JP4274760B2 - Map output device, map output method and program - Google Patents
Map output device, map output method and program Download PDFInfo
- Publication number
- JP4274760B2 JP4274760B2 JP2002239475A JP2002239475A JP4274760B2 JP 4274760 B2 JP4274760 B2 JP 4274760B2 JP 2002239475 A JP2002239475 A JP 2002239475A JP 2002239475 A JP2002239475 A JP 2002239475A JP 4274760 B2 JP4274760 B2 JP 4274760B2
- Authority
- JP
- Japan
- Prior art keywords
- morpheme
- information
- morpheme information
- map
- discourse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Navigation (AREA)
- Machine Translation (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Instructional Devices (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、利用者から発せられた発話内容に基づいてその発話内容に対応する地図を出力させる地図出力装置、地図出力方法及びプログラムに関する。
【0002】
【従来の技術】
従来から、利用者の希望する地図を画面上に出力させるシステムがある。このシステムによれば、利用者が所望の地図を表示させるための条件を入力することで、その条件に従った地図が画面上に出力されるため、利用者は、地図帳を逐一調べることがないという利点がある。
【0003】
【発明が解決しようとする課題】
しかしながら、上記システムでは、利用者が希望する地図についての条件を逐一入力しなければならず、利用者は操作上の煩雑さを感じていた。一方、近年では、利用者から発話された発話内容に基づいて、その発話内容に対応する地図を画面上に表示させるシステムが開発されている。このシステムによれば、利用者が希望する地図の場所名を発話することによって、システムがその場所に対応する地図を表示することができるため、利用者は操作上の煩雑さを解消することができる。
【0004】
ところが、利用者が通常の会話形式でシステムに向かって発話したときは、システム側では、発話された内容のうち、どの内容が場所についての情報なのかを正確に識別することができず、利用者が希望する地図を正確に画面上に出力させることができなかった。
【0005】
また、利用者が東京都A区α番地の付近の地図を画面上に出力させたい場合には、利用者は、”東京都A区α番地”と発話しなければならない。このため、利用者が、”東京都”(省略形)のみしか発話しなければ、上記システムは、”東京都”の地図しか表示せず、”A区α番地”付近の地図は表示しなかった。
【0006】
よって、利用者は、表示させたい場所があるときは、その場所の現住所を全て発話しなければならず、操作上の全ての煩雑感を拭うことができなかった。このため、利用者がシステムとの対話を通じて、所望する地図を表示させるための詳細な条件を、対話により逐一指定することで該当する地図を表示させることのできるシステムの開発が望まれていた。
【0007】
そこで、本発明は以上の点に鑑みてなされたものであり、利用者から発話された発話内容に基づいて、その発話内容に含まれる各形態素を抽出し、その抽出した各形態素を用いて該当する地図を画面上に出力させることで、利用者が希望する地図を、会話を通じて出力させると共に、また利用者から発話された発話内容が省略形であったとしても利用者が希望する地図を正確に出力させることのできる地図出力装置、地図出力方法及びプログラムを提供する。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決すべくなされたものであり、一つの文字、複数の文字列又はこれらの組み合わせからなる形態素であり、都道府県、区市町村、番地からなる第二形態素情報には、利用者の希望する地図を画面上に出力させるための地図出力命令が関連付けられており、該第二形態素情報を予め複数記憶する形態素記憶手段と、
利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも一つの形態素を抽出する形態素抽出手段と、
前記形態素と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該形態素を含む前記第二形態素情報を取得する第一取得手段と、
前記第一取得手段で取得された前記第二形態素情報に基づいて、該第二形態素情報に関連付けられた前記地図出力命令を取得する第二取得手段と、
前記第二取得手段で取得された前記地図出力命令に基づいて、該地図出力命令に対応する予め記憶された地図を画面上に出力させる出力手段と、
利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示す談話範囲には、前記第二形態素情報が複数関連付けられ、前記各第二形態素情報には、前記地図出力命令がそれぞれに関連付けられており、該談話範囲を予め複数記憶する談話記憶手段と、
前記形態素抽出手段で抽出された前記形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該形態素と一致する前記談話範囲を第一形態素情報として検索する談話検索手段とを有し、
前記第一取得手段は、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することを特徴とする地図出力装置。
【0009】
このような本願に係る発明によれば、地図出力装置が、各第二形態素情報の中から、利用者の発話内容を構成する形態素を含む各第二形態素情報を取得し、取得した第二形態素情報に基づいて第二形態素情報に関連付けられた地図出力命令を取得し、取得した地図出力命令に基づいて地図出力命令に対応する地図を出力するので、地図出力装置は、利用者からの発話内容を構成する形態素に基づいてその形態素と関係する地図を出力することができる。この結果、利用者は、地図出力装置に向かって発話すれば、その発話に対応する地図を出力することができるので、所望の地図を簡便な方法で参照することができる。
【0011】
このような本願に係る発明によれば、予め記憶された談話範囲が利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示すものであるので、例えば利用者が地図出力装置に向かって地図に関係する情報を発話した場合には、地図出力装置は、その地図に関係する情報を回答しようとすることになるので、このときの談話範囲(カテゴリー)は、”地図”を意味することになる。
【0012】
この場合、地図出力装置が上記利用者からの発話内容に基づいて談話範囲”地図”を特定したときは、地図出力装置は、その特定した談話範囲”地図”に関連付けられた各第二形態素情報と、利用者から発話された発話内容を構成する第一形態素情報とを照合し、各第二形態素情報の中から、上記第一形態素情報と一致する第二形態素情報を取得し、取得した第二形態素情報に関連付けられた地図出力命令に基づいて該当する地図を出力することができるので、該当する地図を画面上に出力するには特定の談話範囲(カテゴリー;地図)に属する地域図を参照するだけでよく、該当する地図を即座(短時間)に出力することができる。
【0013】
更に上記構成においては、談話範囲には各第二形態素情報が関連付けられ、複数の談話範囲には、利用者が出力を希望する地図についての詳細な情報を訊き出すための質問文がそれぞれに関連付けられており、検索された第一形態素情報に基づいて第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に含まれる各談話範囲のそれぞれに関連付けられた質問文の中から、いずれか一つの質問文を取得することを特徴とする。
【0014】
このような本願に係る発明によれば、地図出力装置が、検索された第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索することができない場合、即ち、地図を出力させる上で最低限度必要な情報(第二形態素情報)が第一形態素情報に含まれていない場合には、地図出力装置は、その第一形態素情報の意味内容を更に具体化させるための質問文を出力することができる。
【0015】
この結果、地図出力装置は、出力した質問文に対応する利用者からの回答文に基づいて、利用者が希望する地図の情報を明確にした後に、その明確にした情報(第一形態素情報)に基づいて該当する地図を出力することができるので、利用者が希望する地図を正確に出力することができる。
【0016】
更にまた上記構成においては、検索された第一形態素情報に基づいて第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に含まれる各談話範囲を一時的に記憶し、取得された質問文に対応する利用者からの回答文に基づいて、回答文に対応する文字列の最小単位を構成する少なくとも一つの形態素を回答形態素として抽出し、抽出された回答形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、回答形態素と一致する談話範囲を検索し、検索した談話範囲と一時的に記憶された各談話範囲とを結合させて、これら結合されたものを第一形態素情報とすることを特徴とする。
【0017】
このような本願に係る発明によれば、地図出力装置が、出力した質問文に対応する利用者からの回答文に基づいて、回答文に含まれる各形態素を回答形態素として抽出し、抽出した回答形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、回答形態素と一致する談話範囲を検索し、検索した談話範囲と上記一時的に記憶された各談話範囲(前に検索された各談話範囲)とを結合させて、これら結合されたものを第一形態素情報とすることができるので、地図出力装置は、検索した第一形態素情報の中に、利用者が希望する地図を出力する上で必要な情報が含まれていない場合には、出力した質問文に対応する回答文を用いて、検索した第一形態素情報を補完することができる。
【0018】
この結果、地図出力装置は、補完した第一形態素情報と予め記憶された第二形態素情報とを照合し、各第二形態素情報の中から、その第一形態素情報と一致する第二形態素情報を検索することができるので、上記補完した第一形態素情報を用いて、利用者が希望する地図を正確に出力することができる。
【0019】
尚、上記構成においては、各談話範囲には質問文がそれぞれに関連付けられ、各談話範囲のそれぞれは予め定義付られた上位概念又は下位概念の関係を有するように予め相互に関連付けられており、検索された第一形態素情報に基づいて第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に含まれる各談話範囲の中から、最も低い下位概念に相当する一の談話範囲を選択し、選択した談話範囲に関連付けられた質問文を取得してもよい。
【0020】
これにより、地図出力装置が、検索された第一形態素情報に基づいて第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に対応する各談話範囲の中から、最も低い下位概念に相当する一の談話範囲を選択し、選択した談話範囲に関連付けられた質問文を取得することができるので、地図出力装置は、この取得した質問文が最も低い下位概念の談話範囲を更に具体化させるための内容であれば、利用者が希望する地図の情報を更に明確化することができる。
【0021】
例えば、上記選択した談話範囲が”地図”であり、この談話範囲”地図”に関連付けられた質問文がその談話範囲”地図”を更に明確化させるための内容”都道府県のうちのどこの地図が見たいのですか?”である場合に、地図出力装置が、その質問文に対応する回答文”東京の地図が見たい”を利用者から取得することができれば、その回答文に含まれている各形態素”東京””地図””見たい”を用いて、利用者が希望する地図をより的確に出力することができる。
【0022】
尚、抽出された回答形態素(回答文に含まれる各形態素)と、上記一時的に記憶された各談話範囲(前に検索された各談話範囲)に対して下位概念に相当する他の各談話範囲とを照合し、他の各談話範囲の中から、回答形態素と一致する各談話範囲を検索し、検索した各談話範囲と上記一時的に記憶された各談話範囲とを結合させて、これら結合されたものを第一形態素情報とすることが好ましい。
【0023】
これにより、例えば、前に検索された談話範囲が”地図”であり、その談話範囲”地図”の”下位概念”に相当する各談話範囲が”東京”、”大阪”・・・であり、さらに質問文に対応する回答文が”東京の地図が見たい”である場合には、地図出力装置は、その回答文を構成する回答形態素”東京”、”地図”、”見たい”と上記下位概念に相当する談話範囲”東京”、”大阪”・・・とを照合し、両者と一致する談話範囲”東京”を検索することができるので、この検索した談話範囲”東京”と前に検索された談話範囲”地図”とを結合させて、この結合されたものを第一形態素情報とすることで、この第一形態素情報と一致する第二形態素情報に対応する地図を的確に出力することができる。
【0024】
即ち、地図出力装置は、利用者から発話された発話内容を構成する第一形態素情報が各第二形態素情報と一致しなければ、第一形態素情報に対応する談話範囲に関連付けられた質問文を出力し、この出力した質問文に対応する回答文と、前に検索された各談話範囲の”下位概念”に相当する各談話範囲とに基づいて、上記第一形態素情報を補完することができるので、補完前の第一形態素情報(例えば、地図)を上位概念とすれば、その上位概念に対して下位概念となるような第一形態素情報(例えば、地図、東京)に補完することができ、この補完された第一形態素情報に基づいて利用者が希望する地図(例えば、東京の地図)をより的確に出力することができる。
【0025】
【発明の実施の形態】
[第一実施形態]
(会話制御システムの基本構成)
本発明に係る会話制御システムについて図面を参照しながら説明する。図1は、本実施形態に係る会話制御装置1を有する会話制御システムの概略構成図である。
【0026】
同図に示すように、会話制御装置1は、入力部100と、音声認識部200と、会話制御部300と、文解析部400と、会話データベース500と、出力部600と、音声認識辞書記憶部700とを備えている。
【0027】
尚、本実施形態では、説明の便宜上、利用者の発話内容(この発話内容は、入力情報の一種)に限定して説明するが、この利用者の発話内容に限定されるものではなく、キーボード等から入力された入力情報であってもよい。従って、以下に示す「発話内容」は、「発話内容」を「入力情報」に置き換えて説明することもできる。
【0028】
同様にして、後述の説明では、説明の便宜上、「発話文のタイプ」(発話種類)に限定して説明するが、この「発話文のタイプ」に限定されるのではなく、キーボードなどから入力された入力情報の種類を示す「入力種類」であってもよい。従って、以下に示す「発話文のタイプ」(発話種類)は、「発話種類」を「入力種類」に置き換えて説明することもできる。
【0029】
入力部100は、利用者からの入力情報を取得する取得手段であり、本実施形態では、マイクロホン、キーボード等が挙げられる。この入力部100は、利用者から入力された入力情報に基づいて、入力情報を示す文字列を特定する文字認識手段でもある。
【0030】
ここで、入力情報とは、キーボード等を通じて入力された文字、記号、音声等を意味するものである。具体的に、入力部100は、利用者の入力情報(音声以外)を取得し、取得した入力情報を会話制御部300に出力する。また、利用者からの発話内容(この発話内容は、音声からなるものであり、入力情報の一種である)をマイクロホンなどで取得した入力部100は、取得した発話内容を構成する音声を音声信号として音声認識部200に出力する。
【0031】
音声認識部200は、入力部100で取得した発話内容に基づいて、発話内容に対応する文字列を特定する文字認識手段である。具体的には、入力部100から音声信号が入力された音声認識部200は、入力された音声信号を解析し、解析した音声信号に対応する文字列を、音声認識辞書記憶部700に格納されている辞書を用いて特定し、特定した文字列を文字列信号として会話制御部300に出力する。音声認識辞書記憶部700は、標準的な音声信号に対応する辞書を格納しているものである。
【0032】
前記文解析部400は、入力部100又は音声認識部200で特定された文字列を解析するものであり、本実施形態では、図2に示すように、形態素抽出部410と、文節解析部420と、文構造解析部430と、発話種類判定部440と、形態素データベース450と、発話種類データベース460とを有している。
【0033】
形態素抽出部410は、入力部100又は音声認識部200で特定された文字列に基づいて、文字列の最小単位を構成する各形態素を第一形態素情報として抽出する形態素抽出手段である。
【0034】
具体的に、管理部310から文字列信号が入力された形態素抽出部410は、入力された文字列信号に対応する文字列の中から各形態素を抽出する。ここで、形態素とは、本実施形態では、文字列に現された語構成の最小単位を意味するものとする。この語構成の最小単位としては、図3に示すように、例えば、名詞、形容詞、動詞などの品詞が挙げられる。各形態素は、本実施形態では、m1、m2、・・・、mlと表現する。
【0035】
即ち、形態素抽出部410は、入力された文字列信号に対応する文字列と、形態素データベース450に予め格納されている名詞、形容詞、動詞などの形態素群とを照合し、文字列の中から形態素群と一致する各形態素(m1、m2、・・・)を抽出し、抽出した各形態素を抽出信号として文節解析部420に出力する。
【0036】
文節解析部420は、形態素抽出部410で抽出された各形態素に基づいて、各形態素を文節形式に変換する変換手段である。具体的に、形態素抽出部410から抽出信号が入力された文節解析部420は、入力された抽出信号に対応する各形態素を用いて文節形式にまとめる。
【0037】
ここで、文節形式とは、本実施形態では、日本語文法において、自立語又は自立語に一つ以上の付属語がついた文、或いは、日本語文法の意味を崩さない程度に文字列をできるだけ細かく区切った一区切りの文を意味する。この文節は、本実施形態では、p1、p2、・・・pkと表現する。
【0038】
即ち、文節解析部420は、図4に示すように、入力された抽出信号に対応する各形態素に基づいて各形態素の係り受け要素(例えば、が(m2)・は(m4)・を(m5)・・)を抽出し、抽出した係り受け要素に基づいて各形態素を各文節にまとめることを行う。同図に示す「t」は、転置を意味する。
【0039】
各形態素を各文節にまとめた文節解析部420は、各形態素をまとめた各文節と、各文節を構成する各形態素とを含む文型情報を文型信号として文構造解析部430及び発話種類判定部440に出力する。
【0040】
文構造解析部430は、文節解析部420で分節された第一形態素情報の各形態素を主体格、対象格などの各属性に分類する分類手段である。具体的に、文節解析部420から文型信号が入力された文構造解析部430は、入力された文型信号に対応する各形態素と各形態素からなる文節とに基づいて、文節に含まれる各形態素の「格構成」を決定する。
【0041】
ここで、「格構成」とは、文節における実質的な概念を示す格(属性)を意味するものであり、本実施形態では、例えば、主語・主格を意味するサブジェクト(主体格)、対象を意味するオブジェクト(対象格)、動作を意味するアクション、時間を意味するタイム(テンス、アスペクト)、場所を意味するロケーション等が挙げられる。本実施形態では、サブジェクト、オブジェクト、アクションの三要素の「格」(格構成)に対応付けられた各形態素を第一形態素情報とする。
【0042】
即ち、文構造解析部430は、図5に示すように、例えば、各形態素の係り受け要素が”が”又は”は”である場合は、その係り受け要素の前にある形態素がサブジェクト(主語又は主格)であると判断する。また、文構造解析部430は、
例えば、各形態素の係り受け要素が”の”又は”を”である場合は、その係り受け要素の前にある形態素がオブジェクト(対象)であると判断する。
【0043】
更に、文構造解析部430は、例えば、各形態素の係り受け要素が”する”である場合は、その係り受け要素の前にある形態素がアクション(述語;この述語は動詞、形容詞などから構成される)であると判断する。
【0044】
各文節を構成する各形態素の「格構成」を決定した文構造解析部430は、決定した「格構成」に対応付けられた第一形態素情報に基づいて、後述する話題(トピック)の範囲を特定させるための話題検索命令信号を反射的判定部320に出力する。
【0045】
発話種類判定部440は、文節解析部420で特定された文節に基づいて、発話内容(入力情報)の種類を示す発話種類(入力種類)を特定する種類特定手段である。具体的に、文節解析部420から入力された文型信号に対応する各形態素と各形態素から構成される文節とに基づいて、「発話文のタイプ」(発話種類)を判定する。
【0046】
ここで、「発話文のタイプ」は、本実施形態では、図6に示すように、陳述文(D;Declaration)、感想文(I;Impression)、条件文(C;Condition)、結果文(E;Effect)、時間文(T;Time)、場所文(L;Location)、反発文(N;Negation)などから構成されるものである。
【0047】
陳述文とは、利用者の意見又は考えなどからなる文を意味するものであり、本実施形態では、図6に示すように、例えば”佐藤が好きだ”などの文が挙げられる。感想文とは、利用者が抱く感想からなる文を意味するものである。場所文とは、場所的な要素からなる文を意味するものである。
【0048】
結果文とは、話題に対して文が結果の要素を含む文から構成されるものを意味する。時間文とは、話題に関わる時間的な要素を含む文から構成されるものを意味する。
【0049】
条件文とは、一つの発話を話題と捉えた場合に、話題の前提、話題が成立している条件や理由などの要素を含む文から構成されるものを意味する。反発文とは、発話相手に対して反発するような要素を含む文から構成されるものを意味する。各「発話文のタイプ」についての例文は、図6に示す通りである。
【0050】
即ち、発話種類判定部440は、入力された文型信号に対応する各文節に基づいて、その各文節と発話種類データベース460に格納されている各辞書とを照合し、各文節の中から、各辞書に関係する文要素を抽出する。各文節の中から各辞書に関係する文要素を抽出した発話種類判定部440は、抽出した文要素に基づいて、「発話文のタイプ」を判定する。文要素とは、文字列の種類を特定するための分の種別を意味し、文要素は、本実施形態では、上記説明した定義句(〜のことだ)などが挙げられる。
【0051】
ここで、上記発話種類データベース460は、図7に示すように、定義句(例えば、〜のことだ)に関係する辞書を備えた定義表現事例辞書、肯定句(例えば、賛成、同感、ピンポーン)に関係する辞書を備えた肯定事例辞書、結果句(例えば、それで、だから)に関係する辞書を備えた結果表現事例辞書、挨拶句(例えば、こんにちは)に関係する辞書を備えた挨拶事例辞書、否定句(例えば、馬鹿言うんじゃないよ、反対)に関係する辞書を備えた否定事例辞書などから構成され、各辞書は、「発話文のタイプ」と関連付けられている。
【0052】
これにより、発話種類判定部440は、文節と発話種類データベース460に格納されている各辞書とを照合し、文節の中から各辞書に関連する文要素を抽出し、抽出した文要素に関連付けられた判定の種類を参照することで、「発話文のタイプ」を判定することができる。
【0053】
この発話種類判定部440は、後述する話題検索部360からの指示に基づいて、該当する利用者に特定の回答文を検索させるための回答検索命令信号を回答文検索部370に出力する。
【0054】
前記会話データベース500は、一つの文字、複数の文字列又はこれらの組み合わせからなる各形態素を示す第二形態素情報と、発話内容に対する利用者への回答内容とを予め相互に関連付けて複数記憶する回答記憶手段(談話記憶手段)である。また、会話データベース500は、複数の回答内容に対応付けられた各回答内容の種類を示す回答種類を、第二形態素情報に関連付けて予め複数記憶する回答記憶手段(談話記憶手段)でもある。
【0055】
更に、会話データベース500は、利用者から入力されるであろう入力内容又は利用者への回答内容に関連性のある範囲を構成する形態素を示す談話範囲(キーワード)を予め複数記憶する談話記憶手段でもある。この談話範囲(キーワード)には、一つの文字、複数の文字列又はこれらの組み合わせからなる形態素を示す第二形態素情報が複数関連付けられ、各第二形態素情報には、利用者への回答内容がそれぞれに関連付けてられている。
【0056】
更にまた、会話データベース500は、第二形態素情報を構成する各要素を、主格からなる主体各、目的格からなる対象格などの属性に分類して記憶する回答記憶手段(談話記憶手段)でもある。
【0057】
この会話データベース500は、図8に示すように、本実施形態では、大きく分けると、利用者から発話されるであろう発話内容又は利用者への回答内容について関連性のある範囲を意味する談話範囲(ディスコース)と、利用者が発話している内容に最も密接な関連性のある範囲を意味する話題(トピック)とから構成されている。同図に示すように、”談話範囲”は、本実施形態では、”話題”の上位概念として位置付けるものとする。
【0058】
各談話範囲は、図9に示すように、階層構造となるように構成することができる。同図に示すように、例えば、ある談話範囲(映画)に対する上位概念の談話範囲(娯楽)は、上の階層構造に位置するようにし、談話範囲(映画)に対する下位概念の談話範囲(映画の属性、上映映画)は、下の階層構造に位置するようにすることができる。即ち、各談話範囲は、本実施形態では、他の談話範囲との間で上位概念、下位概念、同義語、対義語の関係が明確となる階層位置に配置することかできる。
【0059】
上述の如く、談話範囲は、各話題から構成されるものであり、本実施形態では、例えば、談話範囲がA映画名であれば、A映画名に関係する複数の話題を含んでいる。
【0060】
この話題は、一つの文字、複数の文字列又はこれらの組み合わせからなる形態素、即ち、利用者から発話されるであろう発話内容を構成する各形態素を意味するものであり、本実施形態では、サブジェクト(主体格)、オブジェクト(対象格)、アクションの「格」(属性)に対応付けられた各形態素からなるものである。これら三要素に対応付けられた各形態素は、本実施形態では、話題タイトル(この話題タイトルは、”話題”の下位概念に相当するものである)(第二形態素情報)と表現することにする。
【0061】
尚、話題タイトルには、上記三要素に対応付けられた各形態素に限定されるものではなく、他の「格」、即ち、時間を意味するタイム(テンス、アスペクト)、場所を意味するロケーション、条件を意味するコンディション、感想を意味するインプレッション、結果を意味するエフェクトなどに対応付けられた各形態素を有してもよい。
【0062】
この話題タイトル(第二形態素情報)は、本実施形態では、会話データベース500に予め格納されているものであり、上記第一形態素情報(利用者が発話した発話内容から導かれたもの)とは区別されるものである。
【0063】
例えば、話題タイトルは、談話範囲が”A映画名”である場合には、図10に示すように、サブジェクト(A映画名)、オブジェクト(監督)、アクション(素晴らしい){これは、”A映画名の監督は素晴らしい”を意味する}から構成されるものである。
【0064】
話題タイトルのうち、「格構成」(サブジェクト、オブジェクト、アクションなど)に対応付けられた形態素がない場合は、その部分については、本実施形態では、”*”を示すことにする。
【0065】
例えば、{A映画名って?}の文を話題タイトル(サブジェクト;オブジェクト;アクション)に変換すると、{A映画名って?}の文のうち、”A映画名”がサブジェクトとして特定することができるが、その他”オブジェクト””アクション”は文の要素になっていないので、話題タイトルは、”サブジェクト”(A映画名);”オブジェクト”なし(*);”アクション”なし(*)となる(図10参照)。
【0066】
回答文とは、利用者に対して回答する回答文(回答内容)を意味するものであり、本実施形態では、各話題タイトル(第二形態素情報)に関連付けられている(図8参照)。回答文は、本実施形態では、本実施形態では、図11に示すように、利用者から発話された発話文のタイプに対応した回答をするために、陳述文(D;Declaration)、感想文(I;Impression)、条件文(C;Condition)、結果文(E;Effect)、時間文(T;Time)、場所文(L;Location)、否定文(N;Negation)などのタイプ(回答種類)に分類されている。
【0067】
即ち、各回答文は、図12に示すように、例えば、談話範囲(佐藤){下位概念;ホームラン、上位概念;草野球、同義語;パンダ佐藤・佐藤選手・パンダ}及び各話題タイトルと関連付けられている。
【0068】
同図に示すように、例えば、話題タイトル1−1が{(佐藤;*;好きだ):これは、上述の如く(サブジェクト;オブジェクト;アクション)の順番からなるものである。この順番は、以下同様とする}である場合は、その話題タイトル1−1に対応する回答文1−1は、(DA;陳述肯定文”佐藤が好きです”)、(IA;感想肯定文”佐藤がとても好きです”)、(CA;条件肯定文”佐藤のホームランはとても印象的だからです”)、(EA;結果肯定文”いつも佐藤の出る試合をテレビ観戦してしまいます”)、(TA;時間肯定文”実は、甲子園での5打席連続敬遠から好きになっています”)、(LA;場所肯定文”打撃に立ったときの真剣な顔が好きですね”)、(NA;反発肯定文”佐藤を嫌いな人とは話したくないですね、さよなら”)などが挙げられる。
【0069】
前記会話制御部300は、本実施形態では、図2に示すように、管理部310と、反射的判定部320と、鸚鵡返し判定部330と、談話範囲決定部340と、省略文補完部350と、話題検索部360と、回答文検索部370とを有している。
【0070】
前記管理部310は、会話制御部300の全体を制御するものである。具体的に、入力部100又は音声認識部200から文字列が入力された管理部310は、入力された文字列を文字列信号として形態素抽出部410に出力する。また、管理部310は、回答文検索部370で検索された回答文を出力部600に出力する。
【0071】
反射的判定部320は、形態素抽出部410で抽出された第一形態素情報と各定型内容を照合し、各定型内容の中から、第一形態素情報を含む定型内容を検索する定型取得手段である。
【0072】
ここで、定型内容とは、利用者からの発話内容に対して定型的な内容を回答するための反射要素情報を意味し、この反射要素情報は、反射要素データベース801(定型記憶手段)に予め複数記憶されている。反射要素情報としては、本実施形態では、図13に示すように、例えば”おはよう”、”こんにちは”、”こんばんわ”、”やあ”などの「挨拶的要素」、「なるほど」、「本当?」などの「定型的要素」などが挙げられる。
【0073】
具体的に、文構造解析部430から話題検索命令信号が入力された反射的判定部320は、入力された話題検索命令信号に含まれる第一形態素情報と反射要素データベース801に記憶されている各反射要素情報とを照合し、各反射要素情報の中から、第一形態素情報を含む反射要素情報を検索し、検索した反射要素情報を管理部310に出力する。
【0074】
即ち、反射要素情報をD1、第一形態素情報をWとすると、反射的判定部320は、W∩D1≠φ(φ;空集合)の関係が成立していると判断した場合は、上記反射的な回答を行うための処理を行う。
【0075】
例えば、利用者が”おはよう”という発話内容を発した場合には、反射的判定部320は、発話内容”おはよう”と各反射要素情報とを照合し、各反射要素情報の中から、発話内容”おはよう”を含む(と一致する)反射要素情報”おはよう”を検索し、検索した反射要素情報”おはよう”を管理部310に出力する。
【0076】
反射的判定部320は、各反射要素情報の中から、発話内容を含む反射要素情報を検索することができない場合には、文構造解析部430から入力された話題検索命令信号を鸚鵡返し判定部330に出力する。
【0077】
鸚鵡返し判定部330は、形態素抽出部410で抽出された現在の第一形態素情報と、鸚鵡返し要素データベース802に記憶されている過去の回答内容とを照合し、現在の第一形態素情報が過去の回答内容に含まれる場合には、合意内容を取得する定型取得手段である。
【0078】
ここで、鸚鵡返しとは、本実施形態では、利用者の発話内容をそのまま(又はそれに近い内容を)言い返すことを意味する。鸚鵡返し要素は、本実施形態では、直前に会話制御装置1から出力された回答内容を構成する第一形態素情報などからなるのもであり、図14に示すように、例えば、”馬は美しい”(馬;*;美しい)、”佐藤が好きです”(佐藤;*;好きです)などが挙げられる。
【0079】
また、鸚鵡返し要素データベース802は、利用者から入力された入力情報に合意するための合意内容を予め記憶する合意記憶手段でもある。合意内容には、例えば、前回、利用者から入力された入力情報(利用者により前回の入力情報が”A映画名の監督はS氏ですか”である場合には、合意内容としては、”A映画名の監督はS氏です”)、又は ”その通りです”、”本当です”などが挙げられる。
【0080】
具体的に、反射的判定部320から話題検索命令信号が入力された鸚鵡返し判定部330は、各鸚鵡返し要素毎に、入力された話題検索命令信号に含まれる第一形態素情報と鸚鵡返し要素を構成する各形態素とを照合し、鸚鵡返し要素の中に第一形態素情報が含まれているかを判断する(図14参照)。
【0081】
鸚鵡返し判定部330は、各鸚鵡返し要素の中に第一形態素情報が含まれていると判断した場合には、合意内容を取得し、取得した合意内容からなる回答文を管理部310に出力(鸚鵡返し処理)する。即ち、鸚鵡返し要素(前回の回答文など)をS、第一形態素情報をWとすると、鸚鵡返し判定部330は、W⊂S、W≠φの関係が成立している場合には、上記に示す鸚鵡返し処理を行う。
【0082】
例えば、会話制御装置1が回答文として”A映画名の監督はS氏です”(A映画名の監督;S氏;*)(この順番は、サブジェクト;オブジェクト;アクションの順番、以下同様とする)を出力し、その後、利用者が出力された回答内容に対して”A映画名の監督はS氏ですか”(A映画名の監督;S氏;*)と発話した場合には、鸚鵡返し判定部330は、利用者の第一形態素情報(A映画名の監督;S氏;*)と回答文の各形態素(A映画名の監督;S氏;*)とが一致しているので、利用者は回答内容に対して鸚鵡返しを行っていると断定し、記憶されている合意内容”その通りです”などを取得し、取得した合意内容を出力する。
【0083】
また、鸚鵡返し判定部330は、形態素抽出部410で抽出された現在の第一形態素情報と、鸚鵡返し要素データベース802に記憶されている過去の第一形態素情報とを照合し、現在の第一形態素情報が過去の第一形態素情報に含まれる場合には、反発内容を取得する定型取得手段でもある。
【0084】
具体的には、利用者が”馬は美しい”という発話内容を発話し、会話制御装置1が回答内容として”馬は躍動感があって良いですね”の内容を出力した場合に、後に利用者が”馬は美しい”という発話内容を繰り返したときは、鸚鵡返し判定部330は、現在の発話内容”馬は美しい”を構成する各形態素(第一形態素情報){馬;*;美しい}と前の発話内容”馬は美しい”を構成する各形態素(第一形態素情報){馬;*;美しい}とが一致しているので、利用者は会話制御装置1からの回答内容”馬は躍動感があって良いですね”については全く聞いていないものと断定することができる。
【0085】
この場合、鸚鵡返し判定部330は、利用者が会話制御装置1からの回答内容を聞いていないので、記憶された反発内容(例えば、同じ内容を繰り返さないでよ”など)取得し、取得した反発内容を出力することができる。
【0086】
一方、鸚鵡返し判定部330は、第一形態素情報が前回の回答文の内容と同一、又は第一形態素情報が前回の第一形態素情報と同一でないと判断した場合には、反射的判定部320から入力された話題検索命令信号を談話範囲決定部340に出力する。
【0087】
尚、上記の鸚鵡返し判定部330は、「会話制御装置1の回答内容」に対して利用者が鸚鵡返しを行った場合の処理を示してきたが、更に以下の処理も行うことができる。例えば、出力部600が”馬は美しい”という回答文を出力した場合、この回答文に対して利用者が”どうして馬は美しいの?”、”どうして美しいの?”、又は”どうして?”と発話した場合に対して行う鸚鵡返し判定部330の処理である。
【0088】
この場合、鸚鵡返し判定部330は、出力した回答文S”馬は美しい”と利用者からの発話内容W(”どうして馬は美しいの?(疑問文)”又は”どうして美しいの?(疑問文)”)とを照合すると、(W−c)⊂S、S≠φ、c≠φ(このcは、Wの発話種類を意味し、この発話種類は、後述する発話種類判定部440で判定されるものである。発話種類には、後述するように、例えば、疑問文などが挙げられる。)の関係が成立するので、”条件付”の鸚鵡返し処理(回答内容に対して利用者が疑問文付きの鸚鵡返しを行った場合の処理)を行う。
【0089】
”条件付”の鸚鵡返し処理としては、例えば、会話制御装置1が”馬は美しいね”の回答文を出力した場合に、上記利用者が”どうして馬は美しいの?”の発話内容を発したときは、利用者の疑問等を解消するため、鸚鵡返し判定部330が”だって馬は美しいじゃない”などの回答文を鸚鵡返し要素データベース802の中から取得し、取得した回答文を管理部310に出力する処理を行う。
【0090】
談話範囲決定部340は、文節解析部420で抽出された第一形態素と各談話範囲とを照合し、各談話範囲の中から、第一形態素情報に含まれる形態素と一致する談話範囲を検索する談話検索手段である。
【0091】
具体的に、鸚鵡返し判定部330から話題検索命令信号が入力された談話範囲決定部340は、入力された談話検索命令信号に基づいて、利用者の談話範囲を決定する。即ち、談話範囲決定部340は、入力された検索命令信号に基づいて、会話データベース500の中から、利用者が発話している内容について関連性のある範囲(談話範囲)を検索する。
【0092】
例えば、談話範囲決定部340は、入力された話題検索命令信号に含まれる第一形態素情報が(面白い映画;*;ある){面白い映画はある?}である場合には、この第一形態素情報と談話範囲群とを照合し、談話範囲群に第一形態素情報を構成する形態素(例えば”映画”)が含まれているときは、第一形態素情報に含まれる”映画”を談話範囲として決定する。この場合、談話範囲決定部340は、第一形態素情報に談話範囲”映画”が含まれているので、入力された第一形態素情報を話題検索命令信号に含めて話題検索部360に出力する。
【0093】
一方、談話範囲決定部340は、第一形態素情報に談話範囲群が含まれていない場合には、入力された第一形態素情報を話題検索命令信号に含めて省略文補完部350に出力する。
【0094】
これにより、後述する話題検索部360は、談話範囲決定部340で決定された”談話範囲”に属する各「話題タイトル」と、文構造解析部430で特定された第一形態素情報とを照合することができるので、”全て”の「話題タイトル」(第二形態素情報)と第一形態素情報とを照合する必要がなくなり、後述する回答文検索部370は、最終的な回答文を検索するまでの時間を短縮することができる。
【0095】
尚、談話範囲決定部340は、上記の如く、第一形態素情報と談話範囲群とを照合し、談話範囲群に第一形態素情報の形態素が含まれていれば、その形態素を談話範囲として決定していたが、これに限定されるものではなく、鸚鵡返し判定部330で直前に検索された鸚鵡返し要素の形態素、又は利用者が発話した発話内容を構成する形態素を談話範囲として決定しても良い。後述する省略文補完部350は、上記談話範囲決定部340で決定された談話範囲を用いて、その談話範囲を、形態素が省略されている第一形態素情報に付加することができる。
【0096】
省略文補完部350は、文節解析部420で抽出された第一形態素情報に基づいて第一形態素情報を構成する各属性(サブジェクト、オブジェクト、アクションなど)の中から、形態素を含まない属性を検索する属性検索手段である。また、省略文補完部350は、検索した属性に基づいて、属性に、談話範囲決定部340で検索された談話範囲を構成する形態素を付加する形態素付加手段でもある。
【0097】
具体的に、談話範囲決定部340から話題検索命令信号が入力された省略文補完部350は、入力された談話検索命令信号に含まれる第一形態素情報に基づいて、第一形態素情報からなる発話内容が省略文であるかを判定し、第一形態素情報からなる発話内容が省略文である場合には、第一形態素情報が属する談話範囲の形態素を、第一形態素情報に付加する。
【0098】
例えば、省略文補完部350は、入力された話題検索命令信号に含まれる第一形態素情報を構成する形態素が(監督;*;*)(監督は?)(この文は、”何の”監督であるかが不明であるので、省略文を意味する。)である場合には、談話範囲決定部340で決定された談話範囲(A映画名;このA映画名は映画のタイトルを示すものである)に属する第一形態素情報であれば、第一形態素情報を構成する形態素に、決定された談話範囲(A映画名)を第一形態素情報に付加(”A映画名”の監督;*;*)する。
【0099】
即ち、第一形態素情報をW、決定された談話範囲をDとすると、省略文補完部350は、Wに談話範囲Dを付加し、付加後の第一形態素情報を話題検索命令信号に含めて話題検索部360に出力する。
【0100】
これにより、第一形態素情報が省略文であり、日本語として明解でない場合であっても、省略文補完部350は、第一形態素情報がある談話範囲に属している場合には、例えば、その談話範囲D(A映画名)を第一形態素情報W(監督;*;*)に付加し、第一形態素情報をW’(A映画名の監督;*;*){A映画名の監督は?}として扱うことができるので、利用者の発話内容が省略文である場合であっても、前に決定された談話範囲に基づいて省略文を補完することができ、省略文を明確にすることができる。
【0101】
このため、省略文補完部350が、第一形態素情報を構成する発話内容が省略文であっても、第一形態素情報を構成する発話内容が適正な日本語となるように、第一形態素情報に特定の形態素を補完することができるので、話題検索部360は、補完後の第一形態素情報に基づいて、第一形態素情報に関連する最適な「話題タイトル」(第二形態素情報)を取得することができ、回答文検索部370は、話題検索部360で取得された「話題タイトル」に基づいて利用者の発話内容により適した回答内容を出力することができる。
【0102】
話題検索部360は、文節解析部420で抽出された第一形態素情報又は省略文補完部350で補完された第一形態素情報と、各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報を構成する形態素を含む第二形態素情報を検索する検索手段である。
【0103】
具体的に、談話範囲決定部340又は省略文補完部350から話題検索命令信号が入力された話題検索部360は、入力された話題検索命令信号に含まれる第一形態素情報に基づいて、談話範囲決定部340で決定された談話範囲に属する各「話題タイトル」(第二形態素情報)の中から、第一形態素情報の形態素を含む「話題タイトル」を検索し、この検索結果を検索結果信号として回答文検索部370及び発話種類判定部440に出力する。
【0104】
例えば、第一形態素情報を構成する「格構成」が(佐藤;*;好きだ){佐藤は好きだ}である場合には、話題検索部360は、図12に示すように、上記「格構成」に属する各形態素(佐藤;*;好きだ)と談話範囲(佐藤)に属する各話題タイトル1−1〜1−4とを照合し、各話題タイトル1−1〜1−4の中から「格構成」に属する各形態素(佐藤;*;好きだ)と一致(又は近似)する話題タイトル1−1(佐藤;*;好きだ)を検索し、この検索結果を検索結果信号として回答文検索部370及び発話種類判定部440に出力する。
【0105】
話題検索部360から検索結果信号が入力された発話種類判定部440は、入力された検索結果信号に基づいて、該当する利用者に対して回答する特定の回答文を検索させるための回答検索命令信号(この回答検索命令信号には、判定した「発話文のタイプ」も含まれる)を回答文検索部370に出力する。
【0106】
回答文検索部370は、話題検索部360で検索された第二形態素情報(話題タイトル)に基づいて、第二形態素情報に関連付けられた回答文を取得する回答取得手段である。また、回答文検索部370は、話題検索部360で検索された第二形態素情報に基づいて、特定された利用者の発話種類と第二形態素情報に関連付けられた各回答種類とを照合し、各回答種類の中から、利用者の発話種類と一致する回答種類を検索する第二検索手段でもある。
【0107】
具体的に、話題検索部360から検索結果信号と、発話種類判定部440から回答検索命令信号とが入力された回答文検索部370は、入力された検索結果信号に対応する話題タイトル(検索結果によるもの;第二形態素情報)と回答検索命令信号に対応する「発話文のタイプ」(発話種類)とに基づいて、その「話題タイトル」に関連付けられている回答文群(各回答内容)の中から、「発話文のタイプ」(DA、IA、CAなど)と一致する回答種類(この回答種類は、図11に示す「回答文のタイプ」を意味する)からなる回答文を検索する。
【0108】
例えば、回答文検索部370は、検索結果に対応する話題タイトルが図12に示す話題タイトル1−1(佐藤;*;好きだ)である場合は、その話題タイトル1−1に関連付けられている回答文1−1(DA、IA、CAなど)の中から、発話種類判定部440で判定された「発話文のタイプ」(例えばDA;発話種類)と一致する回答種類(DA)からなる回答文1−1(DA;(私も)佐藤が好きです)を検索し、この検索した回答文を回答文信号として管理部310に出力する。
【0109】
回答文検索部370から回答文信号が入力された管理部310は、入力された回答文信号を出力部600に出力する。また、反射的判定部320から反射要素情報、又は鸚鵡返し判定部330から鸚鵡返し処理の内容が入力された管理部310は、入力された反射要素情報に対応する回答文、入力された鸚鵡返し処理の内容に対応する回答文を出力部600に出力する。
【0110】
出力部600は、回答文検索部370で取得された回答文を出力する出力手段であり、本実施形態では、例えば、スピーカ、ディスプレイなどが挙げられる。具体的に、管理部310から回答文が入力された出力部600は、入力された回答文{例えば、私も佐藤が好きです}を出力する。
【0111】
(会話制御装置を用いた会話制御方法)
上記構成を有する会話制御装置1による会話制御方法は、以下の手順により実施することができる。図15は、本実施形態に係る会話制御方法の手順を示すフロー図である。
【0112】
先ず、入力部100が、利用者からの発話内容を取得するステップを行う(S101)。具体的に入力部100は、利用者の発話内容を構成する音声を取得し、取得した音声を音声信号として音声認識部200に出力する。また、入力部100は、利用者から入力された入力情報(音声以外)に基づいて、入力情報(音声以外)に対応する文字列を特定し、特定した文字列を文字列信号として会話制御部300に出力する。
【0113】
次いで、音声認識部200が、入力部100で取得した発話内容に基づいて、発話内容に対応する文字列を特定するステップを行う(S102)。具体的には、入力部100から音声信号が入力された音声認識部200は、入力された音声信号を解析し、解析した音声信号に対応する文字列を、音声認識辞書記憶部700に格納されている辞書を用いて特定し、特定した文字列を文字列信号として会話制御部300に出力する。
【0114】
そして、形態素抽出部410が、音声認識部200で特定された文字列に基づいて、文字列の最小単位を構成する各形態素を第一形態素情報として抽出するステップを行う(S103)。
【0115】
具体的に、管理部310から文字列信号が入力された形態素抽出部410は、入力された文字列信号に対応する文字列と、形態素データベース450に予め格納されている名詞、形容詞、動詞などの形態素群とを照合し、文字列の中から形態素群と一致する各形態素(m1、m2、・・・)を抽出し、抽出した各形態素を抽出信号として文節解析部420に出力する。
【0116】
そして、文節解析部420は、形態素抽出部410で抽出された各形態素に基づいて、各形態素を文節形式にまとめるステップを行う(S104)。具体的に、形態素抽出部410から抽出信号が入力された文節解析部420は、入力された抽出信号に対応する各形態素を用いて文節形式にまとめる。
【0117】
即ち、文節解析部420は、図4に示すように、入力された抽出信号に対応する各形態素に基づいて各形態素の係り受け要素(例えば、が・は・を・・)を抽出し、抽出した係り受け要素に基づいて各形態素を各文節にまとめることを行う。 各形態素を各文節にまとめた文節解析部420は、各形態素をまとめた各文節と、各文節を構成する各形態素とを含む文型情報を文型信号として文構造解析部430及び発話種類判定部440に出力する。
【0118】
その後、文構造解析部430が、文節解析部420で分節された第一形態素情報の各形態素を主体格、対象格などの各属性に分類するステップを行う(S105)。具体的に、文節解析部420から文型信号が入力された文構造解析部430は、入力された文型信号に対応する各形態素と各形態素からなる文節とに基づいて、文節に含まれる各形態素の「格構成」を決定する。
【0119】
即ち、文構造解析部430は、図5に示すように、例えば、各形態素の係り受け要素が”が”又は”は”である場合は、その係り受け要素の前にある形態素がサブジェクト(主語又は主格)であると判断する。また、文構造解析部430は、
例えば、各形態素の係り受け要素が”の”又は”を”である場合は、その係り受け要素の前にある形態素がオブジェクト(対象)であると判断する。
【0120】
更に、文構造解析部430は、例えば、各形態素の係り受け要素が”する”である場合は、その係り受け要素の前にある形態素がアクション(述語;この述語は動詞、形容詞などから構成される)であると判断する。
【0121】
各文節を構成する各形態素の「格構成」を決定した文構造解析部430は、決定した「格構成」に対応付けられた第一形態素情報に基づいて、後述する話題(トピック)の範囲を特定させるための話題検索命令信号を話題検索部360に出力する。
【0122】
次いで、発話種類判定部440は、文節解析部420で特定された文節に基づいて、発話内容の種類を示す発話種類を特定するステップを行う(S106)。具体的に、文節解析部420から入力された文型信号に対応する各形態素と各形態素から構成される文節とに基づいて、「発話文のタイプ」(発話種類)を判定する。
【0123】
即ち、発話種類判定部440は、入力された文型信号に対応する各文節に基づいて、その各文節と発話種類データベース460に格納されている各辞書とを照合し、各文節の中から、各辞書に関係する文要素を抽出する。各文節の中から各辞書に関係する文要素を抽出した発話種類判定部440は、抽出した文要素に基づいて、「発話文のタイプ」を判定する。
【0124】
この発話種類判定部440は、後述する話題検索部360からの指示に基づいて、該当する利用者に特定の回答文を検索させるための回答検索命令信号を回答文検索部370に出力する。
【0125】
次いで、反射的判定部320が、形態素抽出部410で抽出された第一形態素情報と各定型内容を照合し、各定型内容の中から、第一形態素情報を含む定型内容を検索するステップを行う(S107;反射的処理)。
【0126】
具体的に、文構造解析部430から話題検索命令信号が入力された反射的判定部320は、入力された話題検索命令信号に含まれる第一形態素情報と反射要素データベース801に記憶されている各反射要素情報(定型内容)とを照合し、各反射要素情報の中から、第一形態素情報を含む反射要素情報を検索し、検索した反射要素情報を管理部310に出力する。
【0127】
反射的判定部320は、各反射要素情報の中から、第一形態素情報を含む反射要素情報を検索することができない場合には、文構造解析部430から入力された話題検索命令信号を鸚鵡返し判定部330に出力する。
【0128】
次いで、鸚鵡返し判定部330が、形態素抽出部410で抽出された第一形態素情報と各鸚鵡返し要素を照合し、各鸚鵡返し要素の中から、第一形態素情報を含む鸚鵡返し要素を検索するステップを行う(S108;鸚鵡返し処理)。
【0129】
鸚鵡返し判定部330は、各鸚鵡返し要素の中に第一形態素情報が含まれていると判断した場合には、第一形態素情報を含む鸚鵡返し要素を取得し、取得した鸚鵡返し要素からなる回答文を管理部310に出力(鸚鵡返し処理)する。即ち、鸚鵡返し要素(前回出力された回答文、前回利用者が発話した発話内容など)をS、第一形態素情報をWとすると、鸚鵡返し判定部330は、W⊂S、W≠φの関係が成立している場合には、上記に示す鸚鵡返し処理を行う。
【0130】
一方、鸚鵡返し判定部330は、各鸚鵡返し要素の中に第一形態素情報が含まれていないと判断した場合には、反射的判定部320から入力された話題検索命令信号を談話範囲決定部340に出力する。
【0131】
そして、談話範囲決定部340が、文節解析部420で抽出された第一形態素と各談話範囲とを照合し、各談話範囲の中から、第一形態素情報を含む談話範囲を検索(決定)するステップを行う(S109)。
【0132】
具体的に、鸚鵡返し判定部330から話題検索命令信号が入力された談話範囲決定部340は、入力された検索命令信号に基づいて、会話データベース500の中から、利用者が発話している内容について関連性のある範囲(談話範囲)を検索する。
【0133】
例えば、談話範囲決定部340は、入力された話題検索命令信号に含まれる第一形態素情報が(面白い映画;*;ある){面白い映画はある?}である場合には、この第一形態素情報と談話範囲群とを照合し、談話範囲群に第一形態素情報を構成する形態素(例えば”映画”)が含まれているときは、第一形態素情報に含まれる”映画”を談話範囲として決定する。この場合、談話範囲決定部340は、第一形態素情報に談話範囲”映画”が含まれているので、入力された第一形態素情報を話題検索命令信号に含めて話題検索部360に出力する。
【0134】
一方、談話範囲決定部340は、第一形態素情報に談話範囲群が含まれていない場合には、入力された第一形態素情報を話題検索命令信号に含めて省略文補完部350に出力する。
【0135】
次いで、省略文補完部350が、文節解析部420で抽出された第一形態素情報に基づいて第一形態素情報を構成する各属性(サブジェクト、オブジェクト、アクションなど)の中から、形態素を含まない属性を検索するステップを行う。その後、省略文補完部350が、検索した形態素を含まない属性に基づいて、その属性に、談話範囲決定部340で検索された談話範囲を構成する形態素を付加するステップを行う(S110;省略文を補完)。
【0136】
具体的に、談話範囲決定部340から話題検索命令信号が入力された省略文補完部350は、入力された談話検索命令信号に含まれる第一形態素情報に基づいて、第一形態素情報からなる発話内容が省略文であるかを判定し、第一形態素情報からなる発話内容が省略文である場合には、第一形態素情報が属する談話範囲の形態素を、第一形態素情報に付加する。
【0137】
例えば、省略文補完部350は、入力された話題検索命令信号に含まれる第一形態素情報を構成する形態素が(監督;*;*)(監督は?)(この文は、”何の”監督であるかが不明であるので、省略文を意味する。)である場合には、前に談話範囲決定部340で決定された談話範囲(A映画名;このA映画名とは映画のタイトルを示すものである)に属する第一形態素情報であれば、第一形態素情報を構成する形態素に、決定された談話範囲の形態素(A映画名)を第一形態素情報に付加(”A映画名”の監督;*;*)する。
【0138】
即ち、第一形態素情報をW、決定された談話範囲をDとすると、省略文補完部350は、第一形態素情報Wに談話範囲Dを付加し、付加後の第一形態素情報を話題検索命令信号に含めて話題検索部360に出力する。
【0139】
次いで、話題検索部360が、文節解析部420で抽出された第一形態素情報又は省略文補完部350で補完された第一形態素情報と、各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報を構成する形態素を含む第二形態素情報を検索するステップを行う(S111)。
【0140】
具体的に、談話範囲決定部340又は省略文補完部350から話題検索命令信号が入力された話題検索部360は、入力された話題検索命令信号に含まれる第一形態素情報に基づいて、談話範囲決定部340で決定された談話範囲に属する各「話題タイトル」(第二形態素情報)の中から、第一形態素情報の形態素を含む「話題タイトル」を検索し、この検索結果を検索結果信号として回答文検索部370及び発話種類判定部440に出力する。
【0141】
例えば、第一形態素情報を構成する「格構成」が(佐藤;*;好きだ){佐藤は好きだ}である場合には、話題検索部360は、図12に示すように、上記「格構成」に属する各形態素(佐藤;*;好きだ)と談話範囲(佐藤)に属する各話題タイトル1−1〜1−4とを照合し、各話題タイトル1−1〜1−4の中から「格構成」に属する各形態素(佐藤;*;好きだ)と一致(又は近似)する話題タイトル1−1(佐藤;*;好きだ)を検索し、この検索結果を検索結果信号として回答文検索部370及び発話種類判定部440に出力する。
【0142】
話題検索部360から検索結果信号が入力された発話種類判定部440は、入力された検索結果信号に基づいて、該当する利用者に対して回答する特定の回答文を検索させるための回答検索命令信号(この回答検索命令信号には、判定した「発話文のタイプ」も含まれる)を回答文検索部370に出力する。
【0143】
そして、回答文検索部370が、話題検索部360で検索された第二形態素情報に基づいて、特定された利用者の発話種類と第二形態素情報に関連付けられた各回答種類とを照合し、各回答種類の中から、利用者の発話種類と一致する回答種類を検索し、検索した回答種類に基づいて回答種類に関連付けられている回答文を取得するステップを行う(S112)。
【0144】
具体的に、話題検索部360から検索結果信号と、発話種類判定部440から回答検索命令信号とが入力された回答文検索部370は、入力された検索結果信号に対応する話題タイトル(検索結果によるもの;第二形態素情報)と回答検索命令信号に対応する「発話文のタイプ」(発話種類)とに基づいて、その「話題タイトル」に関連付けられている回答文群(各回答内容)の中から、「発話文のタイプ」(DA、IA、CAなど)と一致する回答種類(この回答種類は、図11に示す「回答文のタイプ」を意味する)からなる回答文を検索する。
【0145】
例えば、回答文検索部370は、検索結果に対応する話題タイトルが図12に示す話題タイトル1−1(佐藤;*;好きだ)である場合は、その話題タイトル1−1に関連付けられている回答文1−1(DA、IA、CAなど)の中から、発話種類判定部440で判定された「発話文のタイプ」(例えばDA;発話種類)と一致する回答種類(DA)からなる回答文1−1(DA;(私も)佐藤が好きです)を検索し、この検索した回答文を回答文信号として管理部310に出力する。
【0146】
次いで、回答文検索部370から回答文信号が入力された管理部310は、入力された回答文信号を出力部600に出力する。また、反射的判定部320から反射要素情報、又は鸚鵡返し判定部330から鸚鵡返し処理の内容が入力された管理部310は、入力された反射要素情報に対応する回答文、入力された鸚鵡返し処理の内容に対応する回答文を出力部600に出力する(S113)。管理部310から回答文が入力された出力部600は、入力された回答文{例えば、私も佐藤が好きです}を出力する。
【0147】
(会話制御装置及び会話制御方法による作用及び効果)
上記構成を有する本願に係る発明によれば、反射的判定部320が、利用者から発話された発話内容を構成する第一形態素情報と予め記憶された各定型内容とを照合し、各定型内容の中から、第一形態素情報を含む定型内容を検索することができるので、反射的判定部320は、例えば第一形態素情報が”こんにちは”などの定型内容である場合には、この定型内容と同一の定型内容”こんにちは”等を回答することができる。
【0148】
また、反射的判定部320は、利用者の発話内容が定型内容である場合には、その定型内容(挨拶など)を回答するので、利用者は、最初に、会話制御装置1との間で意思の疎通をしているような感覚を味わうことができる。
【0149】
また、鸚鵡返し判定部330が、現在の第一形態素情報と過去の回答内容とを照合し、現在の第一形態素情報が過去の回答内容に含まれていない場合には、予め記憶してある合意内容を取得することができるので、鸚鵡返し判定部330は、利用者から現在入力された入力情報と過去の回答内容とが一致していれば、利用者が過去の回答内容に対して鸚鵡返し(利用者が回答内容に対して聞き直していること)の入力情報を入力したものと断定することができる。
【0150】
この場合、鸚鵡返し判定部330は、利用者が過去の回答内容に対して鸚鵡返しを行っているので、記憶されている合意内容を取得し、取得した合意内容(例えば、”その通りです”など)を出力することができる。これにより、利用者は、会話制御装置1から出力された回答内容の意味が分からなければ、もう一度聞き直して、再度回答内容を聞き直すことができるので、恰も他の利用者と会話しているような感覚を味わうことができる。
【0151】
また、鸚鵡返し判定部330が、現在の第一形態素情報と過去の第一形態素情報とを照合し、現在の第一形態素情報が過去の第一形態素情報に含まれる場合には、反発内容を取得することができるので、鸚鵡返し判定部330は、前回入力された入力情報が今回入力された入力情報に含まれている場合には、利用者が前の入力情報と同一の内容を反復して入力したものと判断することができ、利用者が会話制御装置からの回答内容に対して適切に回答していないものと断定することができる。
【0152】
この場合、鸚鵡返し判定部330は、利用者が前回の回答内容に対して適切に回答していないので、利用者に対して反発するため、記憶されている反発内容を取得し、取得した反発内容を出力する。これにより、利用者は、会話制御装置1からの回答内容に対して適切な入力情報を入力しなければ、会話制御装置1から反発内容が出力されるので、恰も他の利用者と会話しているような感覚を味わうことができる。
【0153】
また、話題検索部360は、第一形態素情報と近似する第二形態素情報を検索するには、”談話範囲”に属する各第二形態素情報と第一形態素情報とを照合すればよく、”全て”の第二形態素情報と第一形態素情報とを照合する必要がないので、第一形態素情報と近似している第二形態素情報を検索するまでの時間を短縮することができる。
【0154】
この結果、話題検索部360が、第一形態素情報と近似している第二形態素情報を短時間で検索(ピンポイント検索)することができるので、回答文検索部370は、話題検索部360で検索された第二形態素情報に基づいて第二形態素情報に関連付けられている回答文を短時間で取得することができ、会話制御装置1は、利用者からの発話内容に対して迅速に回答することができる。
【0155】
また、話題検索部360が、各第二形態素情報の中から、第一形態素情報を構成する形態素(利用者の発話内容を構成する要素)を含む第二形態素情報を検索し、回答文検索部370が、話題検索部360で検索された第二形態素情報に基づいて、第二形態素情報に関連付けられた回答内容を取得することができるので、回答文検索部370は、利用者の発話内容を構成する各形態素(第一形態素情報)に基づいて、各形態素により構築される意味空間(主体、対象等)を考慮し、かかる意味空間に基づいて予め作成された回答内容を取得することができることとなり、単に発話内容の全体をキーワードとして、そのキーワードに関連付けられた回答内容を取得するよりも、より発話内容に適した回答内容を取得することができる。
【0156】
また、話題検索部360は、第一形態素情報を含む第二形態素情報を検索するので、利用者の発話内容と完全に一致する第二形態素情報を検索する必要がなく、会話制御装置1を開発する開発者は、利用者から発話されるであろう発話内容に対応する膨大な回答内容を予め記憶する必要がなくなり、記憶部の容量を低減させることができる。
【0157】
更に、回答文検索部370が、”談話範囲”に属する各第二形態素情報に関連付けられた回答種類(陳述、肯定、場所、反発など)の中から、利用者の発話種類と一致する回答種類を検索し、検索した回答種類に基づいて回答種類に対応付けられた回答内容を取得することができるので、会話制御装置1は、利用者の会話内容を構成する発話種類、例えば、利用者が単に意見を述べたもの、利用者が抱く感想からなるもの、利用者が場所的な要素を述べたものなどに基づいて、複数の回答内容の中から利用者の発話種類にマッチした回答内容を取得することができることとなり、該当する利用者に対してより最適な回答をすることができる。
【0158】
更にまた、回答文検索部370は、談話範囲決定部340で検索された”談話範囲”にのみ属する各第二形態素情報に関連付けられた回答種類の中から、利用者の発話種類と一致する回答種類を検索(ピンポイント検索が可能)するだけでよいので、”全て”の第二形態素情報に関連付けられた回答種類と利用者の発話種類とを逐一検索する必要がなくなり、利用者の発話種類に対応する最適な回答内容を短時間で取得することができる。
【0159】
最後に、省略文補完部350は、利用者の発話内容を構成する第一形態素情報が省略文であり、日本語として明解でない場合であっても、第一形態素情報がある談話範囲に属している場合には、その談話範囲を第一形態素情報に付加し、省略文からなる第一形態素情報を補完することができる。
【0160】
これにより、省略文補完部350は、第一形態素情報を構成する発話内容が省略文であっても、第一形態素情報を構成する発話内容が適正な日本語となるように、第一形態素情報に特定の形態素(談話範囲を構成する形態素など)を補完することができるので、話題検索部360は、省略文補完部350で補完された補完後の第一形態素情報に基づいて、第一形態素情報に関連する最適な第二形態素情報を取得することができ、回答文検索部370は、話題検索部360で取得された第二形態素情報に基づいて利用者の発話内容により適した回答内容を出力することができる。
【0161】
この結果、会話制御装置1は、利用者からの入力情報が省略文であったとしても、ニューロネットワーク、AI知能などの機能を用いることなく、過去の検索結果を通じて、その省略文が何を意味するのかを推論することができ、会話制御装置1の開発者は、ニューロネットワーク、AI知能を搭載する必要がないので、会話制御装置1のシステムをより簡便に構築することができる。
【0162】
[変更例]
尚、本発明は、上記実施形態に限定されるものではなく、以下に示すような変更を加えることができる。
【0163】
(第一変更例)
本変更例においては、会話データベース500は、複数の形態素の集合からなる集合群の全体を示す要素情報を、集合群に関連付けて複数記憶する要素記憶手段であってもよい。更に、形態素抽出部410は、文字列から抽出した形態素と各集合群とを照合し、各集合群中から、抽出された形態素を含む集合群を選択し、選択した集合群に関連付けられた要素情報を第一形態素情報として抽出してもよい。
【0164】
図16に示すように、利用者が発話した文字列に含まれる各形態素には、類似しているものがある。例えば、図16に示すように、集合群の全体を示す要素情報を「贈答」とすると、「贈答」は、プレゼント、贈り物、御歳暮、御中元、お祝いなど(集合群)と相互に類似しているので、形態素抽出部410は、「贈答」に類似する形態素(上記のプレゼントなど)がある場合には、その類似する形態素については、「贈答」として取り扱うことができる。
【0165】
即ち、形態素抽出部410は、例えば、文字列から抽出した形態素が「プレゼント」である場合には、図16に示すように、「プレゼント」を代表する要素情報が「贈答」であるので、上記「プレゼント」を「贈答」に置き換えることができる。
【0166】
これにより、形態素抽出部410が相互に類似する形態素を整理することができるので、会話制御装置を開発する開発者は、相互に類似した各第一形態素情報から把握される意味空間に対応した第二形態素情報及び第二形態素情報に関係する回答内容を逐一作成する必要がなくなり、結果的に、記憶部に格納させるデータ量を低減させることができる。
【0167】
(第二変更例)
図17に示すように、本変更例においては、割合計算部361と、選択部362とを話題検索部360に備えてもよい。
【0168】
割合計算部361は、形態素抽出部410で抽出された第一形態素情報と各第二情報とを照合し、各第二形態素情報毎に、第二形態素情報に対して第一形態素情報が占める割合を計算する計算手段である。
【0169】
具体的に、文構造解析部430から話題検索命令信号が入力された割合計算部361は、図17に示すように、入力された話題検索命令信号に含まれる第一形態素情報に基づいて、第一形態素情報と会話データベース500に格納されている談話範囲に属する各話題タイトル(第二形態素情報)とを照合し、各話題タイトル毎に、それぞれの話題タイトルの中に、第一形態素情報が占める割合を計算する。
【0170】
例えば、図18に示すように、利用者から発話された発話文を構成する第一形態素情報が(佐藤;*;好きだ){佐藤は好きだ}である場合は、割合計算部361は、「格構成」に属する各形態素(佐藤;*;好きだ)と話題タイトルに含まれる各形態素(佐藤;*;好きだ)とを照合し、上記話題タイトルに、「格構成」に属する各形態素(佐藤;*;好きだ)が含まれる割合を、100%であると計算する。割合計算部361は、これらの計算を話題タイトル毎に行い、計算した各割合を割合信号として選択部362に出力する。
【0171】
選択部362は、割合計算部361で各第二形態素情報毎に計算された各割合の大きさに応じて、各第二形態素情報の中から、一の第二形態素情報を選択する選択手段である。
【0172】
具体的に、割合計算部361から割合信号が入力された選択部362は、入力された割合信号に含まれる各割合(「格構成」の要素/「話題タイトル」の要素×100)の中から、例えば割合の高い話題タイトルを選択する(図18参照)。割合の高い話題タイトルを選択した選択部362は、選択した話題タイトルを検索結果信号として回答文検索部370及び発話種類判定部440に出力する。回答文検索部370は、選択部362で選択された話題タイトルに基づいて、話題タイトルに関連付けられた回答文を取得する。
【0173】
これにより、選択部362が、各第二形態素情報毎に、第二形態素情報に対して該第一形態素情報が占める割合を計算し、各第二形態素情報毎に計算された各割合の大きさに応じて、各第二形態素情報の中から、一の第二形態素情報を選択することができるので、選択部362は、例えば、第一形態素情報(利用者の発話内容を構成するもの)が第二形態素情報に占める割合の大きい第二形態素情報を、複数ある第二形態素情報群の中から取得することができれば、第一形態素情報から把握される意味空間を踏襲した第二形態素情報をより的確に取得することができ、結果的に、回答文検索部370は、利用者の発話内容に対して最適な回答をすることができる。
【0174】
また、選択部362は、複数の話題タイトルの中から、割合計算部361で計算された割合の高い話題タイトルを選択することができるので、利用者の発話文に含まれる「格構成」に属する各形態素と会話データベース500に格納されている各話題タイトルとが完全に一致しなくても、「格構成」に属する各形態素に密接する話題タイトルを取得することができる。
【0175】
この結果、選択部362が第一形態素情報を構成する「格構成」に密接する話題タイトルを取得することができるので、会話制御装置1を開発する開発者は、第一形態素情報を構成する「格構成」と完全に一致する話題タイトルを会話データベース500に逐一格納する必要がなくなるので、会話データベース500の容量を低減させることができる。
【0176】
更に、割合計算部361は、談話範囲決定部340で検索された”談話範囲”にのみ属する各第二形態素情報毎に、第二形態素情報に対して該第一形態素情報が占める割合を計算するので、”全て”の第二形態素情報に対して第一形態素情報が占める割合を計算する必要がなくなり、第一形態素情報から構成される意味空間を踏襲した第二形態素情報をより短時間で取得することができ、結果的に、取得した第二形態素情報に基づいて利用者からの発話内容に対しての最適な回答内容を迅速に出力することができる。
【0177】
尚、割合計算部361は、分類された各属性に属する第一形態素情報の各形態素と、予め記憶された各属性に属する各第二形態素情報の各形態素とを各属性毎に照合し、各第二形態素情報の中から、少なくとも一の属性に第一形態素情報の各形態素を含む第二形態素情報を検索する第一検索手段であってもよい。
【0178】
具体的に、話題検索命令信号が入力された割合計算部361は、入力された話題検索命令信号に含まれる「格構成」の各「格」(サブジェクト;オブジェクト;アクション)毎に、その「格」に属する各形態素と、同一の「格」からなる話題タイトルの「格」に属する各形態素とを照合し、互いの「格」を構成する形態素が同一か否かを判定する。
【0179】
例えば、図19に示すように、割合計算部361は、「格構成」の「格」の形態素が(犬;人;噛んだ){犬が人を噛んだ}である場合は、それらの形態素”犬”、”人”、”噛んだ”と、それらの形態素を構成する「格」と同一の「格」からなる話題タイトルの形態素”犬”、”人”、”噛んだ”とを照合し、話題タイトルを構成する各形態素”犬”、”人”、”噛んだ”のうち、各形態素に対応する「格」と同一の「格」からなる「格構成」の形態素”犬”、”人”、”噛んだ”と一致している割合を算出(100%)する。
【0180】
もし、話題タイトルを構成する要素が(人;犬;噛んだ){人が犬を噛んだ}である場合には、割合計算部361は、上記と同様の手順により、二つの格に属する形態素が異なるので、「格構成」を構成する形態素と「話題タイトル」との「格」毎の一致度を33%であると算出する(図19参照)。
【0181】
割合を計算した割合計算部361は、各割合の中から、割合の高い話題タイトルを選択し、選択した話題タイトルを検索結果信号として回答文検索部370及び発話種類判定部440に出力する。
【0182】
これにより、割合計算部361が、分類された各「格構成」(主体格、対象格など)に属する第一形態素情報の各形態素と、予め記憶された話題タイトルとを各「格」毎に照合し、各話題タイトルの中から、少なくとも一の「格」に第一形態素情報の各形態素を含む第二形態素情報を検索することができるので、割合計算部361は、通常の語順とは異なるものから構成される発話内容、例えば”人が犬を噛む”である場合には、主体格の形態素が”人”、対象格の形態素が”犬”であることから、その各「格」と一致する第二形態素情報を検索することができ、その第二形態素情報(人;犬;噛む)に関連付けられている回答内容{”本当に?”又は”意味がよくわかんないよ”など}を取得することができる。
【0183】
即ち、割合計算部361は、識別が困難な発話内容、例えば”人が犬を噛む”と”犬が人を噛む”とを識別することができるので、その識別した発話内容に最適な回答、前者については例えば”本当に?”、後者については例えば”大丈夫?”をすることができる。
【0184】
また、割合計算部361は、”談話範囲”に属する各第二形態素情報の中から、少なくとも一の属性に第一形態素情報の形態素を含む第二形態素情報を検索すればよいので、”全て”の第二形態素情報の中から、一の第二形態素情報を取得する必要がなくなり、第一形態素情報から構成される意味空間を踏襲した第二形態素情報をより短時間で取得することができ、結果的に、会話制御装置1は、取得した第二形態素情報に基づいて利用者からの発話内容に対しての最適な回答内容を迅速に出力することができる。
【0185】
尚、選択部362は、予め定められた優先順位に従って各話題タイトルの中から、一の話題タイトルを選択してもよい。この優先順位とは、話題タイトルとして選出されるための優先度を意味するものである。この優先順位は、開発段階で開発者が予め定めるものである。
【0186】
(第三変更例)
図20に示すように、本変更例においては、上記実施形態及び各変更例に限定されるものではなく、会話制御装置1a,1bにある通信部800と、通信ネットワーク1000を介してデータの送受信をするための通信部900と、通信部900に接続された各会話データベース500b〜500dと、サーバ2a〜2cとを備えてもよい(会話制御システム)。
【0187】
ここで、通信ネットワーク1000とは、データを送受信する通信網を意味するものであり、本実施形態では、例えば、インターネットなどが挙げられる。尚、本変更例では、便宜上、会話データベース500b〜500d、サーバ2a〜2cを限定しているが、これに限定されるものではなく、更に他の会話データベースを設けてもよい。
【0188】
これにより、会話制御部300は、会話制御装置1aの内部に配置してある会話データベース500aのみならず、その他の会話制御装置1b、他の会話データベース500b〜500d、サーバ2a〜2cをも参照することができるので、例えば、会話データベース500aの中から、話題検索命令信号に含まれる「格構成」に属する各形態素(第一形態素情報)と関連する談話範囲等を検索することができない場合であっても、その他の会話制御装置1b、会話データベース500b〜500d、サーバ2a〜2cを参照することにより、上記「格構成」と関連する談話範囲等を検索することができ、利用者の発話文により適した回答文を検索することができる。
【0189】
(第四変更例)
文構造解析部430は、特定した第一形態素情報を構成する各「格構成」及び各「格構成」に対応付けられた各形態素を会話データベース500に記憶するものであってもよい。回答文検索部370は、検索した回答文を構成する各「格構成」及び各「格構成」に対応付けられた各形態素を会話データベース500に記憶するものであってもよい。
【0190】
談話範囲決定部340は、検索した談話範囲を会話データベース500に記憶するものであってもよい。話題検索部360は、検索した第二形態素情報を会話データベース500に記憶するものであってもよい。
【0191】
上記第一形態素情報と、第二形態素情報と、第一形態素情報又は第二形態素情報を構成する各「格構成」及び各「格構成」に対応付けられた各形態素と、検索した回答文を構成する各「格構成」及び各「格構成」に対応付けられた各形態素と、検索した談話範囲とは、それらを相互に関連付けて履歴形態素情報として会話データベース500又は鸚鵡返し要素データベース802に記憶することができる。
【0192】
省略文補完部350は、文節解析部420で抽出された第一形態素情報に基づいて第一形態素情報を構成する各属性(サブジェクト、オブジェクト、アクションなど;格構成)の中から、形態素を含まない属性を検索し、検索した属性に基づいてその属性に、会話データベース500又は鸚鵡返し要素データベース802に記憶された履歴形態素情報を付加する。
【0193】
具体的に、談話範囲決定部340から話題検索命令信号が入力された省略文補完部350は、入力された談話検索命令信号に含まれる第一形態素情報に基づいて、第一形態素情報からなる発話内容が省略文であるかを判定し、第一形態素情報からなる発話内容が省略文(例えば、サブジェクト、オブジェクト、又はアクションに所定の形態素を有しないなど)である場合には、会話データベース500又は鸚鵡返し要素データベース802に記憶されている履歴形態情報を、第一形態素情報に付加する。
【0194】
即ち、履歴形態情報に含まれるサブジェクトをS1、オブジェクトをO1、アクションA1、談話範囲をD1とし、省略された第一形態素情報をWとすると、補完後の第一形態素情報W1は、S1∪W、O1∪W、A1∪W、又はD1∪Wとして表現することができる。
【0195】
話題検索部360は、省略文補完部350で補完された第一形態素情報W1と各第二形態素情報とを照合し、各「話題タイトル」(第二形態素情報)の中から、第一形態素情報W1を含む第二形態素情報を検索し、検索した話題タイトルを検索結果信号として回答文検索部370及び発話種類判定部440に出力する。
【0196】
これにより、第一形態素情報からなる発話内容が省略文であり、日本語として明解でない場合であっても、省略文補完部350は、会話データベース500に記憶されている履歴形態情報を用いて、省略された第一形態素情報の形態素を補完することができるので、省略された第一形態素情報からなる発話内容を明確にすることができる。
【0197】
このため、省略文補完部350が、第一形態素情報を構成する発話内容が省略文である場合には、第一形態素情報からなる発話内容が適正な日本語となるように、第一形態素情報に省略された形態素を補完することができるので、話題検索部360は、形態素が補完された第一形態素情報に基づいて、その第一形態素情報と関連する最適な「話題タイトル」(第二形態素情報)を取得することができ、回答文検索部370は、話題検索部360で取得された最適な「話題タイトル」に基づいて、利用者の発話内容により適した回答内容を出力することができる。
【0198】
(第五変更例)
話題検索部360は、図21に示すように、削除部363と、談話付加部364とを備えてもよい。削除部363は、検索した第二形態素情報に基づいて、第二形態素情報と談話範囲決定部340で検索された談話範囲とを照合し、第二形態素情報を構成する各形態素の中から、談話範囲と一致する形態素を削除する削除手段である。
【0199】
具体的に、省略文補完部350から話題検索命令信号が入力された話題検索部360は、入力された話題検索命令信号に含まれる第一形態素情報と、談話範囲決定部340で決定された談話範囲に属する各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索する。
【0200】
そして、削除部363は、検索された第二形態素情報に基づいて、その第二形態素情報と談話範囲決定部340で決定された談話範囲を構成する形態素とを照合し、第二形態素情報の中から、談話範囲を構成する形態素と一致する形態素を削除し、形態素が削除された第二形態素情報を削除信号として談話付加部364に出力する。
【0201】
即ち、削除部363は、第二形態素情報を構成する各形態素t1から、談話範囲決定部340で決定された現在の談話範囲D2(このD2は、形態素からなるものである)を取り除く(取り除いた結果をt2とすると、t2=t1−D2)。
【0202】
談話付加部364は、削除部363で形態素が削除された第二形態素情報に基づいて、談話範囲決定部340で検索された談話範囲に関連付けられた他の談話範囲を取得し、取得した他の談話範囲を構成する形態素を、第二形態素情報に付加する談話付加手段である。
【0203】
具体的には、現在の談話範囲D2が回答文K1と関連性のある談話範囲をDKとすると、回答文K1又は現在の談話範囲D2と関連性(兄弟関係にあるもの)のある他の談話範囲D3は、D3=D2∪DKとして表現することができるので、他の談話範囲D3を構成する形態素を付加した後の第二形態素情報W2は、W2=t2∪D3とすることができる。
【0204】
例えば、第二形態素情報を構成する各形態素t1が(A映画名;*;面白い){A映画名は面白い?}であり、談話範囲決定部340で決定された現在の談話範囲D2が(A映画名)である場合には、削除部363は、先ず、各形態素t1(A映画名;*;面白い)から談話範囲D2(A映画名)を削除し、削除した結果をt2(*;*;面白い)とする(t2=t1−D2)。
【0205】
現在の談話範囲D2(A映画名)と関連性のある他の談話範囲D3が”B映画名”である場合には、他の談話範囲D3を構成する形態素を付加した後の第二形態素情報W2は、t2∪D3であるので、(B映画名;*;面白い){B映画名は面白い?}とすることができる。
【0206】
これにより、利用者の発話内容が”A映画名は面白い?”である場合には、談話付加部364は、利用者の発話内容を構成する各形態素(A映画名;*;面白い)と一致する第二形態素情報(A映画名;*;面白い)を、他の第二形態素情報(B映画名;*;面白い){B映画名は面白い?}に変更することができるので、回答文検索部370は、談話付加部364で変更された第二形態素情報に関連付けられた回答文(例えば、”B映画名は面白いよ”)を取得し、取得した回答文を出力することができる。
【0207】
この結果、回答文検索部370は、利用者の発話内容に対する回答文を直接的に出力するわけではないが、談話付加部364で付加された形態素を含む第二形態素情報に基づいて、発話内容に関連する回答文を出力することができるので、出力部600は、回答文検索部370で検索された回答文に基づいて、さらに人間味のある回答文を出力することができる。
【0208】
尚、談話付加部364は、形態素が削除された第二形態素情報に他の談話範囲を付加するものだけに限定されるものではなく、形態素が削除された第二形態素情報に履歴形態素情報(会話データベース500に記憶されている)を付加するものであってもよい。
【0209】
(第六変更例)
話題検索部360は、各第二形態素情報の中から、第一形態素情報を含む第二形態素情報を検索することができない場合に、第一形態素情報と各回答内容とを照合し、各回答内容の中から、第一形態素情報を含む回答内容を検索することができたときは、検索した回答内容に関連付けられている第二形態素情報を取得する第一検索手段であってもよい。
【0210】
具体的に、省略文補完部350から話題検索命令信号が入力された話題検索部360は、入力された話題検索命令信号に含まれる第一形態素情報に基づいて、第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、図22に示すように、第一形態素情報と、第二形態素情報に関連付けられている回答文とを照合する。
【0211】
この照合により、話題検索部360は、回答文の中に第一形態素情報を構成する形態素(アクション又はアクションに対応付けられた形態素)が含まれていると判断した場合には、その回答文に関連付けられている第二形態素情報を検索する。
【0212】
これにより、話題検索部360は、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索することができなくても、各回答文の中から、第一形態素情報を構成する形態素(アクション又はアクションに対応付けられた形態素)を含む回答文を特定し、この特定した回答文に関連付けられている第二形態素情報を検索することができるので、利用者の発話内容を構成する第一形態素情報に対応する第二形態素情報を適切に検索することができる。
【0213】
この結果、話題検索部360が第一形態素情報に対応する最適な第二形態素情報を検索することができるので、回答文検索部370は、話題検索部360で検索された最適な第二形態素情報に基づいて、利用者の発話内容に対する適切な回答内容を取得することができる。
【0214】
[プログラム]
上記会話制御システム及び会話制御方法で説明した内容は、パーソナルコンピュータ等の汎用コンピュータにおいて、所定のプログラム言語を利用するための専用プログラムを実行することにより実現することができる。
【0215】
ここで、プログラム言語としては、利用者が求める話題、ある事柄に対する利用者の感情度、又は陳述文、肯定文、疑問文、反発文などの種類をその意味内容に応じて形態素と関連付けて階層的にデータベースに蓄積するための言語、本実施形態では、例えば、発明者らが開発したDKML(Discourse Knowledge Markup Language)、XML(eXtensible Markup Language)、C言語等が挙げられる。
【0216】
即ち、会話制御装置1は、各会話データベース500a〜500dに格納されているデータ(第二形態素情報、定型内容、回答文、回答種類、集合群、談話範囲、要素情報などの記憶情報)、その他の各部を、DKML(Discourse Knowledge Markup Language)、XML(eXtensible Markup Language)等で構築し、この構築した記憶情報等を利用するためのプログラムを実行することにより実現することができる。
【0217】
このような本実施形態に係るプログラムによれば、利用者の発話内容を構成する各形態素を特定し、特定した各形態素から把握される意味内容を解析して、解析した意味内容に関連付けられている予め作成された回答内容を出力することで、利用者の発話内容に対応する最適な回答内容を出力することができるという作用効果を奏する会話制御装置、会話制御システム及び会話制御方法を一般的な汎用コンピュータで容易に実現することができる。
【0218】
また、会話制御装置1を開発する開発者は、利用者の発話内容に対する回答内容を検索するための第二形態素情報等を、データベースにおいて前記言語を用いて階層的に構築することができるので、会話制御装置1は、利用者の発話内容に基づいて発話内容に対する回答内容を、階層的な手順を経てデータベースから取得することができる。
【0219】
即ち、会話制御装置1は、利用者の発話内容の階層(例えば、データベースに蓄積されている第二形態素情報に対して上位概念にあるのか、又は下位概念にあるのか)を見極めて、見極めた階層に基づいて予め蓄積された各回答内容の中から、適切な回答内容を取得することができる。
【0220】
このため、会話制御装置1は、利用者の発話内容からなる第一形態素情報と、予め記憶されている”全て”の第二形態素情報とを逐一照合することなく、ある特定の階層に属する各第二形態素情報と第一形態素情報とを照合すればよいので、第一形態素情報と近似する第二形態素情報を短時間で取得することができる。
【0221】
更に、上記通信部800と通信部900との間の通信は、通信ネットワーク1000を介して、DKML等からなるプロトコルによってデータを送受信してもよい。これにより、会話制御装置1は、例えば、会話制御装置1に利用者の発話内容に適した回答内容がない場合には、通信ネットワーク1000を通じて、DKML等の約束事に従って、利用者の発話内容に適した回答内容(DKMLなどで記述されたもの)を検索し、検索した回答内容を取得することができる(図20参照)。
【0222】
尚、プログラムは、記録媒体に記録することができる。この記録媒体は、図23に示すように、例えば、ハードディスク1100、フレキシブルディスク1200、コンパクトディスク1300、ICチップ1400、カセットテープ1500などが挙げられる。このようなプログラムを記録した記録媒体によれば、プログラムの保存、運搬、販売などを容易に行うことができる。
【0223】
[第二実施形態]
(地図出力装置の基本構成)
本発明の第二実施形態について図面を参照しながら説明する。図24は、本実施形態に係る地図出力装置3の内部構造を示したものである。同図に示すように、地図出力装置3は、第一実施形態における会話制御装置1の内部構造とほぼ同じであるが、省略文補完部350に替えて地図情報検索部371を有する点、回答文検索部370に替えて質問文検索部372を有する点、更には地図出力命令取得部373及び地図出力部374が付加された点、談話範囲決定部340の機能が多少異なる点で相違する。この相違する点以外は、第一実施形態及び変更例の構造と同じであるので、相違する点以外の構造についての説明は省略する。
【0224】
第一実施形態では、会話制御装置1が、利用者からの発話内容に基づいて、発話内容に対応する最適な回答文を取得する処理について説明したが、本実施形態では、地図出力装置3が、利用者から発話された発話内容に基づいて、その発話内容に対応する地図を出力する処理を行う点で相違する。具体的な説明は以下の通りである。尚、本実施形態では、上記第一実施形態における諸機能、例えば鸚鵡返し処理、反射的処理等なども当然に有し、またそれら機能に対応する効果も当然に奏する。
【0225】
前記談話範囲決定部340は、文節解析部420で抽出された少なくとも一つの形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、形態素と一致する談話範囲を第一形態素情報として検索する談話検索手段である。尚、本実施形態では、後述する第一形態素情報及び第二形態素情報は、第一実施形態とは異なって、その第一形態素情報及び第二形態素情報に属する各形態素がサブジェクト、オブジェクト、アクション等の「格」構成に分類されていないものとして説明する。
【0226】
具体的に、文構造解析部430から各形態素が入力された談話範囲決定部340は、入力された各形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、入力された各形態素と一致する各談話範囲を第一形態素情報として検索し、この検索した第一形態素情報を談話検索命令信号として地図情報検索部371に出力する。
【0227】
ここで、利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示す談話範囲には、一つの文字、複数の文字列又はこれらの組み合わせからなる形態素を示す第二形態素情報が複数関連付けられ、各第二形態素情報には、利用者の希望する地図を画面上に出力させるための地図出力命令が関連付けられており、会話データベース500(談話記憶手段、形態素記憶手段)は、図25に示すように、上記談話範囲を予め複数記憶している。
【0228】
また、同図に示すように、複数の談話範囲には、利用者が希望する地図についての詳細な情報を訊き出すための質問文がそれぞれに関連付けられ、各談話範囲のそれぞれは、上述した如く、予め定義付られた上位概念又は下位概念の関係で関連付けられている。
【0229】
地図情報検索部371は、文構造解析部430で抽出された各形態素と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、その各形態素を含む第二形態素情報を取得する第一取得手段である。また、地図情報検索部371は、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得する第一取得手段でもある。
【0230】
具体的に、談話範囲決定部340から談話検索命令信号が入力された地図情報検索部371は、入力された談話範囲検索命令信号に対応する検索された第一形態素情報(各談話範囲)に基づいて、その第一形態素情報と会話データベース500に記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索する。
【0231】
例えば、利用者の発話内容が「私は、東京のA区α番地の地図が見たい。」である場合には、上記で説明した文構造解析部430が、その発話内容の一文節に含まれる各形態素(私;地図;東京;A区;α番地;見たい)を抽出する。詳細は第一実施形態における「文節解析部420」及び「文構造解析部430」を参照のこと。
【0232】
上記括弧内の各形態素の順序は、第一実施形態とは異なって、本実施形態では、サブジェクト、オブジェクト、アクションの順番ではない。その括弧内は、本実施形態では、単に一文節の中に含まれる各形態素を意味するものとする。この一文節に含まれる各形態素を抽出した文構造解析部430は、抽出した各形態素を談話範囲決定部340に出力する。文構造解析部430から各形態素が入力された談話範囲決定部340は、入力された各形態素と各談話範囲とを照合し、各談話範囲の中から、各形態素と一致する各談話範囲を第一形態素情報として検索する。
【0233】
例えば、図25に示すように、会話データベース500に記憶されている各談話範囲が、地図、・・・東京、大阪、名古屋、・・・A区、B区・・・D村、E村、・・・F村、G村・・・とある場合には、談話範囲決定部340は、それらの予め記憶されている各談話範囲と抽出された上記各形態素(私;地図;東京;A区;α番地;見たい)とを照合し、各談話範囲の中から、各形態素(私;地図;東京;A区;α番地;見たい)と一致(共通)する各談話範囲(地図;東京;A区;α番地)を検索する。
【0234】
上記抽出された各形態素のうち、”私”、”見たい”については、予め記憶されている各談話範囲には含まれていないものとする。談話範囲決定部340は、検索した各談話範囲を第一形態素情報として地図情報検索部371に出力する。
【0235】
その後、談話範囲決定部340から第一形態素情報が入力された地図情報検索部371は、図27に示すように、入力された第一形態素情報に基づいて、その第一形態素情報(地図;東京;A区;α番地)と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報(地図;東京;A区;α番地)を検索する。この第一形態素情報と一致する第二形態素情報を検索した地図情報検索部371は、検索した第二形態素情報を地図出力命令取得部373に出力する。
【0236】
本実施形態では、図25に示すように、利用者がある地図を見るためには、少なくとも、希望する地図の都道府県(東京、大阪など)、区市村町(A区、B区・・・D村、E村、・・・F村、G村・・・など)、番地(α番地、β番地、γ番地・・・など)からなる各地図情報を、地図出力装置3の方で把握する必要がある。
【0237】
即ち、利用者から入力された発話内容が上記地図情報の全てを包含しない場合には、地図出力装置3は、上記各地図情報のうち、欠ける地図情報についての情報を、利用者から訊きだすための種々の質問を行う必要がある。地図出力装置3は、それらの種々の質問に対応する利用者からの回答文に基づいて、欠けている地図情報を生成させ、その生成された地図情報を用いて一連の地図情報(第一形態素情報)を完成させる。これにより、地図出力装置3は、完成された一連の地図情報に基づいて地図情報に対応する地図を正確に出力することができる(図25参照)。
【0238】
地図出力装置3が完成していない地図情報(第一形態素情報)に基づいて該当する地図を出力させる具体的な説明は、以下の通りである。尚、本実施形態では、上記地図情報は、第一形態素形態を構成する個々の談話範囲を意味するものとする。
【0239】
地図情報検索部371は、先ず、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に対応する各談話範囲を談話範囲保持部501に一時的に記憶させる。
【0240】
更に、地図情報検索部371は、利用者からの発話内容(地図を出力する際に必要な情報、例えば都道府県のうちのどこの地図を見たいのかなど)を具体化させるための質問文を出力させるための質問文出力命令信号と、入力された第一形態素情報とを質問文検索部372に出力する。
【0241】
この質問文検索部372は、地図情報検索部371が、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、該第一形態素情報に対応する各談話範囲のそれぞれに関連付けられた質問文の中から、いずれか一つの質問文を取得する質問文取得手段である。
【0242】
尚、質問文検索部372は、地図情報検索部371が、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に対応する各談話範囲の中から、”最も低い下位概念”に相当する一の談話範囲を選択し、選択した談話範囲に関連付けられた質問文を取得してもよい。
【0243】
これにより、質問文検索部372が、”最も低い下位概念”に相当する一の談話範囲を選択し、選択した下位概念の談話範囲に関連付けられた質問文を出力することで、地図出力装置3は、出力された下位概念の質問文に対応する利用者からの回答文を用いて、地図情報が全て含まれていない第一形態素情報を完全な形にすることができ、地図出力部374は、その第一形態素情報を用いて、利用者が希望する地図を正確に出力することができる。
【0244】
具体的に、地図情報検索部371から第一形態素情報と質問文検索命令信号とが入力された質問文検索部372は、入力された第一形態素情報と質問文検索命令信号とに基づいて、入力された第一形態素情報に対応する談話範囲に関連付けられた質問文を会話データベース500の中から取得し、取得した質問文を管理部310に出力する。質問文検索部372から質問文が入力された管理部310は、入力された質問文を出力部600に出力し、管理部310から質問文が入力された出力部600は、入力された質問文を、音声を介して出力、又は画面上に出力する。
【0245】
その後、質問文検索部372で検索された質問文に対応する利用者からの回答文が入力された文構造解析部430は、入力された回答文に基づいて、回答文に対応する文字列の最小単位を構成する各形態素を回答形態素として抽出する。談話範囲決定部340は、文構造解析部430で抽出された回答形態素と予め記憶された各談話範囲(この各談話範囲は、本実施形態では、談話範囲保持部501に一時的に記憶された各談話範囲に対して下位概念に相当する他の各談話範囲を用いる)とを照合し、各談話範囲の中から、回答形態素と一致する各談話範囲を検索し、検索した各談話範囲と、談話範囲保持部501で一時的に記憶された各談話範囲とを結合させて、この結合されたものを第一形態素情報として地図情報検索部371に出力する。
【0246】
例えば、上記質問文(何を見たいの?)に対応する利用者からの回答内容が”地図を見たい”である場合には、文節解析部420で抽出される形態素は”地図”、”見たい”であるので、談話範囲決定部340は、それらの形態素”地図”、”見たい”と予め記憶された各談話範囲とを照合し、各談話範囲の中から、それらの形態素と一致する談話範囲(地図)を検索し、この検索した談話範囲(地図)を第一形態素情報として地図情報検索部371に出力する。尚、各談話範囲の中には、本実施形態では、”見たい”を示す談話範囲は含まれないものとする。
【0247】
そして、談話範囲決定部340から第一形態素情報が入力された地図情報検索部371は、入力された第一形態素情報(地図)と各第二形態素情報とを照合すると、図27に示すように、第一形態素情報(地図)と各第二形態素情報とが一致しないので、第一形態素情報(地図)を談話範囲保持部501に記憶させると共に、第一形態素情報”地図”を質問文検索部372に出力する。
【0248】
更に、地図情報検索部371は、その第一形態素情報”地図”の意味内容を更に具体化させるための質問文を出力させるための質問文出力命令信号を質問文検索部372に出力する。地図情報検索部371から第一形態素情報”地図”と質問文出力命令信号とが入力された質問文検索部372は、図25に示すように、入力された第一形態素情報”地図”についての地図情報を聞き出すために、第一形態素情報に対応する談話範囲”地図”に関連付けられている質問文(例えば、”「都道府県」のうちのどこの「地図」が見たいのですか?”)を会話データベース500の中から取得し、取得した質問文を管理部310に出力する。
【0249】
尚、同図中の質問文中にある「」内の形態素は、本実施形態では、談話範囲を意味するものとする。即ち、この質問文は、本実施形態では、現在決定されている談話範囲(地図)の下位概念についての情報を訊き出すための内容を意味するものである。例えば、談話範囲(地図)の下位概念としては、都道府県、区市村町その他番地などがあり、質問文検索部372は、これらの談話範囲に関連する情報を訊きだすため、同図に示す該当する質問文を出力する。管理部310から質問文が入力された出力部600は、入力された質問文を出力部600に出力する。
【0250】
その後、図26に示すように、上記質問文(例えば、”「都道府県」のうちのどこの「地図」が見たいのですか?”)に対応する回答文が”東京の地図が見たい”である場合には、文節解析部420で抽出される形態素は”東京”、”地図”であるので、談話範囲決定部340は、それらの形態素”東京”、”地図”と、談話範囲保持部501に記憶されている談話範囲(前に記憶された第一形態素情報)”地図”の下位概念に属する各談話範囲とを照合し、その各談話範囲の中から、それらの形態素と一致する談話範囲(東京)を検索する。その各談話範囲の中には、本実施形態では、”見たい”を示す談話範囲は含まれないものとする。
【0251】
尚、談話範囲決定部340が抽出された上記形態素と一致する談話範囲を検索することができない場合には、談話範囲決定部340は、上記下位概念の各談話範囲との検索ではなく、その各談話範囲から見て上位概念の各談話範囲と、抽出された形態素との間の検索を試みることもできる。
【0252】
この談話範囲(東京)を検索した談話範囲決定部340は、検索した談話範囲(東京)と、談話範囲保持部501に記憶されている前の談話範囲(地図){図26に示す”付加1”}とを結合させて、この結合されたものを第一形態素情報(東京;地図)として地図情報検索部371に出力する。これにより、利用者が地図を出力する上で必要な地図情報を、順次利用者から訊きだし、談話範囲決定部340が、その訊き出された地図情報と、その前に取得した地図情報とを結合させて正確な地図情報にすることで、地図出力部374は、正確な地図情報(第一形態素情報)に基づいて、その地図情報に対応する地図を的確に出力することができる。
【0253】
更に、談話範囲決定部340から第一形態素情報(東京;地図)が入力された地図情報検索部371は、入力された第一形態素情報に基づいて、第一形態素情報と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報(東京;地図)と一致する第二形態素情報の検索を試みる。
本実施形態では、例えば、図27に示すように、利用者が希望する地図を見たい場合には、地図情報検索部371は、その地図を見る上で必要な地図情報(4つ)が分からないと、第一形態素情報と一致する第二形態素情報を検索することができない。即ち、上記の第一形態素情報が(東京;地図)である場合には、残り2つの情報が分からないため、地図情報検索部371が、その第一形態素情報(東京;地図)と、図27に示す4つの商品情報が含まれている第二形態素情報との間で照合を行ったとしても、各第二形態素情報の中から、第一形態素情報(東京;地図)と一致する第二形態素情報を検索することはできない。
【0254】
そこで、上記と同様に、地図情報検索部371は、入力された第一形態素情報(東京;地図)を談話範囲保持部501に記憶させると共に、入力された第一形態素情報を質問文検索部372に出力する。更に、地図情報検索部371は、その第一形態素情報(東京;地図)の意味内容を更に具体化させるための質問文を出力させるための質問文出力命令信号を質問文検索部372に出力する。
【0255】
地図情報検索部371から第一形態素情報(東京;地図)と質問文出力命令信号とが入力された質問文検索部372は、図25に示すように、入力された第一形態素情報(東京;地図)についての意味内容を更に具体化させるために、第一形態素情報に対応する談話範囲(東京)(地図)に関連付けられている質問文(例えば、”「東京」のうちのどこの「区」が見たいのですか”)を会話データベース500の中から取得し、取得した質問文を管理部310に出力する。
【0256】
その後、図26に示すように、その質問文に対応する回答文が”A区!”である場合には、上述と同様の処理により、文構造解析部430で抽出される形態素は”A区”となり、談話範囲決定部340は、その形態素”A区”と、談話範囲保持部501に記憶されている談話範囲(前に記憶された第一形態素情報)(東京;地図)の下位概念に属する各談話範囲(区市村町;図25参照)とを照合し、その各談話範囲の中から、上記各形態素”A区”と一致する談話範囲(A区)を検索する。
【0257】
この談話範囲(A区)を検索した談話範囲決定部340は、検索した談話範囲(A区)と、談話範囲保持部501に記憶されている談話範囲(東京;地図){図26に示す”付加2”}とを結合させて、この結合されたものを第一形態素情報(東京;地図;A区)として地図情報検索部371に出力する。
【0258】
談話範囲決定部340から第一形態素情報(東京;地図;A区)が入力された地図情報検索部371は、入力された第一形態素情報に基づいて、第一形態素情報と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報(東京;地図;A区)と一致する第二形態素情報の検索を試みる。 本実施形態では、上述した如く、図27に示すように、地図を表示させる上で必要な地図情報が4つ分からないと、該当する地図を検索することができない。このため、上記の第一形態素情報が(地図;東京;A区)である場合には、必要な地図情報としては、あと1つ(番地)が分からないので、談話範囲決定部340、地図情報検索部371及び質問文検索部372は、残り1つの地図情報を訊き出すために、上記と同様の処理を行う。
【0259】
図26に示す各質問文を出力し、その出力された各質問文に対応する回答文を利用者から取得し、該当する地図を出力するための地図情報が全て揃った場合、即ち、第一形態素情報の中に、利用者が希望する地図を出力する上で必要な地図情報を示す談話範囲が全て含まれる場合には、地図情報検索部371は、例えば、図26に示すように、必要な談話範囲が全て含まれている第一形態素情報(地図;東京;A区;α番地)(4つ)を用いて、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索し、検索した第二形態素情報を地図出力命令取得部373に出力する(図27参照)。
【0260】
地図出力命令取得部373は、地図情報検索部371で検索された第二形態素情報に基づいて、第二形態素情報に関連付けられた地図出力命令を取得する第二取得手段である。具体的に、地図情報検索部371から第二形態素情報が入力された地図出力命令取得部373は、入力された第二形態素情報に基づいて、その第二形態素情報に関連付けられている地図出力命令を取得し、取得した地図出力命令を地図出力部374に出力する。
【0261】
地図出力部374は、地図出力命令取得部373で取得された地図出力命令に基づいて、地図出力命令に対応する予め記憶された地図を画面上に出力する出力手段である。具体的に、地図出力命令取得部373から地図出力命令が入力された地図出力部374は、入力された地図出力命令に対応する地図を画面上に出力させる。ここで、各地図は、本実施形態では、地図出力命令がそれぞれに対応付けられて会話デーベース500に予め記憶されている。
【0262】
例えば、地図情報検索部371で検索された第二形態素情報が(地図;東京;A区;α番地)であり、その第二形態素情報に関連付けられている地図出力命令1が「東京都のA区α番地の地図を画面上に出力させるための命令」である場合に、地図出力命令取得部373がその地図出力命令1を取得したときは、地図出力部374は、取得された地図出力命令1に基づいて、地図出力命令1に対応する予め記憶された地図(東京都のA区α番地の地図)を画面上に出力させる(図28参照)。
【0263】
(地図出力装置を用いた地図出力方法)
上記構成を有する地図出力装置による地図出力方法は、以下の手順により実施することができる。図29は、本実施形態に係る地図出力方法の手順を示すフロー図である。
【0264】
同図に示すように、先ず、入力部100が、利用者から入力された発話内容を取得するステップを行う(S201)。そして、形態素抽出部410が、入力部100で取得された発話内容に基づいて、発話内容を構成する文字列を特定し、特定した文字列の中から各形態素を抽出するステップを行う(S202、S203)。
【0265】
その後、文節解析部420が、形態素抽出部410で抽出された各形態素に基づいて、各形態素を文節形式にまとめる。一つの文節形式に属する各形態素は、本実施形態では、まとめて第一形態素情報とする。S201〜S203の処理は、第一実施形態で説明したS101〜S104の処理と同じである。このため、これらの処理についての詳細な説明は省略する。
【0266】
次いで、談話範囲決定部340が、文節解析部420で抽出された各形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、各形態素と一致する各談話範囲を第一形態素情報として検索するステップを行う(S204)。具体的に、文構造解析部430から各形態素が入力された談話範囲決定部340は、入力された各形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、入力された各形態素と一致する各談話範囲を第一形態素情報として検索し、この検索した第一形態素情報を談話検索命令信号として地図情報検索部371に出力する。
【0267】
そして、地図情報検索部371が、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する前記第二形態素情報を取得するステップを行う(S205)。
【0268】
具体的に、談話範囲決定部340から談話検索命令信号が入力された地図情報検索部371は、入力された談話範囲検索命令信号に対応する検索された第一形態素情報(各談話範囲)に基づいて、その第一形態素情報と会話データベース500に記憶されている各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索する。
【0269】
例えば、図25に示すように、会話データベース500に記憶されている各談話範囲が、地図、・・・東京、大阪、名古屋、・・・A区、B区・・・D村、E村、・・・F村、G村・・・とある場合には、文構造解析部430は、それらの予め記憶されている各談話範囲と抽出された上記各形態素(私;地図;東京;A区;α番地;見たい)とを照合し、各談話範囲の中から、各形態素(私;地図;東京;A区;α番地;見たい)と一致(共通)する各談話範囲(地図;東京;A区;α番地)を検索する。
【0270】
上記抽出された各形態素のうち、”私”、”見たい”については、予め記憶されている各談話範囲には含まれていないものとする。談話範囲決定部340は、検索した各談話範囲を第一形態素情報として地図情報検索部371に出力する。
【0271】
その後、談話範囲決定部340から第一形態素情報が入力された地図情報検索部371は、図27に示すように、入力された第一形態素情報に基づいて、その第一形態素情報(地図;東京;A区;α番地)と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報(地図;東京;A区;α番地)を検索する。この第一形態素情報と一致する第二形態素情報を検索した地図情報検索部371は、検索した第二形態素情報を地図出力命令取得部373に出力する。
【0272】
次いで、地図出力命令取得部373が、地図情報検索部371で検索された第二形態素情報に基づいて、第二形態素情報に関連付けられた地図出力命令を取得するステップを行う(S206)。具体的に、地図情報検索部371から第二形態素情報が入力された地図出力命令取得部373は、入力された第二形態素情報に基づいて、その第二形態素情報に関連付けられている地図出力命令を取得し、取得した地図出力命令を地図出力部374に出力する。
【0273】
次いで、地図出力部374が、地図出力命令取得部373で取得された地図出力命令に基づいて、地図出力命令に対応する予め記憶された地図を画面上に出力させるステップを行う(S207)。具体的に、地図出力命令取得部373から地図出力命令が入力された地図出力部374は、入力された地図出力命令に対応する地図を画面上に出力させる。ここで、各地図は、本実施形態では、地図出力命令がそれぞれに対応付けられて会話デーベース500に予め記憶されている。
【0274】
例えば、地図情報検索部371で検索された第二形態素情報が(地図;東京;A区;α番地)であり、その第二形態素情報に関連付けられている地図出力命令1が「東京都のA区α番地の地図を画面上に出力させるための命令」である場合に、地図出力命令取得部373がその地図出力命令1を取得したときは、地図出力部374は、取得された地図出力命令1に基づいて、地図出力命令1に対応する予め記憶された地図(東京都のA区α番地の地図)を画面上に出力させる(図28参照)。
【0275】
本実施形態では、図25に示すように、利用者がある地図を見るためには、少なくとも、希望する地図の都道府県(東京、大阪など)、区市村町(A区、B区・・・D村、E村、・・・F村、G村・・・など)、番地(α番地、β番地、γ番地・・・など)からなる各地図情報を、地図出力装置3の方で把握する必要がある。
【0276】
即ち、利用者から入力された発話内容が上記地図情報の全てを包含しない場合には、地図出力装置3は、上記各地図情報のうち、欠ける地図情報についての情報を、利用者から訊きだすための種々の質問を行う必要がある。地図出力装置3は、それらの種々の質問に対応する利用者からの回答文に基づいて、欠けている地図情報を生成させ、その生成された地図情報を用いて一連の地図情報(第一形態素情報)を完成させる。これにより、地図出力装置3は、完成された一連の地図情報に基づいて地図情報に対応する地図を正確に出力することができる(図25参照)。
【0277】
地図出力装置3が完成していない地図情報(第一形態素情報)に基づいて該当する地図を出力させる具体的な説明は、以下の通りである(S205、S208、S209)。尚、本実施形態では、上記地図情報は、第一形態素形態を構成する個々の談話範囲を意味するものとする。
【0278】
地図情報検索部371は、先ず、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、第一形態素情報に対応する各談話範囲を談話範囲保持部501に一時的に記憶させる(S205)。
【0279】
次いで、地図情報検索部371は、利用者からの発話内容(地図を出力する際に必要な情報、例えば都道府県のうちのどこの地図を見たいのかなど)を具体化させるための質問文を出力させるための質問文出力命令信号と、入力された第一形態素情報とを質問文検索部372に出力する。
【0280】
この質問文検索部372は、地図情報検索部371が、談話範囲決定部340で検索された第一形態素情報に基づいて、第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、該第一形態素情報に対応する各談話範囲のそれぞれに関連付けられた質問文の中から、いずれか一つの質問文を取得する(S208)。
【0281】
具体的に、地図情報検索部371から第一形態素情報と質問文検索命令信号とが入力された質問文検索部372は、入力された第一形態素情報と質問文検索命令信号とに基づいて、入力された第一形態素情報に対応する談話範囲に関連付けられた質問文を会話データベース500の中から取得し、取得した質問文を管理部310に出力する。質問文検索部372から質問文が入力された管理部310は、入力された質問文を出力部600に出力し、管理部310から質問文が入力された出力部600は、入力された質問文を、音声を介して出力、又は画面上に出力する。
【0282】
その後、談話範囲決定部340が、第一形態素情報を補完するステップを行う(S209)。具体的に、質問文検索部372で検索された質問文に対応する利用者からの回答文が入力された文構造解析部430は、先ず、入力された回答文に基づいて、回答文に対応する文字列の最小単位を構成する各形態素を回答形態素として抽出する。
【0283】
談話範囲決定部340は、文構造解析部430で抽出された回答形態素と予め記憶された各談話範囲(この各談話範囲は、本実施形態では、談話範囲保持部501に一時的に記憶された各談話範囲に対して下位概念に相当する他の各談話範囲を用いる)とを照合し、各談話範囲の中から、回答形態素と一致する各談話範囲を検索し、検索した各談話範囲と、談話範囲保持部501で一時的に記憶された各談話範囲とを結合させて、この結合されたものを第一形態素情報(補完後の第一形態素情報)として地図情報検索部371に出力する。
【0284】
例えば、上記質問文(何を見たいの?)に対応する利用者からの回答内容が”地図を見たい”である場合には、文節解析部420で抽出される形態素は”地図”、”見たい”であるので、談話範囲決定部340は、それらの形態素”地図”、”見たい”と予め記憶された各談話範囲とを照合し、各談話範囲の中から、それらの形態素と一致する談話範囲(地図)を検索し、この検索した談話範囲(地図)を第一形態素情報として地図情報検索部371に出力する。尚、各談話範囲の中には、本実施形態では、”見たい”を示す談話範囲は含まれないものとする。
【0285】
そして、談話範囲決定部340から第一形態素情報が入力された地図情報検索部371は、入力された第一形態素情報(地図)と各第二形態素情報とを照合すると、図27に示すように、第一形態素情報(地図)と各第二形態素情報とが一致しないので、第一形態素情報(地図)を談話範囲保持部501に記憶させると共に、第一形態素情報”地図”を質問文検索部372に出力する。
【0286】
更に、地図情報検索部371は、その第一形態素情報”地図”の意味内容を更に具体化させるための質問文を出力させるための質問文出力命令信号を質問文検索部372に出力する。地図情報検索部371から第一形態素情報”地図”と質問文出力命令信号とが入力された質問文検索部372は、図25に示すように、入力された第一形態素情報”地図”についての地図情報を訊き出すために、第一形態素情報に対応する談話範囲”地図”に関連付けられている質問文(例えば、”「都道府県」のうちのどこの「地図」が見たいのですか?”)を会話データベース500の中から取得し、取得した質問文を管理部310に出力する。管理部310から質問文が入力された出力部600は、入力された質問文を出力部600に出力する。
【0287】
その後、図26に示すように、上記質問文(例えば、”「都道府県」のうちのどこの「地図」が見たいのですか?”)に対応する回答文が”東京の地図が見たい”である場合には、文節解析部420で抽出される形態素は”東京”、”地図”であるので、談話範囲決定部340は、それらの形態素”東京”、”地図”と、談話範囲保持部501に記憶されている談話範囲(前に記憶された第一形態素情報)”地図”の下位概念に属する各談話範囲とを照合し、その各談話範囲の中から、それらの形態素と一致する談話範囲(東京)を検索する。その各談話範囲の中には、本実施形態では、”見たい”を示す談話範囲は含まれないものとする。
【0288】
この談話範囲(東京)を検索した談話範囲決定部340は、検索した談話範囲(東京)と、談話範囲保持部501に記憶されている前の談話範囲(地図){図26に示す”付加1”}とを結合させて、この結合されたものを第一形態素情報(東京;地図)として地図情報検索部371に出力する。これにより、利用者が地図を出力する上で必要な地図情報を、順次利用者から訊きだし、談話範囲決定部340が、その訊き出された地図情報と、その前に取得した地図情報とを結合させて正確な地図情報にすることで、地図出力部374は、正確な地図情報(第一形態素情報)に基づいて、その地図情報に対応する地図を的確に出力することができる。
【0289】
更に、談話範囲決定部340から第一形態素情報(東京;地図)が入力された地図情報検索部371は、入力された第一形態素情報に基づいて、第一形態素情報と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報(東京;地図)と一致する第二形態素情報の検索を試みる(S205の繰り返し)。
本実施形態では、例えば、図27に示すように、利用者が希望する地図を見たい場合には、地図情報検索部371は、その地図を見る上で必要な地図情報(4つ)が分からないと、第一形態素情報と一致する第二形態素情報を検索することができない。即ち、上記の第一形態素情報が(東京;地図)である場合には、残り2つの情報が分からないため、地図情報検索部371が、その第一形態素情報(東京;地図)と、図27に示す4つの商品情報が含まれている第二形態素情報との間で照合を行ったとしても、各第二形態素情報の中から、第一形態素情報(東京;地図)と一致する第二形態素情報を検索することはできない。
【0290】
そこで、上記と同様に、地図情報検索部371は、入力された第一形態素情報(東京;地図)を談話範囲保持部501に記憶させると共に、入力された第一形態素情報を質問文検索部372に出力する。更に、地図情報検索部371は、その第一形態素情報(東京;地図)の意味内容を更に具体化させるための質問文を出力させるための質問文出力命令信号を質問文検索部372に出力する。
【0291】
地図情報検索部371から第一形態素情報(東京;地図)と質問文出力命令信号とが入力された質問文検索部372は、図25に示すように、入力された第一形態素情報(東京;地図)についての意味内容を更に具体化させるために、第一形態素情報に対応する談話範囲(東京)(地図)に関連付けられている質問文(例えば、”「東京」のうちのどこの「区」が見たいのですか”)を会話データベース500の中から取得し、取得した質問文を管理部310に出力する(S208の繰り返し)。
【0292】
その後、図26に示すように、その質問文に対応する回答文が”A区!”である場合には、上述と同様の処理により、文構造解析部430で抽出される形態素は”A区”となり、談話範囲決定部340は、その形態素”A区”と、談話範囲保持部501に記憶されている談話範囲(前に記憶された第一形態素情報)(東京;地図)の下位概念に属する各談話範囲(区市村町;図25参照)とを照合し、その各談話範囲の中から、上記各形態素”A区”と一致する談話範囲(A区)を検索する。
【0293】
この談話範囲(A区)を検索した談話範囲決定部340は、検索した談話範囲(A区)と、談話範囲保持部501に記憶されている談話範囲(東京;地図){図26に示す”付加2”}とを結合させて、この結合されたものを第一形態素情報(東京;地図;A区)として地図情報検索部371に出力する(S209の繰り返し)。
【0294】
談話範囲決定部340から第一形態素情報(東京;地図;A区)が入力された地図情報検索部371は、入力された第一形態素情報に基づいて、第一形態素情報と予め記憶された各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報(東京;地図;A区)と一致する第二形態素情報の検索を試みる(S205の繰り返し)。
【0295】
本実施形態では、上述した如く、図27に示すように、地図を表示させる上で必要な地図情報が4つ分からないと、該当する地図を検索することができない。このため、上記の第一形態素情報が(地図;東京;A区)である場合には、必要な地図情報としては、あと1つ(番地)が分からないので、談話範囲決定部340、地図情報検索部371及び質問文検索部372は、残り1つの地図情報を訊き出すために、上記と同様の処理を行う(S208、S209)。
【0296】
図26に示す各質問文を出力し、その出力された各質問文に対応する回答文を利用者から取得し、該当する地図を出力するための地図情報が全て揃った場合、即ち、第一形態素情報の中に、利用者が希望する地図を出力する上で必要な地図情報を示す談話範囲が全て含まれる場合には、地図情報検索部371は、例えば、図26に示すように、必要な談話範囲が全て含まれている第一形態素情報(地図;東京;A区;α番地)(4つ)を用いて、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索し、検索した第二形態素情報を地図出力命令取得部373に出力する。
【0297】
次いで、地図情報検索部371から第二形態素情報が入力された地図出力命令取得部373は、入力された第二形態素情報に基づいて、その第二形態素情報に関連付けられている地図出力命令を取得し、取得した地図出力命令を地図出力部374に出力する。地図情報検索部371から地図出力命令が入力された地図出力部374は、入力された地図出力命令に基づいて、地図出力命令に対応する予め記憶された地図を画面上に出力させる。
【0298】
(地図出力装置及び地図出力方法による作用及び効果)
上記構成を有する発明によれば、地図情報検索部371が、各第二形態素情報の中から、利用者の発話内容を構成する形態素を含む各第二形態素情報を取得し、地図出力命令取得部373が、取得された第二形態素情報に基づいて第二形態素情報に関連付けられた地図出力命令を取得し、地図出力部374が、取得された地図出力命令に基づいて地図出力命令に対応する予め記憶された地図を出力させるので、地図出力部374は、利用者からの発話内容を構成する形態素に基づいてその形態素と関係する地図を出力させることができる。
【0299】
この結果、利用者は、地図出力装置3に向かって発話すれば、その発話に対応する地図を出力させることができるので、所望の地図を簡便な方法で参照することができる。また、利用者は、地図出力装置3との間で会話を通じて、所望の地図を参照することができるため、所望の地図を参照するための条件を逐一入力する手間が省け、自動4輪車を運転しながらでも所望の地図を参照することができる。
【0300】
また、予め記憶された談話範囲が利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示すものであるので、例えば利用者が地図出力装置3に向かって地図に関係する情報を発話した場合には、地図出力装置3は、その地図に関係する情報を回答しようとすることになるので、このときの談話範囲(カテゴリー)は、”地図”を意味することになる。
【0301】
この場合、談話範囲決定部340が上記利用者からの発話内容に基づいて談話範囲”地図”を特定したときは、地図情報検索部371は、その特定した談話範囲”地図”に関連付けられた各第二形態素情報と、利用者から発話された発話内容を構成する第一形態素情報とを照合し、各第二形態素情報の中から、上記第一形態素情報と一致する第二形態素情報を取得し、地図出力部374は、取得された第二形態素情報に関連付けられた地図出力命令に基づいて、該当する地図を出力することができるので、該当する地図を画面上に出力するには特定の談話範囲(カテゴリー;地図)に属する各地図だけを参照し、その各地図の中から一の地図を取得すればよいため、該当する地図を即座(短時間)に出力することができる。
【0302】
更に、地図情報検索部371が、検索された第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索することができない場合、即ち、地図を出力させる上で最低限度必要な情報(第二形態素情報)が第一形態素情報に含まれていない場合には、質問文検索部372は、その第一形態素情報の意味内容を更に具体化させるための質問文を出力することができる。
【0303】
この結果、地図情報検索部371は、出力された質問文に対応する利用者からの回答文に基づいて、利用者が希望する地図の情報を明確にした後に、その明確にした地図の情報(第一形態素情報)に基づいて該当する地図を出力することができるので、利用者が希望する地図を的確に出力することができる。
【0304】
すなわち、談話範囲決定部340が、出力された質問文に対応する利用者からの回答文に基づいて、回答文に含まれる各形態素を回答形態素として抽出し、抽出した回答形態素と予め記憶された各談話範囲とを照合し、各談話範囲の中から、回答形態素と一致する談話範囲を検索し、地図情報検索部371が、検索された談話範囲と一時的に記憶された各談話範囲(前に検索された各談話範囲)とを結合させて、この結合されたものを第一形態素情報とすることができるので、地図情報検索部371は、検索された第一形態素情報の中に、利用者が希望する地図を出力する上で必要な情報が含まれていない場合には、出力された質問文に対応する回答文を用いて、前に検索された第一形態素情報を補完することができる。
【0305】
この結果、地図情報検索部371は、補完した第一形態素情報と予め記憶された第二形態素情報とを照合し、各第二形態素情報の中から、その第一形態素情報と一致する第二形態素情報を検索することができるので、地図出力部374は、上記補完された第一形態素情報を用いて、利用者が希望する地図を的確に出力することができる。
【0306】
尚、各談話範囲には質問文がそれぞれに関連付けられ、各談話範囲のそれぞれは予め定義付られた上位概念又は下位概念の関係を有するように予め相互に関連付けられており、地図情報検索部371は、検索された第一形態素情報に基づいて第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、質問文検索部372は、第一形態素情報に含まれる各談話範囲の中から、最も低い下位概念に相当する一の談話範囲を選択し、選択した談話範囲に関連付けられた質問文を取得してもよい。
【0307】
これにより、地図情報検索部371が、検索された第一形態素情報に基づいて第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を取得することができない場合には、質問文検索部372が、第一形態素情報に対応する各談話範囲の中から、最も低い下位概念に相当する一の談話範囲を選択し、選択した談話範囲に関連付けられた質問文を取得することができるので、談話範囲決定部340は、この取得した質問文が最も低い下位概念の談話範囲を更に具体化させるための内容であれば、利用者が希望する地図の情報を更に明確化することができる。
【0308】
尚、談話範囲決定部340は、抽出された回答形態素(回答文に含まれる各形態素)と、談話範囲保持部501に記憶された各談話範囲(前に検索された各談話範囲)に対して”下位概念”に相当する他の各談話範囲とを照合し、他の各談話範囲の中から、回答形態素と一致する各談話範囲を検索し、検索した各談話範囲と談話範囲保持部501に記憶された各談話範囲とを結合させて、これら結合されたものを第一形態素情報とすることが好ましい。
【0309】
これにより、例えば、前に検索された談話範囲が”地図”であり、その談話範囲”地図”の”下位概念”に相当する各談話範囲が”東京”、”大阪”・・・であり、さらに質問文に対応する回答文が”東京の地図が見たい”である場合には、談話範囲決定部340は、その回答文を構成する回答形態素”東京”、”地図”、”見たい”と上記下位概念に相当する談話範囲”東京”、”大阪”・・・とを照合し、両者と一致する談話範囲”東京”を検索することができるので、この検索した談話範囲”東京”と前に検索された談話範囲”地図”とを結合させて、この結合されたものを第一形態素情報とすることで、地図出力部374は、この第一形態素情報を用いて、第一形態素情報と一致する第二形態素情報に対応する地図を的確に出力することができる。
【0310】
すなわち、質問文検索部372は、利用者から発話された発話内容を構成する第一形態素情報が各第二形態素情報と一致しなければ、第一形態素情報に対応する談話範囲に関連付けられた質問文を出力し、談話範囲決定部340は、この出力された質問文に対応する回答文と、前に検索された各談話範囲の”下位概念”に相当する各談話範囲とに基づいて、上記第一形態素情報を補完することができるので、補完前の第一形態素情報(例えば、地図)を上位概念とすれば、その上位概念に対して下位概念となるような第一形態素情報(例えば、地図、東京)に補完することができ、地図出力部374は、この補完された第一形態素情報に基づいて利用者が希望する地図(例えば、東京の地図)をより的確に出力することができる。
【0311】
尚、割合計算部361が、各第二形態素情報(話題タイトル)毎に、第二形態素情報に対して第一形態素情報が占める割合を計算し、選択部362が、各第二形態素情報毎に計算された各割合の大きさに応じて、各第二形態素情報の中から、一の第一形態素情報を選択してもよい(図17参照)。
【0312】
この場合は、選択部362が、例えば、第一形態素情報(利用者の発話内容を構成する形態素)が第二形態素情報に占める割合の大きい第二形態素情報を、複数ある第二形態素情報群の中から取得することができれば、選択部362は、第一形態素情報から構成される意味空間を踏襲した第二形態素情報をより的確に取得することができ、結果的に、地図出力部374は、その取得された第二形態素情報に関連付けられた地図出力命令に基づいて、利用者が希望する地図を正確に出力することができる。
【0313】
【発明の効果】
以上説明したように、本発明によれば、利用者から発話された発話内容に基づいて、その発話内容に含まれる各形態素を抽出し、その抽出した各形態素を用いて該当する地図を画面上に出力させることで、利用者が希望する地図を、会話を通じて画面上に出力させると共に、また利用者から発話された発話内容が省略形であったとしても利用者が希望する地図を正確に出力させることができる。
【図面の簡単な説明】
【図1】第一実施形態に係る会話制御システムの概略構成を示すブロック図である。
【図2】第一実施形態における会話制御部及び文解析部の内部構造を示すブロック図である。
【図3】第一実施形態における形態素抽出部で抽出する各形態素の内容を示す図である。
【図4】第一実施形態における文節解析部で抽出する各文節の内容を示す図である。
【図5】第一実施形態における文構造解析部で特定する「格」の内容を示す図である。
【図6】第一実施形態における発話種類判定部で特定する「発話文のタイプ」を示す図である。
【図7】第一実施形態における発話種類データベースで格納する各辞書の内容を示す図である。
【図8】第一実施形態における会話データベースの内部で構築される階層構造の内容を示す図である。
【図9】第一実施形態における会話データベースの内部で構築される階層構造の詳細な関係を示す図である。
【図10】第一実施形態における会話データベースの内部で構築される「話題タイトル」の内容を示す図である。
【図11】第一実施形態における会話データベースの内部で構築される「話題タイトル」に関連付けられている「回答文のタイプ」の内容を示す図である。
【図12】第一実施形態における会話データベースの内部で構築される「談話範囲」に属する「話題タイトル」及び「回答文」の内容を示す図である。
【図13】第一実施形態における反射要素データベースで記憶する反射要素情報の内容を示す図である。
【図14】第一実施形態における鸚鵡返し要素データベースで記憶する鸚鵡返し要素、鸚鵡返し要素の形態素の内容を示す図である。
【図15】第一実施形態に係る会話制御方法の手順を示すフロー図である。
【図16】第一変更例における形態素抽出部で整理する発話内容を示す図である。
【図17】第二変更例における話題検索部の内部構成を示す図である。
【図18】第二変更例における割合計算部が「格構成」に属する各形態素と各「話題タイトル」とを「話題タイトル」毎に照合する様子を示す図である。
【図19】第二変更例における割合計算部が「各構成」に属する各形態素と「話題タイトル」に属する各形態素とを「格」毎に照合する様子を示す図である。
【図20】第三変更例における会話制御システムの概略構成を示す図である。
【図21】第五変更例における話題検索部の内部構成を示す図である。
【図22】第六変更例における話題検索部が第一形態素情報と、話題タイトル又は回答文とを照合する様子を示す図である。
【図23】第一実施形態におけるプログラムを格納する記録媒体を示す図である。
【図24】第二実施形態に係る地図出力装置の内部構成を示す図である。
【図25】第二実施形態に係る会話データベースで記憶されている各談話範囲と、各談話範囲のそれぞれに関連付けられた質問文の内容とを示す図である。
【図26】第二実施形態における談話範囲決定部が最終的な第一形態素情報を作成するまでの流れを示す図である。
【図27】第二実施形態における第一形態素情報と各第二形態素情報とを照合し、各第二形態素情報の中から、第一形態素情報と一致する第二形態素情報を検索し、検索した第二形態素情報に関連付けられた商品排出命令を選択するまでの流れを示す図である。
【図28】第二実施形態における地図出力部で出力する地図を示す図である。
【図29】第二実施形態に係る地図出力方法の手順を示すフロー図である。
【符号の説明】
1…会話制御装置、2…サーバ、3…地図出力装置、100…入力部、200…音声認識部、300…会話制御部、310…管理部、320…反射的判定部、330…鸚鵡返し判定部、340…談話範囲決定部、350…省略文補完部、360…話題検索部、361…割合計算部、362…選択部、363…削除部、364…談話付加部、370…回答文検索部、371…地図情報検索部、372…質問文検索部、373…地図出力命令取得部、374…地図出力部、400…文解析部、410…形態素抽出部、420…文節解析部、430…文構造解析部、440…発話種類判定部、450…形態素データベース、460…発話種類データベース、500…会話データベース、501…談話範囲保持部、600…出力部、700…音声認識辞書記憶部、800…通信部、801…反射要素データベース、802…鸚鵡返し要素データベース、900…通信部、1000…通信ネットワーク、1100…ハードディスク、1200…フレキシブルディスク、1300…コンパクトディスク、1400…ICチップ、1500…カセットテープ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a map output device, a map output method, and a program for outputting a map corresponding to an utterance content based on the utterance content uttered by a user.
[0002]
[Prior art]
Conventionally, there is a system for outputting a map desired by a user on a screen. According to this system, a user inputs a condition for displaying a desired map, and a map according to the condition is output on the screen. Therefore, the user can check the map book step by step. There is no advantage.
[0003]
[Problems to be solved by the invention]
However, in the above system, it is necessary to input the conditions for the map desired by the user one by one, and the user feels that the operation is complicated. On the other hand, in recent years, a system has been developed that displays a map corresponding to the utterance content on the screen based on the utterance content uttered by the user. According to this system, since the system can display a map corresponding to the location by speaking the location name of the map desired by the user, the user can eliminate the troublesome operation. it can.
[0004]
However, when the user speaks to the system in the normal conversation format, the system cannot accurately identify which content is the information about the place among the spoken content. The map desired by the user could not be output accurately on the screen.
[0005]
In addition, when the user wants to output a map in the vicinity of the A address α in Tokyo on the screen, the user must speak “A address α in Tokyo A ward”. For this reason, if the user speaks only “Tokyo” (abbreviated form), the above system will only display the map of “Tokyo” and not the map near “A address α address”. It was.
[0006]
Therefore, when there is a place that the user wants to display, the user has to speak all of the current address of the place, and it is not possible to wipe out all the complicated feelings in operation. For this reason, it has been desired to develop a system in which a user can display a corresponding map by designating detailed conditions for displaying a desired map one by one through the dialog through a dialog with the system.
[0007]
Therefore, the present invention has been made in view of the above points, and based on the utterance content uttered by the user, each morpheme included in the utterance content is extracted, and the corresponding morpheme is used using the extracted morpheme. By outputting the map to be displayed on the screen, the map desired by the user is output through the conversation, and the map desired by the user is accurate even if the utterance content spoken by the user is abbreviated. Provided are a map output device, a map output method, and a program that can be output to a computer.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and is a morpheme composed of one character, a plurality of character strings, or a combination thereof.It consists of prefectures, municipalities and street addressesThe second morpheme information is associated with a map output command for outputting a map desired by the user on the screen, and morpheme storage means for storing a plurality of the second morpheme information in advance,
Character recognition means for identifying a character string indicating the input information based on the input information input by the user;
Morpheme extraction means for extracting at least one morpheme constituting the minimum unit of the character string based on the character string specified by the character recognition means;
The morpheme and each second morpheme informationAnd first acquisition means for acquiring the second morpheme information including the morpheme from the second morpheme information,
Second acquisition means for acquiring the map output command associated with the second morpheme information based on the second morpheme information acquired by the first acquisition means;
Based on the map output command acquired by the second acquisition unit, an output unit that outputs a prestored map corresponding to the map output command on the screenWhen,
A plurality of the second morpheme information is associated with the discourse range indicating the morpheme that is related to the input information that will be input from the user or the response content to the user, The map output command is associated with each, and a discourse storage means for storing a plurality of discourse ranges in advance,
A discourse search that collates the morpheme extracted by the morpheme extraction means with each discourse range stored in advance, and searches the discourse range that matches the morpheme from the discourse ranges as first morpheme information. Means,
The first acquisition means collates the first morpheme information with each of the second morpheme information based on the first morpheme information searched by the discourse search means, and from among the second morpheme information The map output device, wherein the second morpheme information that matches the first morpheme information is acquired.
[0009]
According to such an invention according to the present application, the map output device acquires each second morpheme information including the morpheme constituting the utterance content of the user from each second morpheme information, and acquires the acquired second morpheme. Since the map output command associated with the second morpheme information is acquired based on the information, and the map corresponding to the map output command is output based on the acquired map output command, the map output device is the utterance content from the user A map related to the morpheme can be output based on the morpheme constituting the morpheme. As a result, if the user speaks toward the map output device, the user can output a map corresponding to the speech, and can refer to the desired map by a simple method.
[0011]
According to such an invention according to the present application, a pre-stored conversation range indicates input information that will be input from the user or a morpheme that is related to the answer content to the user. When the user utters information related to the map toward the map output device, the map output device will try to answer the information related to the map, so the conversation range (category) at this time Means “map”.
[0012]
In this case, when the map output device identifies the discourse range “map” based on the utterance content from the user, the map output device displays each second morpheme information associated with the identified discourse range “map”. And the first morpheme information constituting the utterance content uttered by the user, the second morpheme information matching the first morpheme information is obtained from each second morpheme information, and the obtained first morpheme information is obtained. Since the corresponding map can be output based on the map output command associated with the dimorphic information, refer to the regional map belonging to a specific discourse area (category; map) to output the corresponding map on the screen All you need to do is to output the corresponding map immediately (short time).
[0013]
Further, in the above configuration, each second morpheme information is associated with a discourse range, and a plurality of discourse ranges are associated with a question sentence for retrieving detailed information about a map that the user wants to output. The first morpheme information and the second morpheme information are collated based on the searched first morpheme information, and second morpheme information that matches the first morpheme information is obtained from each second morpheme information. If it cannot be obtained, any one question sentence is obtained from the question sentences associated with each of the discourse ranges included in the first morpheme information.
[0014]
According to such an invention according to the present application, the map output device collates the searched first morpheme information with each second morpheme information, and matches the first morpheme information from each second morpheme information. When the second morpheme information cannot be searched, that is, when the minimum information necessary for outputting the map (second morpheme information) is not included in the first morpheme information, the map output device A question sentence for further embodying the semantic content of the first morpheme information can be output.
[0015]
As a result, the map output device, after clarifying the map information desired by the user based on the answer sentence from the user corresponding to the output question sentence, the clarified information (first morpheme information) Since the corresponding map can be output based on the map, the map desired by the user can be output accurately.
[0016]
Furthermore, in the above configuration, the first morpheme information and each second morpheme information are collated based on the retrieved first morpheme information, and the second morpheme information matches the first morpheme information. When the morpheme information cannot be acquired, each discourse range included in the first morpheme information is temporarily stored, and the answer sentence is based on the answer sentence from the user corresponding to the acquired question sentence. At least one morpheme constituting the minimum unit of the corresponding character string is extracted as an answer morpheme, and the extracted answer morpheme is collated with each pre-stored discourse range. The discourse range to be searched is searched, the searched discourse range and each discourse range temporarily stored are combined, and the combination is used as first morpheme information.
[0017]
According to the invention according to this application, the map output device extracts each morpheme included in the answer sentence as the answer morpheme based on the answer sentence from the user corresponding to the output question sentence, and the extracted answer The morpheme is compared with each pre-stored discourse range, and the discourse range that matches the answer morpheme is searched from each discourse range. The searched discourse range and each temporarily stored discourse range (previous Each of the searched discourse ranges) can be combined to be used as the first morpheme information, so that the map output device can be requested by the user in the searched first morpheme information. If the information necessary for outputting the map is not included, the retrieved first morpheme information can be supplemented using an answer sentence corresponding to the outputted question sentence.
[0018]
As a result, the map output device collates the complemented first morpheme information with the previously stored second morpheme information, and from each second morpheme information, finds the second morpheme information that matches the first morpheme information. Since the search can be performed, the map desired by the user can be output accurately using the supplemented first morpheme information.
[0019]
In the above configuration, a question sentence is associated with each discourse range, and each discourse range is associated with each other in advance so as to have a pre-defined high-order concept or sub-concept relationship. The first morpheme information and each second morpheme information are collated based on the retrieved first morpheme information, and second morpheme information matching the first morpheme information is obtained from each second morpheme information. If not, one discourse range corresponding to the lowest subordinate concept may be selected from each discourse range included in the first morpheme information, and a question sentence associated with the selected discourse range may be acquired. .
[0020]
Thus, the map output device collates the first morpheme information with each second morpheme information based on the retrieved first morpheme information, and the first morpheme information matches the first morpheme information. If dimorphic information cannot be acquired, one discourse range corresponding to the lowest subordinate concept is selected from each discourse range corresponding to the first morpheme information, and is associated with the selected discourse range. Since the question sentence can be acquired, the map output device further provides information on the map desired by the user if the acquired question sentence is a content for further specifying the lowest concept discourse range. It can be clarified.
[0021]
For example, the selected discourse range is “map”, and the question text associated with the discourse range “map” is a content for further clarifying the discourse range “map” “map of any prefecture” Is the answer sentence if the map output device can obtain the answer sentence “I want to see a map of Tokyo” corresponding to the question sentence from the user. Using the morphemes “Tokyo”, “Map”, and “I want to see”, the map desired by the user can be output more accurately.
[0022]
It should be noted that the extracted answer morphemes (each morpheme included in the answer sentence) and each discourse corresponding to a subordinate concept with respect to each temporarily stored discourse range (previously searched discourse ranges) The range is collated, and from each other discourse range, each discourse range that matches the answer morpheme is searched, and each searched discourse range is combined with each temporarily stored discourse range, It is preferable to use the combined information as the first morpheme information.
[0023]
Thus, for example, the previously searched discourse range is “map”, and the discourse ranges corresponding to “subordinate concepts” of the discourse range “map” are “Tokyo”, “Osaka”, and so on. In addition, when the answer sentence corresponding to the question sentence is “I want to see a map of Tokyo”, the map output device displays the answer morphemes “Tokyo”, “Map”, and “I want to see” that constitute the answer sentence. It is possible to collate the discourse ranges “Tokyo”, “Osaka”, etc., corresponding to the subordinate concepts, and search for the discourse range “Tokyo” that matches both. A map corresponding to the second morpheme information matching the first morpheme information is accurately output by combining the searched discourse range “map” and using the combined one as the first morpheme information. be able to.
[0024]
That is, if the first morpheme information constituting the utterance content uttered by the user does not match each second morpheme information, the map output device displays a question sentence associated with the discourse range corresponding to the first morpheme information. The first morpheme information can be complemented based on the answer sentence corresponding to the outputted question sentence and each discourse range corresponding to the “subordinate concept” of each discourse range previously searched. Therefore, if the first morpheme information before complementation (for example, a map) is a superordinate concept, the first morpheme information (for example, a map, Tokyo) that becomes a subordinate concept with respect to the superordinate concept can be complemented. Based on the supplemented first morpheme information, a map desired by the user (for example, a map of Tokyo) can be output more accurately.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
[First embodiment]
(Basic configuration of conversation control system)
A conversation control system according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a conversation control system having a conversation control apparatus 1 according to the present embodiment.
[0026]
As shown in the figure, the conversation control device 1 includes an
[0027]
In the present embodiment, for convenience of explanation, the description is limited to the user's utterance content (this utterance content is a kind of input information), but is not limited to the user's utterance content, and the keyboard. The input information may be input from the above. Therefore, the “utterance content” shown below can be described by replacing “utterance content” with “input information”.
[0028]
Similarly, in the following description, for convenience of explanation, the description will be limited to the “spoken sentence type” (speech type), but is not limited to this “spoken sentence type”, and input from a keyboard or the like. It may be an “input type” indicating the type of input information. Accordingly, the following “speech sentence type” (speech type) can be described by replacing “speech type” with “input type”.
[0029]
The
[0030]
Here, the input information means characters, symbols, voices and the like input through a keyboard or the like. Specifically, the
[0031]
The
[0032]
The
[0033]
The
[0034]
Specifically, the
[0035]
That is, the
[0036]
The
[0037]
Here, in this embodiment, the phrase format is a sentence in which the independent grammar or one or more attached words are attached to the independent grammar in the Japanese grammar, or a character string that does not destroy the meaning of the Japanese grammar. Means a sentence that is separated as finely as possible. This clause is expressed as p1, p2,... Pk in this embodiment.
[0038]
That is, the
[0039]
The
[0040]
The sentence
[0041]
Here, the “case structure” means a case (attribute) indicating a substantial concept in the clause. In the present embodiment, for example, a subject (subject) that represents a subject / subject, Examples include a meaning object (target case), an action meaning an action, a time meaning (tense, aspect), a location meaning a place, and the like. In this embodiment, each morpheme associated with the “case” (case configuration) of the three elements of the subject, the object, and the action is used as the first morpheme information.
[0042]
That is, as shown in FIG. 5, for example, when the dependency element of each morpheme is “” or “is”, the sentence
For example, if the dependency element of each morpheme is “NO” or “NO”, it is determined that the morpheme before the dependency element is an object (target).
[0043]
Further, for example, when the dependency element of each morpheme is “Yes”, the sentence
[0044]
The sentence
[0045]
The utterance
[0046]
In this embodiment, as shown in FIG. 6, the “spoken sentence type” is a statement sentence (D; Declaration), an impression sentence (I; Impression), a conditional sentence (C; Condition), and a result sentence ( E; Effect, time sentence (T; Time), location sentence (L; Location), repulsive sentence (N; Negation), and the like.
[0047]
The statement sentence means a sentence composed of a user's opinion or idea, and in this embodiment, as shown in FIG. 6, for example, a sentence such as “I like Sato” can be cited. An impression sentence means the sentence which consists of an impression which a user holds. A place sentence means a sentence made up of place elements.
[0048]
A result sentence means a sentence composed of sentences including a result element for a topic. A time sentence means a sentence composed of sentences including temporal elements related to a topic.
[0049]
The conditional sentence means a sentence composed of sentences including elements such as a premise of a topic, a condition and a reason why the topic is established, when one utterance is regarded as a topic. The repulsive sentence means a sentence composed of a sentence including an element that repels the utterance partner. An example sentence for each “spoken sentence type” is as shown in FIG.
[0050]
That is, the utterance
[0051]
Here, as shown in FIG. 7, the
[0052]
As a result, the utterance
[0053]
The utterance
[0054]
The
[0055]
Furthermore, the
[0056]
Furthermore, the
[0057]
As shown in FIG. 8, in the present embodiment, the
[0058]
Each discourse range can be configured to have a hierarchical structure as shown in FIG. As shown in the figure, for example, a higher level discourse range (entertainment) for a certain discourse range (movie) is positioned in the upper hierarchical structure, and a lower level discourse range (movie) for the discourse range (movie). The attribute (movie) can be located in the lower hierarchical structure. That is, in the present embodiment, each discourse range can be arranged at a hierarchical position where the relationship between the higher concept, the lower concept, the synonym, and the synonym becomes clear with other discourse ranges.
[0059]
As described above, the discourse range is composed of topics, and in this embodiment, for example, if the discourse range is an A movie name, it includes a plurality of topics related to the A movie name.
[0060]
This topic means a morpheme composed of a single character, a plurality of character strings, or a combination thereof, that is, each morpheme constituting speech content that will be uttered by the user. Each morpheme is associated with a subject (subject), an object (target case), and an action “case” (attribute). In this embodiment, each morpheme associated with these three elements is expressed as a topic title (this topic title corresponds to a subordinate concept of “topic”) (second morpheme information). .
[0061]
The topic title is not limited to each morpheme associated with the above three elements, but other “cases”, that is, time (tense, aspect) meaning time, location meaning place, You may have each morpheme matched with the condition which means a condition, the impression which means an impression, the effect which means a result, etc.
[0062]
In this embodiment, the topic title (second morpheme information) is stored in advance in the
[0063]
For example, if the talk range is “A movie name”, as shown in FIG. 10, the subject title is subject (A movie name), object (director), action (great) {this is “A movie name” The director of the name is composed of "meaning great".
[0064]
If there is no morpheme associated with “case composition” (subject, object, action, etc.) among the topic titles, “*” is indicated for the portion in the present embodiment.
[0065]
For example, {A What is a movie name? } Is converted into a topic title (subject; object; action). }, “A movie name” can be specified as a subject, but “object” and “action” are not elements of the sentence, so the topic title is “subject” (A movie name). “No object” (*); “No action” (*) (see FIG. 10).
[0066]
The answer sentence means an answer sentence (answer contents) to be answered to the user, and is associated with each topic title (second morpheme information) in this embodiment (see FIG. 8). In this embodiment, as shown in FIG. 11, the answer sentence is a statement sentence (D; Declaration), an impression sentence in order to make an answer corresponding to the type of utterance sentence uttered by the user. Types such as (I; Impression), conditional statement (C; Condition), result statement (E; Effect), time statement (T; Time), location statement (L; Location), negative statement (N; Negation) Type).
[0067]
That is, as shown in FIG. 12, each answer sentence is associated with, for example, a discourse range (Sato) {subordinate concept; home run, superordinate concept; grass baseball, synonym; panda Sato, Sato player, panda} and each topic title. It has been.
[0068]
As shown in the figure, for example, the topic title 1-1 is {(Sato; *; I like): this consists of the order of (subject; object; action) as described above. If the order is the same below, the answer sentence 1-1 corresponding to the topic title 1-1 is (DA; statement affirmation “I like Sato”), (IA; comment affirmation) “I like Sato very much”), (CA; conditional affirmation “Sato ’s home run is very impressive”), (EA; a result affirming “I always watch Sato's games on TV”), (TA: Time affirmative sentence "I actually like it from the five-bats continual refrain in Koshien"), (LA; Place affirmative sentence "I like the serious face when standing on the blow"), (NA A repulsive affirmative sentence "I don't want to talk to people who don't like Sato, goodbye").
[0069]
In the present embodiment, as shown in FIG. 2, the
[0070]
The
[0071]
The
[0072]
Here, the standard content means reflection element information for replying a standard content to the utterance content from the user, and this reflection element information is stored in the reflection element database 801 (standard storage means) in advance. A plurality are stored. As the reflective element information, in the present embodiment, as shown in FIG. 13, for example, "Good morning", "Hello", "Good evening", "greeting elements" such as "Hey", "I see", "Really?" "Typical elements" such as
[0073]
Specifically, the
[0074]
That is, assuming that the reflection element information is D1 and the first morpheme information is W, the
[0075]
For example, when the user utters the utterance content “Good morning”, the
[0076]
When the
[0077]
The
[0078]
Here, “turnback” means to say back the content of the user's utterance as it is (or content close to it) in this embodiment. In the present embodiment, the return element is made up of first morpheme information that constitutes the response content output from the conversation control device 1 immediately before. For example, as shown in FIG. (Horse; *; beautiful), “I like Sato” (Sato; *; I like).
[0079]
Further, the
[0080]
Specifically, the
[0081]
If it is determined that the first morpheme information is included in each return element, the
[0082]
For example, the conversation control device 1 responds with “The director of the A movie name is Mr. S” (Director of the A movie name; Mr. S; *) (the order is the subject, the object, the order of the action, and so on. ) Is output, and then the user responds with a response if the utterance is “is the director of A movie name Mr. S” (director of A movie name; Mr. S; *)? Since the
[0083]
Further, the
[0084]
Specifically, when the user utters the utterance content “Horse is beautiful” and the conversation control device 1 outputs the content “Horse is good” as the response content When the person repeats the utterance content that “the horse is beautiful”, the turn-
[0085]
In this case, since the user has not heard the response content from the conversation control device 1, the
[0086]
On the other hand, if the
[0087]
In addition, although the said
[0088]
In this case, the
[0089]
For example, when the conversation control device 1 outputs an answer sentence “The horse is beautiful”, the above-mentioned user utters the content of the utterance “Why is the horse beautiful?”. At that time, in order to resolve the user's question, the
[0090]
The discourse
[0091]
Specifically, the conversation
[0092]
For example, the discourse
[0093]
On the other hand, when the first morpheme information does not include a discourse range group, the conversation
[0094]
Thereby, the
[0095]
As described above, the discourse
[0096]
The abbreviated
[0097]
Specifically, the abbreviated
[0098]
For example, the abbreviation
[0099]
That is, assuming that the first morpheme information is W and the determined discourse range is D, the abbreviated
[0100]
Thereby, even if the first morpheme information is an abbreviated sentence and it is not clear as Japanese, the abbreviated
[0101]
For this reason, the first morpheme information is set so that the abbreviated
[0102]
The
[0103]
Specifically, the
[0104]
For example, when the “case configuration” constituting the first morpheme information is (Sato; *; I like) {I like Sato}, the
[0105]
The utterance
[0106]
The answer
[0107]
Specifically, the answer
[0108]
For example, when the topic title corresponding to the search result is the topic title 1-1 (Sato; *; I like) shown in FIG. 12, the answer
[0109]
The
[0110]
The
[0111]
(Conversation control method using conversation control device)
The conversation control method by the conversation control apparatus 1 having the above configuration can be implemented by the following procedure. FIG. 15 is a flowchart showing the procedure of the conversation control method according to the present embodiment.
[0112]
First, the
[0113]
Next, the
[0114]
And the
[0115]
Specifically, the
[0116]
Then, the
[0117]
That is, as shown in FIG. 4, the
[0118]
Thereafter, the sentence
[0119]
That is, as shown in FIG. 5, for example, when the dependency element of each morpheme is “” or “is”, the sentence
For example, if the dependency element of each morpheme is “NO” or “NO”, it is determined that the morpheme before the dependency element is an object (target).
[0120]
Further, for example, when the dependency element of each morpheme is “Yes”, the sentence
[0121]
The sentence
[0122]
Next, the utterance
[0123]
That is, the utterance
[0124]
The utterance
[0125]
Next, the
[0126]
Specifically, the
[0127]
When the reflection element information cannot be searched for the reflection element information including the first morpheme information from the reflection element information, the
[0128]
Next, the
[0129]
When it is determined that the first morpheme information is included in each return element, the
[0130]
On the other hand, when determining that the first morpheme information is not included in each return element, the
[0131]
Then, the discourse
[0132]
Specifically, the conversation
[0133]
For example, the discourse
[0134]
On the other hand, when the first morpheme information does not include a discourse range group, the conversation
[0135]
Next, the abbreviation
[0136]
Specifically, the abbreviated
[0137]
For example, the abbreviation
[0138]
That is, assuming that the first morpheme information is W and the determined discourse range is D, the abbreviated
[0139]
Next, the
[0140]
Specifically, the
[0141]
For example, when the “case configuration” constituting the first morpheme information is (Sato; *; I like) {I like Sato}, the
[0142]
The utterance
[0143]
Then, the answer
[0144]
Specifically, the answer
[0145]
For example, when the topic title corresponding to the search result is the topic title 1-1 (Sato; *; I like) shown in FIG. 12, the answer
[0146]
Next, the
[0147]
(Operation and effect of conversation control device and conversation control method)
According to the invention according to the present application having the above-described configuration, the
[0148]
In addition, when the user's utterance content is a fixed content, the
[0149]
Further, the
[0150]
In this case, the
[0151]
Further, the
[0152]
In this case, since the user does not appropriately reply to the previous response content, the
[0153]
Further, in order to search for the second morpheme information approximate to the first morpheme information, the
[0154]
As a result, the
[0155]
Moreover, the
[0156]
Further, since the
[0157]
Furthermore, the answer
[0158]
Furthermore, the answer
[0159]
Finally, the abbreviated
[0160]
Thus, the abbreviated
[0161]
As a result, even if the input information from the user is an abbreviated sentence, the conversation control device 1 does not use a function such as a neuro network or an AI intelligence, and does not mean what the abbreviated sentence means through past search results. Since the developer of the conversation control device 1 does not need to install a neuro network or AI intelligence, the system of the conversation control device 1 can be constructed more simply.
[0162]
[Example of change]
In addition, this invention is not limited to the said embodiment, The change as shown below can be added.
[0163]
(First change example)
In this modification, the
[0164]
As shown in FIG. 16, some morphemes included in the character string uttered by the user are similar. For example, as shown in FIG. 16, if the element information indicating the entire group is “gift”, the “gift” is similar to a present, gift, year-end gift, mid-year gift, celebration, etc. (group). Therefore, when there is a morpheme similar to “gift” (such as the present), the
[0165]
That is, for example, when the morpheme extracted from the character string is “present”, the
[0166]
This allows the
[0167]
(Second modified example)
As shown in FIG. 17, in the present modification example, the
[0168]
The
[0169]
Specifically, the
[0170]
For example, as shown in FIG. 18, when the first morpheme information constituting the utterance sentence uttered by the user is (Sato; *; I like) {I like Sato}, the
[0171]
The
[0172]
Specifically, the
[0173]
Accordingly, the
[0174]
Further, since the
[0175]
As a result, since the
[0176]
Further, the
[0177]
The
[0178]
Specifically, the
[0179]
For example, as illustrated in FIG. 19, when the “case” morpheme of “case configuration” is (dog; person; bitten) {dog bites a person}, the
[0180]
If the element constituting the topic title is (person; dog; bite) {person bites the dog}, the
[0181]
The
[0182]
As a result, the
[0183]
That is, since the
[0184]
Further, the
[0185]
The
[0186]
(Third change example)
As shown in FIG. 20, the present modification is not limited to the above-described embodiment and each modification, and data is transmitted and received via the
[0187]
Here, the
[0188]
Thereby, the
[0189]
(Fourth change example)
The sentence
[0190]
The conversation
[0191]
The first morpheme information, the second morpheme information, each “case composition” that constitutes the first morpheme information or the second morpheme information, each morpheme associated with each “case composition”, and the retrieved answer sentence Each "case structure" and each morpheme associated with each "case structure" and the searched discourse range are associated with each other and stored in the
[0192]
The abbreviated
[0193]
Specifically, the abbreviated
[0194]
That is, assuming that the subject included in the history form information is S1, the object is O1, the action A1, the discourse range is D1, and the omitted first morpheme information is W, the supplemented first morpheme information W1 is S1SW , O1∪W, A1∪W, or D1∪W.
[0195]
The
[0196]
Thereby, even if the utterance content composed of the first morpheme information is an abbreviated sentence and is not clear as Japanese, the abbreviated
[0197]
For this reason, when the abbreviated
[0198]
(Fifth change example)
The
[0199]
Specifically, the
[0200]
Then, based on the searched second morpheme information, the
[0201]
That is, the
[0202]
The
[0203]
More specifically, if the current discourse range D2 is related to the answer sentence K1, and the discourse range is DK, other discourses related to the answer sentence K1 or the current discourse range D2 (those that have a sibling relationship). Since the range D3 can be expressed as D3 = D2∪DK, the second morpheme information W2 after adding the morpheme constituting the other discourse range D3 can be set to W2 = t2∪D3.
[0204]
For example, each morpheme t1 constituting the second morpheme information is (A movie name; *; interesting) {A movie name is interesting? }, And the current discourse range D2 determined by the discourse
[0205]
When the other conversation range D3 related to the current conversation range D2 (A movie name) is “B movie name”, the second morpheme information after adding the morpheme constituting the other conversation range D3 W2 is t2∪D3, so (B movie name; *; funny) {B movie name is interesting? }.
[0206]
Thereby, when the user's utterance content is “A movie name is interesting?”, The
[0207]
As a result, the answer
[0208]
Note that the
[0209]
(Sixth change example)
When the
[0210]
Specifically, the
[0211]
When the
[0212]
Thereby, even if the
[0213]
As a result, since the
[0214]
[program]
The contents described in the conversation control system and the conversation control method can be realized by executing a dedicated program for using a predetermined program language in a general-purpose computer such as a personal computer.
[0215]
Here, as the programming language, the topic that the user wants, the user's emotional level for a certain matter, or the type of statement sentence, affirmative sentence, question sentence, repulsive sentence, etc. are associated with the morpheme according to the semantic content In this embodiment, for example, DKML (Discourse Knowledge Markup Language), XML (eXtensible Markup Language), C language, etc. developed by the inventors can be used.
[0216]
That is, the conversation control device 1 stores data stored in each of the
[0217]
According to such a program according to the present embodiment, each morpheme constituting the utterance content of the user is identified, the semantic content grasped from each identified morpheme is analyzed, and associated with the analyzed semantic content. A conversation control device, a conversation control system, and a conversation control method that have the effect of being able to output the optimum answer contents corresponding to the user's utterance contents by outputting the answer contents prepared in advance. It can be easily realized by a general purpose computer.
[0218]
In addition, since the developer who develops the conversation control device 1 can hierarchically construct the second morpheme information and the like for searching the answer contents for the user's utterance contents using the language in the database. The conversation control device 1 can acquire the response content for the utterance content from the database through a hierarchical procedure based on the utterance content of the user.
[0219]
In other words, the conversation control device 1 has determined and determined the hierarchy of the user's utterance content (for example, whether the second morpheme information stored in the database is in a higher concept or a lower concept). Appropriate answer contents can be acquired from the answer contents accumulated in advance based on the hierarchy.
[0220]
For this reason, the conversation control device 1 does not collate the first morpheme information composed of the user's utterance content and the previously stored “all” second morpheme information one by one. Since the second morpheme information and the first morpheme information may be collated, the second morpheme information approximate to the first morpheme information can be acquired in a short time.
[0221]
Furthermore, communication between the
[0222]
The program can be recorded on a recording medium. As shown in FIG. 23, examples of the recording medium include a
[0223]
[Second Embodiment]
(Basic configuration of map output device)
A second embodiment of the present invention will be described with reference to the drawings. FIG. 24 shows the internal structure of the
[0224]
In 1st embodiment, although the conversation control apparatus 1 demonstrated the process which acquires the optimal answer sentence corresponding to the utterance content based on the utterance content from a user, in this embodiment, the
[0225]
The discourse
[0226]
Specifically, the discourse
[0227]
Here, in the discourse range indicating the morpheme related to the input information that will be inputted by the user or the response content to the user, a morpheme consisting of one character, a plurality of character strings, or a combination thereof is included. A plurality of second morpheme information shown are associated, and each second morpheme information is associated with a map output command for outputting a map desired by the user on the screen, and the conversation database 500 (discourse storage means, morpheme As shown in FIG. 25, the storage means) stores a plurality of the above talk ranges in advance.
[0228]
In addition, as shown in the figure, each of the discourse ranges is associated with a question sentence for retrieving detailed information about the map desired by the user, as described above. , They are associated with a pre-defined superordinate concept or subordinate concept.
[0229]
The map
[0230]
Specifically, the map
[0231]
For example, when the user's utterance content is “I want to see a map of Tokyo's A ward α address in Tokyo”, the sentence
[0232]
Unlike the first embodiment, the order of each morpheme in the parentheses is not the order of subjects, objects, and actions in this embodiment. The parentheses in the present embodiment simply mean each morpheme included in one sentence. The sentence
[0233]
For example, as shown in FIG. 25, each discourse range stored in the
[0234]
Of the extracted morphemes, “I” and “I want to see” are not included in each pre-stored discourse range. The talk
[0235]
Thereafter, the map
[0236]
In this embodiment, as shown in FIG. 25, in order to see a map with a user, at least the prefecture (Tokyo, Osaka, etc.), ward, municipality (A ward, B ward,. -Each map information consisting of D village, E village,... F village, G village, etc.) and address (α address, β address, γ address, etc.) is sent to the
[0237]
That is, when the utterance content input from the user does not include all of the map information, the
[0238]
A specific description of outputting a corresponding map based on map information (first morpheme information) for which the
[0239]
First, the map
[0240]
Further, the map
[0241]
In the question
[0242]
The question
[0243]
As a result, the question
[0244]
Specifically, the question
[0245]
After that, the sentence
[0246]
For example, when the response content from the user corresponding to the question sentence (what do you want to see?) Is “I want to see a map”, the morpheme extracted by the
[0247]
Then, the map
[0248]
Further, the map
[0249]
Note that the morphemes in “” in the question text in the figure mean the discourse range in this embodiment. In other words, in the present embodiment, this question sentence means the contents for retrieving information about the subordinate concept of the currently determined discourse range (map). For example, there are prefectures, wards, municipalities, and other addresses as subordinate concepts of the discourse range (map), and the question
[0250]
After that, as shown in FIG. 26, the answer sentence corresponding to the above question sentence (for example, “Where do you want to see“ map ”of“ prefecture ”?”) Is “I want to see a map of Tokyo”. In the case of “,” the morpheme extracted by the
[0251]
In addition, when the conversation
[0252]
The conversation
[0253]
Further, the map
In this embodiment, for example, as shown in FIG. 27, when the user wants to see a desired map, the map
[0254]
Therefore, as described above, the map
[0255]
The question
[0256]
Thereafter, as shown in FIG. 26, when the answer sentence corresponding to the question sentence is “A ward!”, The morpheme extracted by the sentence
[0257]
The conversation
[0258]
The map
[0259]
When each question sentence shown in FIG. 26 is outputted, an answer sentence corresponding to each outputted question sentence is obtained from the user, and all map information for outputting the corresponding map is prepared, that is, first In the case where the discourse range indicating the map information necessary for outputting the map desired by the user is included in the morpheme information, the map
[0260]
The map output
[0261]
The
[0262]
For example, the second morpheme information searched by the map
[0263]
(Map output method using map output device)
The map output method by the map output device having the above configuration can be implemented by the following procedure. FIG. 29 is a flowchart showing the procedure of the map output method according to the present embodiment.
[0264]
As shown in the figure, first, the
[0265]
Thereafter, the
[0266]
Next, the discourse
[0267]
And the map
[0268]
Specifically, the map
[0269]
For example, as shown in FIG. 25, each discourse range stored in the
[0270]
Of the extracted morphemes, “I” and “I want to see” are not included in each pre-stored discourse range. The talk
[0271]
Thereafter, the map
[0272]
Next, the map output
[0273]
Next, based on the map output command acquired by the map output
[0274]
For example, the second morpheme information searched by the map
[0275]
In this embodiment, as shown in FIG. 25, in order to see a map with a user, at least the prefecture (Tokyo, Osaka, etc.), ward, municipality (A ward, B ward,. -Each map information consisting of D village, E village,... F village, G village, etc.) and address (α address, β address, γ address, etc.) is sent to the
[0276]
That is, when the utterance content input from the user does not include all of the map information, the
[0277]
The specific description of outputting the corresponding map based on the map information (first morpheme information) for which the
[0278]
First, the map
[0279]
Next, the map
[0280]
In the question
[0281]
Specifically, the question
[0282]
Thereafter, the conversation
[0283]
The conversation
[0284]
For example, when the response content from the user corresponding to the question sentence (what do you want to see?) Is “I want to see a map”, the morpheme extracted by the
[0285]
Then, the map
[0286]
Further, the map
[0287]
After that, as shown in FIG. 26, the answer sentence corresponding to the above question sentence (for example, “Where do you want to see“ map ”of“ prefecture ”?”) Is “I want to see a map of Tokyo”. In the case of “,” the morpheme extracted by the
[0288]
The conversation
[0289]
Further, the map
In this embodiment, for example, as shown in FIG. 27, when the user wants to see a desired map, the map
[0290]
Therefore, as described above, the map
[0291]
The question
[0292]
Thereafter, as shown in FIG. 26, when the answer sentence corresponding to the question sentence is “A ward!”, The morpheme extracted by the sentence
[0293]
The conversation
[0294]
The map
[0295]
In the present embodiment, as described above, as shown in FIG. 27, if the map information necessary for displaying the map is not known, the corresponding map cannot be searched. For this reason, when the first morpheme information is (map; Tokyo; A ward), since the remaining one (address) is not known as necessary map information, the conversation
[0296]
When each question sentence shown in FIG. 26 is outputted, an answer sentence corresponding to each outputted question sentence is obtained from the user, and all map information for outputting the corresponding map is prepared, that is, first In the case where the discourse range indicating the map information necessary for outputting the map desired by the user is included in the morpheme information, the map
[0297]
Next, the map output
[0298]
(Operation and effect of map output device and map output method)
According to the invention having the above-described configuration, the map
[0299]
As a result, if the user speaks toward the
[0300]
In addition, since the pre-stored conversation range indicates morphemes that are related to input information that will be input from the user or the response content to the user, the user is directed to the
[0301]
In this case, when the conversation
[0302]
Furthermore, the map
[0303]
As a result, the map
[0304]
That is, the conversation
[0305]
As a result, the map
[0306]
Note that a question sentence is associated with each discourse range, and each discourse range is associated with each other in advance so as to have a pre-defined high-order concept or sub-concept relationship, and the map
[0307]
Thereby, the map
[0308]
Note that the discourse
[0309]
Thus, for example, the previously searched discourse range is “map”, and the discourse ranges corresponding to “subordinate concepts” of the discourse range “map” are “Tokyo”, “Osaka”, and so on. Furthermore, when the answer sentence corresponding to the question sentence is “I want to see a map of Tokyo”, the discourse
[0310]
In other words, if the first morpheme information constituting the utterance content uttered by the user does not match each second morpheme information, the question
[0311]
The
[0312]
In this case, the
[0313]
【The invention's effect】
As described above, according to the present invention, based on the utterance content uttered by the user, each morpheme included in the utterance content is extracted, and the corresponding map is displayed on the screen using the extracted morphemes. To output the map desired by the user on the screen through conversation, and accurately output the map desired by the user even if the utterance content spoken by the user is abbreviated Can be made.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a conversation control system according to a first embodiment.
FIG. 2 is a block diagram showing an internal structure of a conversation control unit and a sentence analysis unit in the first embodiment.
FIG. 3 is a diagram showing the contents of each morpheme extracted by a morpheme extraction unit in the first embodiment.
FIG. 4 is a diagram showing the contents of each phrase extracted by a phrase analysis unit in the first embodiment.
FIG. 5 is a diagram showing the contents of “case” specified by the sentence structure analysis unit in the first embodiment.
FIG. 6 is a diagram showing an “uttered sentence type” specified by an utterance type determining unit in the first embodiment.
FIG. 7 is a diagram showing the contents of each dictionary stored in the utterance type database in the first embodiment.
FIG. 8 is a diagram showing the contents of a hierarchical structure built inside the conversation database in the first embodiment.
FIG. 9 is a diagram showing a detailed relationship of a hierarchical structure built inside the conversation database in the first embodiment.
FIG. 10 is a diagram showing the content of a “topic title” constructed within the conversation database in the first embodiment.
FIG. 11 is a diagram showing the content of “answer sentence type” associated with “topic title” built inside the conversation database in the first embodiment.
FIG. 12 is a diagram showing the contents of “topic title” and “answer sentence” belonging to “discourse range” built inside the conversation database in the first embodiment.
FIG. 13 is a diagram showing the contents of reflection element information stored in the reflection element database in the first embodiment.
FIG. 14 is a diagram showing the contents of a wrapping element and a morpheme of the wrapping element stored in the wrapping element database in the first embodiment.
FIG. 15 is a flowchart showing a procedure of a conversation control method according to the first embodiment.
FIG. 16 is a diagram showing utterance contents organized by a morpheme extraction unit in the first modification.
FIG. 17 is a diagram illustrating an internal configuration of a topic search unit in a second modified example.
FIG. 18 is a diagram illustrating a state in which the ratio calculation unit in the second modification collates each morpheme belonging to “case configuration” and each “topic title” for each “topic title”.
FIG. 19 is a diagram illustrating a state in which the ratio calculation unit in the second modified example collates each morpheme belonging to “each component” and each morpheme belonging to “topic title” for each “case”.
FIG. 20 is a diagram showing a schematic configuration of a conversation control system in a third modified example.
FIG. 21 is a diagram illustrating an internal configuration of a topic search unit in a fifth modification example.
FIG. 22 is a diagram illustrating a state in which the topic search unit in the sixth modification collates first morpheme information with a topic title or an answer sentence.
FIG. 23 is a diagram showing a recording medium for storing a program in the first embodiment.
FIG. 24 is a diagram showing an internal configuration of a map output device according to a second embodiment.
FIG. 25 is a diagram showing each discourse range stored in the conversation database according to the second embodiment and the contents of a question sentence associated with each discourse range.
FIG. 26 is a diagram showing a flow until a conversation range determination unit in the second embodiment creates final first morpheme information.
FIG. 27 collates the first morpheme information with each second morpheme information in the second embodiment, searches the second morpheme information for the second morpheme information that matches the first morpheme information, and searches It is a figure which shows the flow until it selects the goods discharge command linked | related with 2nd morpheme information.
FIG. 28 is a diagram showing a map output by a map output unit in the second embodiment.
FIG. 29 is a flowchart showing a procedure of a map output method according to the second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Conversation control apparatus, 2 ... Server, 3 ... Map output apparatus, 100 ... Input part, 200 ... Voice recognition part, 300 ... Conversation control part, 310 ... Management part, 320 ... Reflective determination part, 330 ...
Claims (18)
利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも一つの形態素を抽出する形態素抽出手段と、
前記形態素と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該形態素を含む前記第二形態素情報を取得する第一取得手段と、
前記第一取得手段で取得された前記第二形態素情報に基づいて、該第二形態素情報に関連付けられた前記地図出力命令を取得する第二取得手段と、
前記第二取得手段で取得された前記地図出力命令に基づいて、該地図出力命令に対応する予め記憶された地図を画面上に出力させる出力手段と、
利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示し、都道府県、区市町村、番地である談話範囲には、前記第二形態素情報が複数関連付けられ、前記各第二形態素情報には、前記地図出力命令がそれぞれに関連付けられており、該談話範囲を予め複数記憶する談話記憶手段と、
前記形態素抽出手段で抽出された前記形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該形態素と一致する前記談話範囲を第一形態素情報として検索する談話検索手段とを有し、
前記第一取得手段は、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することを特徴とする地図出力装置。 A morpheme consisting of a single character, multiple character strings, or a combination of these , and a map output to output the map desired by the user on the screen for the second morpheme information consisting of prefectures, wards, cities, towns and villages A morpheme storage unit that is associated with an instruction and stores a plurality of the second morpheme information in advance;
Character recognition means for identifying a character string indicating the input information based on the input information input by the user;
Morpheme extraction means for extracting at least one morpheme constituting the minimum unit of the character string based on the character string specified by the character recognition means;
A first acquisition unit that collates the morpheme with each of the second morpheme information and acquires the second morpheme information including the morpheme from the second morpheme information;
Second acquisition means for acquiring the map output command associated with the second morpheme information based on the second morpheme information acquired by the first acquisition means;
Based on the map output instruction acquired by the second acquisition means, and output means for outputting the previously stored map corresponding to該地view output instruction on the screen,
Indicates the morpheme that is relevant to the input information that will be input by the user or the content of the response to the user, and a plurality of the second morpheme information is associated with the discourse range that is a prefecture, city, town, or street address. The second morpheme information is associated with the map output command, and a discourse storage means for storing a plurality of discourse ranges in advance,
A discourse search that collates the morpheme extracted by the morpheme extraction means with each discourse range stored in advance, and searches the discourse range that matches the morpheme from the discourse ranges as first morpheme information. Means,
The first acquisition means collates the first morpheme information with each of the second morpheme information based on the first morpheme information searched by the discourse search means, and from among the second morpheme information The map output device, wherein the second morpheme information that matches the first morpheme information is acquired.
前記談話範囲には、前記各第二形態素情報が関連付けられ、複数の前記談話範囲には、利用者が出力を希望する地図についての詳細な情報を訊き出すための質問文がそれぞれに関連付けられており、
前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲のそれぞれに関連付けられた前記質問文の中から、いずれか一つの前記質問文を取得する質問文取得手段を有することを特徴とする地図出力装置。The map output device according to claim 1 ,
Each of the second morpheme information is associated with the discourse range, and each of the plurality of discourse ranges is associated with a question sentence for retrieving detailed information about a map that the user desires to output. And
Based on the first morpheme information searched by the discourse search means, the first morpheme information is compared with the second morpheme information, and the first morpheme information If the matching second morpheme information cannot be obtained, one of the question sentences is selected from the question sentences associated with each of the discourse ranges included in the first morpheme information. A map output device comprising a question sentence acquisition means for acquiring.
前記第二形態素情報は都道府県、区市町村、番地の各地図情報を有するものであり、
前記談話範囲には、前記各第二形態素情報が関連付けられ、複数の前記談話範囲には、利用者が出力を希望する地図についての前記各地図情報を訊き出すための質問文がそれぞれに関連付けられており、
前記質問文取得手段は、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲のそれぞれに関連付けられた前記質問文の中から、前記第一形態素情報に欠けている地図情報を利用者から聞き出す質問文を取得することを特徴とする地図出力装置。The map output device according to claim 2 ,
The second morpheme information has map information of prefectures, municipalities, and addresses,
Each of the second morpheme information is associated with the discourse range, and a plurality of the discourse ranges are associated with a question sentence for retrieving the map information about a map that the user desires to output. And
The question sentence acquisition means collates the first morpheme information with the second morpheme information based on the first morpheme information searched by the discourse search part, and from among the second morpheme information In the case where the second morpheme information that matches the first morpheme information cannot be obtained, from among the question sentences associated with each of the discourse ranges included in the first morpheme information, A map output device characterized by acquiring a question sentence that asks a user for map information lacking in first morpheme information.
前記談話範囲の上位概念から下位概念の順番は都道府県、区市町村、番地であり、前記質問文取得手段は、前記順番に従い利用者から地図情報を聞き出す質問文を取得することを特徴とする地図出力装置。The map output device according to claim 3 ,
The map is characterized in that the order of the subordinate concept from the superordinate concept of the discourse range is a prefecture, a ward, a municipality, and an address, and the question sentence obtaining means obtains a question sentence that asks the user for map information according to the order. Output device.
前記第一取得手段は、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲を一時的に記憶し、
前記形態素抽出手段は、前記質問文取得手段で取得された前記質問文に対応する利用者からの回答文に基づいて、該回答文に対応する前記文字列の最小単位を構成する少なくとも一つの前記形態素を回答形態素として抽出し、
前記談話検索手段は、前記形態素抽出手段で抽出された前記回答形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該回答形態素と一致する前記談話範囲を検索し、検索した該談話範囲と一時的に記憶された前記各談話範囲とを結合させて、これら結合されたものを前記第一形態素情報とすることを特徴とする地図出力装置。The map output device according to any one of claims 2 to 4 ,
The first acquisition means collates the first morpheme information with each of the second morpheme information based on the first morpheme information searched by the discourse search means, and from among the second morpheme information When the second morpheme information that matches the first morpheme information cannot be acquired, the discourse ranges included in the first morpheme information are temporarily stored,
The morpheme extraction means, based on the answer sentence from the user corresponding to the question sentence acquired by the question sentence acquisition means, at least one of the character strings corresponding to the answer sentence Extract morphemes as answer morphemes,
The discourse search means collates the answer morphemes extracted by the morpheme extraction means with the respective discourse ranges stored in advance, and searches the discourse ranges that match the answer morphemes from the discourse ranges. A map output device characterized in that the searched conversation range and each of the temporarily stored conversation ranges are combined, and the combination is used as the first morpheme information.
前記形態素抽出手段で抽出された第一形態素情報と利用者からの発話内容に対して定型的内容の回答である各定型内容を照合し、前記各定型内容の中から、第一形態素情報を含む定型内容を検索し出力する反射的判定手段と、The first morpheme information extracted by the morpheme extraction means is compared with each fixed content that is an answer to the fixed content against the utterance content from the user, and includes the first morpheme information from the fixed content Reflexive judgment means for searching and outputting fixed contents;
前記反射的判定手段で定型内容が検索できない場合に、現在の第一形態素情報と過去の回答内容とを照合し、現在の第一形態素情報が過去の回答内容に含まれていると判断した場合には、利用者から入力された入力情報に合意する合意内容を取得し、取得した合意内容からなる回答文を出力する鸚鵡返し判定手段とを有することを特徴とする地図出力装置。When the standard content cannot be searched by the reflective determination means, the current first morpheme information is compared with the past answer content, and it is determined that the current first morpheme information is included in the past answer content A map output device comprising: a reversion determining unit that obtains agreement content that agrees with input information input by a user, and that outputs an answer sentence including the obtained agreement content.
文字認識手段が、利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定するステップと、
形態素抽出手段が、前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも一つの形態素を抽出するステップと、
第一取得手段が、前記形態素と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該形態素を含む前記第二形態素情報を取得するステップと、
第二取得手段が、前記第一取得手段で取得された前記第二形態素情報に基づいて、該第二形態素情報に関連付けられた前記地図出力命令を取得するステップと、
出力手段が、前記第二取得手段で取得された前記地図出力命令に基づいて、該地図出力命令に対応する予め記憶された地図を画面上に出力させるステップと、
利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示す談話範囲には、前記第二形態素情報が複数関連付けられ、前記各第二形態素情報には、前記地図出力命令がそれぞれに関連付けられており、該談話範囲を予め談話記憶手段に複数記憶するステップと、
談話検索手段が前記形態素抽出手段で抽出された前記形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該形態素と一致する前記談話範囲を第一形態素情報として検索するステップと、
前記第一取得手段が前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得するステップとを有することを特徴とする地図出力方法。 A morpheme consisting of a single character, multiple character strings, or a combination of these , and a map output to output the map desired by the user on the screen for the second morpheme information consisting of prefectures, wards, cities, towns and villages An instruction is associated, and a step of storing a plurality of the second morpheme information in the morpheme storage means in advance;
A step of identifying a character string indicating the input information based on the input information input from the user by the character recognition means ;
A morpheme extraction unit that extracts at least one morpheme constituting a minimum unit of the character string based on the character string specified by the character recognition unit ;
A first obtaining means collating the morpheme with each of the second morpheme information, and obtaining the second morpheme information including the morpheme from the respective second morpheme information;
A second obtaining unit obtaining the map output command associated with the second morpheme information based on the second morpheme information obtained by the first obtaining unit ;
Outputting the map stored in advance on the screen corresponding to the map output command based on the map output command acquired by the second acquisition unit ;
A plurality of the second morpheme information is associated with the discourse range indicating the morpheme that is related to the input information that will be input from the user or the response content to the user, A step of storing a plurality of the discourse ranges in the discourse storage means in advance, wherein the map output instructions are associated with each;
The discourse search means collates the morpheme extracted by the morpheme extraction means with each discourse range stored in advance, and the discourse range that matches the morpheme is selected as the first morpheme information from the discourse ranges. Searching, and
Based on the first morpheme information searched by the discourse search unit by the first acquisition unit, the first morpheme information and the second morpheme information are collated, and from the second morpheme information, Obtaining the second morpheme information that coincides with the first morpheme information.
前記談話範囲には、前記各第二形態素情報が関連付けられ、複数の前記談話範囲には、利用者が出力を希望する地図についての詳細な情報を訊き出すための質問文がそれぞれに関連付けられており、
質問文取得手段が、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲のそれぞれに関連付けられた前記質問文の中から、いずれか一つの前記質問文を取得することを特徴とする地図出力方法。The map output method according to claim 7 ,
Each of the second morpheme information is associated with the discourse range, and each of the plurality of discourse ranges is associated with a question sentence for retrieving detailed information about a map that the user desires to output. And
Based on the first morpheme information searched by the discourse search unit, the question sentence acquisition unit collates the first morpheme information and the second morpheme information, and from the second morpheme information, If the second morpheme information that matches the first morpheme information cannot be acquired, any one of the question texts associated with each of the discourse ranges included in the first morpheme information is selected. The map output method characterized by acquiring one said question sentence.
前記第二形態素情報は都道府県、区市町村、番地の各地図情報を有するものであり、
前記談話範囲には、前記各第二形態素情報が関連付けられ、複数の前記談話範囲には、利用者が出力を希望する地図についての前記各地図情報を訊き出すための質問文がそれぞれに関連付けられており、
前記質問文取得手段が、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲のそれぞれに関連付けられた前記質問文の中から、前記第一形態素情報に欠けている地図情報を利用者から聞き出す質問文を取得することを特徴とする地図出力方法。The map output method according to claim 8 ,
The second morpheme information has map information of prefectures, municipalities, and addresses,
Each of the second morpheme information is associated with the discourse range, and a plurality of the discourse ranges are associated with a question sentence for retrieving the map information about a map that the user desires to output. And
Based on the first morpheme information searched by the discourse search unit, the question sentence acquisition unit collates the first morpheme information with the second morpheme information, and from among the second morpheme information In the case where the second morpheme information that matches the first morpheme information cannot be obtained, from among the question sentences associated with each of the discourse ranges included in the first morpheme information, A map output method, comprising: obtaining a question sentence that asks a user for map information lacking in first morpheme information.
前記談話話範囲の上位概念から下位概念の順番は都道府県、区市町村、番地であり、前記質問文取得手段が、前記順番に従い利用者から地図情報を聞き出す質問文を取得することを特徴とする地図出力方法。The map output method according to claim 9 , comprising:
The order of the subordinate concept from the superordinate concept of the discourse range is a prefecture, a municipality, and an address, and the question sentence acquisition means acquires a question sentence for hearing map information from the user according to the order. Map output method.
前記第一取得手段が、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲を一時的に記憶するステップと、
前記形態素抽出手段が、前記質問文取得手段で取得された前記質問文に対応する利用者からの回答文に基づいて、該回答文に対応する前記文字列の最小単位を構成する少なくとも一つの前記形態素を回答形態素として抽出するステップと、
前記談話検索手段が、前記形態素抽出手段で抽出された前記回答形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該回答形態素と一致する前記談話範囲を検索し、検索した該談話範囲と一時的に記憶された前記各談話範囲とを結合させて、これら結合されたものを前記第一形態素情報とするステップとを有することを特徴とする地図出力方法。A map output method according to any one of claims 8 to 10 ,
The first acquisition means collates the first morpheme information with the second morpheme information based on the first morpheme information searched by the discourse search means, and from among the second morpheme information If the second morpheme information that matches the first morpheme information cannot be obtained, temporarily storing each discourse range included in the first morpheme information;
The morpheme extraction means , based on an answer sentence from a user corresponding to the question sentence acquired by the question sentence acquisition means, at least one of the character strings corresponding to the answer sentence Extracting morphemes as answer morphemes;
The discourse search means collates the answer morpheme extracted by the morpheme extraction means with each of the previously stored discourse ranges, and searches the discourse range for the discourse range that matches the answer morpheme. And a step of combining the searched conversation range with each of the temporarily stored conversation ranges and using the combined range as the first morpheme information.
反射的判定手段が前記形態素抽出手段で抽出された第一形態素情報と利用者からの発話内容に対して定型的内容の回答である各定型内容を照合し、前記各定型内容の中から、第一形態素情報を含む定型内容を検索して出力するステップと、The reflexive determination means collates the first morpheme information extracted by the morpheme extraction means and each fixed content that is an answer of the fixed content against the utterance content from the user, and from among the respective fixed content, Searching for and outputting fixed content including monomorphic information;
鸚鵡返し判定手段が、前記反射的判定手段で定型内容が検索できない場合に、現在の第一形態素情報と過去の回答内容とを照合し、現在の第一形態素情報が過去の回答内容に含まれていると判断した場合には、利用者から入力された入力情報に合意する合意内容を取得し、取得した合意内容からなる回答文を出力するステップとを有することを特徴とする地図出力方法。When the repetitive determination means cannot retrieve the standard content by the reflective determination means, the current first morpheme information is compared with the past response content, and the current first morpheme information is included in the past response content. A map output method comprising the steps of: acquiring an agreement content that agrees with input information input by a user, and outputting an answer sentence composed of the acquired agreement content.
一つの文字、複数の文字列又はこれらの組み合わせからなる形態素であり、都道府県、区市町村、番地からなる第二形態素情報には、利用者の希望する地図を画面上に出力させるための地図出力命令が関連付けられており、該第二形態素情報を予め複数記憶する形態素記憶手段と、
利用者から入力された入力情報に基づいて、該入力情報を示す文字列を特定する文字認識手段と、
前記文字認識手段で特定された前記文字列に基づいて、該文字列の最小単位を構成する少なくとも一つの形態素を抽出する形態素抽出手段と、
前記形態素と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該形態素を含む前記第二形態素情報を取得する第一取得手段と、
前記第一取得手段で取得された前記第二形態素情報に基づいて、該第二形態素情報に関連付けられた前記地図出力命令を取得する第二取得手段と、
前記第二取得手段で取得された前記地図出力命令に基づいて、該地図出力命令に対応する予め記憶された地図を画面上に出力させる出力手段と、
利用者から入力されるであろう入力情報又は利用者への回答内容に関連性のある形態素を示す談話範囲には、前記第二形態素情報が複数関連付けられ、前記各第二形態素情報には、前記地図出力命令がそれぞれに関連付けられており、該談話範囲を予め複数記憶する談話記憶手段と、
前記形態素抽出手段で抽出された前記形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該形態素と一致する前記談話範囲を第一形態素情報として検索する談話検索手段として機能させ、
さらに、前記第一取得手段を、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得する処理を実行させるためのプログラム。 On the computer,
A morpheme consisting of a single character, multiple character strings, or a combination of these , and a map output to output the map desired by the user on the screen for the second morpheme information consisting of prefectures, wards, cities, towns and villages A morpheme storage unit that is associated with an instruction and stores a plurality of the second morpheme information in advance;
Character recognition means for identifying a character string indicating the input information based on the input information input by the user;
Morpheme extraction means for extracting at least one morpheme constituting the minimum unit of the character string based on the character string specified by the character recognition means ;
A first acquisition unit that collates the morpheme with each of the second morpheme information and acquires the second morpheme information including the morpheme from the second morpheme information;
Second acquisition means for acquiring the map output command associated with the second morpheme information based on the second morpheme information acquired by the first acquisition means ;
Based on the map output instruction acquired by the second acquisition means, an output means for outputting a prestored map corresponding to the map output instruction on the screen;
A plurality of the second morpheme information is associated with the discourse range indicating the morpheme that is related to the input information that will be input from the user or the response content to the user, The map output command is associated with each, and a discourse storage means for storing a plurality of discourse ranges in advance,
A discourse search that collates the morpheme extracted by the morpheme extraction unit with each discourse range stored in advance, and searches the discourse range that matches the morpheme from the discourse ranges as first morpheme information. Function as a means,
Further, the first acquisition means collates the first morpheme information with the second morpheme information based on the first morpheme information searched by the discourse search means, and A program for executing processing for acquiring the second morpheme information that matches the first morpheme information from the inside.
前記談話範囲には、前記各第二形態素情報が関連付けられ、複数の前記談話範囲には、利用者が出力を希望する地図についての詳細な情報を訊き出すための質問文がそれぞれに関連付けられており、
前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲のそれぞれに関連付けられた前記質問文の中から、いずれか一つの前記質問文を取得する質問文取得手段として機能させるためのプログラム。The program according to claim 13 ,
Each of the second morpheme information is associated with the discourse range, and each of the plurality of discourse ranges is associated with a question sentence for retrieving detailed information about a map that the user desires to output. And
Based on the first morpheme information searched by the discourse search means, the first morpheme information and each second morpheme information are collated, and the first morpheme information If the matching second morpheme information cannot be acquired, one of the question sentences is selected from the question sentences associated with each of the discourse ranges included in the first morpheme information. A program for functioning as a question sentence acquisition means to acquire .
前記第二形態素情報は都道府県、区市町村、番地の各地図情報を有するものであり、
前記談話範囲には、前記各第二形態素情報が関連付けられ、複数の前記談話範囲には、利用者が出力を希望する地図についての前記各地図情報を訊き出すための質問文がそれぞれに関連付けられており、
前記質問文取得手段に、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲のそれぞれに関連付けられた前記質問文の中から、前記第一形態素情報に欠けている地図情報を利用者から聞き出す質問文を取得する処理をさせるためのプログラム。The program according to claim 14 , wherein
The second morpheme information has map information of prefectures, municipalities, and addresses,
Each of the second morpheme information is associated with the discourse range, and a plurality of the discourse ranges are associated with a question sentence for retrieving the map information about a map that the user desires to output. And
Based on the first morpheme information retrieved by the discourse retrieval unit, the question sentence acquisition unit collates the first morpheme information with the second morpheme information, and from among the second morpheme information In the case where the second morpheme information that matches the first morpheme information cannot be obtained, from among the question sentences associated with each of the discourse ranges included in the first morpheme information, A program for processing to obtain a question sentence that asks the user for map information lacking in the first morpheme information.
前記談話話範囲の上位概念から下位概念の順番は都道府県、区市町村、番地であり、前記質問文取得手段に、前記順番に従い利用者から地図情報を聞き出す質問文を取得する処理をさせるためのプログラム。The program according to claim 15 ,
The order of the lower-level concepts from the preamble of discourse talk range prefectures, municipalities, is the address, in the question-sentence acquisition means, of the order to the process of acquiring the question that elicit the map information from the user in accordance with the order program.
前記第一取得手段に、前記談話検索手段で検索された前記第一形態素情報に基づいて、該第一形態素情報と前記各第二形態素情報とを照合し、該各第二形態素情報の中から、該第一形態素情報と一致する前記第二形態素情報を取得することができない場合には、該第一形態素情報に含まれる前記各談話範囲を一時的に記憶する処理を実行させ、
前記形態素抽出手段に、前記質問文取得手段で取得された前記質問文に対応する利用者からの回答文に基づいて、該回答文に対応する前記文字列の最小単位を構成する少なくとも一つの前記形態素を回答形態素として抽出する処理を実行させ、
前記談話検索手段に、前記形態素抽出手段で抽出された前記回答形態素と予め記憶された前記各談話範囲とを照合し、該各談話範囲の中から、該回答形態素と一致する前記談話範囲を検索し、検索した該談話範囲と一時的に記憶された前記各談話範囲とを結合させて、これら結合されたものを前記第一形態素情報とする処理をさせるためのプログラム。A program according to any one of claims 14 to 16 , wherein
Based on the first morpheme information retrieved by the discourse retrieval unit, the first acquisition unit collates the first morpheme information with each of the second morpheme information, and from among each of the second morpheme information When the second morpheme information that matches the first morpheme information cannot be acquired, the process for temporarily storing each discourse range included in the first morpheme information is executed,
Based on the answer sentence from the user corresponding to the question sentence acquired by the question sentence acquiring means, the morpheme extracting means constitutes at least one of the character strings corresponding to the answer sentence. Execute processing to extract morphemes as answer morphemes ,
The discourse search means collates the answer morpheme extracted by the morpheme extraction means with each of the previously stored discourse ranges, and searches the discourse range for the discourse range that matches the answer morpheme. A program for combining the searched conversation range with each of the temporarily stored conversation ranges and processing the combined range as the first morpheme information.
前記形態素抽出手段で抽出された第一形態素情報と利用者からの発話内容に対して定型的内容の回答である各定型内容を照合し、前記各定型内容の中から、第一形態素情報を含む定型内容を検索し出力する反射的判定手段として機能させ、The first morpheme information extracted by the morpheme extraction means is compared with each fixed content that is an answer to the fixed content against the utterance content from the user, and includes the first morpheme information from the fixed content It functions as a reflexive judgment means that searches and outputs fixed contents,
前記反射的判定手段で定型内容が検索できない場合に、現在の第一形態素情報と過去の回答内容とを照合し、現在の第一形態素情報が過去の回答内容に含まれていると判断した場合には、利用者から入力された入力情報に合意する合意内容を取得し、取得した合意内容からなる回答文を出力する鸚鵡返し判定手段として機能させるためのプログラム。When the standard content cannot be searched by the reflective determination means, the current first morpheme information is compared with the past answer content, and it is determined that the current first morpheme information is included in the past answer content Includes a program for acquiring agreement content that agrees with input information input by a user, and for functioning as a return determination unit that outputs an answer sentence including the obtained agreement content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002239475A JP4274760B2 (en) | 2002-08-20 | 2002-08-20 | Map output device, map output method and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002239475A JP4274760B2 (en) | 2002-08-20 | 2002-08-20 | Map output device, map output method and program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004078676A JP2004078676A (en) | 2004-03-11 |
JP4274760B2 true JP4274760B2 (en) | 2009-06-10 |
Family
ID=32022573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002239475A Expired - Fee Related JP4274760B2 (en) | 2002-08-20 | 2002-08-20 | Map output device, map output method and program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4274760B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10375129B2 (en) | 2014-06-17 | 2019-08-06 | Microsoft Technology Licensing, Llc | Facilitating conversations with automated location mapping |
-
2002
- 2002-08-20 JP JP2002239475A patent/JP4274760B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004078676A (en) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3997105B2 (en) | Conversation control system, conversation control device | |
JP4279883B2 (en) | Conversation control system, conversation control method, program, and recording medium recording program | |
JP2004258902A (en) | Conversation controller, and conversation control method | |
JP4274760B2 (en) | Map output device, map output method and program | |
JP4110011B2 (en) | Conversation control device and conversation control method | |
JP4110012B2 (en) | Conversation control device and conversation control method | |
JP4413486B2 (en) | Home appliance control device, home appliance control method and program | |
JP4751563B2 (en) | Product discharge device, product discharge control method and program | |
JP4913850B2 (en) | Information processing system and information processing method | |
JP4205370B2 (en) | Conversation control system, conversation control method and program | |
JP3927067B2 (en) | Conversation control system, conversation control device, conversation control method, program, and recording medium recording program | |
JP3923378B2 (en) | Robot control apparatus, robot control method and program | |
JP4141783B2 (en) | USAGE NOTICE SYSTEM, USAGE NOTICE CONTROL METHOD AND PROGRAM | |
JP4038399B2 (en) | Face image display device, face image display method and program | |
JP4109964B2 (en) | Information output device, information output method, and program | |
JP4188622B2 (en) | Access system and access control method | |
JP4434553B2 (en) | Information processing system, information processing apparatus, information processing method, program, and recording medium recording the program | |
JP4253487B2 (en) | Information acquisition device | |
JP4402868B2 (en) | Information acquisition apparatus, information acquisition method, and program | |
JP4316839B2 (en) | Conversation control device and conversation control method | |
JP3947421B2 (en) | Conversation control system, conversation control method, program, and recording medium recording program | |
JP4116367B2 (en) | Conversation control system, conversation control method, program | |
JP4751565B2 (en) | Conversation control device, conversation control method, and program | |
JP4832701B2 (en) | Game machine, game control method, control program | |
JP2009205169A (en) | Household electric appliance control device, household electric appliance control method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090210 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4274760 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
S631 | Written request for registration of reclamation of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313631 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120313 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130313 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140313 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |