JP4273606B2 - Dual wavelength light source device and optical head device - Google Patents

Dual wavelength light source device and optical head device Download PDF

Info

Publication number
JP4273606B2
JP4273606B2 JP2000017447A JP2000017447A JP4273606B2 JP 4273606 B2 JP4273606 B2 JP 4273606B2 JP 2000017447 A JP2000017447 A JP 2000017447A JP 2000017447 A JP2000017447 A JP 2000017447A JP 4273606 B2 JP4273606 B2 JP 4273606B2
Authority
JP
Japan
Prior art keywords
wavelength
light
optical
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000017447A
Other languages
Japanese (ja)
Other versions
JP2001209963A (en
Inventor
真弘 村川
譲 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2000017447A priority Critical patent/JP4273606B2/en
Publication of JP2001209963A publication Critical patent/JP2001209963A/en
Application granted granted Critical
Publication of JP4273606B2 publication Critical patent/JP4273606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2波長光源装置および光ヘッド装置に関する。
【0002】
【従来の技術】
CDやDVDなどの光ディスク、および光磁気ディスクなど光記録媒体の情報の記録・再生を行う光ヘッド装置において、半導体レーザからの出射光はレンズにより光記録媒体上に集光され、集光された光は光記録媒体に反射されて戻り光となる。そして、この戻り光はビームスプリッタを用いて光検出器である受光素子へ導かれ、光記録媒体上の情報が電気信号に変換される。
【0003】
また、同一の光ヘッド装置を用いて規格の異なるCDおよびDVDの光ディスクの情報を記録・再生するため、CD/DVD互換の光ヘッド装置が製品化されている。特に、光記録媒体として波長依存性の高い媒体を用いるCD−Rなどの再生を前提とした場合、CD用に波長790nmの半導体レーザが用いられ、DVD用に波長650nmの半導体レーザが用いられている。
【0004】
さらに、波長790nmの半導体レーザと波長650nmの半導体レーザをその発光点間隔を100〜300μm隔てて配置し構成した2波長用半導体レーザを、1つの光源ユニット内に用いることにより、発光点の位置精度が高く安定した光ヘッド装置が得られる。また、部品点数を削減して光ヘッド装置の小型化・軽量化が図られ、光学系の設計を簡略化できるなどの利点があるため、2波長用半導体レーザを用いた種々の光ヘッド装置の構成が提案されている。
【0005】
例えば図5(a)、(b)において、2波長用半導体レーザ1の波長650nmの発光点1Aおよび波長790nmの発光点1Bからの出射光は、コリメートレンズ11により平行光となり、対物レンズ12により光記録媒体(CDやDVDなど)である光ディスク13の上に集光される。
【0006】
【発明が解決しようとする課題】
図5(a)に示すように、波長650nmの半導体レーザの発光点1Aをコリメートレンズ11および対物レンズ12の回転対称軸上(光軸上)に配置することにより、波面収差の少ない良好な光学特性が得られる。
一方、波長790nmの半導体レーザ(図5(b))は発光点1Bの位置が発光点1Aとは異なり光軸上にないため、コリメートレンズ11および対物レンズ12に対して入射光は斜入射となり、それに伴って非点収差やコマ収差が発生し、光ディスク上への集光性が劣化する。その結果、情報の記録・再生が不安定となる問題があった。
【0007】
【課題を解決するための手段】
本発明は、上記の課題を解決するためになされたものであり、波長λおよび波長λ(λ≠λ)の互いに平行な振動面をもつ直線偏光それぞれ異なる発光点位置から出射する2波長用半導体レーザと、前記2波長用半導体レーザから出射した互いに平行な振動面をもつ前記波長λ と前記波長λ の振動面を互いに直交させる効果があるリタデーション値を有する位相板と、前記波長λおよび前記波長λの直線偏光が透過する2波長用偏向光学素子とこの順に備えた2波長光源装置であって、前記2波長用偏向光学素子は複屈折媒体を備え、常光となる前記波長λの直線偏光を偏向することなく透過させ、異常光となる前記波長λの直線偏光を前記波長λの透過光の光軸と一致するように偏向することを特徴とする2波長光源装置を提供する。
【0008】
また、上記の2波長光源装置と、前記2波長光源装置からの出射光を光記録媒体に集光する対物レンズとを少なくとも備える、光記録媒体の情報の記録・再生を行う光ヘッド装置であって、前記2波長光源装置からの出射光の光軸が前記対物レンズの光軸と一致していることを特徴とする光ヘッド装置を提供する。
【0009】
【発明の実施の形態】
図1の2波長光源装置は、2波長用半導体レーザ1と2波長用偏向光学素子2から構成され、2波長用偏向光学素子2は複屈折媒体4を備えている。
2波長用半導体レーザ1において、DVD系の波長λ1=650nmの光を出射する発光点1AとCD系の波長λ2=790nmの光を出射する発光点1Bとが間隔wで配置されている。発光点1Aおよび1Bを出射した直線偏光は、振動面が互いに直交しており、複屈折媒体4上の点2Aおよび2B(間隔w離れている)にそれぞれ入射する。
【0010】
2波長用偏向光学素子2は厚さがtの平行平板状の複屈折媒体4からなり、この複屈折媒体4を、この表面に立てた法線と光学軸6との角がθとなり、波長λ1の直線偏光が常光、波長λ2の直線偏光が異常光になるように設置することにより、波長λ1の光は偏向することなく複屈折媒体4を透過し、波長λ2の光は式1の関係に従って、角度ψ偏向して複屈折媒体4中を進む。
【0011】
【数1】

Figure 0004273606
【0012】
ここで、noは波長λ1に対する複屈折媒体の常光屈折率、neは波長λ2に対する複屈折媒体の異常光屈折率である。式1は鶴田匡夫著「応用光学II」(培風館、第156頁)に記載されている(図6参照。図6中の符号で図1と同じものは同じ要素を表わす)。
【0013】
複屈折媒体4を透過する波長λ1の光と波長λ2の光が、2波長用偏向光学素子2透過後に同一の光軸上を進むためには、複屈折媒体4の厚さtが式2に従う必要がある。
t=w/tanψ・・・(式2)
このとき、複屈折媒体4の表面に立てた法線と光学軸6とのなす角θを45°にすることは、複屈折媒体の厚さtを最小にすることができ望ましい。
【0014】
複屈折媒体4として、常光屈折率noと異常光屈折率neとの差が大きい複屈折媒体、例えば、液晶、光学結晶の方解石などを利用することは、複屈折媒体の厚さtを小さくでき望ましい。
図2の2波長光源装置は、2波長用半導体レーザ1と2波長用偏向光学素子2から構成され、特に2波長用偏向光学素子2は複屈折媒体4に位相板3を接着剤5で固定したものである。
【0015】
2波長用半導体レーザ1において、DVD系の波長λ1=650nmの光を出射する発光点1AとCD系の波長λ2=790nmの光を出射する発光点1Bとが間隔wで配置されている。発光点1Aおよび1Bを出射した直線偏光は、位相板3を透過することにより振動面が互いに直交する直線偏光になり、複屈折媒体4上の間隔がwである点2Aおよび2Bにそれぞれ入射する。
【0016】
位相板3として、2波長用半導体レーザ1から出射する2つの直線偏光の振動面を互いに直交させる効果があるリタデーション値を有するものを選択することは、複屈折媒体4が上記の機能、すなわち波長λ1の常光と波長λ2の異常光との進む方向を異ならせることが効果的にでき望ましい。図2中図1の符号と同じ他の要素は、図1と同じ要素である。
【0017】
2波長用半導体レーザ1を出射する2つの波長の光が互いに平行な振動面をもつ直線偏光である場合、位相板3として、波長λ1の直線偏光の振動面を90°回転させ、波長λ2の直線偏光の振動面を回転させないリタデーション値を有するものを利用できる。例えば、リタデーション値が1625nmの位相板は、波長λ1(650nm)の直線偏光の振動面を90°回転させ、波長λ2(790nm)の直線偏光の振動面をほとんど回転させない。
【0018】
また、波長λ1の直線偏光の振動面を回転させずに、波長λ2の直線偏光の振動面を90°回転させるリタデーション値を有するものも利用できる。例えば、リタデーション値が1950nmの位相板は、波長λ1(650nm)の直線偏光の振動面を回転させず、波長λ2(790nm)の直線偏光の振動面を約90°回転させる。
【0019】
位相板3の材料として、水晶やニオブ酸リチウムなどの複屈折性の光学結晶、ポリカボーネートなどを1軸延伸して複屈折性を発現させた有機物薄膜、または配向処理を施した透明基板に高分子液晶のモノマーを塗布し硬化させた高分子液晶薄膜などを使用できる。
【0020】
接着剤5として、複屈折媒体4との屈折率差および位相板3との屈折率差が小さいものを選択することは、これらの材料の各界面での反射損失を低減できて望ましい。
図3の2波長光源装置は、2波長用半導体レーザ1とビームスプリッタ機能を有する2波長用偏向光学素子9から構成され、特にビームスプリッタ機能を有する2波長用偏向光学素子9は複屈折媒体4に位相板3を接着剤5で固定し、複屈折媒体4の位相板3とは反対側の面にビームスプリッタの機能を持たせている。
【0021】
ビームスプリッタの機能を持たせる方法として、透明基板に直接断面が周期的な凹凸形状をした格子を形成または透明基板の表面に成膜した薄膜に断面が周期的な凹凸形状をした格子を形成する方法がある。またはホログラムを形成することによって作された回折光学素子7を、複屈折媒体4に接着剤8で固定する方法がある。また、複屈折媒体4に直接、または複屈折媒体4の表面に形成した薄膜に、断面が周期的な凹凸の形状をした格子またはホログラムを形成することによっても、ビームスプリッタの機能を持たせることができる(図示せず)。図3中図1の符号と同じ他の要素は、図1と同じ要素である。
【0022】
図4では2波長用偏向光学素子2を2波長用半導体レーザ1とコリメートレンズ11との間に配置した光ヘッド装置としている。
発光点1Aから出射された波長λ1の光は図4(a)に示すように2波長用偏向光学素子2を直進透過し、発光点1Bから出射された波長λ2の光は図4(b)に示すように2波長用偏向光学素子2により、波長λ1の光と同じ光軸上に偏向され、コリメートレンズ11および対物レンズ12へと導かれる。
【0023】
その結果、いずれの波長の光も対物レンズの収差が小さい良好な光学的状況が維持され、光記録媒体13の情報の記録・再生が高精度で安定して行われる。
また、2波長用偏向光学素子2をコリメートレンズ11と対物レンズ12との間に配置してもよい。この場合、2波長用偏向光学素子2への入射光がほぼ平行光となり偏向特性の劣化、すなわち入射角度によって偏向方向が所定の方向からずれること、を低減できる。
【0024】
【実施例】
まず本実施例の2波長光源装置を図2に基いて説明する。
2波長用半導体レーザ1として、発光点1AからDVD系の波長λ1=650nmの光を出射し、発光点1BからCD系の波長λ2=790nmの光を出射するモノリシックな2波長用半導体レーザを用いた。発光点1Aと1Bの間隔wは200μmであり、また2波長用半導体レーザ1を出射する波長λ1および波長λ2の光は紙面に垂直な方向に振動面を有する直線偏光であった。
【0025】
2波長用偏向光学素子2を構成する複屈折媒体4として方解石の結晶を用い、その結晶表面に立てた法線と光学軸6とのなす角θが45°であった。波長λ2に対する方解石の常光屈折率noは1.649、異常光屈折率neは1.482であり、式2に従って結晶の厚さを1.89mmに決定した。
【0026】
位相板3としてリタデーション値が1950nmの位相板を用い、この位相板は波長λ1の直線偏光の振動面を回転させず、波長λ2の直線偏光の振動面を約90°回転させる効果がある。
上記の材料を用い、図2に示すように構成した2波長光源装置から出射する波長λ1と波長λ2の光は、同一軸を進むことができる。
【0027】
次に、この2波長光源装置を図4に示した光ヘッド装置に搭載した。
その結果、波長λ1および波長λ2のいずれの光も光記録媒体13の情報記録面に回折限界に相当するビーム径で集光され、使用波長の異なる2種類の光記録媒体の情報の記録・再生が高精度で安定して行われた。
【0028】
【発明の効果】
以上説明したように、本発明の2波長光源装置によれば、2波長用偏向光学素子を用いて発光点と振動面の異なる2つの波長の光の光軸を一致させることができる。したがって、この2波長光源装置を光ヘッド装置に組み込むことにより、入射光は対物レンズ、コリメートレンズなどの同一の光軸に対して斜め入射することはなく、この入射光に基く収差は存在しない。
【0029】
このため、使用波長の異なる光記録媒体の情報の記録・再生が高精度で安定して行える光ヘッド装置を構成できる。また、部品点数の少ない小型で軽量の光ヘッド装置も実現できる。
【図面の簡単な説明】
【図1】本発明の2波長光源装置の構成の1例を示す断面図。
【図2】本発明の2波長光源装置の構成の別の例を示す断面図。
【図3】本発明の2波長光源装置の構成の他の例を示す断面図。
【図4】本発明の2波長光源装置を用いた光ヘッド装置の1例を示す概念的側面図で、(a)発光点からの出射光が波長用偏向光学素子を直進透過する状況を示す概念的側面図、(b)発光点からの出射光が波長用偏向光学素子により偏向する状況を示す概念的側面図。
【図5】従来の2波長用半導体レーザを用いた光ヘッド装置の1例を示す概念的側面図で、(a)発光点からの出射光が光軸上を直進する状況を示す概念的側面図、(b)発光点からの出射光が光軸に対して斜めに入射する状況を示す概念的側面図。
【図6】複屈折媒体中で常光と異常光が進行する様子を示す概念図。
【符号の説明】
1:2波長用半導体レーザ
1A、1B:発光点
2:2波長用偏向光学素子
3:位相板
4:複屈折媒体
5、8:接着剤
6:複屈折媒体4の光学軸
7:回折光学素子
9:ビームスプリッタ機能を有する2波長用偏向光学素子
11:コリメートレンズ
12:対物レンズ
13:光記録媒体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a two-wavelength light source device and an optical head device.
[0002]
[Prior art]
In an optical head device for recording / reproducing information on an optical recording medium such as an optical disk such as a CD and a DVD and a magneto-optical disk, the light emitted from the semiconductor laser is condensed and condensed on the optical recording medium by a lens. The light is reflected by the optical recording medium and becomes return light. The return light is guided to a light receiving element which is a photodetector using a beam splitter, and information on the optical recording medium is converted into an electric signal.
[0003]
Also, CD / DVD compatible optical head devices have been commercialized in order to record / reproduce information on CD and DVD optical discs of different standards using the same optical head device. In particular, assuming reproduction of a CD-R using a wavelength-dependent medium as an optical recording medium, a semiconductor laser with a wavelength of 790 nm is used for CD, and a semiconductor laser with a wavelength of 650 nm is used for DVD. Yes.
[0004]
Further, by using a two-wavelength semiconductor laser in which a semiconductor laser having a wavelength of 790 nm and a semiconductor laser having a wavelength of 650 nm are arranged with a light-emitting point interval of 100 to 300 μm in one light source unit, the position accuracy of the light-emitting point is obtained. High and stable optical head device can be obtained. Further, since the number of components is reduced, the optical head device can be reduced in size and weight, and the design of the optical system can be simplified. Therefore, various optical head devices using two-wavelength semiconductor lasers can be used. A configuration is proposed.
[0005]
For example, in FIGS. 5 (a) and 5 (b), the light emitted from the light emission point 1 A having a wavelength of 650 nm and the light emission point 1 B having a wavelength of 790 nm of the two-wavelength semiconductor laser 1 is converted into parallel light by the collimator lens 11. The light is condensed on an optical disk 13 which is an optical recording medium (CD, DVD, etc.).
[0006]
[Problems to be solved by the invention]
As shown in FIG. 5A, by arranging the light emitting point 1A of the semiconductor laser having a wavelength of 650 nm on the rotational symmetry axis (on the optical axis) of the collimating lens 11 and the objective lens 12, a good optical with less wavefront aberration is obtained. Characteristics are obtained.
On the other hand, since the position of the light emitting point 1B is not on the optical axis unlike the light emitting point 1A, the incident light is obliquely incident on the collimating lens 11 and the objective lens 12 in the semiconductor laser having a wavelength of 790 nm (FIG. 5B). As a result, astigmatism and coma occur, and the light condensing performance on the optical disk deteriorates. As a result, there has been a problem that recording / reproduction of information becomes unstable.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, emitted from different light emitting points positions linearly polarized light having a wavelength lambda 1 and wavelength λ 2 (λ 1 ≠ λ 2 ) from one another parallel plane of vibration of A two-wavelength semiconductor laser, and a phase plate having a retardation value that has an effect of orthogonally crossing the vibration surfaces of the wavelength λ 1 and the wavelength λ 2 emitted from the two-wavelength semiconductor laser. , 2 and wavelength for the optical deflector to the wavelength lambda 1 and the wavelength lambda 2 of the linearly polarized light is transmitted, a a double-wavelength light source device provided in this order, the 2-wavelength optical deflector is a birefringent medium And transmitting the linearly polarized light having the wavelength λ 1 that becomes ordinary light without being deflected, and deflecting the linearly polarized light having the wavelength λ 2 that becomes abnormal light so as to coincide with the optical axis of the transmitted light having the wavelength λ 1. Features Providing two-wavelength light source unit.
[0008]
An optical head device for recording / reproducing information on an optical recording medium, comprising at least the above-mentioned two-wavelength light source device and an objective lens for condensing the light emitted from the two-wavelength light source device on the optical recording medium. The optical head device is characterized in that the optical axis of the light emitted from the two-wavelength light source device is coincident with the optical axis of the objective lens.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The two-wavelength light source device of FIG. 1 includes a two-wavelength semiconductor laser 1 and a two-wavelength deflecting optical element 2, and the two-wavelength deflecting optical element 2 includes a birefringent medium 4.
In the two-wavelength semiconductor laser 1, a light emitting point 1A that emits light with a wavelength of λ 1 = 650 nm for a DVD system and a light emitting point 1B that emits light with a wavelength of λ 2 = 790 nm for a CD system are arranged at an interval w. . The linearly polarized light beams emitted from the light emitting points 1A and 1B have vibration planes orthogonal to each other and are incident on the points 2A and 2B (separated by a distance w) on the birefringent medium 4, respectively.
[0010]
The two-wavelength deflecting optical element 2 is composed of a parallel flat birefringent medium 4 having a thickness t, and the angle between the normal line standing on the surface of the birefringent medium 4 and the optical axis 6 is θ, and the wavelength By setting the linearly polarized light of λ 1 to be ordinary light and the linearly polarized light of wavelength λ 2 to be extraordinary light, the light of wavelength λ 1 is transmitted through the birefringent medium 4 without being deflected, and the light of wavelength λ 2 is According to the relationship of Equation 1, the angle ψ is deflected and proceeds through the birefringent medium 4.
[0011]
[Expression 1]
Figure 0004273606
[0012]
Here, n o is the ordinary refractive index of the birefringent medium with respect to the wavelength lambda 1, n e is the extraordinary refractive index of the birefringent medium against wavelength lambda 2. Equation 1 is described in “Applied Optics II” by Yasio Tsuruta (see Baifukan, page 156) (see FIG. 6, the same reference numerals in FIG. 6 as those in FIG. 1 represent the same elements).
[0013]
Light of the wavelength lambda 1 of light and the wavelength lambda 2 passing through the birefringent medium 4, to advance the same optical axis in 2-wavelength optical deflector 2 transmission, the thickness t of the birefringent medium 4 wherein It is necessary to follow 2.
t = w / tanψ (Formula 2)
At this time, it is desirable that the angle θ formed by the normal line standing on the surface of the birefringent medium 4 and the optical axis 6 be 45 °, because the thickness t of the birefringent medium can be minimized.
[0014]
As the birefringent medium 4, the ordinary refractive index n o and the difference is greater birefringent medium of the extraordinary refractive index n e, for example, a liquid crystal, making use of such calcite optical crystal, the thickness t of the birefringent medium It can be small and desirable.
The two-wavelength light source device shown in FIG. 2 includes a two-wavelength semiconductor laser 1 and a two-wavelength deflecting optical element 2. In particular, the two-wavelength deflecting optical element 2 fixes a phase plate 3 to a birefringent medium 4 with an adhesive 5. It is a thing.
[0015]
In the two-wavelength semiconductor laser 1, a light emitting point 1A that emits light with a wavelength of λ 1 = 650 nm for a DVD system and a light emitting point 1B that emits light with a wavelength of λ 2 = 790 nm for a CD system are arranged at an interval w. . The linearly polarized light emitted from the light emitting points 1A and 1B is transmitted through the phase plate 3 to become linearly polarized light whose vibration planes are orthogonal to each other, and is incident on the points 2A and 2B where the distance on the birefringent medium 4 is w. .
[0016]
Selecting the phase plate 3 having a retardation value that has the effect of orthogonally oscillating the planes of vibration of two linearly polarized light emitted from the two-wavelength semiconductor laser 1 means that the birefringent medium 4 has the above function, that is, the wavelength. It is effective and desirable to make the traveling directions of the ordinary light of λ 1 and the extraordinary light of wavelength λ 2 different. Other elements in FIG. 2 that are the same as those in FIG. 1 are the same elements as in FIG.
[0017]
When the two wavelengths of light emitted from the two-wavelength semiconductor laser 1 are linearly polarized light having vibration surfaces parallel to each other, the vibration surface of the linearly polarized light having the wavelength λ 1 is rotated by 90 ° as the phase plate 3, and the wavelength λ Those having a retardation value that does not rotate the vibration plane of the linearly polarized light 2 can be used. For example, a phase plate having a retardation value of 1625 nm rotates the vibration plane of linearly polarized light with wavelength λ 1 (650 nm) by 90 ° and hardly rotates the vibration plane of linearly polarized light with wavelength λ 2 (790 nm).
[0018]
Further, it is also possible to use a material having a retardation value that rotates the vibration surface of the linearly polarized light having the wavelength λ 2 by 90 ° without rotating the vibration surface of the linearly polarized light having the wavelength λ 1 . For example, a phase plate having a retardation value of 1950 nm does not rotate the plane of vibration of linearly polarized light having the wavelength λ 1 (650 nm), but rotates the plane of vibration of linearly polarized light having the wavelength λ 2 (790 nm) by about 90 °.
[0019]
As a material for the phase plate 3, a birefringent optical crystal such as quartz or lithium niobate, an organic thin film obtained by uniaxial stretching of polycarbonate or the like, or a transparent substrate subjected to orientation treatment A polymer liquid crystal thin film coated with a polymer liquid crystal monomer and cured can be used.
[0020]
It is desirable to select an adhesive 5 that has a small difference in refractive index with the birefringent medium 4 and a small difference in refractive index with the phase plate 3 because reflection loss at each interface of these materials can be reduced.
3 includes a two-wavelength semiconductor laser 1 and a two-wavelength deflecting optical element 9 having a beam splitter function. In particular, the two-wavelength deflecting optical element 9 having a beam splitter function is a birefringent medium 4. The phase plate 3 is fixed with an adhesive 5 and the surface of the birefringent medium 4 opposite to the phase plate 3 has a beam splitter function.
[0021]
As a method of providing a beam splitter function, a grating having a periodic uneven shape with a periodic section is formed directly on a transparent substrate or a grating having a periodic uneven shape is formed on a thin film formed on the surface of a transparent substrate. There is a way. Or a diffractive optical element 7 which is made created by forming a hologram, a method of fixing with an adhesive 8 to the birefringent medium 4. Further, the beam splitter function can also be provided by forming a grating or a hologram having a concave-convex shape with a periodic section on the birefringent medium 4 directly or on a thin film formed on the surface of the birefringent medium 4. (Not shown). Other elements in FIG. 3 that are the same as those in FIG. 1 are the same elements as in FIG.
[0022]
In FIG. 4, an optical head device in which the two-wavelength deflecting optical element 2 is disposed between the two-wavelength semiconductor laser 1 and the collimating lens 11 is shown.
The light of wavelength λ 1 emitted from the light emitting point 1A passes straight through the two-wavelength deflecting optical element 2 as shown in FIG. 4A, and the light of wavelength λ 2 emitted from the light emitting point 1B is shown in FIG. As shown in b), the light is deflected by the two-wavelength deflecting optical element 2 on the same optical axis as the light of wavelength λ 1 and guided to the collimating lens 11 and the objective lens 12.
[0023]
As a result, a good optical situation in which the aberration of the objective lens is small is maintained for light of any wavelength, and information recording / reproduction on the optical recording medium 13 is performed stably with high accuracy.
Further, the two-wavelength deflecting optical element 2 may be disposed between the collimating lens 11 and the objective lens 12. In this case, the incident light to the two-wavelength deflecting optical element 2 becomes substantially parallel light, and it is possible to reduce the deterioration of the deflection characteristics, that is, the deviation of the deflection direction from a predetermined direction depending on the incident angle.
[0024]
【Example】
First, the two-wavelength light source device of this embodiment will be described with reference to FIG.
As the two-wavelength semiconductor laser 1, a monolithic two-wavelength semiconductor laser that emits light having a wavelength of λ 1 = 650 nm for a DVD system from the light emitting point 1A and light having a wavelength of λ 2 = 790 nm for a CD system is emitted from the light emitting point 1B. Was used. The distance w between the light emitting points 1A and 1B was 200 μm, and the light of wavelength λ 1 and wavelength λ 2 emitted from the two-wavelength semiconductor laser 1 was linearly polarized light having a vibration surface in a direction perpendicular to the paper surface.
[0025]
A calcite crystal was used as the birefringent medium 4 constituting the two-wavelength deflecting optical element 2, and the angle θ between the normal line standing on the crystal surface and the optical axis 6 was 45 °. Ordinary refractive index n o of calcite for the wavelength lambda 2 is 1.649, extraordinary refractive index n e is 1.482 to determine the thickness of the crystal in accordance with equation 2 to 1.89 mm.
[0026]
Retardation value using the phase plate of 1950nm as the phase plate 3, the phase plate has the effect without rotating the plane of vibration of linearly polarized light of wavelength lambda 1, is approximately 90 ° rotation of the plane of vibration of linearly polarized light having a wavelength lambda 2 .
The light of the wavelength λ 1 and the wavelength λ 2 emitted from the two-wavelength light source device configured as shown in FIG. 2 using the above materials can travel on the same axis.
[0027]
Next, this two-wavelength light source device was mounted on the optical head device shown in FIG.
As a result, both the light of wavelength λ 1 and wavelength λ 2 are condensed on the information recording surface of the optical recording medium 13 with a beam diameter corresponding to the diffraction limit, and information is recorded on two types of optical recording media having different working wavelengths. -Playback was performed with high accuracy and stability.
[0028]
【The invention's effect】
As described above, according to the two-wavelength light source device of the present invention, the optical axes of two wavelengths of light having different light emission points and vibration surfaces can be made coincident using the two-wavelength deflecting optical element. Therefore, by incorporating this two-wavelength light source device into the optical head device, incident light does not enter obliquely with respect to the same optical axis such as an objective lens and a collimating lens, and there is no aberration based on this incident light.
[0029]
Therefore, it is possible to configure an optical head device capable of stably recording and reproducing information on optical recording media having different use wavelengths with high accuracy. In addition, a small and lightweight optical head device with a small number of parts can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of the configuration of a two-wavelength light source device of the present invention.
FIG. 2 is a cross-sectional view showing another example of the configuration of the two-wavelength light source device of the present invention.
FIG. 3 is a cross-sectional view showing another example of the configuration of the two-wavelength light source device of the present invention.
FIG. 4 is a conceptual side view showing an example of an optical head device using the two-wavelength light source device of the present invention, and (a) shows a situation in which light emitted from a light emitting point goes straight through a wavelength deflecting optical element. The conceptual side view, (b) The conceptual side view which shows the condition where the emitted light from a light emission point deflect | deviates with the deflection optical element for wavelengths.
FIG. 5 is a conceptual side view showing an example of an optical head device using a conventional two-wavelength semiconductor laser; (a) a conceptual side view showing a situation where light emitted from a light emitting point goes straight on an optical axis; FIG. 4B is a conceptual side view showing a situation where light emitted from a light emitting point is incident obliquely with respect to the optical axis.
FIG. 6 is a conceptual diagram showing how ordinary light and extraordinary light travel in a birefringent medium.
[Explanation of symbols]
1: Semiconductor laser 1A for two wavelengths, 1B: Light emitting point 2: Deflection optical element for two wavelengths 3: Phase plate 4: Birefringent medium 5, 8: Adhesive 6: Optical axis 7 of birefringent medium 4: Diffraction optical element 9: Two-wavelength deflecting optical element 11 having a beam splitter function 11: Collimating lens 12: Objective lens 13: Optical recording medium

Claims (4)

波長λおよび波長λ(λ≠λ)の互いに平行な振動面をもつ直線偏光それぞれ異なる発光点位置から出射する2波長用半導体レーザと、
前記2波長用半導体レーザから出射した互いに平行な振動面をもつ前記波長λ と前記波長λ の振動面を互いに直交させる効果があるリタデーション値を有する位相板と、
前記波長λおよび前記波長λの直線偏光が透過する2波長用偏向光学素子とこの順に備えた2波長光源装置であって、
前記2波長用偏向光学素子は複屈折媒体を備え、常光となる前記波長λ1の直線偏光を偏向することなく透過させ、異常光となる前記波長λの直線偏光を前記波長λの透過光の光軸と一致するように偏向することを特徴とする2波長光源装置。
2 the wavelength semiconductor laser which emits different light emitting point position respectively linearly polarized light having mutually parallel plane of vibration of the wavelength lambda 1 and wavelength λ 2 (λ 1 ≠ λ 2 ),
A phase plate having a retardation value having an effect of orthogonally crossing the vibration surfaces of the wavelength λ 1 and the wavelength λ 2 having vibration surfaces parallel to each other emitted from the two-wavelength semiconductor laser ;
2 and the wavelength for the optical deflector, wherein the wavelength lambda 1 and the wavelength lambda 2 of the linearly polarized light is transmitted, a a double-wavelength light source device provided in this order,
The two-wavelength deflecting optical element includes a birefringent medium, transmits the linearly polarized light with the wavelength λ 1 that becomes ordinary light without being deflected, and transmits the linearly polarized light with the wavelength λ 2 that becomes abnormal light with the wavelength λ 1 . A two-wavelength light source device that deflects light to coincide with the optical axis of transmitted light.
前記位相板は、複屈折性の光学結晶、1軸延伸させた有機物薄膜、高分子液晶薄膜のいずれかから構成される請求項1に記載の2波長光源装置。It said phase plate is a birefringent optical crystal, 1 thin organic film was biaxially stretched, two-wavelength light source apparatus according to claim 1 that consists of either a polymer liquid crystal film. 前記2波長用偏向光学素子は、さらに断面形状が凹凸状の回折光学素子を備えている請求項1または2に記載の2波長光源装置。  The two-wavelength light source device according to claim 1, wherein the two-wavelength deflecting optical element further includes a diffractive optical element having a concavo-convex cross-sectional shape. 請求項1、2または3に記載の2波長光源装置と、前記2波長光源装置からの出射光を光記録媒体に集光する対物レンズとを少なくとも備える、光記録媒体の情報の記録・再生を行う光ヘッド装置であって、
前記2波長光源装置からの出射光の光軸が前記対物レンズの光軸と一致していることを特徴とする光ヘッド装置。
Recording / reproducing information on an optical recording medium, comprising at least the two-wavelength light source device according to claim 1, 2 or 3 and an objective lens for condensing light emitted from the two-wavelength light source device onto the optical recording medium. An optical head device that performs
An optical head device, wherein an optical axis of light emitted from the two-wavelength light source device coincides with an optical axis of the objective lens.
JP2000017447A 2000-01-26 2000-01-26 Dual wavelength light source device and optical head device Expired - Fee Related JP4273606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000017447A JP4273606B2 (en) 2000-01-26 2000-01-26 Dual wavelength light source device and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000017447A JP4273606B2 (en) 2000-01-26 2000-01-26 Dual wavelength light source device and optical head device

Publications (2)

Publication Number Publication Date
JP2001209963A JP2001209963A (en) 2001-08-03
JP4273606B2 true JP4273606B2 (en) 2009-06-03

Family

ID=18544444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000017447A Expired - Fee Related JP4273606B2 (en) 2000-01-26 2000-01-26 Dual wavelength light source device and optical head device

Country Status (1)

Country Link
JP (1) JP4273606B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024241B2 (en) 2007-10-10 2012-09-12 セイコーエプソン株式会社 Wave plate and optical pickup device using the same
JP2012079393A (en) 2010-09-10 2012-04-19 Sharp Corp Semiconductor laser device, optical pickup device, and method of manufacturing semiconductor laser device

Also Published As

Publication number Publication date
JP2001209963A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
KR100569633B1 (en) Phase shifter and optical head device mounted with the same
US6195315B1 (en) Optical disk apparatus compatible with different types of mediums
TWI410965B (en) Optical pick-up apparatus
US6845077B2 (en) Optical pick-up device with convergent light diffraction for recording/reading information on optical recording medium
JP2002015448A (en) Optical device, light source device, optical head device and optical information processing device
US20030048736A1 (en) Opitical pickup apparatus compatible with different types of optical recording mediums
JP4560906B2 (en) Optical head device
JP2000276766A5 (en)
JPH10104427A (en) Wavelength plate, and optical pickup unit equipped with the same
JP3861270B2 (en) Optical pickup and optical element used therefor
JPH10302291A (en) Polarization separation element and optical head using the element
JP4273606B2 (en) Dual wavelength light source device and optical head device
JP4622160B2 (en) Diffraction grating integrated optical rotator and optical head device
JPH11306581A (en) Broadband polarized light separating element and optical head using this broadband polarized light separating element
JP4218393B2 (en) Optical head device
JP3558909B2 (en) Optical pickup device
JP4507738B2 (en) Laminated wave plate and optical pickup using the same
JP4427877B2 (en) Aperture limiting element and optical head device
JP2008004146A (en) Optical element and optical head device provided with optical element
JP4626026B2 (en) Optical head device
JP2008004145A (en) Optical element and optical head device provided with optical element
JP4876826B2 (en) Phase difference element and optical head device
JP2001014714A (en) Optical element and optical disk device
JP2001344800A (en) Optical head device
JP2005339595A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees