JP4272068B2 - Electron-accepting compounds that form self-assembled monolayers - Google Patents

Electron-accepting compounds that form self-assembled monolayers Download PDF

Info

Publication number
JP4272068B2
JP4272068B2 JP2003556385A JP2003556385A JP4272068B2 JP 4272068 B2 JP4272068 B2 JP 4272068B2 JP 2003556385 A JP2003556385 A JP 2003556385A JP 2003556385 A JP2003556385 A JP 2003556385A JP 4272068 B2 JP4272068 B2 JP 4272068B2
Authority
JP
Japan
Prior art keywords
group
compound
formula
electron
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003556385A
Other languages
Japanese (ja)
Other versions
JPWO2003055853A1 (en
Inventor
春男 佐宗
敏明 佐藤
敏明 高橋
智 小川
則之 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Publication of JPWO2003055853A1 publication Critical patent/JPWO2003055853A1/en
Application granted granted Critical
Publication of JP4272068B2 publication Critical patent/JP4272068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/38Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Description

技術分野:
本発明は、電子受容性分子の電荷分離機能、光応答性機能、錯体形成機能などを基板上で発現する自己組織化単分子膜を形成させるのに適した化合物に関する。
技術背景:
金属または、金属酸化物を成分とする基板上に、硫黄原子などのヘテロ原子を介して自己組織化単分子膜を形成せしめ、基板に各種の機能性を付与する技術開発が盛んに行われている。電子授受機能を持たせるためには、電子受容性あるいは、電子供与性構造を末端に配置する有機分子を用いて、自己組織化単分子膜を形成させる方法がある。
例えば、J.Chem.Soc.,Faraday Trans.,92,3813,(1996)には、2−(11−メルカプトウンデシル)ハイドロキノンを表面に自己集積させ単分子膜を形成させた金電極上で、電気化学的酸化反応によりキノンが生成していることが記載されている。
また、Langmuir,14,5834,(1998)には、テトラシアノキノジメタンを電子受容構造として末端に有するビス(10−(2−((2,5−シクロヘキサジエン−1,4−ジイリデン)ジマロノニトリル))デシル)ジスルフィドを表面に自己集積させ単分子膜を形成させた金電極において、テトラメチルフェニレンジアミンとの間で電荷移動がおきることが記載されている。
特開2000−261016号公報には、球殻上の炭素分子を受容体として内包している化合物からなる光電荷分離材料が記載されており、さらには、分子内に電子供与体、光増感剤を3次元的に配置した化合物が自己組織化単分子膜を形成している基板が記載されている。
特開2001−253883号公報には、イミダゾリルポルフィリン骨格にアリーレン基及びアルキレン基の少なくとも一方を含む二価の連結基を介して、メルカプト基またはアセチルチオ基を有するメルカプト置換イミダゾリルポルフィリン金属錯体単量体が記載されており、さらに、前記単量体が、イミダゾール基とポルフィリン中心金属と相互作用することによる多量体が、メルカプト基等を介して電極表面に結合することにより電極間を結合し、ナノメートル単位でエネルギーを伝達するデバイスが構築できることが記載されている。
さらに、特開2001−303022号公報には、基体表面に形成された金属又は半導体表面に共有結合又は配位結合により一般式(a)E−L−Bin.(式中、Eは、光吸収する有機残基、Lは長鎖の−(CH−を持つ原子団又は該原子団の主鎖がO、S又はNによって分断されている原子団でEと−NH−CO−、−O−、又は−CO−O−で結合する、及びBin.は化合物(a)を前記金属又は半導体表面との共有結合又は配位結合により結合させる結合基を提供する基である。)で表されるエネルギードナー化合物及び一般式(b)EA−L−Bin.(式中EAは、一般式(a)の化合物の励起光と重なる吸収波長領域を有する光吸収する有機残基、L及びBin.は一般式(a)と同じ。)で表されるエネルギーアクセプター化合物を両化合物間でエネルギー移動可能に混合自己組織化した単分子膜として形成されていることを特徴とする光エネルギー移動素子が記載されている。
発明の開示:
これら電子受容性構造を有する化合物の自己組織化単分子膜に関しては、その例が少なく、求める機能性に対して充分に対応できるべき多様性に欠け、また、その製造法に関しても容易でないものがほとんどであった。今後、光エネルギー変換素子、電子エネルギー伝達素子として利用して行く上では、求める機能に応じて、分子構造に多様性を有し、かつ、製造法もそれに応じた柔軟性を持つような化合物群を利用することが望ましい。
電子受容性を基本機能とする単分子膜を、素子として利用する際には、膜の配向性や緻密性がその性能を発揮するためには重要なファクターであり、上記したこれら電子受容性構造を有する化合物は、その点でまだ、十分なものとは言えず、さらに化合物自体、または、その中間体が不安定であるため、構造変換を行うのに限りがあり、結果その例が限られており、単分子膜内の配向性を制御する目的での分子設計は成されていなかった。
本発明は、構造が簡単で製造が容易で、しかも、電子受容機能を有し、自己組織化により単分子膜を形成し、膜の緻密性、配向性を改善するために構造変換がより容易で、目的とする性能を発揮できる可能性のある化合物を提供することを目的とする。
上記課題に対して、本発明者らは鋭意検討した結果、ジアミノマレオニトリル、もしくは、類似のジアミン構造を有するを化合物を原料として合成することができるシアノ基等を置換基とするピラジン、イミダゾール等の芳香族複素環が、電子受容機能を有し、さらに自己組織化して単分子膜を形成できるように分子変換を各種行うことで上記課題を解決でき、また、電子受容性部分構造に、強固なスタッキング構造をとり得る磁気異方性ユニットとして、芳香族炭化水素環を縮環させることで、自己組織化による配向制御が期待でき、製造が容易で、しかも、電子受容機能を損なわない新規な構造を有する化合物を見出し、本発明を完成するに至った。
即ち、本発明は、
(1)式(I)

Figure 0004272068
(式中、Aは、(i)シアノ基、C1−C6アルコキシカルボニル基、及びC1−C11アシル基からなる群から選ばれる少なくとも1つが環上または共役系を介して結合している芳香族複素環基がSpで表される原子団と環上又は共役系を介して結合している基、又は、(ii)少なくとも一つ以上の芳香族炭化水素環が縮合した電子受容性の官能基を表し、Spは、アリーレン基及びアルキレン基の少なくとも一方を含む二価の連結基を表し、Xは、金属表面、金属酸化物表面、または半導体表面と共有結合又は配位結合により結合を形成させる結合基を表す。)で表される化合物。
(2)式(I)中、芳香族複素環基が、ピラジン、イミダゾールまたはそれらと他の芳香族炭化水素、芳香族複素環との縮合環であることを特徴とする(1)に記載の化合物、
(3)式(I)中、A中の電子受容性の官能基が、式(II)
Figure 0004272068
(式中、T〜Tは、それぞれ独立に、電子吸引基を表し、点線は、芳香族炭化水素環と縮合可能な部分を表す。)からなる群から選ばれる少なくとも1つを部分構造とする官能基であるをことを特徴とする(1)に記載の化合物、
(4)式(II)中、T〜Tが、それぞれ独立に、シアノ基、置換基を有していてもよいC1−C6アルコキシカルボニル基、または置換基を有していてもよいC1−C6アルキルスルホニル基を表すことを特徴とする(3)に記載の化合物、
(5)式(I)中、Spが、置換基を有していてもよい窒素原子、酸素原子、硫黄原子、アミド結合、エステル結合、シロキサン結合を主鎖に含んでいてもよいC6−20のアリレーン基またはC1−20アルキレン基であることを特徴とする(1)〜(4)のいずれかに記載の化合物、
(6)式(I)中、Xが、メルカプト基、置換基を有していてもよいC1−C6アルキルチオ基、C1−C11アシルチオ基、C1−C6アルコキシシリル基、リン酸基、または、ジスルフィド基であることを特徴とする(1)〜(5)のいずれかに記載の化合物、
(7)表面に(1)〜(6)のいずれかに記載の化合物を含有する自己組織化単分子膜が形成されていることを特徴とする基板に関する。
Aについて:
(i)本発明である式(I)で表される化合物中、Aの1種は、シアノ基、C1−C6アルコキシカルボニル基、及びC1−C11アシル基からなる群から選ばれる少なくとも1つが環上または共役系を介して結合している芳香族複素環基であり、Spで表される原子団と、環上または共役系を介して結合している官能基を表す。具体的には、下記式A1−A155で表される化合物群を表す。尚、環上または共役系を介して結合している芳香族複素環の置換基としては、シアノ基を代表して記載してあるが、任意のシアノ基をC1−C6アルコキシカルボニル基、又はC1−C11アシル基に置換することができる。また、その他の置換基として、芳香族複素環上の電子密度を下げるために、電子吸引基が好ましく、具体的には、ニトロ基、フッ素原子等のハロゲン原子、トリフルオロメチル基、スルフェニル基、スルホニル基、スルホン酸基、ホスホニル基、ホスホリル基、ホスフィニル基、C1−C7アシルオキシ基等を例示することができる。それぞれの置換基は、さらに、任意の位置にさらに、適当な置換基を有することができる。
(ii)本発明である式(I)で表される化合物中、Aの1種は、少なくとも一つ以上の芳香族炭化水素環が縮合した電子受容性官能基であり、Spで表される原子団と、環直接またはヘテロ原子を介して結合している官能基を表す。具体的には、下記式A161−A172で表される化合物群を表す。尚、式(II)のT〜Tに該当する置換基としては、シアノ基を代表して記載してあるが、任意のシアノ基を、置換基を有していてもよいC1−C6アルコキシカルボニル基、または置換基を有していてもよいC1−C6アルキルスルホニル基に置換することもできる。また、電子密度を下げるために、電子吸引基で置換するのが好ましく、具体的には、C1−C7アシル基、ニトロ基、フッ素原子等のハロゲン原子、スルフェニル基、スルホニル基、スルホン酸基、ホスホニル基、ホスホリル基、ホスフィニル基、C1−C7アシルオキシ基、トリフルオロメチル基等を例示することができる。
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
上記式中、rは、水素原子、置換基を有してよいC1−C6アルキル基、置換基を有してよいフェニル等のアリール基、C1−C6アルコキシカルボニル基、C1−C11アシル基、C1−C6アルキルスルホニル基、アリールスルホニル基、C1−C20メルカプトアルキル基等の置換基を表す。具体的には、下記式で表される置換基を例示できる。
Figure 0004272068
C1−C6アルコキシカルボニル基として具体的には、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシ基、n−ブトキシカルボニル基、イソブトキシカルボニル基、t−ブトキシカルボニル基、s−ブトキシカルボニル基、n−ペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基等を例示でき、C1−C11アシル基としては、ホルミル基、アセチル基、プロパノイル基、ピバロイル基、トリフルオロアセチル基、ベンゾイル基、ナフチルカルボニル基等を例示することができる。
また、共役系とは、芳香族複素環上のπ電子またはp軌道電子以上の高軌道電子と共鳴構造をとり得る結合状態を示し、具体的には炭素−炭素二重結合、炭素−炭素三重結合、炭素−窒素二重結合等例示することができ、芳香族炭化水素、芳香族複素環が複数縮合した場合を含み、さらに、カルボニル基、イミノ基、メチリデン基のsp2炭素を介して、他の芳香族炭化水素または芳香族複素環と結合させた場合も含むこととする。
また、芳香族複素環基中の環上または共役系を介して結合している置換基は、芳香族複素環の他の位置と結合して環を形成していても構わない。
A中の芳香族複素環としては、後述する製造方法の容易さ、原料の入手しやすさ等を考慮した場合に、ピラジン骨格、イミダゾール骨格を有する複素環基を好ましく例示することができる。
式(II)中のT〜TにおけるC1−C6アルコキシカルボニル基として具体的には、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシ基、n−ブトキシカルボニル基、イソブトキシカルボニル基、t−ブトキシカルボニル基、s−ブトキシカルボニル基、n−ペンチルオキシカルボニル基、n−ヘキシルオキシカルボニル基等を例示でき、C1−C6アルキルスルホニル基としては、メタンスルホニル基、エタンスルホニル基、n−プロパンスルホニル基、イソプロピルスルホニル基、トリフルオロメタンスルホニル基、ペンタフルオロエタンスルホニル基等を例示でき、C1−C7アシル基としては、ホルミル基、アセチル基、プロパノイル基、ピバロイル基、トリフルオロアセチル基、ベンゾイル基等を例示することができる。
式(I)で表される化合物中、Spは、アリーレン基及びアルキレン基の少なくとも一方を含む二価の連結基を表す。また、前記連結基中には、他の構成単位として、下記に示す官能基を含むことができる。
Figure 0004272068
Figure 0004272068
上記式中、R1〜R5は、それぞれ独立に、水素原子、置換基を有していてもよいC1〜C20の炭化水素基を表す。また、これらの官能基は、1つの連結基中、2種以上を同時に含んでいてもよい。また、連結基内に環状構造を有していてもよく、その環状構造を、Aの芳香族複素環基、Xの結合基と形成してもよい。Spとして特に、酸素原子、硫黄原子またはその酸化体、置換基を有していてもよい窒素原子、アミド結合、エステル結合、シロキサン結合を構成要素とするC6〜C20のアリレーン基またはC1〜C20好ましくはC6〜C20のアルキレン基を好ましく例示することができる。具体的には、下記式で表される連結基を例示することができる。
Figure 0004272068
式中、n、mはそれぞれ独立に、0または1以上の整数を表す。
式(I)で表される化合物中、Xとしては、金属表面、金属酸化物表面、または半導体表面と共有結合又は配位結合により結合を形成させる結合基を表す。具体的には、メルカプト基、置換基を有していてもよいC1−C6アルキルチオ基、C1−C11アシルチオ基、C1−C6アルコキシシリル基、リン酸基、または、ジスルフィド基等を例示することができ、具体的には、下記式で表される結合基を例示することができる。
Figure 0004272068
上記式中、L、Kはそれぞれ、対応する芳香族複素環基、結合基の番号を表す。
本発明の式(I)で表される化合物はいずれも新規化合物であり、具体的には、下記表に示す化合物を例示することができる。
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
本発明の式(I)で表される化合物は、例えば、次のようにして製造することができる。
式(I)におけるAの電子受容性部分は、ジアミノマレオニトリル、もしくは、類似のジアミン構造を有する化合物より、例えば、Advances in Heterocyclic Chemistry,vol.41,1−39頁記載の方法で、各種の含窒素ヘテロ環として、製造することができる。
キノン類は、対応するメトキシアレーンのハロゲン化物を、有機金属試薬へと誘導し、単体硫黄と反応させることで、チオールを発生させる。これにアルキル化剤を反応させることで、中間体を得ることができる。また、単体硫黄と反応させずに、有機金属試薬とハロゲン化物を、適当な遷移金属触媒存在下、反応させることで、アレーンに直接炭素で接続した連結基を導入することができる。(下記式(III)を参照)
Figure 0004272068
上記式中、Yは、ハロゲン原子、または、後の工程でハロゲン原子に誘導できる官能基を表し、例えば、エステル基、保護基をかけた水酸基などを表す。
有機金属体とするために用いる金属としては、リチウム、マグネシウム、亜鉛などを用いることができる。また、直接炭素で接続させる際に用いる触媒としては、ニッケル、パラジウムなどの金属錯体を用いることができる。
上記のようにして得られた中間体を、Yがエステル基の場合は、還元して、水酸基とし、保護をかけた水酸基の場合は、脱保護し、水酸基を得る。それをハロゲン化して、末端ハロゲンの中間体へと誘導できる。還元剤としては、LiAlH、NaBH、などを用いることができる。また、水酸基をハロゲンに変換する反応は、チオニルハライド、オキシ塩化りん、三ハロゲン化りん、等ハロゲン化試薬との反応、もしくは、スルホン酸エステルにした後、ハロゲン化金属塩との交換反応によって得ることができる。
水酸基の保護基としては、C1−C6アルコキシメチル基、トリフェニルメチル基、2−テトラヒドロピラニル基、C1−C6トリアルキルシリル基、などが挙げられる。このようにして製造してきたハロゲン化物を適当な硫化反応試薬と反応させ、硫黄原子を導入することができる。例えば、チオ尿素を適当な塩基存在下、反応させ、その後、酸性にしてメルカプト基を導入する方法や、チオカルボン酸のアルカリ金属塩を、反応させ、アシルチオ基を導入できる。さらに、得られたメルカプト基を適当な塩基存在下でアルキル化して、望みのスルフィド化合物を得ることができる。(下記式(IV)参照)
Figure 0004272068
式中、Spは式(I)における意味と同じ意味を表す。
上記アルキル化等に用いられる塩基としては、水酸化ナトリウムのようなアルカリ金属水酸化物、炭酸カリウムのようなアルカリ金属炭酸塩、トリエチルアミンのような三級アミン類等を例示することができる。
また、上記のメルカプト体を、塩基存在下、ヨウ素もしくは臭素、あるいは、過酸化水素もしくはその塩と反応させることで、二量体のジスルフィドを得ることができる。
さらに、この化合物を、適当な酸化剤と処理することにより、所望のキノンに導くことができる。この際、Xがメルカプト基のものは、ジスルフィドに変換した後、酸化反応を行うのが好ましい。(下記式(V)参照)
Figure 0004272068
上記式中、Sp、Aは、式(I)における意味と同じ意味を表す。
上記酸化反応に用いる酸化剤としては、硝酸、硝酸セリウム(IV)二アンモニウム塩、酸化銀(II)、タリウム(III)トリフルオロ酢酸塩、等が挙げられる。
さらに上記のキノン化合物を、活性メチレン化合物と適当な触媒存在下反応させることで、キノジメタン化合物を得ることができる。活性メチレン化合物としては、マロノニトリル、マロン酸ジエステル、2−シアノ酢酸エステル、シアノメタンスルホン酸エステル等が挙げられる。用いる触媒としては、ジブチルアミン、ピロリジン、ピペリジン、モルフォリンなどの二級アミン、四塩化チタン、テトラ(イソプロポキシ)チタンなどのTi(IV)化合物等が挙げられる。
式(I)において、Xがシリル基である化合物を製造する方法としては、末端がオレフィンである中間体に、ヒドロシランを触媒存在下、反応させることで得ることができる。触媒としては、白金、ロジウム、ルテニウムなどの塩化物塩、錯体などを用いることができる。(下記式(VI)参照)
Figure 0004272068
式中、Sp’は、酸素、窒素、硫黄等のヘテロ原子、アミド、エステル、シロキサン結合を主鎖に含んでいてもよいアルキレン基及びアリーレン基の少なくとも一方を含む連結基を表す。
Xがリン酸基である化合物は、末端が水酸基の中間体を、五酸化二リン、ハロゲン化ホスホリル、ないし、活性化されたモノリン酸エステルとの縮合反応、加水分解反応により、所望の化合物を得ることができる。
環状イミド化合物の製造に関しては、対応する酸無水物及びジカルボン酸誘導体と、末端にハロゲンなどの官能基を有する1級アミンを直接反応させるか、末端に水酸基を有する一級アミンと反応させた後、前記ハロゲン化試薬と反応させて、末端にハロゲンなどの官能基を有する中間体を得ることができる。あるいは、環状イミドのNHを、塩基存在下にて、α、ω−ジハロアルカンと反応させることで、同様な中間体を得ることができる。このようにして得た化合物の末端の官能基を、式(IV)、式(V)、及び上記方法と同様に、硫黄、ケイ素、りん酸部を含む官能基に変換できる。(下記式(VII)参照)
Figure 0004272068
上記式中、Qは、水酸基、ハロゲン原子を表し、Lは、ハロゲン原子等の脱離基を表し、Sp、Xは、式(I)における意味と同じ意味を表す。
式(I)において、Spとしてアミド結合を持つものは以下のようにして製造することができる。
Figure 0004272068
(式中、Aは、式(I)と同じ意味を表し、Rは、アミド部分と合わせて、式(I)におけるSp−Xと同じ意味を表す。)
即ち、アミノ基とカルボン酸を適当な縮合剤の存在下、反応させ、所望の化合物を得ることができる。縮合剤としては、カルボニルビス−1H−イミダゾール、カルボジイミド、シアノリン酸エステル、N−ヒドロキシこはく酸、N−ヒドロキシベンゾトリアゾール、等を用いることができる。場合によっては、触媒量もしくは当量以上の塩基を存在させても良く、塩基としては、トリエチルアミンなどの三級アミン、4−ジメチルアミノピリジン、炭酸アルカリ金属塩、等を用いることができる。
式(I)において、Spとして酸素、硫黄、窒素原子を含むものは、例えば以下のような方法で製造することができる。
Figure 0004272068
(式中、Yは、シアノ基、または、塩素原子を表し、Z−R’は、式(I)のSp−X部分に相当する。)
即ち、シアノ基、ハロゲン原子等の適当な脱離基を有するシアノ置換ピラジンと、アルコール、チオール、もしくは、アミンを、−20℃から100℃の間で、反応せしめることで、所望の化合物を得ることができる。場合によっては、触媒量もしくは当量以上の塩基を存在させても良く、塩基としては、トリエチルアミンなどの三級アミン、4−ジメチルアミノピリジン、炭酸アルカリ金属塩、等を用いることができる。
あるいは、上記二つの方法を組合せて、酸素、硫黄、窒素原子とアミド結合の両者を介する式(I)の化合物を得ることもできる。
式(I)において、Spとしてエステル結合を含むものは、以下のような方法で製造することができる。
Figure 0004272068
(式中、Aは、式(I)と同じ意味を表し、COR”でSp−X部分を表し、Lは、水酸基、ハロゲン原子、C1−C6アルコキシ基を表す。)
即ち、カルボン酸、カルボン酸ハライド、カルボン酸エステルと、アルコールを、適当な縮合剤もしくは触媒存在下、反応させることで、所望の化合物を得ることができる。縮合剤もしくは触媒としては、カルボニルビス−1H−イミダゾール、カルボジイミド、シアノリン酸エステル、N−ヒドロキシこはく酸、N−ヒドロキシベンゾトリアゾール、テトラアルコキシチタン、トリエチルアミン等の三級アミン類、塩酸等の鉱酸類、等を用いることができる。
あるいは、式(IX)の方法を組合せて、酸素、硫黄、窒素原子と、エステル結合の両者を介する式(I)の化合物を得ることもできる。
式(I)中、Xとして硫黄原子を有するものは、先にSH基を保護した後、式(VIII)から(X)の製造方法にて、化合物を得ることができる。SH基を保護する保護基としては、アシル基、C1−C6アルコキシアルキル基、2−シアノエチル基、トリフェニルメチル基、t−ブチル基、等が挙げられる。
Figure 0004272068
(式中、Qは、直結合、もしくは、カルボニル基を表し、Spは、式(I)と同じ意味を表し、Prは、保護基を表す。)
上記保護基をはずす方法としては、アシル基、2−シアノエチル基については、水酸化ナトリウム、炭酸セシウムのような、アルカリ金属塩と反応せしめることで、目的のメルカプト化合物を得ることができる。C1−C6アルコキシC1−C6アルキル基、トリフェニルメチル基については、塩酸、臭化水素酸などの鉱酸類、あるいは、酢酸水銀、酢酸銀などの存在下、反応させることで同様に得ることができる。
また、式(VIII)〜(X)の製造方法にて得ることができる、末端部が水酸基、ハロゲン原子である化合物を中間体として、硫黄原子を導入することもできる。
Figure 0004272068
(式中、A、Sp、Xは、式(I)と同じ意味を表し、X’は、水酸基、ハロゲン原子を表す。)
導入時に、用いる試剤としては、チオ酢酸、及びそのアルカリ金属塩、チオ尿素類、ビストリメチルシリルスルフィド、等を用いることができる。
以上の製造方法は、THF、DMF、トルエン、クロロホルム、アセトン、アセトニトリル、アルコール、等の有機溶媒中、もしくは、水−有機溶媒二相系で行うことができ、−80℃から150℃の間で反応させる。
以上のようにして得られた本発明の式(I)で表される化合物は、例えば、それらを溶解した有機溶媒の溶液中に、金等の金属、または金属酸化物等の層を有する基板を浸漬させるだけで、基板上に自己組織化し、単分子膜を形成することができる。
発明を実施するための最良の形態:
以下に、実施例により、本発明をさらに詳細に説明するが、本発明の範囲は、実施例に限定されるものではない。
実施例1 (化合物1.の合成)
[HOC(CH10S] 0.65gのDMF溶液10mLに、1−[3−(N,N−ジメチルアミノ)プロピル]−3−エチルカルボジイミド塩酸塩0.63g、N−ヒドロキシベンゾトリアゾール水和物 0.51g、4−ジメチルアミノピリジン19mg、トリエチルアミン0.46mLを加え、0℃にて、30分撹拌した。これに2−アミノ−3,5,6−トリシアノピラジンを加え、室温下、22時間撹拌した。反応液に酢酸エチルを加え、水、1M塩酸、飽和食塩水、重曹水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにて乾燥させた。これを濃縮し、シリカゲルクロマトグラフィーにて精製し、目的物を淡黄色結晶として得た。
収率3%;融点:102℃(分解);APCI−MS:737(M−H),739(M+H)。
実施例2 (化合物2.の合成)
NCCHCHS(CH10COH 0.54gを用い、実施例1と同様に反応させ、油状の目的物を得た。
収率43%
H NMR(270MHz,CDCl)δ(ppm)=9.25(br s,1H),2.79(t,J=7.2Hz,2H),2.70−2.55(m,6H),1.76(tt,J=7.2,7.2Hz,2H),1.60(tt,J=7.2,7.2Hz,2H),1.50−1.19(m,12H);13C NMR(67.8MHz,CDCl)δ(ppm)=171.85,149.59,133.30,127.11,124.68,118.72,112.15,111.87,111.75,36.90,32.21,29.33,29.25,29.18,29.10,28.97,28.86,28.59,27.50,24.57,18.93
実施例3 (化合物3.の合成)
CHOCHS(CH10COH 0.65gを用い、実施例1と同様に反応させ、油状の目的物を得た。
収率40%
H NMR(270MHz,CDCl)δ(ppm)=9.15(br s,1H),4.73(s,2H),3.46(s,3H),2.75(t,J=7.4Hz,2H),2.69(t,J=7.4Hz,2H),1.88(tt,J=7.2,7.2Hz,2H),1.71(tt,J=7.2,7.2Hz,2H),1.56−1.32(m,12H);13C NMR(67.8MHz,CDCl)δ(ppm)=171.48,149.50,133.23,127.19,124.57,112.00,111.74,111.60,75.54,55.78,37.08,31.07,29.86,29.33,29.25,29.15,29.08,28.92,28.80,24.58
実施例4 (化合物6.の合成)
チオクタン酸 0.52gを用いて、実施例1と同様に反応させた。酢酸エチルに抽出後、水、1M塩酸、飽和食塩水、重曹水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにて乾燥させた混合液を減圧濃縮し、酢酸エチル(20mL)、活性炭(1g)を加えて室温にて1時間攪拌した。濾過後減圧濃縮することで目的化合物をワックス状固体として0.76g得た。
収率85%
H NMR(270MHz,d−acetone)δ(ppm)=8.19(br s,1H),3.63(dd,J=7.1Hz,7.1Hz,1H),3.27−3.05(m,2H),2.72(t,J=7.1Hz,2H),2.48(m,1H),2.01−1.46(m,7H)
実施例5 (化合物9.の合成)
2,3,5,6−テトラシアノピラジン(3.06g)、HO(CH11SCHCHCN(2.57g)のDMF(10mL)溶液を、50〜60℃にて3日間攪拌した。冷却後、水を加え、酢酸エチル(80mL)で2回抽出した。有機層を水、飽和食塩水の順で洗浄し、有機層を硫酸マグネシウムで乾燥した。これを減圧濃縮した。濾過後減圧濃縮することで目的化合物の粗精製物を得た。カラムクロマトグラフィーによって精製し、油状の化合物2.57gを得た。
収率63%
H NMR(270MHz,CDCl)δ(ppm)=4.62(t,J=6.6,2H),2.78(t,J=6.9Hz,2H),2.64(t,J=6.8Hz,2H),2.59(t,J=7.6Hz,2H),1.88(tt,J=7.8,7.8Hz,2H),1.7−1.2(m,16H)
13C NMR(67.8MHz,CDCl)δ(ppm)=160.69,133.08,125.01,123.59,118.45,111.90,111.78,111.23,71.90,32.25,29.39,29.32,29.09,29.03,28.68,28.05,27.59,25.70,18.92
実施例6 (化合物53.の合成)
Figure 0004272068
ニンヒドリンより上記式にしたがって製造した化合物C0.3g、HO(CH11SCHCHCN 1.0g、THF 20mLの溶液に、テトライソプロポキシチタン0.03gを加え、3日間還流した。反応混合物をクロロホルムに溶解させ、希塩酸、飽和食塩水、重曹水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムで乾燥し、濃縮した残渣をシリカゲルカラムクロマトグラフィーにて精製した。エステル基がβ位がγ位かの決定はできなかった。収率10%
H NMR(270MHz,CDCl)δ(ppm)=8.92(s,1H),8,42(d,J=8.7Hz,1H),8.16(d,J=8.7Hz,1H),8.14(d,J=7.6Hz,1H),7.96(d,J=7.6Hz,1H),7.81(t,J=7.6Hz,1H),7.66(t,J=7.6Hz,1H),4.41(t,J=6.4Hz,2H),2.78(t,J=7.4Hz,2H),2.63(t,J=7.4Hz,2H),2.59(t,J=7.4Hz,2H),1.82(tt,J=6.9,6.9Hz,2H),1.59(tt,J=7.4,7.4Hz,2H),1.44−1.25(m,14H)
13C NMR(67.8MHz,CDCl)δ(ppm)=189.23,165.34,157.96,150.18,145.25,141.96,141.14,137.03,133.58,133.15,132.11,131.93,129.81,124.93,122.95,118.38,65.90,32.32,29.49,29.45,29.28,29.22,29.15,28.77,28.70,27.64,26.09,18.92
実施例7 (化合物34.の合成)
チオクタン酸1.03gのDMF溶液(10mL)に、カルボニルジイミダゾール0.90gを氷冷下加え、0℃で1時間撹拌後、2−アミノ−4,5−ジシアノイミダゾール0.66gを加え、室温下、15時間撹拌した。反応液に酢酸エチルを加え、水、1M塩酸、飽和食塩水、重曹水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムにて乾燥させた。これを濃縮し、シリカゲルクロマトグラフィーにて精製した。目的物は、完全に濃縮すると重合するため、溶液希釈状態にて保存した。
H−NMR(270MHz、CDOD)δ(ppm)3.44(m,1H),3.01(m,3H),2.32(t,2H),1.75(m,1H),1.4−1.7(br.m,8H)
実施例8 (化合物89.の合成)
(1)2−ブロム−1、4−ジメトキシナフタレンの合成
500mLのナスフラスコ中、1、4−ジメトキシナフタレン28.5g(0.15mol)の塩化メチレン200mL溶液に炭酸水素ナトリウム水溶液を加え、氷冷下、臭素8.6mL(0.17mol)を滴下した。室温下12時間撹拌後、亜硫酸水素ナトリウム水溶液を加え撹拌し、有機層を抽出した。無水硫酸マグネシウムにて乾燥し、濃縮物をカラムクロマトグラフィーにて精製し、目的物32.46g(収率80%)を得た。その構造は、H−NMR、13C−NMRにより確認した。
(2)2−メルカプト−1、4−ジメトキシナフタレンの合成
窒素雰囲気下、100mLの冷却管つきナスフラスコに、金属マグネシウム1.186g(48.8mmol)をTHF8mlと共に入れ、数滴のエチレンジブロミドで活性化した後、2−ブロム−1、4−ジメトキシナフタレン10.895g(40.7mmol)のTHF溶液60mLを滴下した。室温にて2時間撹拌後、0℃に冷却し、単体硫黄1.565g(48.8mmol)を添加し、室温にて12時間撹拌した。塩酸酸性水溶液に混合物を注ぎ、エーテルにて抽出し、乾燥濃縮残渣をTHF溶液とし、0℃にて、水素化ホウ素ナトリウム約2.5gを加え、室温にて2時間撹拌した。塩酸酸性で加水分解し、エーテル−THF混合溶媒にて抽出、有機層を1MNaOH水溶液にて抽出、水層を塩酸にて酸性化し、塩化メチレンにて抽出し、無水硫酸マグネシウムで乾燥後、濃縮、カラムクロマトグラフィーにて精製した。目的物6.357g(収率71%)。その構造は、H−NMR、13C−NMR、IRにより確認した。
(3)2−(8−ブロモオクチル)メルカプト−1、4−ジメトキシナフタレン
100mLのフラスコ中、2−メルカプト−1、4−ジメトキシナフタレン1.101g(5mmol)と1,8−ジブロモオクタン9.2ml(50mmol)の塩化メチレン溶液30mL溶液に、トリエチルアミン0.7mL(5mmol)を加え、室温下、1時間撹拌後、反応液を希塩酸にて洗浄し、無水硫酸マグネシウムで乾燥後、濃縮、カラムクロマトグラフィーにて精製した。目的物1.91g(収率 93%)。その構造は、H−NMR、13C−NMR、IRにより確認した。
(4)ビス[8−(1,4−ジメトキシナフト−2−イル)チオオクチル]ジスルフィド
2−(8−ブロモオクチル)メルカプト−1、4−ジメトキシナフタレン0.823g(2mmol)のTHF20mL溶液に、チオ尿素0.761g(10mmol)の10mL水溶液を加え、2時間加熱還流した。混合物をクロロホルムと1N 塩酸水溶液に注ぎ、有機層を分液、乾燥、濃縮した粗生成物をクロロホルム50mL溶液とし、トリエチルアミン10mL、ヨウ素0.3gを順次加え、12時間撹拌した。反応液を希塩酸にて洗浄し、無水硫酸マグネシウムで乾燥後、濃縮、カラムクロマトグラフィーにて精製した。目的物0.709g(収率 89%)。その構造は、H−NMR、13C−NMR、IRにより確認した。
(5)化合物89.の合成
ビス[8−(1,4−ジメトキシナフト−2−イル)チオオクチル]ジスルフィド0.281g(0.3mmol)のアセトニトリル−THF(2:1混合液)溶液に、室温下、セリウムアンモニウムナイトレート(CAN)2.0gの水溶液20mLを加え、そのまま12時間撹拌した。混合物をろ過し、ろ過物をクロロホルムにて洗浄し、合わせたろ液を飽和食塩水にて洗浄、続いて、無水硫酸マグネシウムで乾燥、濃縮し、カラムクロマトグラフィーにて精製した。目的物0.121g(収率 61%)。その構造は、H−NMR、13C−NMR、IRにより確認した。
実施例9 (化合物174.および175.の合成)
(1)N−(12−ブロモドデシル)−1,8−ナフタレイミド
1,8−ナフタレイミド0.98g(5mmol)のDMF10mL溶液に、60%油性水素化ナトリウム0.22g(5.5mmol)を加え、室温下、1時間撹拌後、1,12−ジブロモドデカン4.97g(15mmol)を一気に加えた。50℃まで加熱し、均一系にした後、室温で20時間撹拌した。混合物を水に注ぎ、沈殿物をろ過、水、メタノール、エーテルで順次洗浄し、目的物1.2gを得た。ろ液をクロロホルム抽出し、カラムクロマトグラフィーにより精製し、さらに0.3gを得た。その構造をH−NMRにより確認した。収率68%
(2)化合物174.及び化合物175.の合成
N−(12−ブロモドデシル)−1,8−ナフタレイミド0.73g(1.6mmol)のTHF 20mL溶液に、チオ尿素0.64g(8.4mmol)の10mL水溶液を加え、8時間加熱還流した。原料の消失を確認後、2MNaOH水溶液5mLを加え、60−80℃で加熱後、混合物を塩酸酸性水溶液にあけ、クロロホルム抽出した。有機層を、無水硫酸マグネシウムで乾燥、濃縮し、カラムクロマトグラフィーにて精製した。トルエン流出分より、化合物175.を0.16g(収率25%)、その後、クロロホルム流出分より、化合物174.を0.30g(収率50%)で得た。各々の化合物は、その構造をH−NMRにより確認した。
別に、化合物175.のクロロホルム溶液ををアルカリ水溶液と混合することで、化合物174.の生成がH−NMRにより確認できたことから、化合物174.は、化合物175.を経て、形成されたことがわかった。
実施例10 (化合物176.の合成)
N−(12−ブロモドデシル)−1,8−ナフタレイミド0.75g(1.7mmol)のクロロホルム10mL溶液を、チオ酢酸カリウム塩0.39g(3.4mmol)、テトラブチルアンモニウムブロミド0.54g(1.7mmol)の水溶液5mLに加え、室温下、6時間激しく撹拌した。1M塩酸水溶液を加え、クロロホルムにて抽出し、有機層を無水硫酸マグネシウムで乾燥、濃縮後、カラムクロマトグラフィーにより、生成し、粗生成物をえた。これをエーテルで洗浄し、目的物0.37g(収率49%)を得た。
その構造をH−NMRにより確認した。
実施例11 (化合物12.の合成)
Figure 0004272068
2,3,5,6−テトラシアノピラジン1.8(g)(10mmol)、ビス(11−ヒドロキシウンデカニル)ジスルフィド0.81(g)(2mmol)を反応容器にいれ、窒素置換した。次に乾燥DMF 4mlを加え、60〜70℃で6日間反応させた。冷却後、水100mlに注ぎ、酢酸エチルで2回抽出した。有機層を水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥させ、ろ過後、ろ液を濃縮した。残査をカラムクロマトグラフで精製した。クロロホルムで溶出したものを濃縮し、1.11(g)(収率78%)の黄色油状物の化合物12.を得た。
H−NMR(500MHz、CDCl)δ(ppm)=4.6(t,2H),2.7(t,2H),1.75−1.95(m,2H),1.63−1.7(m,2H),1.25−1.43(m,14H).
13C−NMR(500MHz、CDCl)δ(ppm)=25.6−29.4,39,72,111.1(CN),111.6(CN),111.8(CN),124,125,133,161(C=O)
実施例12 (化合物208.の合成)
Figure 0004272068
ニンヒドリンより上記式によって製造した化合物D0.20gと化合物Eのジスルフィド0.33gのジオキサン5mL溶液を室温にて15時間撹拌し、これを減圧下濃縮し、カラムクロマトグラフィーによって精製し、化合物208.を0.23g(収率67%)、黄色結晶として得た。
H−NMR(270MHz、CDCl)δ(ppm)=7.69−7.52(m,8H),4.65(d,J=14Hz,4H),4.12(t,J=7Hz,4H),3.53(t,J=12Hz,4H),2.82−2.70(m,2H),2.66(t,J=7Hz,4H),2.22−2.16(m,4H),2.04−1.92(m,4H),1.76−1.57(m,8H),1.42−1.20(m,28H)
13C−NMR(270MHz、CDCl)δ(ppm)=25.8,28.0,28.4,28.5,29.1,29.2,29.4,39.0,40.2,47.0,64.9,111.1(CN),117.1,122.2,123.8,133.0,135.3,136.3,136.6,138.2,156.4,160.9,173.7(C=O),186.7(C=O)
実施例13 (化合物209.の合成)
Figure 0004272068
上記化合物208.を0.29gとマロノニトリル0.068g、ジオキサン5mL溶液に、トリエチルアミン9.7mgを加えた。室温で22時間、還流下4時間反応させた後、反応混合物を濃縮し、カラムクロマトグラフィーにより精製し、0.31g(収率91%)の化合物209.を、赤色結晶として得た。融点:136.5℃(分解)
H−NMR(270MHz、CDCl)δ(ppm)=8.26(d,2H),7.86(d,2H),7.66(t,2H),7.56(t,2H),4.65(d,4H),4.12(t,4H),3.59(t,4H),2.76(quint,2H),2.67(t,4H),2.19(dt,4H)1.96(dt,4H),1.6(m,8H),1.3(br.28H),.
13C−NMR(270MHz、CDCl)δ(ppm)=22.89,28.14,28.49,28.58,29.18,29.21,29.46,39.12,40.27,47.27,65.05,75.17,110.23(CN),111.45(CN),113.23(CN),116.82,123.36,126.24,133.11,134.78,135.56,136.12,136.51,153,23,156.62,156.71,173.72(C=O)
実施例14 (化合物210.および211.の合成)
Figure 0004272068
(1)化合物210.の合成
ナフタレン−1,4,5,8−テトラカルボン酸二無水物5.36g、5−ヒドロキシ−1−ペンチルアミン4.54g、p−トルエンスルホン酸0.19g、トルエン100mLの混合物を、ディーンスターク管をもちいて脱水しながら、還流を8時間行った後、溶媒を留去し、水を加えて、ろ過し、ろ過物を水、メタノールで洗浄し、乾燥させ、化合物Fを7.65g(収率87%)を得た。続いて、2.02gの化合物Fと三臭化リン3.26gを触媒量のピリジン存在下、トルエン100mL中で、7時間還流させた後、混合物を濃縮し、水を加えて、ろ過し、ろ過物をクロロホルムに分散させ、セライトを用いて、ろ過し、ろ液を濃縮して、化合物Gの粗生成物2.65gを得た。得られた化合物をクロロホルム50mLに溶解させ、臭化テトラブチルアンモニウム1.66g、チオ硫酸カリウム1.30gの水溶液20mLを順次加え、室温下25時間撹拌した。反応混合物を分液し、水層をクロロホルムにて抽出し、合わせたクロロホルム層を1NHCl洗浄、水洗浄、無水硫酸マグネシウムで乾燥し、濃縮し、得られた粗結晶をメタノールで洗浄し、化合物210.を2.06g(収率81%)得た。融点:184.5−188℃
H−NMR(270MHz、CDCl)δ(ppm)=8.76(s,4H),4.20(t,J=7Hz,4H),2.89(t,J=7Hz,4H;CHS),2.13(s,3H),1.51−1.77(m,12H).
(2)化合物211.の合成
化合物210.(3.21g)のメタノール100mL懸濁液中に、濃塩酸10mLを加え、7日間加熱還流した。混合物を水にあけて、結晶をろ過した後、得られた結晶をクロロホルムに溶解させ、カラムクロマトグラフィーにより、精製し、化合物211.を、0.80g(収率29%)得た。
融点:177−178℃
H−NMR(270MHz、CDCl)δ(ppm)=8.77(s,4H),4.21(t,J=7Hz,4H),2.54(q,J=7Hz,4H;CHS),1.69−1.77(m,8H),1.5(br.s,4H),1.35(t,J=7Hz,2H;SH).
実施例15 (化合物212.の合成)
12−(tert−ブチルチオ)−1−ドデシルアミン1.0gとナフタレン−1,4,5,8−テトラカルボン酸二無水物0.52gを、0.12gの酢酸亜鉛・ニ水和物と共に、酢酸20mL中で、20時間還流し、混合物を水に投下して析出した結晶をろ別し、N、N’−ビス(12−tert−ブチルチオドデシル)ナフタレン−1,4,5,8−テトラカルボン酸ジイミドの粗生成物を得た。この1.24gを、酢酸100mL中、2−ニトロベンゼンスルフェニルクロリド0.61gと、室温下、19時間撹拌した後、混合物を濃縮し、ついで、クロロホルム100mL、メタノール50mL、水10mL、濃塩酸0.5mLを順次加えた懸濁液に、トリフェニルホスフィン0.93gを加え、室温下、20時間撹拌した。混合物を水洗、乾燥後、濃縮し、カラムクロマトグラフィーにより、精製し、0.18gの目的物を得た。
H−NMR(270MHz、CDCl)δ(ppm)=8.76(s,4H),4.19(t,4H,J=7.6Hz),2.52(q,4H,J=7.3Hz;CHS),1.5−1.8(m,8H),1.4−1.2(br.s,34H).
実施例16 (化合物1.を用いた自己組織化単分子膜の調製)
マイカ基板上に、蒸着させた金(111)面基板(10x10mm)を、化合物1.の1mMジクロロメタン溶液に24時間浸漬させた後、基板を取りだし、ジクロロメタンで良く洗浄し、その後、アルゴン雰囲気下で、1時間乾燥させ、有機分子薄膜基板を得た。
(基板の評価)
上記のように調整した基板を、走査型トンネル顕微鏡にて、表面観察を行った。その写真を図1に示す。写真からは、配列した有機分子由来の縞状模様が観測された。
上記のようにして調整した基板を、穴開きサイクリックボルタンメトリ(CV)セルに固定し、電解質として、0.1M n−BuN・ClOアセトニトリル溶液、参照電極としてAg/AgNO電極、対極として白金電極、作用極として、固定した基板を用い、CVを測定した。結果を図2に示す。対照データとして、化合物1.を上記電解質溶液に溶解させ(10mM)、同条件と金電極を用いた溶液中の結果を、図3に示す。溶液状態で観測される−0.89Vに極めて近い還元電位−0.96Vを観測したことから、化合物1.が、基板上に、電子受容性薄膜を形成していることが判明した。
上記のようにして得た基板をX線電子分光法(XPS)の角度分解法にて解析した結果を図4に示す。深さ方向2nmレベルでは、炭素原子が金原子よりも豊富に存在することから、化合物1.による薄膜形成が成されたことを検証した。実施例17 (化合物211.を用いた自己組織化単分子膜の調製)
化合物211.を用いた自己組織化単分子膜のサイクリックボルタンメトリ(CV)測定CV測定用金電極(1.6mmφ)を、化合物211.の0.1mMエタノール溶液に24時間浸漬し、エタノール、アセトニトリルで順次洗浄した後、電解質として、0.1Mn−BuN・ClOアセトニトリル溶液、参照電極としてAg/AgNO電極、対極として白金電極、作用極として上記浸漬電極を用いて、CVを測定した。測定結果を、図5の曲線SAMで示す。対照データとして、化合物211.の上記電解質溶液(0.6mM)を、非浸漬金電極を用いて測定した結果を図6に示す。溶液中の還元電位−1.33Vに相当する電位が、図5において、−1.31Vに観測され、この電位は、非浸漬電極を用いたブランク測定(図5のBlank)でも観測されなかったことから、金表面に、化合物211.の薄膜が形成されたことが検証された。
産業上の利用可能性:
以上、述べたように、本発明の化合物は、製造が容易な新規化合物であり、自己組織化して容易に単分子膜を形成することができる。
本発明の式(I)で表される化合物のうち芳香族炭化水素環が縮合している化合物はその平面性、固有するπ電子に基づく分子間相互作用、等により、その縮合がない化合物に比べて、自己組織化過程において、高い配向性、緻密性を発揮できる。そして、その製造においても、縮合した芳香族炭化水素環の効果として、他の場合に比して、目的物を得やすくなるといった利点がある。例えば、酸化反応によるキノン製造工程では、縮合構造がない場合、容易に二量化を起こして、目的物を得ることが困難になるのに対して、縮合構造を有している場合は、高効率で、目的のキノンを容易に得ることができる。
本発明の化合物は、自己組織化して容易に単分子膜を形成することができ、さらに、電子受容能を示すことから、新たな機能を有する分子デバイスの原料となり、産業の利用価値は高いと言える。
【図面の簡単な説明】
図1は、実施例16において作成した基板の走査型トンネル顕微鏡を用いた表面写真を示す。
図2は、実施例16において作成した基板のCV曲線を示す。
図3は、化合物1.の溶液状態におけるCV曲線を示す。
図4は、XPSの測定による実施例16において作成した基板の元素分布状態を表す。
図5は、実施例17において化合物211.の溶液に浸漬した電極のCV曲線を示す。
図6は、実施例17において化合物211.の電解質溶液中、非浸漬電極を用いて測定したCV曲線を示す。Technical field:
The present invention relates to a compound suitable for forming a self-assembled monolayer that expresses a charge separation function, a photoresponsive function, a complex formation function, and the like of an electron-accepting molecule on a substrate.
Technical background:
Technology development to give various functionalities to a substrate by forming a self-assembled monolayer through heteroatoms such as sulfur atoms on a substrate containing a metal or metal oxide as a component has been actively conducted. Yes. In order to provide an electron transfer function, there is a method of forming a self-assembled monolayer using an organic molecule having an electron accepting or electron donating structure at its terminal.
For example, J. et al. Chem. Soc. , Faraday Trans. , 92, 3813, (1996), a quinone is produced by an electrochemical oxidation reaction on a gold electrode in which 2- (11-mercaptoundecyl) hydroquinone is self-assembled on the surface to form a monomolecular film. It is described that.
Langmuir, 14, 5834, (1998) includes bis (10- (2-((2,5-cyclohexadiene-1,4-diylidene) dimalononitrile) having tetracyanoquinodimethane as an electron-accepting structure at its terminal. It is described that in a gold electrode in which a monomolecular film is formed by self-assembling)) decyl) disulfide on the surface, charge transfer occurs with tetramethylphenylenediamine.
Japanese Patent Application Laid-Open No. 2000-261016 discloses a photocharge separation material composed of a compound containing carbon molecules on a spherical shell as an acceptor, and further includes an electron donor and a photosensitizer in the molecule. A substrate is described in which a compound in which an agent is arranged three-dimensionally forms a self-assembled monolayer.
JP 2001-253883 A discloses a mercapto-substituted imidazolyl porphyrin metal complex monomer having a mercapto group or an acetylthio group via a divalent linking group containing at least one of an arylene group and an alkylene group in an imidazolyl porphyrin skeleton. Furthermore, the monomer is bonded to the electrode surface by the multimer by the interaction of the monomer with the imidazole group and the porphyrin central metal, and is bonded to the electrode surface via a mercapto group or the like. It is described that a device that transmits energy in units can be constructed.
Furthermore, Japanese Patent Application Laid-Open No. 2001-303022 discloses that a general formula (a) E-L-Bin. (In the formula, E is an organic residue that absorbs light, L is a long-chain-(CH 2 ) N An atomic group having — or an atomic group in which the main chain of the atomic group is separated by O, S, or N; and E and —NH—CO—, —O—, or —CO—O—, and Bin . Is a group that provides a linking group for bonding the compound (a) to the metal or semiconductor surface by a covalent bond or a coordinate bond. ) And an energy donor compound represented by formula (b) EA-L-Bin. (Wherein EA is an organic residue that absorbs light having an absorption wavelength region overlapping with the excitation light of the compound of general formula (a), L and Bin. Are the same as those in general formula (a)). A light energy transfer element is described in which a scepter compound is formed as a monomolecular film in which a scepter compound is mixed and self-assembled so as to be capable of energy transfer between both compounds.
Disclosure of the invention:
There are few examples of self-assembled monolayers of these compounds having an electron-accepting structure, lack of diversity that can sufficiently cope with the required functionality, and their manufacturing methods are not easy. It was almost. In the future, when used as a light energy conversion element and an electron energy transfer element, a group of compounds having a variety of molecular structures and flexibility in the manufacturing method according to the required function. It is desirable to use
When a monomolecular film having electron acceptability as a basic function is used as an element, the orientation and density of the film are important factors for exerting the performance. However, the compound itself or the intermediate thereof is unstable, so that the structural transformation is limited, resulting in limited examples. The molecular design for the purpose of controlling the orientation in the monomolecular film was not made.
The present invention has a simple structure, is easy to manufacture, has an electron-accepting function, forms a monomolecular film by self-organization, and is more easily converted to improve the denseness and orientation of the film. Thus, an object is to provide a compound that can possibly exhibit the target performance.
As a result of diligent investigations on the above problems, the present inventors have found that diaminomaleonitrile, or pyrazine, imidazole, etc. having a cyano group as a substituent, which can be synthesized using a compound having a similar diamine structure as a raw material, etc. The above-mentioned problems can be solved by performing various molecular transformations so that the aromatic heterocyclic ring has an electron accepting function and can be self-assembled to form a monomolecular film, and has a strong electron accepting partial structure. As a magnetic anisotropy unit that can have a simple stacking structure, it is possible to expect orientation control by self-organization by condensing an aromatic hydrocarbon ring, which is easy to manufacture, and that does not impair the electron-accepting function The inventors have found a compound having a structure and have completed the present invention.
That is, the present invention
(1) Formula (I)
Figure 0004272068
(In the formula, A represents an aromatic complex in which at least one selected from the group consisting of (i) a cyano group, a C1-C6 alkoxycarbonyl group, and a C1-C11 acyl group is bonded on a ring or via a conjugated system. A group in which the cyclic group is bonded to the atomic group represented by Sp on the ring or via a conjugated system, or (ii) an electron-accepting functional group in which at least one aromatic hydrocarbon ring is condensed. Sp represents a divalent linking group containing at least one of an arylene group and an alkylene group, and X represents a bond that forms a bond with a metal surface, a metal oxide surface, or a semiconductor surface by a covalent bond or a coordinate bond. Represents a group).
(2) In the formula (I), the aromatic heterocyclic group is pyrazine, imidazole, or a condensed ring of these with another aromatic hydrocarbon or aromatic heterocyclic ring. Compound,
(3) In formula (I), the electron-accepting functional group in A is represented by formula (II)
Figure 0004272068
(Where T 1 ~ T 4 Each independently represents an electron-withdrawing group, and the dotted line represents a moiety that can be condensed with an aromatic hydrocarbon ring. A compound having a partial structure of at least one selected from the group consisting of:
(4) In formula (II), T 1 ~ T 4 Each independently represents a cyano group, an optionally substituted C1-C6 alkoxycarbonyl group, or an optionally substituted C1-C6 alkylsulfonyl group (3 ),
(5) In formula (I), Sp may contain a nitrogen atom, oxygen atom, sulfur atom, amide bond, ester bond or siloxane bond which may have a substituent in the main chain. The compound according to any one of (1) to (4), which is an arylene group or a C1-20 alkylene group,
(6) In formula (I), X is a mercapto group, an optionally substituted C1-C6 alkylthio group, a C1-C11 acylthio group, a C1-C6 alkoxysilyl group, a phosphate group, or a disulfide The compound according to any one of (1) to (5), which is a group;
(7) The present invention relates to a substrate characterized in that a self-assembled monolayer containing the compound according to any one of (1) to (6) is formed on the surface.
About A:
(I) In the compound represented by formula (I) according to the present invention, at least one selected from the group consisting of a cyano group, a C1-C6 alkoxycarbonyl group, and a C1-C11 acyl group is a ring. An aromatic heterocyclic group bonded to the top or via a conjugated system, and a functional group bonded to the atomic group represented by Sp on the ring or via a conjugated system. Specifically, the compound group represented by the following formula A1-A155 is represented. In addition, as a substituent of the aromatic heterocyclic ring couple | bonded through the ring or through the conjugated system, although the cyano group is represented as a representative, arbitrary cyano groups are C1-C6 alkoxycarbonyl groups, or C1 -C11 acyl group can be substituted. Further, as other substituents, an electron withdrawing group is preferable in order to lower the electron density on the aromatic heterocycle, and specifically, a halogen atom such as a nitro group or a fluorine atom, a trifluoromethyl group, a sulfenyl group. Sulfonyl group, sulfonic acid group, phosphonyl group, phosphoryl group, phosphinyl group, C1-C7 acyloxy group, and the like. Each substituent can further have an appropriate substituent at an arbitrary position.
(Ii) In the compound represented by formula (I) according to the present invention, one of A is an electron-accepting functional group condensed with at least one aromatic hydrocarbon ring, and is represented by Sp. A functional group bonded to an atomic group via a ring directly or through a hetero atom. Specifically, the compound group represented by the following formulas A161-A172 is represented. T in the formula (II) 1 ~ T 4 As a substituent corresponding to, a cyano group is representatively described, but any cyano group may be a C1-C6 alkoxycarbonyl group which may have a substituent, or a substituent. It can also be substituted with a good C1-C6 alkylsulfonyl group. Further, in order to lower the electron density, it is preferable to substitute with an electron withdrawing group. Specifically, a C1-C7 acyl group, a halogen atom such as a nitro group, a fluorine atom, a sulfenyl group, a sulfonyl group, a sulfonic acid group Phosphonyl group, phosphoryl group, phosphinyl group, C1-C7 acyloxy group, trifluoromethyl group and the like.
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
In the above formula, r is a hydrogen atom, a C1-C6 alkyl group which may have a substituent, an aryl group such as phenyl which may have a substituent, a C1-C6 alkoxycarbonyl group, a C1-C11 acyl group, C1 A substituent such as —C6 alkylsulfonyl group, arylsulfonyl group, C1-C20 mercaptoalkyl group and the like is represented. Specifically, the substituent represented by the following formula can be exemplified.
Figure 0004272068
Specific examples of the C1-C6 alkoxycarbonyl group include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxy group, n-butoxycarbonyl group, isobutoxycarbonyl group, t-butoxycarbonyl group, s-butoxy. Examples include a carbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group, etc. Examples of the C1-C11 acyl group include formyl group, acetyl group, propanoyl group, pivaloyl group, trifluoroacetyl group, benzoyl group, naphthyl group. A carbonyl group etc. can be illustrated.
In addition, the conjugated system means a bonding state that can take a resonance structure with a high orbital electron higher than a π electron or p orbital electron on an aromatic heterocycle, and specifically includes a carbon-carbon double bond, a carbon-carbon triplet. Examples include a bond, a carbon-nitrogen double bond, etc., including the case where a plurality of aromatic hydrocarbons and aromatic heterocycles are condensed, and further through the sp2 carbon of the carbonyl group, imino group, and methylidene group. The case where it is combined with an aromatic hydrocarbon or an aromatic heterocycle is included.
In addition, the substituent bonded on the ring in the aromatic heterocyclic group or via the conjugated system may be bonded to another position of the aromatic heterocyclic ring to form a ring.
Preferred examples of the aromatic heterocyclic ring in A include heterocyclic groups having a pyrazine skeleton and an imidazole skeleton in consideration of the ease of the production method described later and the availability of raw materials.
T in formula (II) 1 ~ T 4 Specific examples of the C1-C6 alkoxycarbonyl group in methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxy group, n-butoxycarbonyl group, isobutoxycarbonyl group, t-butoxycarbonyl group, s- Examples include butoxycarbonyl group, n-pentyloxycarbonyl group, n-hexyloxycarbonyl group and the like. Examples of C1-C6 alkylsulfonyl group include methanesulfonyl group, ethanesulfonyl group, n-propanesulfonyl group, isopropylsulfonyl group, trifluoro group. Examples include a lomethanesulfonyl group and a pentafluoroethanesulfonyl group. Examples of the C1-C7 acyl group include a formyl group, an acetyl group, a propanoyl group, a pivaloyl group, a trifluoroacetyl group, and a benzoyl group. It is possible.
In the compound represented by the formula (I), Sp represents a divalent linking group containing at least one of an arylene group and an alkylene group. The linking group may contain the following functional groups as other structural units.
Figure 0004272068
Figure 0004272068
In the above formula, R1 to R5 each independently represent a hydrogen atom or a C1 to C20 hydrocarbon group which may have a substituent. Moreover, these functional groups may contain 2 or more types simultaneously in one coupling group. Further, the linking group may have a cyclic structure, and the cyclic structure may be formed with an aromatic heterocyclic group of A and a bonding group of X. In particular, Sp is preferably an oxygen atom, a sulfur atom or an oxidized form thereof, a nitrogen atom which may have a substituent, an amide bond, an ester bond or a siloxane bond as a constituent element, or a C6-C20 arylene group or C1-C20. Is preferably a C6-C20 alkylene group. Specifically, a linking group represented by the following formula can be exemplified.
Figure 0004272068
In the formula, n and m each independently represent 0 or an integer of 1 or more.
In the compound represented by the formula (I), X represents a bonding group that forms a bond with a metal surface, a metal oxide surface, or a semiconductor surface by a covalent bond or a coordinate bond. Specific examples include a mercapto group, an optionally substituted C1-C6 alkylthio group, a C1-C11 acylthio group, a C1-C6 alkoxysilyl group, a phosphate group, or a disulfide group. Specifically, a linking group represented by the following formula can be exemplified.
Figure 0004272068
In the above formula, L and K represent the numbers of the corresponding aromatic heterocyclic group and bonding group, respectively.
The compounds represented by the formula (I) of the present invention are all novel compounds, and specific examples thereof include the compounds shown in the following table.
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
The compound represented by the formula (I) of the present invention can be produced, for example, as follows.
The electron-accepting moiety of A in the formula (I) can be obtained from diaminomaleonitrile or a compound having a similar diamine structure, for example, in Advances in Heterocyclic Chemistry, vol. 41, pages 39 to 39 can be produced as various nitrogen-containing heterocycles.
Quinones generate a thiol by inducing the corresponding methoxyarene halide to an organometallic reagent and reacting with elemental sulfur. An intermediate can be obtained by reacting this with an alkylating agent. In addition, by reacting an organometallic reagent and a halide in the presence of a suitable transition metal catalyst without reacting with simple sulfur, a linking group directly connected to arene by carbon can be introduced. (See formula (III) below)
Figure 0004272068
In the above formula, Y represents a halogen atom or a functional group that can be derived to a halogen atom in a later step, and represents, for example, an ester group or a hydroxyl group to which a protecting group is applied.
As a metal used for forming the organometallic body, lithium, magnesium, zinc, or the like can be used. Moreover, as a catalyst used when directly connecting with carbon, metal complexes, such as nickel and palladium, can be used.
When Y is an ester group, the intermediate obtained as described above is reduced to a hydroxyl group, and in the case of a protected hydroxyl group, it is deprotected to obtain a hydroxyl group. It can be halogenated and derived into an intermediate of the terminal halogen. As a reducing agent, LiAlH 4 , NaBH 4 , Etc. can be used. The reaction for converting a hydroxyl group into a halogen is obtained by reaction with a halogenating reagent such as thionyl halide, phosphorus oxychloride, phosphorus trihalide, or the like, or by exchange reaction with a metal halide salt after being converted to a sulfonate ester. be able to.
Examples of the hydroxyl-protecting group include a C1-C6 alkoxymethyl group, a triphenylmethyl group, a 2-tetrahydropyranyl group, a C1-C6 trialkylsilyl group, and the like. The halide thus produced can be reacted with an appropriate sulfurization reagent to introduce a sulfur atom. For example, thiourea can be reacted in the presence of a suitable base and then acidified to introduce a mercapto group, or an alkali metal salt of thiocarboxylic acid can be reacted to introduce an acylthio group. Furthermore, the desired mercapto group can be alkylated in the presence of a suitable base to obtain the desired sulfide compound. (See formula (IV) below)
Figure 0004272068
In the formula, Sp represents the same meaning as in formula (I).
Examples of the base used for the alkylation include alkali metal hydroxides such as sodium hydroxide, alkali metal carbonates such as potassium carbonate, and tertiary amines such as triethylamine.
In addition, dimer disulfide can be obtained by reacting the mercapto compound with iodine or bromine, hydrogen peroxide or a salt thereof in the presence of a base.
Furthermore, this compound can be converted to the desired quinone by treatment with a suitable oxidizing agent. At this time, when X is a mercapto group, it is preferable to carry out an oxidation reaction after conversion to disulfide. (See formula (V) below)
Figure 0004272068
In the above formula, Sp and A represent the same meaning as in the formula (I).
Examples of the oxidizing agent used in the oxidation reaction include nitric acid, cerium (IV) nitrate diammonium salt, silver (II) oxide, thallium (III) trifluoroacetate, and the like.
Furthermore, a quinodimethane compound can be obtained by reacting the quinone compound with an active methylene compound in the presence of an appropriate catalyst. Examples of the active methylene compound include malononitrile, malonic acid diester, 2-cyanoacetic acid ester, cyanomethanesulfonic acid ester, and the like. Examples of the catalyst used include secondary amines such as dibutylamine, pyrrolidine, piperidine, and morpholine, and Ti (IV) compounds such as titanium tetrachloride and tetra (isopropoxy) titanium.
In the formula (I), a method for producing a compound in which X is a silyl group can be obtained by reacting an intermediate whose terminal is an olefin with hydrosilane in the presence of a catalyst. As the catalyst, chloride salts such as platinum, rhodium, and ruthenium, complexes, and the like can be used. (See formula (VI) below)
Figure 0004272068
In the formula, Sp ′ represents a linking group containing at least one of an alkylene group and an arylene group which may contain a hetero atom such as oxygen, nitrogen and sulfur, an amide, an ester and a siloxane bond in the main chain.
A compound in which X is a phosphate group is obtained by subjecting an intermediate having a hydroxyl group to a desired compound by condensation reaction or hydrolysis reaction with diphosphorus pentoxide, phosphoryl halide or activated monophosphate ester. Obtainable.
For the production of the cyclic imide compound, the corresponding acid anhydride and dicarboxylic acid derivative are directly reacted with a primary amine having a functional group such as halogen at the terminal, or reacted with a primary amine having a hydroxyl group at the terminal, By reacting with the halogenating reagent, an intermediate having a functional group such as halogen at the terminal can be obtained. Alternatively, a similar intermediate can be obtained by reacting NH of a cyclic imide with an α, ω-dihaloalkane in the presence of a base. The terminal functional group of the compound thus obtained can be converted into a functional group containing sulfur, silicon, and phosphoric acid moieties in the same manner as in formula (IV), formula (V), and the above method. (See formula (VII) below)
Figure 0004272068
In the above formula, Q represents a hydroxyl group or a halogen atom, L represents a leaving group such as a halogen atom, and Sp and X have the same meaning as in the formula (I).
In the formula (I), a compound having an amide bond as Sp can be produced as follows.
Figure 0004272068
(In the formula, A represents the same meaning as in formula (I), and R, together with the amide moiety, represents the same meaning as Sp-X in formula (I).)
That is, the desired compound can be obtained by reacting an amino group and a carboxylic acid in the presence of an appropriate condensing agent. As the condensing agent, carbonylbis-1H-imidazole, carbodiimide, cyanophosphate, N-hydroxysuccinic acid, N-hydroxybenzotriazole, and the like can be used. In some cases, a catalytic amount or an equivalent amount or more of a base may be present. As the base, a tertiary amine such as triethylamine, 4-dimethylaminopyridine, an alkali metal carbonate, or the like can be used.
In the formula (I), those containing oxygen, sulfur and nitrogen atoms as Sp can be produced, for example, by the following method.
Figure 0004272068
(In the formula, Y represents a cyano group or a chlorine atom, and Z—R ′ corresponds to the Sp—X moiety of the formula (I).)
That is, a desired compound is obtained by reacting a cyano-substituted pyrazine having an appropriate leaving group such as a cyano group or a halogen atom with an alcohol, a thiol, or an amine at a temperature between −20 ° C. and 100 ° C. be able to. In some cases, a catalytic amount or an equivalent amount or more of a base may be present. As the base, a tertiary amine such as triethylamine, 4-dimethylaminopyridine, an alkali metal carbonate, or the like can be used.
Alternatively, the above two methods can be combined to obtain a compound of formula (I) via both oxygen, sulfur, nitrogen atoms and an amide bond.
In the formula (I), those containing an ester bond as Sp can be produced by the following method.
Figure 0004272068
(Wherein A represents the same meaning as in formula (I), and CO 2 R ″ represents the Sp—X moiety, and L represents a hydroxyl group, a halogen atom, or a C1-C6 alkoxy group.)
That is, a desired compound can be obtained by reacting carboxylic acid, carboxylic acid halide, carboxylic acid ester, and alcohol in the presence of a suitable condensing agent or catalyst. Examples of the condensing agent or catalyst include carbonylbis-1H-imidazole, carbodiimide, cyanophosphate ester, tertiary amines such as N-hydroxysuccinic acid, N-hydroxybenzotriazole, tetraalkoxytitanium, and triethylamine, mineral acids such as hydrochloric acid, Etc. can be used.
Alternatively, the compounds of formula (I) can be obtained by combining the methods of formula (IX) through both oxygen, sulfur, nitrogen atoms and ester bonds.
In the formula (I), those having a sulfur atom as X can obtain a compound by the production method of formula (VIII) to (X) after protecting the SH group first. Examples of the protecting group for protecting the SH group include an acyl group, a C1-C6 alkoxyalkyl group, a 2-cyanoethyl group, a triphenylmethyl group, a t-butyl group, and the like.
Figure 0004272068
(In the formula, Q represents a direct bond or a carbonyl group, Sp represents the same meaning as in formula (I), and Pr represents a protecting group.)
As a method for removing the protecting group, the target mercapto compound can be obtained by reacting an acyl group or 2-cyanoethyl group with an alkali metal salt such as sodium hydroxide or cesium carbonate. The C1-C6 alkoxy C1-C6 alkyl group and the triphenylmethyl group can be obtained in the same manner by reacting in the presence of mineral acids such as hydrochloric acid and hydrobromic acid, or mercury acetate and silver acetate. .
Moreover, a sulfur atom can also be introduce | transduced by using the compound which can be obtained with the manufacturing method of Formula (VIII)-(X) and the terminal part is a hydroxyl group and a halogen atom as an intermediate body.
Figure 0004272068
(In the formula, A, Sp and X represent the same meaning as in formula (I), and X ′ represents a hydroxyl group and a halogen atom.)
As a reagent to be used at the time of introduction, thioacetic acid and its alkali metal salt, thioureas, bistrimethylsilyl sulfide, and the like can be used.
The above production method can be performed in an organic solvent such as THF, DMF, toluene, chloroform, acetone, acetonitrile, alcohol or the like, or in a water-organic solvent two-phase system, and between -80 ° C and 150 ° C. React.
The compound represented by the formula (I) of the present invention obtained as described above is, for example, a substrate having a layer of a metal such as gold or a metal oxide in a solution of an organic solvent in which they are dissolved. Can be self-assembled on the substrate to form a monomolecular film.
Best Mode for Carrying Out the Invention:
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the examples.
Example 1 (Synthesis of Compound 1.)
[HO 2 C (CH 2 ) 10 S] 2 To 10 mL of 0.65 g of DMF solution, 0.63 g of 1- [3- (N, N-dimethylamino) propyl] -3-ethylcarbodiimide hydrochloride, 0.51 g of N-hydroxybenzotriazole hydrate, 4-dimethyl 19 mg of aminopyridine and 0.46 mL of triethylamine were added, and the mixture was stirred at 0 ° C. for 30 minutes. To this was added 2-amino-3,5,6-tricyanopyrazine, and the mixture was stirred at room temperature for 22 hours. Ethyl acetate was added to the reaction mixture, and the mixture was washed successively with water, 1M hydrochloric acid, saturated brine, aqueous sodium bicarbonate and saturated brine, and dried over anhydrous magnesium sulfate. This was concentrated and purified by silica gel chromatography to obtain the desired product as pale yellow crystals.
Yield 3%; Melting point: 102 ° C. (decomposition); APCI-MS: 737 (M−H), 739 (M + H).
Example 2 (Synthesis of Compound 2.)
NCCH 2 CH 2 S (CH 2 ) 10 CO 2 Using 0.54 g of H, the reaction was carried out in the same manner as in Example 1 to obtain an oily target product.
Yield 43%
1 1 H NMR (270 MHz, CDCl 3 ) Δ (ppm) = 9.25 (brs, 1H), 2.79 (t, J = 7.2 Hz, 2H), 2.70−2.55 (m, 6H), 1.76 (tt, J = 7.2, 7.2 Hz, 2H), 1.60 (tt, J = 7.2, 7.2 Hz, 2H), 1.50-1.19 (m, 12H); 13 C NMR (67.8 MHz, CDCl 3 ) Δ (ppm) = 171.85, 149.59, 133.30, 127.11, 124.68, 118.72, 112.15, 111.87, 111.75, 36.90, 32.21 29.33, 29.25, 29.18, 29.10, 28.97, 28.86, 28.59, 27.50, 24.57, 18.93
Example 3 (Synthesis of Compound 3.)
CH 3 OCH 2 S (CH 2 ) 10 CO 2 Using 0.65 g of H, the reaction was carried out in the same manner as in Example 1 to obtain an oily target product.
Yield 40%
1 1 H NMR (270 MHz, CDCl 3 ) Δ (ppm) = 9.15 (br s, 1H), 4.73 (s, 2H), 3.46 (s, 3H), 2.75 (t, J = 7.4 Hz, 2H), 2 .69 (t, J = 7.4 Hz, 2H), 1.88 (tt, J = 7.2, 7.2 Hz, 2H), 1.71 (tt, J = 7.2, 7.2 Hz, 2H) ), 1.56-1.32 (m, 12H); 13 C NMR (67.8 MHz, CDCl 3 ) Δ (ppm) = 171.48, 149.50, 133.23, 127.19, 124.57, 112.00, 111.74, 111.60, 75.54, 55.78, 37.08, 31.07, 29.86, 29.33, 29.25, 29.15, 29.08, 28.92, 28.80, 24.58
Example 4 (Synthesis of Compound 6.)
The reaction was conducted in the same manner as in Example 1 using 0.52 g of thiooctanoic acid. After extraction into ethyl acetate, the mixture was washed successively with water, 1M hydrochloric acid, saturated brine, aqueous sodium bicarbonate and saturated brine, and dried over anhydrous magnesium sulfate. The mixture was concentrated under reduced pressure, ethyl acetate (20 mL), activated carbon ( 1 g) was added and stirred at room temperature for 1 hour. After filtration, the filtrate was concentrated under reduced pressure to obtain 0.76 g of the target compound as a waxy solid.
Yield 85%
1 1 H NMR (270 MHz, d 6 -Acetone) δ (ppm) = 8.19 (brs, 1H), 3.63 (dd, J = 7.1 Hz, 7.1 Hz, 1H), 3.27-3.05 (m, 2H), 2.72 (t, J = 7.1 Hz, 2H), 2.48 (m, 1H), 2.01-1.46 (m, 7H)
Example 5 (Synthesis of Compound 9.)
2,3,5,6-tetracyanopyrazine (3.06 g), HO (CH 2 ) 11 SCH 2 CH 2 A solution of CN (2.57 g) in DMF (10 mL) was stirred at 50-60 ° C. for 3 days. After cooling, water was added and extracted twice with ethyl acetate (80 mL). The organic layer was washed with water and saturated brine in that order, and the organic layer was dried over magnesium sulfate. This was concentrated under reduced pressure. After filtration, the filtrate was concentrated under reduced pressure to obtain a crude product of the target compound. Purification by column chromatography gave 2.57 g of oily compound.
Yield 63%
1 1 H NMR (270 MHz, CDCl 3 ) Δ (ppm) = 4.62 (t, J = 6.6, 2H), 2.78 (t, J = 6.9 Hz, 2H), 2.64 (t, J = 6.8 Hz, 2H) , 2.59 (t, J = 7.6 Hz, 2H), 1.88 (tt, J = 7.8, 7.8 Hz, 2H), 1.7-1.2 (m, 16H)
13 C NMR (67.8 MHz, CDCl 3 ) Δ (ppm) = 160.69, 133.08, 125.01, 123.59, 118.45, 111.90, 111.78, 111.23, 71.90, 32.25, 29.39, 29.32, 29.09, 29.03, 28.68, 28.05, 27.59, 25.70, 18.92
Example 6 (Synthesis of Compound 53.)
Figure 0004272068
Compound C 0.3 g prepared from ninhydrin according to the above formula, HO (CH 2 ) 11 SCH 2 CH 2 To a solution of CN 1.0 g and THF 20 mL, 0.03 g of tetraisopropoxytitanium was added and refluxed for 3 days. The reaction mixture was dissolved in chloroform, washed successively with dilute hydrochloric acid, saturated brine, aqueous sodium bicarbonate and saturated brine, dried over anhydrous magnesium sulfate, and the concentrated residue was purified by silica gel column chromatography. It was not possible to determine whether the ester group was in the β-position or the γ-position. Yield 10%
1 1 H NMR (270 MHz, CDCl 3 ) Δ (ppm) = 8.92 (s, 1H), 8, 42 (d, J = 8.7 Hz, 1H), 8.16 (d, J = 8.7 Hz, 1H), 8.14 (d , J = 7.6 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.81 (t, J = 7.6 Hz, 1H), 7.66 (t, J = 7. 6 Hz, 1H), 4.41 (t, J = 6.4 Hz, 2H), 2.78 (t, J = 7.4 Hz, 2H), 2.63 (t, J = 7.4 Hz, 2H), 2.59 (t, J = 7.4 Hz, 2H), 1.82 (tt, J = 6.9, 6.9 Hz, 2H), 1.59 (tt, J = 7.4, 7.4 Hz, 2H), 1.44-1.25 (m, 14H)
13 C NMR (67.8 MHz, CDCl 3 ) Δ (ppm) = 189.23, 165.34, 157.96, 150.18, 145.25, 141.96, 141.14, 137.03, 133.58, 133.15, 132.11 131.93, 129.81, 124.93, 122.95, 118.38, 65.90, 32.32, 29.49, 29.45, 29.28, 29.22, 29.15, 28. 77, 28.70, 27.64, 26.09, 18.92
Example 7 (Synthesis of Compound 34.)
To a DMF solution (10 mL) of 1.03 g of thiooctanoic acid, 0.90 g of carbonyldiimidazole was added under ice cooling, and the mixture was stirred at 0 ° C. for 1 hour, and then 0.66 g of 2-amino-4,5-dicyanoimidazole was added. The mixture was stirred for 15 hours. Ethyl acetate was added to the reaction mixture, and the mixture was washed successively with water, 1M hydrochloric acid, saturated brine, aqueous sodium bicarbonate and saturated brine, and dried over anhydrous magnesium sulfate. This was concentrated and purified by silica gel chromatography. The target product was polymerized when completely concentrated, and thus was stored in a solution diluted state.
1 H-NMR (270 MHz, CD 3 OD) δ (ppm) 3.44 (m, 1H), 3.01 (m, 3H), 2.32 (t, 2H), 1.75 (m, 1H), 1.4-1.7 ( br.m, 8H)
Example 8 (Synthesis of Compound 89.)
(1) Synthesis of 2-bromo-1,4-dimethoxynaphthalene
In a 500 mL eggplant flask, a sodium hydrogen carbonate aqueous solution was added to a 200 mL methylene chloride solution of 28.5 g (0.15 mol) of 1,4-dimethoxynaphthalene, and 8.6 mL (0.17 mol) of bromine was added dropwise under ice cooling. After stirring at room temperature for 12 hours, an aqueous sodium hydrogen sulfite solution was added and stirred, and the organic layer was extracted. The extract was dried over anhydrous magnesium sulfate, and the concentrate was purified by column chromatography to obtain 32.46 g (yield 80%) of the desired product. Its structure is 1 H-NMR, 13 Confirmed by C-NMR.
(2) Synthesis of 2-mercapto-1,4-dimethoxynaphthalene
In a 100 mL eggplant flask with a condenser tube in a nitrogen atmosphere, 1.186 g (48.8 mmol) of metallic magnesium was placed together with 8 ml of THF, activated with a few drops of ethylene dibromide, and then 2-bromo-1,4-dimethoxynaphthalene. 60 mL of a 10.895 g (40.7 mmol) THF solution was added dropwise. After stirring at room temperature for 2 hours, the mixture was cooled to 0 ° C., 1.565 g (48.8 mmol) of elemental sulfur was added, and the mixture was stirred at room temperature for 12 hours. The mixture was poured into an aqueous hydrochloric acid solution and extracted with ether. The dried concentrated residue was made into a THF solution, and about 2.5 g of sodium borohydride was added at 0 ° C., followed by stirring at room temperature for 2 hours. Hydrolyzed with hydrochloric acid, extracted with ether-THF mixed solvent, organic layer extracted with 1M NaOH aqueous solution, aqueous layer acidified with hydrochloric acid, extracted with methylene chloride, dried over anhydrous magnesium sulfate, concentrated, Purified by column chromatography. 6.357 g of desired product (yield 71%). Its structure is 1 H-NMR, 13 This was confirmed by C-NMR and IR.
(3) 2- (8-Bromooctyl) mercapto-1,4-dimethoxynaphthalene
In a 100 mL flask, 0.7 mL (5 mmol) of triethylamine was added to a 30 mL methylene chloride solution of 1.101 g (5 mmol) of 2-mercapto-1,4-dimethoxynaphthalene and 9.2 mL (50 mmol) of 1,8-dibromooctane. In addition, after stirring at room temperature for 1 hour, the reaction solution was washed with dilute hydrochloric acid, dried over anhydrous magnesium sulfate, concentrated, and purified by column chromatography. 1.91 g of the desired product (yield 93%). Its structure is 1 H-NMR, 13 This was confirmed by C-NMR and IR.
(4) Bis [8- (1,4-dimethoxynaphth-2-yl) thiooctyl] disulfide
To a solution of 2- (8-bromooctyl) mercapto-1,4-dimethoxynaphthalene 0.823 g (2 mmol) in THF 20 mL was added a thiourea 0.761 g (10 mmol) 10 mL aqueous solution, and the mixture was heated to reflux for 2 hours. The mixture was poured into chloroform and 1N aqueous hydrochloric acid, and the organic layer was separated, dried and concentrated to give a 50 mL solution of chloroform. Triethylamine (10 mL) and iodine (0.3 g) were sequentially added, and the mixture was stirred for 12 hours. The reaction solution was washed with dilute hydrochloric acid, dried over anhydrous magnesium sulfate, concentrated, and purified by column chromatography. 0.709 g of desired product (yield 89%). Its structure is 1 H-NMR, 13 This was confirmed by C-NMR and IR.
(5) Compound 89. Synthesis of
Cerium ammonium nitrate (CAN) was added to a solution of 0.281 g (0.3 mmol) of bis [8- (1,4-dimethoxynaphth-2-yl) thiooctyl] disulfide in acetonitrile-THF (2: 1 mixture) at room temperature. ) 20 g of 2.0 g of aqueous solution was added and stirred for 12 hours. The mixture was filtered, the filtrate was washed with chloroform, and the combined filtrate was washed with saturated brine, then dried over anhydrous magnesium sulfate, concentrated, and purified by column chromatography. 0.121 g of the desired product (yield 61%). Its structure is 1 H-NMR, 13 This was confirmed by C-NMR and IR.
Example 9 (Synthesis of Compounds 174. and 175.)
(1) N- (12-bromododecyl) -1,8-naphthalimide
To a solution of 0.98 g (5 mmol) of 1,8-naphthalimide in 10 mL of DMF, 0.22 g (5.5 mmol) of 60% oily sodium hydride was added, stirred at room temperature for 1 hour, and then 4.97 g of 1,12-dibromododecane. (15 mmol) was added all at once. After heating to 50 ° C. to obtain a homogeneous system, the mixture was stirred at room temperature for 20 hours. The mixture was poured into water, and the precipitate was filtered and washed successively with water, methanol and ether to obtain 1.2 g of the desired product. The filtrate was extracted with chloroform and purified by column chromatography to obtain 0.3 g. That structure 1 Confirmed by 1 H-NMR. Yield 68%
(2) Compound 174. And Compound 175. Synthesis of
To a 20 mL THF solution of 0.73 g (1.6 mmol) N- (12-bromododecyl) -1,8-naphthalimide was added a 10 mL aqueous solution of 0.64 g (8.4 mmol) thiourea and heated to reflux for 8 hours. After confirming disappearance of the raw materials, 5 mL of 2M NaOH aqueous solution was added, and after heating at 60-80 ° C., the mixture was poured into hydrochloric acid acidic aqueous solution and extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, concentrated and purified by column chromatography. From the toluene effluent, compound 175. Of 0.16 g (yield 25%), and from the chloroform effluent, compound 174. Was obtained in 0.30 g (yield 50%). Each compound has its structure 1 Confirmed by 1 H-NMR.
Separately, compound 175. Is mixed with an aqueous alkaline solution to give compound 174. Generation of 1 Since it could be confirmed by 1 H-NMR, compound 174. Is compound 175. It was found that it was formed.
Example 10 (Synthesis of Compound 176.)
A solution of N- (12-bromododecyl) -1,8-naphthalimide 0.75 g (1.7 mmol) in chloroform 10 mL was mixed with potassium thioacetate 0.39 g (3.4 mmol), tetrabutylammonium bromide 0.54 g (1 .7 mmol) in aqueous solution and stirred vigorously at room temperature for 6 hours. A 1M aqueous hydrochloric acid solution was added, and the mixture was extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate, concentrated, and then generated by column chromatography to obtain a crude product. This was washed with ether to obtain 0.37 g (yield 49%) of the desired product.
That structure 1 Confirmed by 1 H-NMR.
Example 11 (Synthesis of Compound 12.)
Figure 0004272068
2,3,5,6-tetracyanopyrazine 1.8 (g) (10 mmol) and bis (11-hydroxyundecanyl) disulfide 0.81 (g) (2 mmol) were placed in a reaction vessel and purged with nitrogen. Next, 4 ml of dry DMF was added and reacted at 60 to 70 ° C. for 6 days. After cooling, it was poured into 100 ml of water and extracted twice with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated. The residue was purified by column chromatography. What was eluted with chloroform was concentrated to give 1.11 (g) (yield 78%) of yellow oily compound 12. Got.
1 H-NMR (500 MHz, CDCl 3 ) Δ (ppm) = 4.6 (t, 2H), 2.7 (t, 2H), 1.75-1.95 (m, 2H), 1.63-1.7 (m, 2H), 1.25-1.43 (m, 14H).
13 C-NMR (500 MHz, CDCl 3 ) Δ (ppm) = 25.6-29.4, 39, 72, 111.1 (CN), 111.6 (CN), 111.8 (CN), 124, 125, 133, 161 (C═O) )
Example 12 (Synthesis of Compound 208.)
Figure 0004272068
A solution of 0.20 g of compound D prepared by the above formula from ninhydrin and a solution of 0.33 g of disulfide of compound E in 5 mL of dioxane was stirred at room temperature for 15 hours, concentrated under reduced pressure, purified by column chromatography, compound 208. 0.23 g (yield 67%) was obtained as yellow crystals.
1 H-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 7.69-7.52 (m, 8H), 4.65 (d, J = 14 Hz, 4H), 4.12 (t, J = 7 Hz, 4H), 3.53 (t , J = 12 Hz, 4H), 2.82-2.70 (m, 2H), 2.66 (t, J = 7 Hz, 4H), 2.22-2.16 (m, 4H), 2.04 -1.92 (m, 4H), 1.76-1.57 (m, 8H), 1.42-1.20 (m, 28H)
13 C-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 25.8, 28.0, 28.4, 28.5, 29.1, 29.2, 29.4, 39.0, 40.2, 47.0, 64.9, 111.1 (CN), 117.1, 122.2, 123.8, 133.0, 135.3, 136.3, 136.6, 138.2, 156.4, 160.9, 173.7 (C = O), 186.7 (C = O)
Example 13 (Synthesis of Compound 209.)
Figure 0004272068
Compound 208 above. Was added to a solution of 0.29 g of malononitrile, 0.068 g of malononitrile and 5 mL of dioxane, and 9.7 mg of triethylamine. After reacting at room temperature for 22 hours and under reflux for 4 hours, the reaction mixture was concentrated and purified by column chromatography to obtain 0.31 g (yield 91%) of compound 209. Was obtained as red crystals. Melting point: 136.5 ° C. (decomposition)
1 H-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 8.26 (d, 2H), 7.86 (d, 2H), 7.66 (t, 2H), 7.56 (t, 2H), 4.65 (d, 4H) , 4.12 (t, 4H), 3.59 (t, 4H), 2.76 (quint, 2H), 2.67 (t, 4H), 2.19 (dt, 4H) 1.96 (dt) , 4H), 1.6 (m, 8H), 1.3 (br. 28H),.
13 C-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 2.89, 28.14, 28.49, 28.58, 29.18, 29.21, 29.46, 39.12, 40.27, 47.27, 65.05 75.17, 110.23 (CN), 111.45 (CN), 113.23 (CN), 116.82, 123.36, 126.24, 133.11, 134.78, 135.56, 136 .12, 136.51, 153, 23, 156.62, 156.71, 173.72 (C = O)
Example 14 (Synthesis of Compounds 210. and 211.)
Figure 0004272068
(1) Compound 210. Synthesis of
A mixture of 5.36 g of naphthalene-1,4,5,8-tetracarboxylic dianhydride, 4.54 g of 5-hydroxy-1-pentylamine, 0.19 g of p-toluenesulfonic acid and 100 mL of toluene was added to a Dean-Stark tube. The mixture was refluxed for 8 hours while dehydrating, and then the solvent was distilled off, water was added and the mixture was filtered. The filtrate was washed with water and methanol and dried to obtain 7.65 g of compound F (yield). Rate 87%). Subsequently, 2.02 g of compound F and 3.26 g of phosphorus tribromide were refluxed in 100 mL of toluene in the presence of a catalytic amount of pyridine for 7 hours, and then the mixture was concentrated, added with water, filtered, The filtrate was dispersed in chloroform, filtered using Celite, and the filtrate was concentrated to obtain 2.65 g of a crude product of Compound G. The obtained compound was dissolved in 50 mL of chloroform, 20 mL of an aqueous solution of 1.66 g of tetrabutylammonium bromide and 1.30 g of potassium thiosulfate was sequentially added, and the mixture was stirred at room temperature for 25 hours. The reaction mixture was separated, the aqueous layer was extracted with chloroform, and the combined chloroform layer was washed with 1N HCl, washed with water, dried over anhydrous magnesium sulfate, concentrated, and the resulting crude crystals were washed with methanol to give compound 210. . 2.06 g (yield 81%) was obtained. Melting point: 184.5-188 ° C
1 H-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 8.76 (s, 4H), 4.20 (t, J = 7 Hz, 4H), 2.89 (t, J = 7 Hz, 4H; CH 2 S), 2.13 (s, 3H), 1.51-1.77 (m, 12H).
(2) Compound 211. Synthesis of
Compound 210. 10 mL of concentrated hydrochloric acid was added to a suspension of (3.21 g) in 100 mL of methanol, and the mixture was heated to reflux for 7 days. The mixture was poured into water and the crystals were filtered. The obtained crystals were dissolved in chloroform and purified by column chromatography to give compound 211. 0.80 g (29% yield) was obtained.
Melting point: 177-178 ° C
1 H-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 8.77 (s, 4H), 4.21 (t, J = 7 Hz, 4H), 2.54 (q, J = 7 Hz, 4H; CH 2 S), 1.69-1.77 (m, 8H), 1.5 (br. S, 4H), 1.35 (t, J = 7 Hz, 2H; SH).
Example 15 (Synthesis of Compound 212.)
1.0 g of 12- (tert-butylthio) -1-dodecylamine and 0.52 g of naphthalene-1,4,5,8-tetracarboxylic dianhydride together with 0.12 g of zinc acetate dihydrate, The mixture was refluxed in 20 mL of acetic acid for 20 hours, the mixture was dropped into water, and the precipitated crystals were collected by filtration, and N, N′-bis (12-tert-butylthiododecyl) naphthalene-1,4,5,8- A crude product of tetracarboxylic acid diimide was obtained. After stirring 1.24 g of this compound with 0.61 g of 2-nitrobenzenesulfenyl chloride in 100 mL of acetic acid at room temperature for 19 hours, the mixture was concentrated, and then 100 mL of chloroform, 50 mL of methanol, 10 mL of water, and 0.1 mL of concentrated hydrochloric acid were added. To the suspension in which 5 mL was sequentially added, 0.93 g of triphenylphosphine was added and stirred at room temperature for 20 hours. The mixture was washed with water, dried, concentrated, and purified by column chromatography to obtain 0.18 g of the desired product.
1 H-NMR (270 MHz, CDCl 3 ) Δ (ppm) = 8.76 (s, 4H), 4.19 (t, 4H, J = 7.6 Hz), 2.52 (q, 4H, J = 7.3 Hz; CH 2 S), 1.5-1.8 (m, 8H), 1.4-1.2 (br.s, 34H).
Example 16 (Preparation of self-assembled monolayer using Compound 1)
On a mica substrate, a deposited gold (111) surface substrate (10 × 10 mm) was added to compound 1. After being immersed in a 1 mM dichloromethane solution for 24 hours, the substrate was taken out, thoroughly washed with dichloromethane, and then dried in an argon atmosphere for 1 hour to obtain an organic molecular thin film substrate.
(Substrate evaluation)
The surface of the substrate prepared as described above was observed with a scanning tunneling microscope. The photograph is shown in FIG. From the photograph, a striped pattern derived from the arranged organic molecules was observed.
The substrate prepared as described above was fixed to a perforated cyclic voltammetry (CV) cell, and 0.1 M n-Bu was used as an electrolyte. 4 N · ClO 4 Acetonitrile solution, Ag / AgNO as reference electrode 3 CV was measured using a platinum electrode as an electrode and a counter electrode, and a fixed substrate as a working electrode. The results are shown in FIG. As control data, compound 1. Is dissolved in the above electrolyte solution (10 mM), and the results under the same conditions and a solution using a gold electrode are shown in FIG. Since a reduction potential of −0.96 V, which was very close to −0.89 V observed in the solution state, was observed, Compound 1. However, it was found that an electron-accepting thin film was formed on the substrate.
FIG. 4 shows the result of analyzing the substrate obtained as described above by the angle resolution method of X-ray electron spectroscopy (XPS). Since the carbon atom is more abundant than the gold atom at the 2 nm level in the depth direction, the compound 1. It was verified that thin film formation was achieved. Example 17 (Preparation of self-assembled monolayer using compound 211.)
Compound 211. Cyclic voltammetry (CV) measurement of self-assembled monolayer using CV measurement gold electrode (1.6 mmφ), compound 211. After being immersed in a 0.1 mM ethanol solution for 24 hours and sequentially washed with ethanol and acetonitrile, 0.1 Mn-Bu was used as an electrolyte. 4 N · ClO 4 Acetonitrile solution, Ag / AgNO as reference electrode 3 CV was measured using a platinum electrode as an electrode and a counter electrode, and the immersion electrode as a working electrode. The measurement result is shown by a curve SAM in FIG. As control data, compound 211. FIG. 6 shows the result of measuring the above electrolyte solution (0.6 mM) using a non-immersed gold electrode. A potential corresponding to a reduction potential of −1.33 V in the solution was observed at −1.31 V in FIG. 5, and this potential was not observed even in a blank measurement using a non-immersed electrode (Blank in FIG. 5). Therefore, on the gold surface, compound 211. It was verified that a thin film was formed.
Industrial applicability:
As described above, the compound of the present invention is a novel compound that can be easily produced, and can easily form a monomolecular film by self-assembly.
Among the compounds represented by the formula (I) of the present invention, a compound in which an aromatic hydrocarbon ring is condensed is a compound having no condensation due to its planarity, intermolecular interaction based on inherent π electrons, and the like. In comparison, high orientation and denseness can be exhibited in the self-assembly process. And also in the manufacture, as an effect of the condensed aromatic hydrocarbon ring, there is an advantage that the target product can be easily obtained as compared with other cases. For example, in the quinone production process by oxidation reaction, when there is no condensation structure, dimerization occurs easily and it becomes difficult to obtain the target product, whereas when it has a condensation structure, it is highly efficient. Thus, the desired quinone can be easily obtained.
The compound of the present invention can self-assemble and easily form a monomolecular film, and further exhibits an electron accepting ability. Therefore, the compound of the present invention is a raw material for a molecular device having a new function, and has high industrial utility value. I can say that.
[Brief description of the drawings]
FIG. 1 shows a surface photograph of the substrate prepared in Example 16 using a scanning tunneling microscope.
FIG. 2 shows a CV curve of the substrate prepared in Example 16.
FIG. 3 shows compound 1. The CV curve in the solution state of is shown.
FIG. 4 shows the element distribution state of the substrate prepared in Example 16 by XPS measurement.
FIG. 5 shows compound 211. in Example 17. The CV curve of the electrode immersed in the solution of is shown.
FIG. 6 shows compound 211. in Example 17. The CV curve measured using the non-immersed electrode in the electrolyte solution of is shown.

Claims (2)

表面に次式(I)の化合物を含有する自己組織化単分子膜が形成されていることを特徴とする基板。
Figure 0004272068
(式中、
Aは以下のA−1〜A172のうちのいずれか1つを示す。
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
rは以下のr1〜r12のうちのいずれか1つを示す。
Figure 0004272068
Spは、以下のSp1〜Sp16のうちのいずれか1つを示す。
Figure 0004272068
n及びmは、夫々独立に0又は1以上の整数を示す。
Xは、以下のXa〜Xjのうちのいずれか1つを示す。
Figure 0004272068
Xaにおいて、Sp及びAは、夫々、上記Sp及びAのうちのいずれか1つを示す。)
A substrate characterized in that a self-assembled monolayer containing a compound of the following formula (I) is formed on the surface.
Figure 0004272068
(Where
A represents any one of the following A-1 to A172.
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
Figure 0004272068
r represents any one of the following r1 to r12.
Figure 0004272068
Sp represents any one of the following Sp1 to Sp16.
Figure 0004272068
n and m each independently represent 0 or an integer of 1 or more.
X represents any one of the following Xa to Xj.
Figure 0004272068
In Xa, Sp and A each represent one of Sp and A. )
次式(II)で表される化合物。
A’−Sp’−X’ (II)
(式中、A’は、以下のうちのいずれか一つを示す。
Figure 0004272068
rは−(CH SH又は−(CH 12 SHを示す。
Sp’は、以下のうちのいずれか一つを示す。
Figure 0004272068
X’は、以下のうちのいずれか一つを示す。
Figure 0004272068
X’中、Sp’及びA’は上記定義と同じ。)
A compound represented by the following formula (II):
A'-Sp'-X '(II)
(In the formula, A ′ represents any one of the following.
Figure 0004272068
r represents — (CH 2 ) 5 SH or — (CH 2 ) 12 SH.
Sp ′ represents any one of the following.
Figure 0004272068
X ′ represents any one of the following.
Figure 0004272068
In X ′, Sp ′ and A ′ are the same as defined above. )
JP2003556385A 2001-12-26 2002-12-26 Electron-accepting compounds that form self-assembled monolayers Expired - Fee Related JP4272068B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001394984 2001-12-26
JP2001394984 2001-12-26
JP2002040385 2002-02-18
JP2002040385 2002-02-18
PCT/JP2002/013590 WO2003055853A1 (en) 2001-12-26 2002-12-26 Electron-accepting compounds capable of forming self-assembled monolayers

Publications (2)

Publication Number Publication Date
JPWO2003055853A1 JPWO2003055853A1 (en) 2005-05-12
JP4272068B2 true JP4272068B2 (en) 2009-06-03

Family

ID=26625298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003556385A Expired - Fee Related JP4272068B2 (en) 2001-12-26 2002-12-26 Electron-accepting compounds that form self-assembled monolayers

Country Status (3)

Country Link
JP (1) JP4272068B2 (en)
AU (1) AU2002357515A1 (en)
WO (1) WO2003055853A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2617725C (en) 2005-08-05 2012-04-03 Hybrigenics Sa Novel cysteine protease inhibitors and their therapeutic applications
JP4923120B2 (en) * 2009-03-17 2012-04-25 株式会社東芝 Particle and near-field optical waveguides
US7928067B2 (en) 2009-05-14 2011-04-19 Ischemix Llc Compositions and methods for treating ischemia and ischemia-reperfusion injury
JP5792482B2 (en) * 2010-03-04 2015-10-14 住友化学株式会社 Nitrogen-containing condensed ring compound, nitrogen-containing condensed ring polymer, organic thin film and organic thin film element
KR20140020840A (en) 2010-11-18 2014-02-19 이쉐믹스 엘엘씨 Lipoyl compounds and their use for treating ischemic injury
EP2958148B1 (en) 2013-02-12 2019-10-02 Japan Science And Technology Agency Electronic device using organic thin film, and electronic apparatus containing same
US10879477B2 (en) 2014-02-19 2020-12-29 Merck Patent Gmbh Cyclic amine surface modifier and organic electronic devices comprising such cyclic amine surface modifier
WO2016010061A1 (en) 2014-07-15 2016-01-21 国立研究開発法人科学技術振興機構 Triptycene derivative useful as material for forming self-assembled film, method for manufacturing said triptycene derivative, film using same, method for manufacturing said film, and electronic device using said method
EP3615023B1 (en) 2017-04-25 2023-06-21 Ischemix LLC Lipoyl-glu-ala for the treatment of neurodegenerative damage caused by traumatic brain injury

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1603441A (en) * 1968-08-06 1971-04-19
JP3345642B2 (en) * 2000-03-14 2002-11-18 独立行政法人産業技術総合研究所 Novel compound of phthalocyanine derivative, method for producing the same, and self-assembled film
JP4445641B2 (en) * 2000-04-21 2010-04-07 独立行政法人科学技術振興機構 Optical energy transfer device with mixed self-assembled monolayer of energy donor compound and energy acceptor compound formed on substrate surface
JP2002363154A (en) * 2001-06-04 2002-12-18 Dojindo Laboratories Protected thiol compound and protected disulfide compound

Also Published As

Publication number Publication date
WO2003055853A1 (en) 2003-07-10
AU2002357515A1 (en) 2003-07-15
JPWO2003055853A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP7039682B2 (en) [(5- (Halophenyl) -3-hydroxypyridin-2-carbonyl) -amino] 5-((Halophenyl) -3-halo-pyridin-2-yl) -nitrile derivative as an intermediate in the preparation of alkanoic acid derivatives
JP3383839B2 (en) Novel mercapto-substituted imidazolyl porphyrin metal complex monomer, polymer having the same as a repeating unit, and methods for producing them
JP4272068B2 (en) Electron-accepting compounds that form self-assembled monolayers
JP5612151B2 (en) Method for producing aromatic compound
US10644242B2 (en) Oligomeric perylene diimide non-fullerene acceptors via direct (hetero)arylation cross-coupling reactions
Wei et al. Tripodal Ru (II) complexes with conjugated and non-conjugated rigid-rod bridges for semiconductor nanoparticles sensitization
JP5381976B2 (en) Liquid porphyrin derivative and method for producing the same
Eryazici et al. Construction of hexanuclear macrocycles by a coupling strategy from polyfunctionalized bis (terpyridines)
EP1219667B1 (en) Novel thioether derivatives, their method for production and use
US10981936B2 (en) Oligomeric perylene diimide non-fullerene acceptors via direct (hetero)arylation cross-coupling reactions
JP4204854B2 (en) New sulfur compounds
JP3653535B2 (en) Novel thioether derivative, its production method and use
Liang et al. Synthesis of oligo (para-phenylenevinylene) methyl thiols for self-assembled monolayers on gold surfaces
JP3345642B2 (en) Novel compound of phthalocyanine derivative, method for producing the same, and self-assembled film
JP6202431B2 (en) Cage-type silsesquioxane derivatives
JP4317938B2 (en) Zinc porphyrin dimer having 2,6-diacylated compound as spacer and method for producing the same
US6815567B2 (en) Derivatives of 4-sulfanylalkyl-3,5-dinitrobenzyl alcohol and method for preparing the same
May The Active Template Approach to Mechanically Interlocked Nanocarbons
JP3950953B2 (en) [3] A monomer based on a rotaxane structure, a method for producing the monomer, a polymer, and a method for producing the polymer.
WO2006095631A1 (en) Coated heteroaromatic ring compound
JP2024045789A (en) Compounds and metal complexes
KR920003691B1 (en) Process for the preparation of benzimidazole derivatives
WO1991007397A1 (en) Thia- and/or selenafulvalenyl compound
KR101373763B1 (en) Method of preparing fullerene derivatives using photoaddition reaction of tertiary α-silylamine and fullerene
JP2722625B2 (en) 2,2 '-(2,5-dihydrothiophene-2,5-diylidene) bis (1,3-dithiol) derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4272068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees