JP4273933B2 - Rotary encoder - Google Patents

Rotary encoder Download PDF

Info

Publication number
JP4273933B2
JP4273933B2 JP2003379738A JP2003379738A JP4273933B2 JP 4273933 B2 JP4273933 B2 JP 4273933B2 JP 2003379738 A JP2003379738 A JP 2003379738A JP 2003379738 A JP2003379738 A JP 2003379738A JP 4273933 B2 JP4273933 B2 JP 4273933B2
Authority
JP
Japan
Prior art keywords
unit
data
timer
integration
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003379738A
Other languages
Japanese (ja)
Other versions
JP2005140731A (en
Inventor
博三 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003379738A priority Critical patent/JP4273933B2/en
Publication of JP2005140731A publication Critical patent/JP2005140731A/en
Application granted granted Critical
Publication of JP4273933B2 publication Critical patent/JP4273933B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、回転体の回転位置を検出するロータリーエンコーダの基幹部品の信頼性に関するものであり、特にサーボモータに組込まれて使用され、双方向シリアル通信手段により回転体の回転位置情報や異常情報を伝達するものである。   The present invention relates to the reliability of the basic components of a rotary encoder that detects the rotational position of a rotating body. In particular, the present invention is used by being incorporated in a servo motor, and the rotational position information and abnormality information of the rotating body by bidirectional serial communication means. Is to communicate.

近年、産業機器の高信頼性化に伴い機器に組み込まれて使用されるサーボモータに内蔵されたロータリーエンコーダにも故障診断などの高信頼性化の要求が高まっている。   In recent years, with the increase in reliability of industrial equipment, there is an increasing demand for high reliability such as fault diagnosis for a rotary encoder built in a servo motor that is incorporated in the equipment and used.

このような中、モータの巻線やエンコーダに温度センサーを設け、実動作時の温度を測定することで巻線の異常やエンコーダデータの異常の有無を判断していた(例えば、特許文献1参照。)。
特開平07−43177号公報
Under such circumstances, a temperature sensor is provided in the motor winding and encoder, and the presence or absence of winding abnormality or encoder data abnormality is determined by measuring the temperature during actual operation (see, for example, Patent Document 1). .)
JP 07-43177 A

解決しようとする問題点は、構成部品が動作温度保証の範囲内であるか否かの異常判断が瞬時にできても、性能が劣化しやすい高温環境下での長期的な経時劣化については動作温度範囲内であっても判断ができないという点である。   The problem to be solved is that even if it is possible to instantly determine whether or not a component is within the guaranteed operating temperature range, it can operate for long-term deterioration in a high-temperature environment where performance is likely to deteriorate. Even within the temperature range, the judgment cannot be made.

特に、エンコーダ構成部品の中でも動作温度によって経時劣化が変動する基幹部品の故障診断を容易かつ正確に行えるロータリーエンコーダを提供することを目的とする。   In particular, an object of the present invention is to provide a rotary encoder capable of easily and accurately diagnosing a failure of a core part whose deterioration with time varies depending on an operating temperature among encoder components.

上記の課題を解決するために本発明のロータリーエンコーダは、回転に応じて回転位置データを出力する原信号部と、前記原信号部の動作温度を検出する温度検出部と、前記原信号部が動作している時間を計測するタイマー部と、前記タイマー部で計測した時間データを更新保持する電気的に書き込み可能な記憶部と、前記温度検出部が検知した動作温度に応じた積算順位に切替える選択部と、前記記憶部に保持した前回の時間データに新たに計測したタイマー部の時間データを加算する加算部と、前記タイマー部の動作/停止タイミングおよび記憶部での時間データの書き換えタイミングを出力する電源ON/OFF検出部と、外部からの要求信号であるシリアル信号を受信し前記原信号部と記憶部のデータから要求信号に応じたデータを選択しシリアルデータに変換し出力するデータ通信部とを備え、前記温度検出部とタイマー部との間に設けた選択部は、前記記憶部に保持したタイマー動作設定パラメータと前記温度検出部が検知した温度とから積算順位を選択し、タイマー部は選択された積算順位に基づいて動作時間を計測し、加算部は前回の時間データと新たに計測したタイマー部の時間データを積算順位ごとに積算し、記憶部は積算した時間データを保持するものである。   In order to solve the above problems, a rotary encoder according to the present invention includes an original signal unit that outputs rotational position data in accordance with rotation, a temperature detection unit that detects an operating temperature of the original signal unit, and the original signal unit. A timer unit that measures the operating time, an electrically writable storage unit that updates and holds time data measured by the timer unit, and an integration order according to the operating temperature detected by the temperature detection unit. A selection unit, an addition unit for adding the time data of the timer unit newly measured to the previous time data held in the storage unit, operation / stop timing of the timer unit, and rewriting timing of the time data in the storage unit The power ON / OFF detection unit to output and the serial signal which is a request signal from the outside are received, and the data corresponding to the request signal is obtained from the data of the original signal unit and the storage unit A selection unit provided between the temperature detection unit and the timer unit is detected by the timer operation setting parameter stored in the storage unit and the temperature detection unit. The timer unit measures the operating time based on the selected integration order, and the addition unit integrates the previous time data and the newly measured timer unit time data for each integration order. The storage unit holds the accumulated time data.

また、積算順位に動作温度に応じて重み付けした積算係数を用いたものである。   Further, an integration coefficient weighted according to the operating temperature is used for the integration order.

さらに、積算係数は原信号部の基幹部品である発光素子の経時劣化係数を動作温度範囲ごとにパラメータ化したものである。   Furthermore, the integration coefficient is obtained by parameterizing the deterioration coefficient with time of the light emitting element, which is a basic part of the original signal portion, for each operating temperature range.

本発明のロータリーエンコーダは、記憶部には温度検出部が検知した動作温度に応じた積算順位ごとに動作時間データを積算記憶させており、容易かつ正確に基幹部品の寿命や
余命などに対する診断および解析ができる。
In the rotary encoder of the present invention, the operation time data is integrated and stored in the storage unit for each integration order corresponding to the operation temperature detected by the temperature detection unit, and the life and life expectancy of key parts can be easily and accurately diagnosed. Analysis is possible.

また、積算係数を用いることで実動作時間から常温における見掛けの延べ動作時間に置き換えることができ、基幹部品の診断や解析が容易になる。   Further, by using the integration coefficient, it is possible to replace the actual operation time with the apparent total operation time at room temperature, thereby facilitating diagnosis and analysis of basic parts.

さらに、動作温度によって経時劣化の大きな特定部品の診断が直接可能となる。   Furthermore, it is possible to directly diagnose a specific component that is greatly deteriorated with time depending on the operating temperature.

回転に応じて回転位置データを出力する原信号部と、前記原信号部の動作温度を検出する温度検出部と、前記原信号部が動作している時間を計測するタイマー部と、前記タイマー部で計測した時間データを更新保持する電気的に書き込み可能な記憶部と、前記温度検出部が検知した動作温度に応じた積算順位に切替える選択部と、前記記憶部に保持した前回の時間データに新たに計測したタイマー部の時間データを加算する加算部と、前記タイマー部の動作/停止タイミングおよび記憶部での時間データの書き換えタイミングを出力する電源ON/OFF検出部と、外部からの要求信号であるシリアル信号を受信し前記原信号部と記憶部のデータから要求信号に応じたデータを選択しシリアルデータに変換し出力するデータ通信部とを備え、前記温度検出部とタイマー部との間に設けた選択部は、前記記憶部に保持したタイマー動作設定パラメータと前記温度検出部が検知した温度とから積算順位を選択し、タイマー部は選択された積算順位に基づいて動作時間を計測し、記憶部は計測した時間データを積算順位ごとに積算して記憶する。   An original signal unit that outputs rotational position data according to rotation, a temperature detection unit that detects an operating temperature of the original signal unit, a timer unit that measures a time during which the original signal unit is operating, and the timer unit An electrically writable storage unit that updates and holds the time data measured in step 1, a selection unit that switches to an integration order corresponding to the operating temperature detected by the temperature detection unit, and the previous time data stored in the storage unit Adder for adding time data of timer unit newly measured, power ON / OFF detection unit for outputting operation / stop timing of timer unit and rewriting timing of time data in storage unit, request signal from outside A data communication unit that receives the serial signal and selects the data corresponding to the request signal from the data of the original signal unit and the storage unit, converts the data into serial data, and outputs the data. The selection unit provided between the temperature detection unit and the timer unit selects an integration order from the timer operation setting parameter held in the storage unit and the temperature detected by the temperature detection unit, and the timer unit is selected. The operation time is measured based on the integration rank, and the storage unit accumulates and stores the measured time data for each integration rank.

以下、図1から図4を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1はロータリーエンコーダの構成図で、原信号部11はモータの回転に応じた回転位置データを出力する。温度検出部12は原信号部11の回路基板の表面温度あるいは雰囲気温度を測定し出力する。タイマー部13は原信号部11が動作している時間を計測する。記憶部14はタイマー部13で計測した時間データを保持する電気的に書き込みや消去が可能な記憶素子であるEEPROM、さらに記憶部14に動作温度範囲と積算順位とをパラメータ化したタイマー動作設定パラメータを保持させている。選択部15は温度検出部12の動作温度に応じてタイマー動作設定パラメータから積算順位を選択して切替える。加算部16は記憶部14で保持された前回の時間データにタイマー部13が計測した今回の時間データとを加算させる。電源ON/OFF検出部17のON/OFF信号はタイマー部13の動作/停止タイミングおよび記憶部14でのデータ書き換えタイミングに利用される。データ通信部18は外部からの要求信号であるシリアル信号を受信し原信号部11と記憶部14のデータから要求信号に応じたデータを選択しシリアルデータに変換し出力する。   FIG. 1 is a configuration diagram of a rotary encoder. An original signal unit 11 outputs rotational position data corresponding to the rotation of a motor. The temperature detector 12 measures and outputs the surface temperature or ambient temperature of the circuit board of the original signal unit 11. The timer unit 13 measures the time during which the original signal unit 11 is operating. The storage unit 14 is an EEPROM that is an electrically rewritable and erasable storage element that holds the time data measured by the timer unit 13, and the timer operation setting parameter in which the operation temperature range and integration order are parameterized in the storage unit 14. Is held. The selection unit 15 selects and switches the integration order from the timer operation setting parameters according to the operating temperature of the temperature detection unit 12. The adding unit 16 adds the current time data measured by the timer unit 13 to the previous time data held in the storage unit 14. The ON / OFF signal of the power ON / OFF detection unit 17 is used for the operation / stop timing of the timer unit 13 and the data rewrite timing in the storage unit 14. The data communication unit 18 receives a serial signal which is a request signal from the outside, selects data corresponding to the request signal from the data in the original signal unit 11 and the storage unit 14, converts it into serial data, and outputs it.

図2は原信号部11の動作を説明するもので、1回転360°内の絶対位置をmbitの分解能でCCW回転時単調増加、CW回転時単調減少の0から2m−1のデータである1回転データとモータの回転回数であり、CCW回転時増加変化、CW回転時減少変化となる多回転データを出力する。 FIG. 2 illustrates the operation of the original signal unit 11 and is data of 0 to 2 m −1 in monotone increase at CCW rotation and monotone decrease at CW rotation at an absolute position within 360 ° of one rotation at a resolution of mbit. One rotation data and the number of rotations of the motor are output, and multi-rotation data which is an increase change during CCW rotation and a decrease change during CW rotation is output.

図3はデータ通信部18の内部構成で、ラインドライバレシーバからなる双方向性バス31は外部とのシリアルデータの送信・受信の切替えをおこなう。受信器32は外部からの要求信号であるシリアル信号を受信し要求内容を示すコマンドを生成する。セレクタ33は原信号部11と記憶部14のデータから要求信号から生成されたコマンドに応じてデータを選択する。送信器34はコマンドとセレクタ33で選択されたデータと前記コマンドと前記選択されたデータより生成された通信誤り検出データとをシリアルデータに変換する。   FIG. 3 shows an internal configuration of the data communication unit 18, and a bidirectional bus 31 composed of a line driver receiver switches between transmission and reception of serial data with the outside. The receiver 32 receives a serial signal, which is a request signal from the outside, and generates a command indicating the request content. The selector 33 selects data according to a command generated from the request signal from the data of the original signal unit 11 and the storage unit 14. The transmitter 34 converts the command, the data selected by the selector 33, and the communication error detection data generated from the command and the selected data into serial data.

図4はシリアルデータの構成を説明するもので、サーボアンプに相当する外部からエンコーダへの要求信号であるRX信号にはエンコーダ内のどのデータを選択するかを示すコマンド部で構成され、一方エンコーダから外部への送信信号であるTX信号にはエンコーダで受信した前記コマンド部とコマンド部に沿ったデータ部とコマンド部とデータ部より生成された送信用誤り検出データ部より構成される。   FIG. 4 illustrates the configuration of serial data. The RX signal, which is a request signal to the encoder from the outside corresponding to a servo amplifier, is composed of a command section indicating which data in the encoder is selected, while the encoder The TX signal, which is a transmission signal from the outside to the outside, includes the command part received by the encoder, a data part along the command part, a command part, and a transmission error detection data part generated from the data part.

動作環境下における構成部品の長期的な経時劣化に対して故障診断が可能な実施例1について説明する。   A description will be given of a first embodiment in which failure diagnosis can be performed against long-term deterioration of components under an operating environment.

図5に原信号部11の構成部品として発光素子の動作時間に対する発光量の経時劣化特性を示す。温度Taで連続使用した場合に光量が初期の50%に達する時間を寿命時間L1とすると、温度Taが温度Tcへと上昇すれば寿命時間L1は寿命時間L3まで短くなることを示している。   FIG. 5 shows a temporal deterioration characteristic of the light emission amount with respect to the operation time of the light emitting element as a component of the original signal portion 11. If the time when the light amount reaches 50% of the initial value when continuously used at the temperature Ta is defined as the life time L1, the life time L1 is reduced to the life time L3 if the temperature Ta rises to the temperature Tc.

図6は記憶部14に保持したタイマー動作設定パラメータの説明図で、このタイマー動作設定パラメータは、例えば原信号部11の動作温度範囲を満たすように動作温度範囲T1から動作温度範囲T5まで5段階に設定し、この5段階の動作温度範囲に対して5段階の積算順位をパラメータとしてあらかじめ記憶部14に保持させておく。説明の便宜上、積算順位を5段階で説明したが記憶部の記憶容量に応じて任意に設定できる。   FIG. 6 is an explanatory diagram of the timer operation setting parameters stored in the storage unit 14. The timer operation setting parameters are, for example, five levels from the operating temperature range T1 to the operating temperature range T5 so as to satisfy the operating temperature range of the original signal unit 11. And the five stages of integration rank are stored in advance in the storage unit 14 as parameters for the five stages of operating temperature range. For convenience of explanation, the integration order has been described in five stages, but can be arbitrarily set according to the storage capacity of the storage unit.

選択部15は温度検出部12が検知した動作温度に応じてタイマー動作設定パラメータから積算順位が選択され、タイマー部13は選択された積算順位ごとに動作時間を計測する。このタイマー部13のON、OFFタイミングは電源ON/OFF検出部17によって決定され、タイマー部13の動作はON期間である。   The selection unit 15 selects the integration rank from the timer operation setting parameters according to the operation temperature detected by the temperature detection unit 12, and the timer unit 13 measures the operation time for each selected integration rank. The ON / OFF timing of the timer unit 13 is determined by the power ON / OFF detection unit 17, and the operation of the timer unit 13 is an ON period.

電源ON/OFF検出部17のOFFタイミングで加算部16は、タイマー部13で計測した今回の積算順位ごとの時間データに記憶部14が保持している前回の積算順位ごとの時間データを読み出して加算して記憶部14に記憶させ保持する。これにより記憶部14には新たな積算順位ごとの時間データが保持される。   At the OFF timing of the power ON / OFF detection unit 17, the addition unit 16 reads the time data for each previous integration rank stored in the storage unit 14 to the time data for each current integration rank measured by the timer unit 13. Add and store in the storage unit 14 and hold. Accordingly, the storage unit 14 holds time data for each new integration rank.

つまり、原信号部の構成部品がどのような積算順位(すなわち動作温度範囲)のもとでそれぞれ何時間動作したかを容易に把握でき、寿命や余命などの診断に利用できる。また、積算順位ごとに動作時間を積算するため、基幹部品の動作温度で経時劣化する係数が異なっていても汎用的に利用することができる。したがって、発光素子以外の電解コンデンサや電気二重層コンデンサなどにも適用することができる。   That is, it is possible to easily grasp how many hours each component of the original signal unit has operated under what order (ie, operating temperature range), and can be used for diagnosis of lifespan and life expectancy. Further, since the operation time is integrated for each integration order, it can be used for general purposes even if the coefficient of deterioration with time is different depending on the operation temperature of the basic part. Therefore, the present invention can also be applied to electrolytic capacitors other than light emitting elements, electric double layer capacitors, and the like.

実施例2は、実施例1の積算順位に動作温度による経時劣化による重み付けした積算係数を用いるもので、実施例1において説明した発光素子の寿命時間特性における劣化の加速性、つまり動作温度が高くなれば劣化が加速して寿命が短くなるという劣化の度合いと関連付けされており、常温下における見掛けの延べ動作時間に換算できる。   In the second embodiment, the weighted integration coefficient due to the deterioration with time due to the operating temperature is used for the integration order of the first embodiment. The acceleration of deterioration in the lifetime characteristic of the light emitting element described in the first embodiment, that is, the operating temperature is high. If this is the case, it is associated with the degree of deterioration in which the deterioration is accelerated and the life is shortened, and can be converted into an apparent total operation time at room temperature.

図7は各部の動作タイミングを説明するもので、エンコーダ電源71のON/OFFを印加される電源電圧波形で示しており、電源ON/OFF検出部17が出力する電源ON/OFF信号72は、エンコーダ電源71の立上りおよび立下り電圧を所定の電圧しきい値で”H/L”にて判別して得られる。   FIG. 7 illustrates the operation timing of each unit, and shows the power supply voltage waveform to which the ON / OFF of the encoder power supply 71 is applied. The power ON / OFF signal 72 output from the power ON / OFF detection unit 17 is It is obtained by discriminating the rising and falling voltages of the encoder power supply 71 with “H / L” at a predetermined voltage threshold.

ON信号73およびOFF信号74は、電源ON/OFF信号72の立上り変化および立下り変化を検出して得られる。このON信号73によりタイマー部13は動作時間の計
測を開始する。また、OFF信号74により記憶部14に保持した前回の時間データと今回の時間データを加算部16で加算して記憶部14に新たな時間データとして保持する。
The ON signal 73 and the OFF signal 74 are obtained by detecting a rising change and a falling change of the power ON / OFF signal 72. In response to the ON signal 73, the timer unit 13 starts measuring the operating time. Further, the previous time data held in the storage unit 14 by the OFF signal 74 and the current time data are added by the adding unit 16 and held as new time data in the storage unit 14.

温度データ75は、原信号部11が動作している間の温度変化の例を示したものであり、選択部15では記憶部14に保持したタイマー動作設定パラメータから温度検出部12が検知した温度データに対する積算係数76を選択する。この積算係数76は、図6で説明した積算順位に相当し、動作温度範囲ごとに重み付けした係数が選択される。   The temperature data 75 shows an example of a temperature change during the operation of the original signal unit 11, and the temperature detected by the temperature detection unit 12 from the timer operation setting parameter held in the storage unit 14 in the selection unit 15. The integration coefficient 76 for the data is selected. The integration coefficient 76 corresponds to the integration order described with reference to FIG. 6, and a weighted coefficient is selected for each operating temperature range.

クロック77(タイマー部13)は、ON信号73により動作を開始して一定周期tで出力され、積算係数(温度範囲に対応したD1からD5)ごとにクロック77が積算され今回の積算時間データであるタイマー積算値78となる。そして記憶部14に保持された前回までの延べ動作時間データAと今回のタイマー積算値78をOFF信号74のタイミングにより加算部16で加算して記憶部14に新たな時間データである延べ動作時間79として上書き保持する。この新たな延べ動作時間79はタイマー部13が次回動作を開始する時、前回までの延べ動作時間データAとなる。   The clock 77 (timer unit 13) starts to operate in response to the ON signal 73 and is output at a fixed period t. The clock 77 is integrated for each integration coefficient (D1 to D5 corresponding to the temperature range), and the current integration time data is used. A certain timer integrated value 78 is obtained. Then, the total operation time data A held in the storage unit 14 up to the previous time and the current timer integrated value 78 are added by the addition unit 16 at the timing of the OFF signal 74, and the total operation time as new time data is stored in the storage unit 14. 79 is overwritten and retained. The new total operation time 79 becomes the total operation time data A up to the previous time when the timer unit 13 starts the next operation.

このため、記憶部14に保持した時間データから常温下での見掛けの述べ動作時間を容易に知ることができる。また、記憶部14で保持された延べ動作時間79はデータ通信部18を介してエンコーダが接続される上位の機械でも読み出すことができる。   Therefore, it is possible to easily know the apparent operation time at room temperature from the time data held in the storage unit 14. Further, the total operation time 79 held in the storage unit 14 can be read out by a host machine to which the encoder is connected via the data communication unit 18.

なお、実施例2の応用例として、最初は実施例1と同様に積算順位ごとにクロック77を積算し、この積算値を利用する段階において積算係数を乗じて、延べ動作時間とすることもできる。この場合、積算順位ごとの時間データのみ利用するため、実施例1と同様に経時劣化の係数が異なる基幹部品にも利用できる。   As an application example of the second embodiment, as in the first embodiment, the clock 77 is initially integrated for each integration rank, and the total operation time can be obtained by multiplying the integration coefficient at the stage of using this integrated value. . In this case, since only the time data for each integration rank is used, it can be used for basic parts having different coefficients of deterioration with time as in the first embodiment.

実施例1および実施例2から明らかなように、動作温度に応じて動作時間を計測し、エンコーダ単体もしくはエンコーダを内蔵したサーボモータを機械に取り付けた状態でも動作時間が読み出せるため、経時劣化する基幹部品の故障要因解析や部品寿命や余命などに対する診断がより容易にかつより正確にできるロータリーエンコーダが得られる。   As is clear from the first and second embodiments, the operation time is measured according to the operation temperature, and the operation time can be read even when the encoder alone or the servo motor incorporating the encoder is attached to the machine. It is possible to obtain a rotary encoder that can easily and accurately diagnose failure factors of core parts and diagnoses of parts life and remaining life.

動作温度によって性能や信頼性などが経時劣化する電子部品や機構部品の故障診断や部品交換のメンテナンス性向上が要求される用途にも適用できる。   It can also be applied to applications where failure diagnosis of electronic parts and mechanical parts whose performance and reliability deteriorate with time due to operating temperature and improvement in maintainability of parts replacement are required.

本発明の実施の形態におけるロータリーエンコーダの構成図The block diagram of the rotary encoder in embodiment of this invention 本発明の実施の形態における原信号部の動作説明図Operation explanatory diagram of the original signal section in the embodiment of the present invention 本発明の実施の形態におけるデータ通信部の構成図The block diagram of the data communication part in embodiment of this invention 本発明の実施の形態におけるシリアルデータの信号構成の説明図Explanatory drawing of signal structure of serial data in embodiment of this invention 本発明の実施例1における発光素子の経時劣化特性の説明図Explanatory drawing of the time-dependent deterioration characteristic of the light emitting element in Example 1 of this invention. 本発明の実施例1におけるタイマー動作設定パラメータの説明図Explanatory drawing of the timer operation | movement setting parameter in Example 1 of this invention. 本発明の実施例2における動作タイミングの説明図Explanatory drawing of the operation timing in Example 2 of the present invention.

符号の説明Explanation of symbols

11 原信号部
12 温度検出部
13 タイマー部
14 記憶部
15 選択部
16 加算部
17 電源ON/OFF検出部
18 データ通信部

DESCRIPTION OF SYMBOLS 11 Original signal part 12 Temperature detection part 13 Timer part 14 Memory | storage part 15 Selection part 16 Addition part 17 Power supply ON / OFF detection part 18 Data communication part

Claims (3)

回転に応じて回転位置データを出力する原信号部と、前記原信号部の動作温度を検出する温度検出部と、前記原信号部が動作している時間を計測するタイマー部と、前記タイマー部で計測した時間データを更新保持する電気的に書き込み可能な記憶部と、前記温度検出部が検知した動作温度に応じた積算順位に切替える選択部と、前記記憶部に保持した前回の時間データに新たに計測したタイマー部の時間データを加算する加算部と、前記タイマー部の動作/停止タイミングおよび記憶部での時間データの書き換えタイミングを出力する電源ON/OFF検出部と、外部からの要求信号であるシリアル信号を受信し前記原信号部と記憶部のデータから要求信号に応じたデータを選択しシリアルデータに変換し出力するデータ通信部とを備え、前記温度検出部とタイマー部との間に設けた選択部は、前記記憶部に保持したタイマー動作設定パラメータと前記温度検出部が検知した温度とから積算順位を選択し、タイマー部は選択された積算順位に基づいて動作時間を計測し、加算部は前回の時間データと新たに計測したタイマー部の時間データを積算順位ごとに積算し、記憶部は積算した時間データを保持することを特徴としたロータリーエンコーダ。 An original signal unit that outputs rotational position data according to rotation, a temperature detection unit that detects an operating temperature of the original signal unit, a timer unit that measures a time during which the original signal unit is operating, and the timer unit An electrically writable storage unit that updates and holds the time data measured in step 1, a selection unit that switches to an integration order corresponding to the operating temperature detected by the temperature detection unit, and the previous time data stored in the storage unit Adder for adding time data of timer unit newly measured, power ON / OFF detection unit for outputting operation / stop timing of timer unit and rewriting timing of time data in storage unit, request signal from outside A data communication unit that receives the serial signal and selects the data corresponding to the request signal from the data of the original signal unit and the storage unit, converts the data into serial data, and outputs the data. The selection unit provided between the temperature detection unit and the timer unit selects an integration order from the timer operation setting parameter held in the storage unit and the temperature detected by the temperature detection unit, and the timer unit is selected. The operation time is measured based on the integration rank, the addition unit accumulates the previous time data and the newly measured time data of the timer unit for each integration rank, and the storage unit holds the accumulated time data. Rotary encoder. 積算順位に動作温度に応じて重み付けした積算係数を用いた請求項1に記載のロータリーエンコーダ。 The rotary encoder according to claim 1, wherein an integration coefficient weighted according to the operating temperature is used for the integration order. 積算係数は原信号部の基幹部品である発光素子の経時劣化係数を動作温度範囲ごとにパラメータ化したものである請求項2に記載のロータリーエンコーダ。

The rotary encoder according to claim 2, wherein the integration coefficient is obtained by parameterizing the deterioration coefficient with time of a light emitting element that is a key component of the original signal section for each operating temperature range.

JP2003379738A 2003-11-10 2003-11-10 Rotary encoder Expired - Fee Related JP4273933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003379738A JP4273933B2 (en) 2003-11-10 2003-11-10 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003379738A JP4273933B2 (en) 2003-11-10 2003-11-10 Rotary encoder

Publications (2)

Publication Number Publication Date
JP2005140731A JP2005140731A (en) 2005-06-02
JP4273933B2 true JP4273933B2 (en) 2009-06-03

Family

ID=34689697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003379738A Expired - Fee Related JP4273933B2 (en) 2003-11-10 2003-11-10 Rotary encoder

Country Status (1)

Country Link
JP (1) JP4273933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737612B2 (en) * 2005-10-28 2011-08-03 株式会社ニコン Encoder
JP4981590B2 (en) * 2007-09-06 2012-07-25 光洋電子工業株式会社 Life prediction method for rotary encoder, rotary encoder and electronic control system

Also Published As

Publication number Publication date
JP2005140731A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3228333U (en) Rotary encoder
JP5688904B2 (en) Automatic sensor calibration by downloading sensor parameters
TWI397791B (en) Microcontroller methods of improving reliability in dc brushless motors and cooling fans
CN107533330B (en) Method for monitoring an electronic control unit and control unit for a motor vehicle
US20050285446A1 (en) Position measuring device
US20100201342A1 (en) Verfahren zum Betreiben eines Feldgerates
CN1971456A (en) Automation system comprising a connected sensor or actuator
JP4273933B2 (en) Rotary encoder
US8393219B2 (en) Ultrasonic transducer, ultrasonic sensor and method for operating an ultrasonic sensor
US20090132114A1 (en) Control Device and Adjusting Mechanism of a Motor Vehicle
KR101158922B1 (en) Method and device for controlling an electromotor
US20050007056A1 (en) Motor, and motor control method
CN113466688A (en) Motor parameter identification method, device, motor, system and storage medium
JP3596302B2 (en) Motor control method using absolute encoder
US20190006919A1 (en) Motor system and motor control method
JP5174687B2 (en) Optical transmission module and status information storage method
JPH0876841A (en) Displacement detection device
JP6865841B2 (en) Methods and devices for maintaining the detected absolute position of an electric motor acting as an actuator during critical operation
US7155328B2 (en) Device and method for determining gearbox positions in an automatic gearbox
CN115060987B (en) Motor phase loss detection method and device, electronic equipment and storage medium
JP4673227B2 (en) Temperature history measuring method and apparatus
JP4403741B2 (en) Physical quantity measuring instrument with time recording function
KR102438748B1 (en) Apparatus for diagnosing defect of inductive speed sensor and method for the same
EP4086600B1 (en) Temperature sensor
KR102500129B1 (en) Ict .

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R151 Written notification of patent or utility model registration

Ref document number: 4273933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees