JP4272878B2 - Electron beam irradiation device - Google Patents

Electron beam irradiation device Download PDF

Info

Publication number
JP4272878B2
JP4272878B2 JP2002362309A JP2002362309A JP4272878B2 JP 4272878 B2 JP4272878 B2 JP 4272878B2 JP 2002362309 A JP2002362309 A JP 2002362309A JP 2002362309 A JP2002362309 A JP 2002362309A JP 4272878 B2 JP4272878 B2 JP 4272878B2
Authority
JP
Japan
Prior art keywords
electron beam
irradiated
irradiation
beam irradiation
transport mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002362309A
Other languages
Japanese (ja)
Other versions
JP2004191307A (en
Inventor
末年 大泉
太郎 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Iwasaki Denki KK
Original Assignee
Canon Inc
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Iwasaki Denki KK filed Critical Canon Inc
Priority to JP2002362309A priority Critical patent/JP4272878B2/en
Publication of JP2004191307A publication Critical patent/JP2004191307A/en
Application granted granted Critical
Publication of JP4272878B2 publication Critical patent/JP4272878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は主として高エネルギーの電子を発生し、これを利用するための電子線照射装置、特に立体的な被照射物の搬送機構を有する電子線照射装置に関するものである。
【0002】
【従来の技術】
電子線照射装置は照射窓が横方向に広がりをもち、照射窓付近特に、下方を通過する連続する紙、プラスティック・フィルムなど連続するシート状の被照射物を連続的に処理するものが一般的である。
電子線照射はシート状被照射物に塗布されたインキ、コーティング、接着剤などを硬化したり、プラスティック・フィルムそのものの架橋や、殺菌をする用途に利用されている。
このような連続する被照射物を照射する場合、たとえば図10のように被照射物20を処理する処理室22内への出入り口に角度を設け、外部から導入される被照射物20を案内ローラー21などで処理室へ導き、処理室内で被照射物20に電子線を照射し、再び案内ローラー21などで、処理室外へ導出することが広く行われている。
これは、電子線および電子線の照射部11から二次的に発生するエックス線を処理室22から外部に漏洩させないことを目的としている。
連続するシート状の被照射物への電子線照射を目的として使用されている電子線照射装置では、電子の加速電圧が300kV付近、あるいはそれ以下であることが一般であり、発生するエックス線を遮蔽構造体13の外部に漏洩させないことが特徴となっている。
同図において、10は電子線発生部、12は真空容器である。
【0003】
図10に示した電子線発生装置では、照射窓から下方に電子線が照射されるが、被照射物を扱う都合により、図11に示すように、電子線が横方向から照射される構造も可能である。同様に斜め方向、あるいは下方から照射される構造も可能である。いずれの構造であっても、電子線とエックス線が外部に漏洩しないことが特徴であり、これは被照射物20が連続する薄い構成であるがゆえに可能となる構造である。
いずれの方向から電子線を照射する場合でも、被照射物の導入部分24から、被照射物の搬出部分25までの遮蔽構造の距離は、おおむね1mあるいはそれ以下になり、遮蔽構造体の大きさは小型の設計で実施することができる。
【0004】
このような電子線照射装置の照射部から発生する電子線とエックス線を遮蔽するための構造体の材料には一般的に金属材料が用いられるが、特にアルミニウム、鉄、ステンレス、鉛などで構成された部材を用いることが一般的である。
【0005】
一方、被照射物が連続的でなく、かつ立体的である場合、特許文献1に開示されているように、被照射物を連続して移動するコンベアなどの上に載せて搬送し、照射室内に導入し、電子線を照射し、照射室外へと搬出する構成となる。
このような形状の被照射物の場合、前述した薄い連続した被照射物と異なり、被照射物が照射室内を移動するための空間が大きくなり、照射部で発生した電子線とエックス線が外部に漏洩しやすくなる。
電子線とエックス線が外部に漏洩しないようにするためには、遮蔽構造体に迷路構造を持たせる必要が生じ、装置の小型化には限界が生じる。その結果非連続的で立体的な被照射物を照射する電子線照射装置は、被照射物の導入部分から、被照射物の搬出部分までの遮蔽構造の距離が2m程度あるいはそれ以上の遮蔽構造体を必要とし、電子線照射装置の設置スペースも大きくなる。不連続な立体物を照射する同様の技術が特許文献2にも開示されているが、実施される装置の大きさについては、同様の限界を有している。
【0006】
【特許文献1】
特開平8−94800公報
【特許文献2】
特開平11−1212公報
【0007】
【発明が解決しようとする課題】
上述のように、従来の電子線照射装置では非連続的で立体的な被照射物を照射する際に、必要とされる電子線とエックス線の遮蔽構造体は、紙やプラスティック・フィルムなど連続するシート状の被照射物を処理する場合に比べ、より大きくなり、したがって電子線照射装置の設置スペースも広くなる。またエックス線を遮蔽するための構造体に使用されるステンレス、鉛などの部材の使用量もより多くなり、また装置の重量が増加する。
【0008】
本発明は上記の諸点に鑑み発明したものであって、不連続な立体物への電子線を照射する際の搬送機構体を小型化し、さらに遮蔽構造体、ひいては電子線照射装置の小型化、および軽量化を図る等の効果を有する電子線照射装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために、請求項1に記載の発明は、内部に収納された電子線発生部で発生した電子線を外部に照射させる照射窓が形成された真空容器と、前記照射窓に対応する電子線照射位置に被照射物を搬送する搬送機構体を備えた電子線照射装置において、前記搬送機構体がその回転軸の回りに回転可能な断面円形状若しくは多角形状に形成されると共に、その外周面には被照射物を収納保持する適数の被照射物収納空間が周方向に沿って所定間隔で凹設され、前記被照射物が電子線照射位置に搬送されたときに照射窓から照射される電子線が外部に漏れることを防止する遮蔽構造体が、前記照射窓から左右両側に搬送機構体の外周面に沿って延設され、該遮蔽構造体により搬送機構体の全体または一部が取り囲まれたことを特徴としている。
【0010】
請求項2に記載の発明は、真空容器の外周面に、適数の縦長の照射窓が構成されている。
【0011】
請求項3に記載の発明は、被照射物を搬送する搬送機構体が、連続あるいは間欠的に周回されるようになっている。
【0012】
請求項4に記載の発明は、被照射物が電子線照射位置に搬送されたときにのみ電子線が照射されるようになされている。
【0013】
請求項1及び請求項2に記載の発明では、電子線照射装置の、不連続で立体的な被照射物を通過させる照射室および遮蔽構造体の寸法を小さくし、さらに遮蔽構造体に使用される部材の量を低減させる効果がある。
【0014】
請求項3に記載の本発明では、被照射物への電子線照射の効率や、被照射物の搬送能率を向上させる効果がある。
【0015】
請求項4に記載の本発明では、被照射物に対して、必要な時間だけ電子線を照射するように電子線の出力を制御することにより、遮蔽構造体の簡素化、あるいは電子線の効率的利用を達成する効果がある。
【0016】
【発明の実施の形態】
以下本発明を図1乃至図7について説明する。
図1は請求項1の発明における実施例の概略平面図である。真空容器12内の電子線発生部10で発生した電子線は照射窓11から取り出される。
この照射窓11に対向する位置に搬送機構体40が設置されている。搬送機構体40には、その外周面に不連続で立体的な被照射物50を収納できる被照射物収納空間41が凹設され、同被照射物収納空間41に被照射物保持部42が構成され、被照射物保持部42に被照射物50が保持される。
搬送機構体40は回転軸45を中心として周回し、被照射物50を順次、照射窓11の方向へ送っていく。
このとき搬送機構体40は、たとえば駆動モーター46と回転軸45を、プーリーとベルトに接続し回転する。搬送機構体40の周回は図1の実施例で時計回りに周回する。駆動機構は同構造に限られず別の機構としてもよい。
また、被照射物は搬送機構体40に載せられて順次送られ、照射窓11に対応する電子線照射位置で電子線が照射され、さらに搬送機構体40が周回することによって、排出される。
さらに、搬送機構体40の回転方向に沿って照射窓11の前後両側には遮蔽構造体13が延設され、該遮蔽構造体13により搬送機構体40の全体または一部が取り囲まれている。
【0017】
上記の構成で、被照射物収納空間41に収納される不連続で立体的な被照射物50の大きさは例えば2cmから3cmであり、搬送機構体40を取り囲む遮蔽構造体13との間隙を1cm程度にした場合、搬送機構体40の直径はおよそ80cmとなる。このとき、電子線とエックス線を遮蔽するために搬送機構体40の周囲に設けられる遮蔽構造体13の大きさはおおむね1mである。
図1に示した同構造によると、照射窓11、搬送機構体40、遮蔽構造体13を小型に構成しても、これらは事実上遮蔽のための迷路構造を構成しているので、電子線とエックス線が外部に漏洩することはない。当実施例では周回する搬送機構体40は円形であるが、被照射物50や被照射物収納空間41の形状により、あるいは遮蔽に問題が生じなければ、搬送機構体40は多角形であってもよい。
【0018】
被照射物50が周回し、電子線照射位置に搬送されたとき、被照射物50と照射窓11の距離は当実施例では約1.5cmとなっている。
当実施例では約1cmから約6cmの範囲でこの距離を調節できるようになっている。
距離が小さければ被照射物50が照射窓11に近づくため、照射される電子線を効率よく利用できるが、外形の大きい被照射物には均一に電子線が照射されない可能性がある。
また、距離が小さければ搬送機構体40と遮蔽構造体13の間隙を小さくできるため遮蔽上有利である。
一方距離が大きければ、大きな被照射物に対して電子線を均一に照射しやすいが、電子線のエネルギーが被照射物に達するまでに減衰し、電子線の利用効率が低くなる場合がある。
したがって、被照射物の大きさ、電子線の加速エネルギー、および遮蔽構造などを考慮し、被照射物50と照射窓11の距離を適切に設定することが重要である。
【0019】
図1では、被照射物50の被照射物収納空間41への導入取り出しは、照射窓から最も遠い対応位置にて行われているが、この位置に限られず照射窓11以外の個所であれば、所望の個所に設定することができる。
搬送機構体40の周囲全体を遮蔽構造体13で覆った構造においては、遮蔽構造体13の一部に被照射物50を導入取り出すための開閉扉を設ける構造とする必要がある。
【0020】
図2と図3は請求項2の発明における実施例の一部省略平面図及び側面図である。
縦に長い被照射物50aが、搬送機構体40の部分である被照射物保持部42によって保持される。搬送機構体40は周回し、被照射物を順次照射窓11の方向へ送っていく。搬送機構体40に支持されて順次送られる被照射物50aは照射窓11に対応する電子線照射位置に搬送された際に電子線を照射され、かかる後、搬送機構体40が周回していくことによって、照射窓11を通り過ぎ電子線の照射作業工程を終了する。
【0021】
図2及び図3において、縦に長い被照射物50aに対応して、電子線発生部10、照射窓11、および真空容器12は縦長に配置されている。その電子線発生部10に電力を供給する給電部15は、照射窓11に対して電子線発生部10の背面側中央付近に接続されている。
これによれば、給電部15が、電子線発生部10の中心でその機械的バランスを保つため、接続部にかかる機械応力が小さくなり、装置の機械的安定をもたらすという特別な効果がある。さらに電子線発生部10が小型になり、真空容器も小さくできるため、真空容器に使用される遮蔽部材の使用量が低減し、装置重量が軽減する効果がある。また電子線の照射部とは反対側に電源装置を接続できる(図5参照)ため、照射窓11付近の空間を有効に使用でき、被照射物の大きさや被照射物搬送機構体40の設計度に大きな自由度を与える効果を有する。
【0022】
図4は請求項3に記載の発明における実施例の概略平面図である。
搬送機構体40に設けられた被照射物保持部42に不連続で立体的な被照射物50b〜50gが置かれている。搬送機構体40は一定方向に周回するが、被照射物50eが照射窓11に接近したときに、搬送機構体40は一時停止し、あるいは周回速度を落として、被照射物50eに十分な電子線照射を施した後、搬送機構体40は同方向に周回を続け、次の被照射物50dが再び照射窓11に対応する電子線照射位置まで周回する。
そして、次の被照射物50dが照射窓11に接近すると、同様に搬送機構体40は一時停止し、あるいは周回速度を落とし、被照射物50eに十分な電子線照射を施す。
周回する搬送機構体40の周回速度あるいは周回と一時停止の制御は、回転軸45に接続され、搬送機構体40を回転させる駆動モーター46によって行われる。
【0023】
図5は請求項3の発明における実施例の概略平面図である。
搬送機構体40の被照射物保持部42に保持される被照射物50は、周回しながら照射 11に対応する電子線照射位置に搬送され、順次電子線が照射される。電子線発生部10は、給電部15を通して、電子線を発生させるための電源装置17に接続される。
照射窓11で取り出される電子線は、電源装置17を電気的に制御することにより、強度の調節、オン/オフを制御することができる。
これにより、被照射物50が照射窓11に対応する電子線照射位置に搬送されたときだけに照射部11から取り出される電子線を照射に必要な出力でオンし、それ以外のときは照射部11から取り出される電子線が全くないように電子線をオフにするか、あるいは取り出される電子線が微弱になるように出力を低下させる。
【0024】
図6は本発明の他の実施例の概略平面図である。
本例では、搬送機構体40の全部あるいは一部を取り囲むように設置された遮蔽構造体13とともに、図6の搬送機構体40の内部全体(斜線部)あるいは一部を遮蔽部材40aを用いて構成する。
一部を遮蔽部材40aとする構成では、例えば被照射物収納空間41を構成する縦壁の角型のコ字形部分を遮蔽部材で構成し、外周の円弧部を遮蔽部材以外で構成する。このように構成することにより、電子線とエックス線の漏洩を確実に防止することができる。
このように、搬送機構体40にも遮蔽構造を付与することにより、搬送機構体40を小型化し、その結果、電子線照射装置を小型化、軽量化することができるという特別な効果がある。
【0025】
本発明に係る図7と、従来の構造を示す図8と図9を参照して、本発明における他の実施例を説明する。
図7は本発明の実施例であり、電子線発生部10、照射窓11、および真空容器12が縦長に配置されている。
その電子線発生部10に電力を供給する給電部15は、照射窓11に対して電子線発生部10の背面側中央付近に接続されている。
電源装置17は給電部15を通して、電子線発生部10に電力を供給する。図8は図7と同様であるが、給電部15が電子線発生部10の下方に接続されている例である。
同様に図9は給電部15が電子線発生部の下面に取り付けられており、それにしたがって、電源装置17も真空容器12の下方に接続されている。
【0026】
図7で、縦長に配置された照射窓11の長さdに対する真空容器12の縦方向の長さDの比をd/Dとする。
同様の比を従来技術である図8において求めるとd/D’となるが、ここでは給電部15が電子線発生部12の下方に取り付けられているため、電子線発生部10の縦方向の長さが、図7の例に比べて長くなり、したがって真空容器12の長さD’も長くなる。
結果、d/D’はd/Dよりも小さくなり、照射窓11の大きさに対して、真空容器12がより大きくなる。さらに図9の例では、同様に電子線発生部12の長さが長くなり、したがってd/D’が小さくなる。
図7においては、電源装置17は、照射窓11と真空容器12をはさんで、反対側に位置しているが、図9では電源装置17が照射部11の下方に位置する。
この結果、図7に示す本発明に係る電子線照射装置は、図8と図9に示す従来の電子線照射装置に比較して全体を小型に構成することが可能となる。
【0027】
【発明の効果】
上記した請求項1、請求項2の本発明によると、遮蔽構造と装置全体が単純化され、装置全体が小型化されると共に遮蔽部材の使用量が低減し、装置全体の総重量が軽減する特別な効果がある。
【0028】
上記した請求項3に記載の発明によると、周回しながら被照射物を搬送する搬送機構の周回運動の速度を変化させ、場合によっては一時停止することで、電子線の照射部で被照射物に照射される電子線の照射時間を変化させることにより、電子線の照射効率を向上させることが可能となる特別効果がある。また周回速度の変化によって搬送機構に被照射物を導入または取出しするような別工程作業の調整も容易になるという効果がある。
【0029】
上記した請求項4に記載の発明によると、被照射物が電子線の照射部に対応接近したときだけ電子線を出力するように制御するため、電子線の効率的利用を達成する特別効果がある。
【図面の簡単な説明】
【図1】本発明に係る電子線照射装置の概略平面図。
【図2】本発明に係る電子線照射装置の概略平面図。
【図3】本発明に係る電子線照射装置の概略側面図。
【図4】本発明に係る電子線照射装置の概略平面図。
【図5】本発明に係る電子線照射装置の概略平面図。
【図6】本発明の真空容器と搬送機構体を示す平面図。
【図7】本発明の真空容器と電源装置の位置関係を示す側面図。
【図8】従来の電子線照射装置の真空容器と電源装置の位置関係を示す側面図。
【図9】従来の電子線照射装置の他の真空容器と電源装置の位置関係を示す側面図。
【図10】従来の電子線照射装置の一部拡大平面図。
【図11】従来の他の電子線照射装置の一部拡大平面図。
【符号の説明】
10 電子線発生部
11 照射窓
12 真空容器
13 遮蔽構造体
15 給電部
17 電源装置
40 搬送機構体
46 駆動モーター
50 被照射物
[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to an electron beam irradiation apparatus that generates and uses high-energy electrons, and more particularly to an electron beam irradiation apparatus having a three-dimensional object transport mechanism.
[0002]
[Prior art]
The electron beam irradiation apparatus has a spread illumination windows laterally, the irradiation windows especially near, continuous paper passing below, is generally intended for continuously processing a sheet-like object to be irradiated consecutive like plastic film It is.
Electron beam irradiation is used for curing inks, coatings, adhesives, etc. applied to sheet-like objects, and for crosslinking and sterilizing plastic films themselves.
When irradiating such a continuous irradiation object, for example, as shown in FIG. 10, an angle is provided at the entrance to the processing chamber 22 for processing the irradiation object 20, and the irradiation object 20 introduced from the outside is guided to the guide roller. It is widely performed to guide to the processing chamber 21 or the like, irradiate the irradiated object 20 with an electron beam inside the processing chamber, and lead out again to the outside of the processing chamber with the guide roller 21 or the like.
This is intended to prevent leakage of electron beams and X-rays secondarily generated from the electron beam irradiation unit 11 from the processing chamber 22 to the outside.
In an electron beam irradiation apparatus used for the purpose of irradiating a continuous sheet-shaped object with an electron beam, an electron acceleration voltage is generally around 300 kV or less, and the generated X-rays are shielded. It is characterized by not leaking outside the structure 13.
In the figure, 10 is an electron beam generator, and 12 is a vacuum vessel.
[0003]
In the electron beam generator shown in FIG. 10, the electron beam is irradiated downward from the irradiation window. However, as shown in FIG. Is possible. Similarly, a structure in which irradiation is performed obliquely or from below is also possible. In any structure, the electron beam and the X-ray are not leaked to the outside, and this is possible because the irradiated object 20 has a thin continuous structure.
Regardless of the direction from which the electron beam is irradiated, the distance of the shielding structure from the irradiated portion 24 to the irradiated portion 25 is approximately 1 m or less, and the size of the shielding structure. Can be implemented in a compact design.
[0004]
A metal material is generally used as the material of the structure for shielding the electron beam and X-ray generated from the irradiation part of such an electron beam irradiation apparatus, but it is particularly composed of aluminum, iron, stainless steel, lead or the like. It is common to use a new member.
[0005]
On the other hand, when the object to be irradiated is not continuous and is three-dimensional, as disclosed in Patent Document 1, the object to be irradiated is transported on a conveyor that continuously moves, In this case, the electron beam is irradiated to the outside of the irradiation chamber.
In the case of an irradiation object having such a shape, unlike the thin continuous irradiation object described above, a space for the irradiation object to move in the irradiation chamber is increased, and the electron beam and X-ray generated in the irradiation unit are exposed to the outside. It becomes easy to leak.
In order to prevent the electron beam and X-ray from leaking to the outside, the shielding structure needs to have a maze structure, and there is a limit to downsizing the apparatus. As a result, the electron beam irradiation apparatus for irradiating a non-continuous and three-dimensional irradiated object has a shielding structure in which the distance of the shielding structure from the irradiated part to the carried-out part of the irradiated object is about 2 m or more. A body is required, and the installation space for the electron beam irradiation device is also increased. A similar technique for irradiating a discontinuous three-dimensional object is also disclosed in Patent Document 2, but has the same limit as to the size of the apparatus to be implemented.
[0006]
[Patent Document 1]
JP-A-8-94800 [Patent Document 2]
Japanese Patent Laid-Open No. 11-1212
[Problems to be solved by the invention]
As described above, when a conventional electron beam irradiation apparatus irradiates a discontinuous and three-dimensional object, the necessary electron beam and X-ray shielding structure is continuous, such as paper or plastic film. Compared with the case of processing a sheet-like object, the space is larger, and the installation space for the electron beam irradiation apparatus is also increased. Further, the amount of use of members such as stainless steel and lead used in the structure for shielding X-rays is increased, and the weight of the apparatus is increased.
[0008]
The present invention has been invented in view of the above-mentioned points, and has a downsized transport mechanism when irradiating an electron beam to a discontinuous three-dimensional object, and further downsized a shielding structure, and thus an electron beam irradiation device, It is another object of the present invention to provide an electron beam irradiation apparatus having effects such as weight reduction.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is characterized in that a vacuum container in which an irradiation window for irradiating an electron beam generated by an electron beam generator housed inside is formed, and the irradiation window In the electron beam irradiation apparatus provided with a transport mechanism that transports an object to be irradiated to an electron beam irradiation position corresponding to the above, the transport mechanism is formed in a circular or polygonal shape that can rotate around its rotation axis. with its on an outer peripheral surface is recessed in Jo Tokoro intervals irradiated object receiving space of a suitable number in the circumferential direction of the holding storage of the irradiated object, the object to be irradiated is transported to the electron beam irradiation position Sometimes a shielding structure that prevents the electron beam emitted from the irradiation window from leaking to the outside extends along the outer peripheral surface of the conveyance mechanism body on the left and right sides from the irradiation window. Characterized by being surrounded by all or part of the body It is.
[0010]
According to the second aspect of the present invention, an appropriate number of vertically long irradiation windows are formed on the outer peripheral surface of the vacuum vessel.
[0011]
In the invention according to claim 3, the transport mechanism for transporting the object to be irradiated is continuously or intermittently circulated.
[0012]
The invention according to claim 4 is configured such that the electron beam is irradiated only when the irradiated object is transported to the electron beam irradiation position.
[0013]
In the first and second aspects of the invention , the size of the irradiation chamber and the shielding structure for allowing the discontinuous and three-dimensional irradiation object of the electron beam irradiation apparatus to pass through is reduced and further used for the shielding structure. This has the effect of reducing the amount of members to be removed.
[0014]
In this invention of Claim 3, there exists an effect which improves the efficiency of the electron beam irradiation to a to-be-irradiated object, and the conveyance efficiency of a to-be-irradiated object.
[0015]
In the present invention described in claim 4, by controlling the output of the electron beam so as to irradiate the irradiated object with the electron beam for a necessary time, the shielding structure can be simplified or the efficiency of the electron beam can be achieved. There is an effect that achieves effective use.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to FIGS.
FIG. 1 is a schematic plan view of an embodiment in the invention of claim 1. The electron beam generated by the electron beam generator 10 in the vacuum vessel 12 is taken out from the irradiation window 11.
A transport mechanism 40 is installed at a position facing the irradiation window 11. In the transport mechanism 40, an irradiated object storage space 41 capable of storing a discontinuous and three-dimensional irradiated object 50 is recessed in the outer peripheral surface thereof, and an irradiated object holding portion 42 is provided in the irradiated object storage space 41. Thus, the irradiated object 50 is held by the irradiated object holding part 42.
The transport mechanism body 40 circulates around the rotation shaft 45 and sequentially feeds the irradiated object 50 toward the irradiation window 11.
At this time, the transport mechanism 40 rotates, for example, by connecting the drive motor 46 and the rotating shaft 45 to the pulley and the belt. The conveyor mechanism 40 is rotated clockwise in the embodiment of FIG. The drive mechanism is not limited to the same structure and may be another mechanism.
In addition, the object to be irradiated is placed on the transport mechanism body 40 and sequentially sent, irradiated with an electron beam at the electron beam irradiation position corresponding to the irradiation window 11, and further discharged around the transport mechanism body 40.
Further, shielding structures 13 are extended on the front and rear sides of the irradiation window 11 along the rotation direction of the transport mechanism 40, and the entire or part of the transport mechanism 40 is surrounded by the shield structure 13.
[0017]
With the above configuration, the size of the discontinuous and three-dimensional irradiation object 50 stored in the irradiation object storage space 41 is, for example, 2 cm to 3 cm, and the gap with the shielding structure body 13 surrounding the transport mechanism body 40 is set. When it is about 1 cm, the diameter of the conveyance mechanism body 40 is about 80 cm. At this time, the size of the shielding structure 13 provided around the transport mechanism 40 to shield the electron beam and the X-ray is approximately 1 m.
According to the same structure shown in FIG. 1, even if the irradiation window 11, the transport mechanism 40, and the shielding structure 13 are configured in a small size, these actually constitute a labyrinth structure for shielding. X-rays will not leak to the outside. In this embodiment, the transporting mechanism body 40 is circular, but the transporting mechanism body 40 is polygonal if there is no problem with the shape of the irradiated object 50 or the irradiated object storage space 41 or if there is no problem with shielding. Also good.
[0018]
When the object 50 circulates and is transported to the electron beam irradiation position, the distance between the object 50 and the irradiation window 11 is about 1.5 cm in this embodiment.
In this embodiment, this distance can be adjusted in the range of about 1 cm to about 6 cm.
If the distance is small, the irradiated object 50 approaches the irradiation window 11 and the irradiated electron beam can be used efficiently. However, there is a possibility that the irradiated object having a large outer shape is not uniformly irradiated with the electron beam.
Further, if the distance is small, the gap between the transport mechanism 40 and the shielding structure 13 can be reduced, which is advantageous for shielding.
On the other hand, if the distance is large, it is easy to uniformly irradiate a large irradiated object with an electron beam, but the energy of the electron beam is attenuated before reaching the irradiated object, and the use efficiency of the electron beam may be lowered.
Therefore, it is important to appropriately set the distance between the irradiation object 50 and the irradiation window 11 in consideration of the size of the irradiation object, the acceleration energy of the electron beam, the shielding structure, and the like.
[0019]
In Figure 1, the introduction is taken out to the irradiated object receiving space 41 of the irradiation object 50 is being performed at the furthest corresponding position from the irradiation window, if location other than the irradiation window 11 is not limited to this position , Can be set at a desired location.
In the structure in which the entire periphery of the transport mechanism 40 is covered with the shielding structure 13, it is necessary to provide a structure in which an opening / closing door for introducing and removing the irradiated object 50 is provided in a part of the shielding structure 13.
[0020]
2 and 3 are a plan view and a side view, partly omitted, of an embodiment of the invention of claim 2 .
A vertically long irradiated object 50 a is held by an irradiated object holding part 42 that is a part of the transport mechanism 40. The conveyance mechanism body 40 circulates and sequentially sends the irradiated object toward the irradiation window 11. The irradiated object 50a that is sequentially supported and transported by the transport mechanism body 40 is irradiated with an electron beam when transported to the electron beam irradiation position corresponding to the irradiation window 11, and then the transport mechanism body 40 circulates. Thereby, the irradiation window 11 passes through the irradiation window 11 and the electron beam irradiation operation process is completed.
[0021]
2 and 3, the electron beam generator 10, the irradiation window 11, and the vacuum vessel 12 are arranged vertically corresponding to the vertically long object 50a. A power feeding unit 15 that supplies power to the electron beam generating unit 10 is connected to the irradiation window 11 in the vicinity of the center on the back side of the electron beam generating unit 10.
According to this, since the electric power feeding part 15 maintains the mechanical balance in the center of the electron beam generation part 10, there exists a special effect that the mechanical stress concerning a connection part becomes small and brings about mechanical stability of an apparatus. Furthermore, since the electron beam generating unit 10 is reduced in size and the vacuum container can be made smaller, the amount of shielding members used in the vacuum container is reduced, and the apparatus weight is reduced. Further, since the power supply device can be connected to the side opposite to the electron beam irradiation unit (see FIG. 5), the space near the irradiation window 11 can be used effectively, and the size of the irradiation object and the design of the irradiation object transport mechanism 40 can be used. It has the effect of giving a large degree of freedom.
[0022]
FIG. 4 is a schematic plan view of an embodiment in the third aspect of the present invention.
Discontinuous and three-dimensional irradiated objects 50b to 50g are placed on the irradiated object holding part 42 provided in the transport mechanism 40. The transport mechanism 40 circulates in a certain direction. However, when the irradiated object 50e approaches the irradiation window 11, the transport mechanism 40 temporarily stops, or the rotating speed is reduced to provide sufficient electrons for the irradiated object 50e. After the beam irradiation, the transport mechanism 40 continues to circulate in the same direction, and the next object 50d circulates again to the electron beam irradiation position corresponding to the irradiation window 11.
When the next object to be irradiated 50d approaches the irradiation window 11, similarly, the transport mechanism 40 is temporarily stopped, or the circulation speed is reduced, and the object 50e is irradiated with sufficient electron beams.
The circulation speed of the circulating transport mechanism body 40 or the control of the circulation and the temporary stop is performed by a drive motor 46 that is connected to the rotating shaft 45 and rotates the transport mechanism body 40.
[0023]
FIG. 5 is a schematic plan view of an embodiment in the third aspect of the present invention.
The irradiated object 50 held by the irradiated object holding part 42 of the transport mechanism 40 is transported to the electron beam irradiation position corresponding to the irradiation window 11 while circling, and sequentially irradiated with electron beams. The electron beam generation unit 10 is connected to a power supply device 17 for generating an electron beam through the power supply unit 15.
The electron beam taken out from the irradiation window 11 can be controlled in intensity and on / off by electrically controlling the power supply device 17.
Thereby, the electron beam taken out from the irradiation unit 11 is turned on with an output necessary for irradiation only when the irradiated object 50 is transported to the electron beam irradiation position corresponding to the irradiation window 11, and otherwise, the irradiation unit The electron beam is turned off so that there is no electron beam extracted from 11, or the output is reduced so that the extracted electron beam becomes weak.
[0024]
FIG. 6 is a schematic plan view of another embodiment of the present invention .
In this example, together with the shielding structure 13 installed so as to surround all or part of the transport mechanism body 40, the entire interior (shaded portion) or part of the transport mechanism body 40 in FIG. Constitute.
In a configuration in which a part of the shielding member 40a is used, for example, the rectangular U-shaped portion of the vertical wall that constitutes the irradiated object storage space 41 is configured by the shielding member, and the outer peripheral arc portion is configured by other than the shielding member. By comprising in this way, the leakage of an electron beam and an X-ray can be prevented reliably.
Thus, by providing the shielding mechanism also to the transport mechanism body 40, the transport mechanism body 40 is downsized, and as a result, there is a special effect that the electron beam irradiation apparatus can be downsized and reduced in weight.
[0025]
Another embodiment of the present invention will be described with reference to FIG. 7 according to the present invention and FIGS. 8 and 9 showing a conventional structure.
FIG. 7 shows an embodiment of the present invention, in which an electron beam generator 10, an irradiation window 11, and a vacuum vessel 12 are arranged vertically.
A power feeding unit 15 that supplies power to the electron beam generating unit 10 is connected to the irradiation window 11 in the vicinity of the center on the back side of the electron beam generating unit 10.
The power supply device 17 supplies power to the electron beam generation unit 10 through the power supply unit 15. FIG. 8 is the same as FIG. 7, but is an example in which the power feeding unit 15 is connected below the electron beam generating unit 10.
Similarly, in FIG. 9, the power feeding unit 15 is attached to the lower surface of the electron beam generating unit, and the power supply device 17 is connected below the vacuum vessel 12 accordingly.
[0026]
In FIG. 7, the ratio of the length D of the vacuum vessel 12 in the vertical direction to the length d of the irradiation window 11 arranged vertically is d / D.
When the similar ratio is obtained in FIG. 8 which is the conventional technique, it is d / D ′. However, since the power feeding unit 15 is attached below the electron beam generating unit 12 in this case, the longitudinal direction of the electron beam generating unit 10 is The length is longer than that in the example of FIG. 7, and therefore the length D ′ of the vacuum vessel 12 is also longer.
As a result, d / D ′ becomes smaller than d / D, and the vacuum container 12 becomes larger with respect to the size of the irradiation window 11. Furthermore, in the example of FIG. 9, the length of the electron beam generator 12 is similarly increased, and therefore d / D ′ is reduced.
In FIG. 7, the power supply device 17 is located on the opposite side across the irradiation window 11 and the vacuum vessel 12, but in FIG. 9, the power supply device 17 is located below the irradiation unit 11.
As a result, the entire electron beam irradiation apparatus according to the present invention shown in FIG. 7 can be made smaller than the conventional electron beam irradiation apparatus shown in FIGS.
[0027]
【The invention's effect】
According to the first and second aspects of the present invention, the shielding structure and the entire apparatus are simplified, the entire apparatus is downsized, the amount of the shielding member used is reduced, and the total weight of the entire apparatus is reduced. Has a special effect.
[0028]
According to the third aspect of the present invention , the object to be irradiated is irradiated by the electron beam irradiation unit by changing the speed of the circular motion of the transport mechanism that transports the object to be irradiated while rotating, and in some cases temporarily stopping. There is a special effect that the irradiation efficiency of the electron beam can be improved by changing the irradiation time of the electron beam irradiated to the electron beam. In addition, there is an effect that it is easy to adjust the operation of a separate process such as introducing or taking out the irradiated object from the transport mechanism by changing the rotation speed.
[0029]
According to the invention described in claim 4 described above, since the control is performed so that the electron beam is output only when the irradiated object approaches the electron beam irradiation unit, the special effect of achieving efficient use of the electron beam is achieved. is there.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an electron beam irradiation apparatus according to the present invention.
FIG. 2 is a schematic plan view of an electron beam irradiation apparatus according to the present invention.
FIG. 3 is a schematic side view of an electron beam irradiation apparatus according to the present invention.
FIG. 4 is a schematic plan view of an electron beam irradiation apparatus according to the present invention.
FIG. 5 is a schematic plan view of an electron beam irradiation apparatus according to the present invention.
FIG. 6 is a plan view showing a vacuum container and a transport mechanism body of the present invention.
FIG. 7 is a side view showing the positional relationship between the vacuum container and the power supply device of the present invention.
FIG. 8 is a side view showing a positional relationship between a vacuum container and a power supply device of a conventional electron beam irradiation apparatus.
FIG. 9 is a side view showing a positional relationship between another vacuum container and a power supply device of a conventional electron beam irradiation apparatus.
FIG. 10 is a partially enlarged plan view of a conventional electron beam irradiation apparatus.
FIG. 11 is a partially enlarged plan view of another conventional electron beam irradiation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electron beam generation part 11 Irradiation window 12 Vacuum container 13 Shielding structure 15 Power feeding part 17 Power supply device 40 Conveyance mechanism body 46 Drive motor 50 Irradiation object

Claims (4)

内部に収納された電子線発生部で発生した電子線を外部に照射させる照射窓が形成された真空容器と、前記照射窓に対応する電子線照射位置に被照射物を搬送する搬送機構体を備えた電子線照射装置において、
前記搬送機構体がその回転軸の回りに回転可能な断面円形状若しくは多角形状に形成されると共に、その外周面には被照射物を収納保持する適数の被照射物収納空間が周方向に沿って所定間隔で凹設され、
前記被照射物が電子線照射位置に搬送されたときに照射窓から照射される電子線が外部に漏れることを防止する遮蔽構造体が、前記照射窓から左右両側に搬送機構体の外周面に沿って延設され、該遮蔽構造体により搬送機構体の全体または一部が取り囲まれたことを特徴とする電子線照射装置。
A vacuum vessel in which an irradiation window for irradiating an electron beam generated by an electron beam generation unit housed inside is formed, and a transport mechanism for transporting an object to be irradiated to an electron beam irradiation position corresponding to the irradiation window In the electron beam irradiation apparatus provided,
The transport mechanism body is formed in a circular or polygonal cross section that can rotate around its rotation axis, and an appropriate number of irradiated object storage spaces for storing and holding the irradiated object are provided in the circumferential direction on the outer peripheral surface thereof. It is recessed in Jo Tokoro intervals along,
A shielding structure that prevents the electron beam irradiated from the irradiation window from leaking to the outside when the irradiated object is transferred to the electron beam irradiation position is formed on the outer peripheral surface of the transfer mechanism body on the left and right sides from the irradiation window. along been extended, an electron beam irradiation apparatus characterized by all or part of the conveying mechanism is surrounded by the shield structure.
縦長に構成された真空容器の外周面に、適数の縦長の照射窓が形成された請求項1に記載の電子線照射装置。The electron beam irradiation apparatus according to claim 1, wherein an appropriate number of vertically long irradiation windows are formed on an outer peripheral surface of a vertically long vacuum vessel. 被照射物を搬送する搬送機構体が、連続あるいは間欠的に周回される請求項1記載の電子線照射装置。  The electron beam irradiation apparatus according to claim 1, wherein the transport mechanism that transports the object to be irradiated is continuously or intermittently circulated. 被照射物が電子線照射位置に搬送されたときにのみ電子線を照射させる請求項1記載の電子線照射装置。  2. The electron beam irradiation apparatus according to claim 1, wherein the electron beam is irradiated only when the object to be irradiated is transported to the electron beam irradiation position.
JP2002362309A 2002-12-13 2002-12-13 Electron beam irradiation device Expired - Fee Related JP4272878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362309A JP4272878B2 (en) 2002-12-13 2002-12-13 Electron beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362309A JP4272878B2 (en) 2002-12-13 2002-12-13 Electron beam irradiation device

Publications (2)

Publication Number Publication Date
JP2004191307A JP2004191307A (en) 2004-07-08
JP4272878B2 true JP4272878B2 (en) 2009-06-03

Family

ID=32760794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362309A Expired - Fee Related JP4272878B2 (en) 2002-12-13 2002-12-13 Electron beam irradiation device

Country Status (1)

Country Link
JP (1) JP4272878B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2884426B1 (en) 2005-04-19 2009-11-06 Linac Technologies Sas Soc Par INSTALLATION FOR THE STERILIZATION OF OBJECTS BY ELECTRON BOMBING.
JP4889016B2 (en) * 2006-08-30 2012-02-29 三菱重工食品包装機械株式会社 Sterilizer
MX360035B (en) 2012-10-10 2018-10-19 Xyleco Inc Processing biomass.
US9299465B1 (en) * 2014-09-30 2016-03-29 Pct Engineered Systems, Llc Electron beam system

Also Published As

Publication number Publication date
JP2004191307A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1956608B1 (en) Electron beam vacuum apparatus for sterilising containers
JP6313544B2 (en) Apparatus and method for radiation-based disinfection of container lids
US7459706B2 (en) Installation and method for sterilising objects by low-energy electron bombardment
US20070176116A1 (en) Self-shielded sterilization apparatus using electron beam irradiation
WO2012153599A1 (en) Charged particle beam radiating device
JP4272878B2 (en) Electron beam irradiation device
JP5645562B2 (en) Electron beam sterilizer
JP2011152346A (en) Particle beam treatment apparatus and irradiation nozzle device
WO2009139074A1 (en) Electron beam irradiation device for aperture vessel
JPWO2012147414A1 (en) Charged particle beam irradiation equipment
JP2001225814A (en) Method and apparatus for sterilizing preform
US8513623B2 (en) Installation for sterilizing objects by means of a radiation source
JPH10268100A (en) Electron beam irradiation device
US6931095B1 (en) System and method for irradiating large articles
JP2007113935A (en) Method and device for radiating electron beam
JP2003121595A (en) Electron beam irradiation apparatus
JPH08184700A (en) Electron beam irradiation device
JPH1045116A (en) Equipment for sterilization/disinfection
EP2634776A2 (en) Electron beam irradiation apparatus
JP2010008387A (en) Electron beam irradiation equipment
CN217648794U (en) High-occupation-ratio plate electron beam curing device
JPH0894800A (en) Electron beam irradiator
JPH0968600A (en) Electron beam irradiating device
JP2021028228A (en) Electron beam irradiation device and electron beam irradiation method
JP2003275753A (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4272878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees