   Next, the panel 10 is transported to a cutting machine, and the panel 10 is collectively cut from the glass substrate 4 side or the back cover sheet 5 side (step S7). The panel 10 is placed on the XY table, and the panel 10 is cut by the cutting means while moving the panel together with the XY table. Thus, the panel 10 is divided into a plurality of solar cells 1A having a desired size. In the present embodiment, the same panel is divided so as to obtain four small-sized solar cells 1A of the same size shown in FIG. 1B from one panel 10 shown in FIG. The size of the divided solar cell 1A is approximately 500 mm wide × 500 mm long.

なお、切断手段としてのカッティングマシンは後述するように種々の手段および方法を用いることができる。また、本実施例ではパネルを4つに等分割する例について説明したが、本発明はこれのみに限られず切断予定線を変えることによってパネルを異なるサイズの太陽電池に不等分に分割することも可能であるし、またパネルを2分割、6分割、8分割することも可能である。   The cutting machine as the cutting means can use various means and methods as will be described later. Further, in this embodiment, an example in which the panel is equally divided into four has been described. However, the present invention is not limited to this, and the panel is divided evenly into solar cells of different sizes by changing the planned cutting line. It is also possible to divide the panel into two, six and eight.

太陽電池1Aをトリミングユニットに搬送し、切断端面を研削研磨し、端子間を配線する。次いで、発電検査装置を用いてガラス基板4の側に模擬太陽光を照射し、両電極11,13間に接続した負荷に発電電流を流して太陽電池1Aの発電能力を検査する(工程S8)。   The solar cell 1A is transported to the trimming unit, the cut end face is ground and polished, and the terminals are wired. Next, simulated sunlight is irradiated on the glass substrate 4 side using a power generation inspection device, and a power generation current is passed through a load connected between the electrodes 11 and 13 to inspect the power generation capability of the solar cell 1A (step S8). .

工程S8で合格した太陽電池1Aは、製品サイズ毎に仕分けられる。サイズ毎に封止装置を用いて太陽電池1A周辺および端子台などのシール必要部分に封止材を注入するとともに、必要に応じて外周端部にゴム枠やアルミフレーム枠を嵌め込み接着し、一時保管場所に保管して封止材をエージングする。これにより太陽電池1Aは製品として完成し、梱包装置により梱包されて出荷される。   Solar cells 1A that have passed in step S8 are sorted by product size. A sealing device is used for each size to inject a sealing material around the solar cell 1A and necessary parts such as a terminal block, and if necessary, a rubber frame or an aluminum frame frame is fitted and bonded to the outer peripheral edge as needed. Store in a storage location and age the encapsulant. Thereby, solar cell 1A is completed as a product, and is packed and shipped by a packing device.

次に、半強化処理の種々の実施例について説明する。   Next, various examples of the semi-strengthening process will be described.

(実施例1)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラス(組成:SiO2:70〜74%,Na2O:12〜16%,その他)で板厚3mmの物理強化ガラスを、透明電極11の積層後に455±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Example 1)
After laminating the transparent electrode 11, physically tempered glass with soda lime glass (composition: SiO 2 : 70 to 74%, Na 2 O: 12 to 16%, etc.) called blue plate (or white plate) glass is used. It was heated and held at a temperature of 455 ± 5 ° C. for about 20 minutes, and then slowly cooled at a cooling rate of about 100 ° C./min and then carried out.

その結果、鋼球227g落下高さで1.6mの強度が得られた。   As a result, a strength of 1.6 m was obtained at a drop height of 227 g of steel balls.

(実施例2)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚4mmの物理強化ガラスを、透明電極11の積層後に455±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Example 2)
Physically tempered glass of 4 mm thick soda lime glass called blue plate (or white plate) glass is heated and held at a temperature of 455 ± 5 ° C. for about 20 minutes after lamination of the transparent electrode 11, and a cooling rate of about 100 ° C./min It was slowly cooled and carried out.

その結果、鋼球227g落下高さで1.8mの強度が得られた。   As a result, a strength of 1.8 m was obtained at a drop height of 227 g of steel balls.

(実施例3)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚3mmの物理強化ガラスを、透明電極11の積層後に500±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Example 3)
Physically tempered glass of 3 mm thick soda lime glass called blue plate (or white plate) glass is heated and held at a temperature of 500 ± 5 ° C. for about 20 minutes after lamination of the transparent electrode 11, and a cooling rate of about 100 ° C./min. It was slowly cooled and carried out.

その結果、鋼球227g落下高さで1.0mの強度が得られた。   As a result, a strength of 1.0 m was obtained at a drop height of 227 g of steel balls.

(実施例4)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚4mmの物理強化ガラスを、透明電極11の積層後に500±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Example 4)
Physically tempered glass of 4 mm thick soda lime glass called blue plate (or white plate) glass is heated and held at a temperature of 500 ± 5 ° C. for about 20 minutes after lamination of the transparent electrode 11, and a cooling rate of about 100 ° C./min. It was slowly cooled and carried out.

その結果、鋼球227g落下高さで1.2mの強度が得られた。   As a result, a strength of 1.2 m was obtained at a drop height of 227 g of steel balls.

(実施例5)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚3mmの物理強化ガラスを、透明電極(SnO2膜)11の製膜条件を兼ねて450±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Example 5)
A soda lime glass called blue plate (or white plate) glass is heated and held at a temperature of 450 ± 5 ° C. for about 20 minutes with a physical tempered glass having a thickness of 3 mm serving as a film forming condition of the transparent electrode (SnO 2 film) 11. Then, it was slowly cooled at a cooling rate of about 100 ° C./min and carried out.

その結果、鋼球227g落下高さで1.8mの強度が得られた。   As a result, a strength of 1.8 m was obtained at a drop height of 227 g of steel balls.

(実施例6)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚4mmの物理強化ガラスを、透明電極(SnO2膜)11の製膜条件を兼ねて450±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Example 6)
A soda lime glass called blue plate (or white plate) glass is heated and held at a temperature of 450 ± 5 ° C. for about 20 minutes with a physical tempered glass having a thickness of 4 mm serving as a film forming condition of the transparent electrode (SnO 2 film) 11. Then, it was slowly cooled at a cooling rate of about 100 ° C./min and carried out.

その結果、鋼球227g落下高さで2.0mの強度が得られた。   As a result, a strength of 2.0 m was obtained at a drop height of 227 g of steel balls.

なお、実施例5,6では、透明電極の製膜条件を適正化させ、製膜プロセスと半強化処理プロセスとを一括化させることにより、新たに装置を導入することなく、既存設備で対応することができるので、運転コストおよび設備コストの上昇を抑制できるという利点がある。   In Examples 5 and 6, the film forming conditions of the transparent electrode are optimized, and the film forming process and the semi-strengthening treatment process are integrated, so that existing equipment can be used without introducing a new apparatus. Therefore, there is an advantage that increase in operation cost and equipment cost can be suppressed.

(実施例7)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで、板厚3mmの生板ガラスを、透明電極11の積層後に510±5℃の温度に約20分間加熱保持し、直後に室温(約23℃)のエアを基板4に吹き付けて急冷した。
(Example 7)
Soda lime glass called blue plate (or white plate) glass, raw plate glass having a thickness of 3 mm, is heated and held at a temperature of 510 ± 5 ° C. for about 20 minutes after lamination of the transparent electrode 11, and immediately at room temperature (about 23 ° C.) The air was blown onto the substrate 4 for rapid cooling.

その結果、鋼球227g落下高さで1.2mの強度が得られた。   As a result, a strength of 1.2 m was obtained at a drop height of 227 g of steel balls.

(実施例8)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで、板厚4mmの生板ガラスを、透明電極11の積層後に510±5℃の温度に約20分間加熱保持し、直後に室温(約23℃)のエアを基板4に吹き付けて急冷した。
(Example 8)
Soda lime glass called blue plate (or white plate) glass, raw plate glass having a thickness of 4 mm is heated and held at a temperature of 510 ± 5 ° C. for about 20 minutes after lamination of the transparent electrode 11, and immediately at room temperature (about 23 ° C.) The air was blown onto the substrate 4 for rapid cooling.

その結果、鋼球227g落下高さで1.4mの強度が得られた。   As a result, a strength of 1.4 m was obtained at a drop height of 227 g of steel balls.

(比較例1)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚3mmの物理強化ガラスを、透明電極11の積層後に550±5℃の温度に約20分間加熱保持し、約100℃/分の冷却速度で徐冷して搬出した。
(Comparative Example 1)
Physically tempered glass of 3 mm thick soda lime glass called blue plate (or white plate) glass is heated and held at a temperature of 550 ± 5 ° C. for about 20 minutes after lamination of the transparent electrode 11, and a cooling rate of about 100 ° C./min It was slowly cooled and carried out.

その結果、鋼球227g落下高さで0.7mの強度しか得られなかった。   As a result, only a strength of 0.7 m was obtained at a drop height of 227 g of steel balls.

(比較例2)
青板(または白板)ガラスと呼ばれるソーダ石灰ガラスで板厚3mmの生板ガラスを、透明電極(SnO2膜)11の製膜条件を兼ねて550±5℃の温度に約20分間加熱保持しただけで、急冷操作は行なわなかった。
(Comparative Example 2)
A soda lime glass called blue plate (or white plate) glass is simply heated and held at a temperature of 550 ± 5 ° C. for about 20 minutes while also serving as a film forming condition for the transparent electrode (SnO 2 film) 11. The rapid cooling operation was not performed.

その結果、鋼球227g落下高さで0.7mの強度しか得られなかった。   As a result, only a strength of 0.7 m was obtained at a drop height of 227 g of steel balls.

次に、上記分割工程S7に用いる切断手段および方法について図6〜図8を参照しながら説明する。   Next, the cutting means and method used in the dividing step S7 will be described with reference to FIGS.

切断手段として図6および図7に示すホイールカッター20を用いた。ホイールカッター20のカッター刃24は硬質ガラスよりも硬い超硬合金でできている。カッター刃24は軸23まわりに回転可能にホルダ22に支持され、さらにホルダ22は図示しないロボットにより駆動される支持アーム21に連結支持されている。ロボットは光学センサを備えており、光学センサで切断予定線を検出するか、または予めその位置をプログラムで数値設定しておき、これに基づき支持アーム21を駆動制御し、ホイールカッター20のカッター刃24がガラス基板4に対して所定圧力で押し付けられるとともに切断予定線位置に相対移動されるようになっている。すなわちパネル10をXYテーブル上に載せ、パネル10の切断予定線上にカッター刃24を押し付け、パネル10をXYテーブルとともに移動させることによりパネル10に切り欠きをつける。   A wheel cutter 20 shown in FIGS. 6 and 7 was used as a cutting means. The cutter blade 24 of the wheel cutter 20 is made of a cemented carbide harder than hard glass. The cutter blade 24 is supported by a holder 22 so as to be rotatable around a shaft 23, and the holder 22 is connected and supported by a support arm 21 driven by a robot (not shown). The robot is equipped with an optical sensor, and the cutting line is detected by the optical sensor, or the position is set in advance by a program, and the support arm 21 is driven and controlled based on this, and the cutter blade of the wheel cutter 20 is controlled. 24 is pressed against the glass substrate 4 at a predetermined pressure, and is moved relative to the planned cutting line position. That is, the panel 10 is placed on the XY table, the cutter blade 24 is pressed on the planned cutting line of the panel 10, and the panel 10 is moved together with the XY table to cut out the panel 10.

カッター刃24の刃先をガラス基板4の表面に押し付けた状態で移動させ、深さ約0.5mm未満の切り欠き8aを形成する。次いで、もしくは同時に裏面カバーシート5の切断予定線に倣って他のカッター刃で裏面カバーシート5を切断する。次いで、切り欠き8aの部分に押圧力を印可してガラス基板4を押し割る。このとき切り欠き8aから垂直クラック8bのみが進展し、水平クラック8cは実質的にまったく進展しないので、きれいな切断面となる。このようなガラスの押し割り方法は、例えばやすりによるアンプル切断や一般ガラス細工に利用されている原理と同じである。その後、切断端面部に欠けやクラックなどが残らないように面取り研磨する。   The cutting edge 24 of the cutter blade 24 is moved while being pressed against the surface of the glass substrate 4 to form a notch 8a having a depth of less than about 0.5 mm. Next or simultaneously, the back cover sheet 5 is cut with another cutter blade following the planned cutting line of the back cover sheet 5. Next, the glass substrate 4 is pressed and broken by applying a pressing force to the notch 8a. At this time, only the vertical crack 8b develops from the notch 8a, and the horizontal crack 8c does not substantially propagate at all, so that a clean cut surface is obtained. Such a glass splitting method is the same as the principle used for ampule cutting by a file or general glasswork, for example. Thereafter, chamfering is performed so that chips and cracks do not remain on the cut end face.

本実施例のホイールカッター20を用いた場合に、切断速度は約4〜6m/分であった。また、本実施例の切断方法によれば切断代を0.2mm以下に抑えることができた。また、XYテーブルを用いることにより切断手段に対してパネルを高精度に相対移動させることができ、切断予定線から僅か±1mm以内(実力は±0.5mm以内)に抑えることができた。   When the wheel cutter 20 of this example was used, the cutting speed was about 4 to 6 m / min. Moreover, according to the cutting method of the present Example, the cutting allowance was able to be suppressed to 0.2 mm or less. In addition, by using the XY table, the panel can be moved relative to the cutting means with high accuracy, and can be suppressed to within ± 1 mm (actual power within ± 0.5 mm) from the planned cutting line.

また、ここで硬質のカッター刃を適切に選定することで、裏面カバーシートを切り離すと同時にガラス基板裏面側から積層膜と一括してガラス基板まで所定の深さの傷を付け、押し割ることもできる。   In addition, by selecting a hard cutter blade here, the back cover sheet can be cut off, and at the same time, scratches with a predetermined depth can be applied to the glass substrate from the back side of the glass substrate together with the laminated film. it can.

なお、本実施例では超硬合金製のホイールカッターを用いてガラス基板に切り欠きを形成する例について説明したが、この他にダイヤモンドカッターを使用しても同様の効果が得られる。   In addition, although the present Example demonstrated the example which forms a notch in a glass substrate using the wheel cutter made from a cemented carbide, the same effect is acquired even if it uses a diamond cutter in addition to this.

次に、図8を参照しながら他の切断手段および方法について説明する。   Next, another cutting means and method will be described with reference to FIG.

他の切断手段としてエネルギービーム、例えばCO2ガスレーザー切断装置を用いた。CO2ガスレーザー光の波長(10.6μm)はガラスに吸収されやすく、熱エネルギー変換効率が高い。このため照射レーザー光がガラスの切断に必要な熱エネルギー量を供給しうるからである。CO2ガスレーザー切断装置は、自動焦点位置合せ機構、倣いセンサ、または位置をプログラムで数値設定する機構、走査アームに支持されたレーザー射出部を備えている。発振器から励起されたレーザー光30が発振され、複数の光学レンズによりパネル10の裏面カバーシート5の切断予定線にレーザー光30の焦点が合うように自動焦点位置調節され、倣いセンサにより切断予定線を検出し、検出信号に基づき走査アームの動作を制御するか、予め数値設定したプログラムで動作を制御することによりレーザー射出部から射出されるレーザー光が切断予定線位置に走査照射されるようになっている。なお、レーザービームの径は最小0.05mmまで絞ることができる。 As another cutting means, an energy beam such as a CO 2 gas laser cutting device was used. The wavelength (10.6 μm) of the CO 2 gas laser beam is easily absorbed by the glass, and the thermal energy conversion efficiency is high. This is because the irradiation laser light can supply the amount of heat energy necessary for cutting the glass. The CO 2 gas laser cutting device includes an automatic focus alignment mechanism, a scanning sensor, a mechanism for setting a numerical value by a program, and a laser emission unit supported by a scanning arm. The laser beam 30 excited from the oscillator is oscillated, and the optical focus position is adjusted so that the laser beam 30 is focused on the cutting line of the back cover sheet 5 of the panel 10 by a plurality of optical lenses, and the cutting line is cut by the scanning sensor. By controlling the operation of the scanning arm based on the detection signal, or by controlling the operation with a program in which numerical values are set in advance, the laser beam emitted from the laser emitting unit is scanned and irradiated to the planned cutting line position. It has become. The diameter of the laser beam can be reduced to a minimum of 0.05 mm.

また、ガス冷却機構のノズルがレーザー射出部に追従するように走査され、切断直後の部位に冷却ガスが吹き付けられるようになっている。ガス冷却機構のノズルはパネル切断部の両面に同時に冷却ガスを吹き付けるようにすることが望ましい。なお、冷却ガスとしては低温度エアや窒素ガスを用いることが好ましい。   Further, the nozzle of the gas cooling mechanism is scanned so as to follow the laser emitting portion, and the cooling gas is sprayed on the portion immediately after cutting. It is desirable that the nozzle of the gas cooling mechanism sprays the cooling gas simultaneously on both sides of the panel cutting part. Note that it is preferable to use low-temperature air or nitrogen gas as the cooling gas.

レーザー光が照射されると、先ず裏面カバーシート5が焼き切られ、次いで照射点31からガラス基板4にほぼ垂直または反射光がレーサー射出部に戻らないように少し斜めに光を入射し、ガラスが急熱され、その直後に冷却ガスの吹き付けにより急冷される。この急熱急冷によりガラス基板4は割面32に沿って割れる。   When the laser beam is irradiated, first, the back cover sheet 5 is burned out, and then the light is incident from the irradiation point 31 to the glass substrate 4 almost vertically or slightly obliquely so that the reflected light does not return to the racer emitting portion. Is rapidly heated, and immediately after that, it is rapidly cooled by blowing a cooling gas. The glass substrate 4 is split along the split surface 32 by this rapid heating and cooling.

また板厚の厚いものにおいては、急冷によりガラス基板4を十分に切断できない場合がある。この時はレーザー光によりパネル切断予定線にそって裏面カバーシート5が焼き切られ、ガラス基板4の表層に垂直クラックが入った後に押し割りを併用することで、割面32にそって分断される。   Moreover, in the thing with thick plate | board thickness, the glass substrate 4 may not fully be cut | disconnected by rapid cooling. At this time, the back cover sheet 5 is burned out by the laser beam along the planned cutting line of the panel, and after the vertical crack is formed in the surface layer of the glass substrate 4, it is divided along the split surface 32 by using the press splitting together. .

ここで、CO2ガスレーザーは裏面カバーシート5側から一括して切断する手法を述べたが、ガラス基板4の切断精度を上げるために、ガラス基板表側と裏面カバーシート5の両方側からCO2ガスレーザーを照射する場合もある。その後、切断端面部に欠けやクラックなどが残らないように面取り研磨する。 Here, the CO 2 gas laser described a method for cutting collectively from the back cover sheet 5 side, in order to increase the cutting accuracy of the glass substrate 4, CO 2 from the both side of the glass substrate front side and backside cover sheet 5 In some cases, a gas laser is irradiated. Thereafter, chamfering is performed so that chips and cracks do not remain on the cut end face.

本実施例として出力約10kWのCO2ガスレーザー切断装置を用いた場合に、切断速度は約5〜10m/分であった。また、本実施例の切断方法によれば切断代を0.3mm以下に抑えることができた。また、XYテーブルを用いることにより切断手段に対してパネルを高精度に相対移動させることができ、切断予定線から僅か±1mm以内(実力は±0.5mm以内)に抑えることができた。 In this example, when a CO 2 gas laser cutting device having an output of about 10 kW was used, the cutting speed was about 5 to 10 m / min. Further, according to the cutting method of this example, the cutting allowance could be suppressed to 0.3 mm or less. In addition, by using the XY table, the panel can be moved relative to the cutting means with high accuracy, and can be suppressed to within ± 1 mm (actual power within ± 0.5 mm) from the planned cutting line.

さらに、他の切断手段として水ジェット切断装置を用いた。ガラス基板4又は裏面カバーシート5の切断予定線に沿って砥粒を含む水ジェット流を吹き付ける。この場合に水ジェットに含ませる砥粒には例えばガーネット粒子を用いることが好ましい。これにより切断後の面取り研磨作業を省略できるか又は軽減することができる。   Furthermore, a water jet cutting device was used as another cutting means. A water jet stream containing abrasive grains is sprayed along the planned cutting line of the glass substrate 4 or the back cover sheet 5. In this case, for example, garnet particles are preferably used as the abrasive grains contained in the water jet. Thereby, the chamfering polishing operation after cutting can be omitted or reduced.

本実施例の水ジェット切断装置を用いて約#150のガーネット砥粒に水圧力約300Paを印加した場合に、切断速度は約0.5〜3m/分であった。また、本実施例の切断方法によれば切断代を1〜2mmとすることができた。また、XYテーブルを用いることにより切断手段に対してパネルを高精度に相対移動させることができ、切断予定線から僅か±1mm以内(実力は±0.5mm以内)に抑えることができた。   When a water pressure of about 300 Pa was applied to about # 150 garnet abrasive grains using the water jet cutting device of this example, the cutting speed was about 0.5-3 m / min. Moreover, according to the cutting method of a present Example, the cutting allowance was able to be 1-2 mm. In addition, by using the XY table, the panel can be moved relative to the cutting means with high accuracy, and can be suppressed to within ± 1 mm (actual power within ± 0.5 mm) from the planned cutting line.

なお、上記実施形態では厚さ3mm×幅1000mm×長さ1000mmサイズのパネルを一括切断する場合について説明したが、本発明はこれのみに限られることなく例えば厚さ3〜6mm×幅1500〜2500mm×長さ1500〜3000mmサイズの大型パネルを一括切断することも可能である。   In the above embodiment, the case of collectively cutting a panel having a size of 3 mm in thickness, 1000 mm in width, and 1000 mm in length has been described. However, the present invention is not limited to this and is, for example, 3-6 mm in thickness × 1500-2500 mm in width. X It is also possible to collectively cut a large panel having a length of 1500 to 3000 mm.

(a)は本発明の方法を説明するために切断前のパネルを示す分解斜視図、(b)は本発明の方法を説明するために切断後のパネルを示す分解斜視図。(A) is an exploded perspective view showing a panel before cutting in order to explain the method of the present invention, (b) is an exploded perspective view showing a panel after cutting in order to explain the method of the present invention. 本発明の実施形態に係るアモルファスシリコン太陽電池を例とした太陽電池用ガラス基板の半強化処理方法を用いた太陽電池の製造工程を示すフローチャート。The flowchart which shows the manufacturing process of the solar cell using the semi-strengthening processing method of the glass substrate for solar cells which made the amorphous silicon solar cell which concerns on embodiment of this invention an example. 各種ガラス基板の鋼球落下試験結果を示す特性線図。The characteristic line figure which shows the steel ball drop test result of various glass substrates. ガラス基板の熱処理ラインを示す概略構成図。The schematic block diagram which shows the heat processing line of a glass substrate. アモルファスシリコン太陽電池を例とした太陽電池パネルの一部を拡大して示す断面模式図。The cross-sectional schematic diagram which expands and shows a part of solar cell panel which used the amorphous silicon solar cell as an example. 第1実施形態の方法を用いて切断中のガラス基板を切断線に直交する方向から見て示す部分断面模式図。The partial cross-section schematic diagram which shows the glass substrate under cutting | disconnection using the method of 1st Embodiment seeing from the direction orthogonal to a cutting line. 第1実施形態の方法を用いて切断中のガラス基板を切断線に平行な方向から見て示す部分断面模式図。The partial cross section schematic diagram which shows the glass substrate under the cutting | disconnection using the method of 1st Embodiment seeing from a direction parallel to a cutting line. 第2実施形態の方法を用いて切断中のガラス基板を示す斜視図。The perspective view which shows the glass substrate in process of cutting | disconnection using the method of 2nd Embodiment. (a)は従来の方法を説明するために切断前のパネルを示す分解斜視図、(b)は従来の方法を説明するために切断後のパネルを示す分解斜視図。(A) is an exploded perspective view showing a panel before cutting in order to explain a conventional method, (b) is an exploded perspective view showing a panel after cutting in order to explain a conventional method.

符号の説明Explanation of symbols

1…パネル、
1A…太陽電池、
2…太陽電池モジュール、
3…接着シート(EVAシート)、
4…ガラス基板(カバーガラス)、
5…裏面カバーシート、
8a,8b,8c…クラック、
9…積層体、
10…パネル、
11…透明電極、
12…a−Si膜、
13…金属電極、
20…ガラスカッター、
21…支持アーム、
22…ホルダ、
23…軸、
24…ホイールカッター、
30…レーザー光、
31…照射点、
32…割面。
1 ... Panel,
1A ... solar cell,
2 ... Solar cell module,
3 ... Adhesive sheet (EVA sheet),
4 ... Glass substrate (cover glass),
5 ... Back cover sheet,
8a, 8b, 8c ... cracks,
9 ... laminate,
10 ... Panel,
11 ... Transparent electrode,
12 ... a-Si film,
13 ... Metal electrode,
20 ... Glass cutter,
21 ... Support arm,
22 ... Holder,
23 ... axis,
24 ... wheel cutter,
30 ... Laser light,
31 ... irradiation point,
32 ... Split face.

Claims (1)

発電機能層を保護するためのカバーとしての役割をもち、かつ該発電機能層が直接的に積層され、該発電機能層の積層後に切断されて所望の製品サイズに分割される太陽電池用ガラス基板の製造方法であって、生板ガラスを出発材料とし、前記発電機能層を積層する前に、該生板ガラスを500〜550℃の温度域に所定時間加熱保持し、その後急冷することにより、その強度を型抜きままの状態のソーダ石灰ガラスの強度の1.20倍以上から1.70倍以下までの範囲とすることを特徴とする太陽電池用ガラス基板の製造方法。 A glass substrate for a solar cell that serves as a cover for protecting the power generation functional layer, is directly laminated, is cut after the power generation functional layer is laminated, and is divided into a desired product size a method of manufacturing a Namaita glass as a starting material, before laminating the power generation function layer, by a biological glazing predetermined time heating and holding the temperature range of 500-550 ° C., and then quenched, the intensity Is a range from 1.20 times to 1.70 times the strength of soda-lime glass in a state of being unmolded, and a method for producing a glass substrate for a solar cell.
JP2005256560A 2005-09-05 2005-09-05 Manufacturing method of glass substrate for solar cell Expired - Fee Related JP4275121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005256560A JP4275121B2 (en) 2005-09-05 2005-09-05 Manufacturing method of glass substrate for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005256560A JP4275121B2 (en) 2005-09-05 2005-09-05 Manufacturing method of glass substrate for solar cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000082237A Division JP3735231B2 (en) 2000-03-23 2000-03-23 Glass substrate for solar cell and semi-strengthening method thereof

Publications (2)

Publication Number Publication Date
JP2006062958A JP2006062958A (en) 2006-03-09
JP4275121B2 true JP4275121B2 (en) 2009-06-10

Family

ID=36109748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005256560A Expired - Fee Related JP4275121B2 (en) 2005-09-05 2005-09-05 Manufacturing method of glass substrate for solar cell

Country Status (1)

Country Link
JP (1) JP4275121B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121793A (en) * 2013-02-05 2013-05-29 天津南玻节能玻璃有限公司 Toughening furnace for continuously producing half strengthened glass and production method of toughening furnace
US10029941B2 (en) 2014-03-31 2018-07-24 Corning Incorporated Machining methods of forming laminated glass structures

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181124B2 (en) * 2007-11-02 2015-11-10 Agc Flat Glass North America, Inc. Transparent conductive oxide coating for thin film photovoltaic applications and methods of making the same
WO2012096053A1 (en) * 2011-01-11 2012-07-19 旭硝子株式会社 Method for cutting reinforced glass plate
CN106098819B (en) * 2015-05-22 2017-08-29 苏州沃特维自动化系统有限公司 Solar battery sheet, solar cell module, battery blade unit and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121793A (en) * 2013-02-05 2013-05-29 天津南玻节能玻璃有限公司 Toughening furnace for continuously producing half strengthened glass and production method of toughening furnace
US10029941B2 (en) 2014-03-31 2018-07-24 Corning Incorporated Machining methods of forming laminated glass structures

Also Published As

Publication number Publication date
JP2006062958A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP7163336B2 (en) Lamination of electrochromic devices on glass substrates
EP1742253B1 (en) Laser processing method
CN101296787B (en) Method of forming scribe line on substrate of brittle material and scribe line forming apparatus
US8138450B2 (en) Method for cutting workpiece
JP5864988B2 (en) Tempered glass sheet cutting method
CN111052407B (en) Method for disassembling a photovoltaic module and related device
JP4275121B2 (en) Manufacturing method of glass substrate for solar cell
JP6645502B2 (en) Glass substrate, laminated substrate, method for producing laminated substrate, laminate, package, and method for producing glass substrate
EP1748474A1 (en) Laser processing method and semiconductor chip
CN101026101B (en) Film bonding method, film bonding apparatus, and semiconductor device manufacturing method
US20100301521A1 (en) Working object cutting method
EP1956640A1 (en) Laser processing method
JP6703286B2 (en) Brittle material cutting method
US11389919B2 (en) Methods for strengthening edges of laminated glass articles and laminated glass articles formed therefrom
WO2009072760A2 (en) Methods for manufacturing solar cell module and apparatus for manufacturing the same
JP3735231B2 (en) Glass substrate for solar cell and semi-strengthening method thereof
TW201005818A (en) Method for processing terminal in bonded substrate
KR20190073474A (en) Substrate processing station for laser-based machining of sheet-type glass substrates
KR20210082629A (en) Solar module partial peeling device
JP4616441B2 (en) Solar cell manufacturing method
JPH1032179A (en) Cutting of masking sheet for silicon wafer processing use
JP2001274441A (en) Method for collectively cutting solar battery panel
JPH06326337A (en) Laser beem machine
JP5549403B2 (en) Manufacturing method of semiconductor device
TWI234592B (en) Thin sheet manufacturing method, and thin sheet manufacturing apparatus

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees