JP4271363B2 - Preparation of alkenyl polyether - Google Patents

Preparation of alkenyl polyether Download PDF

Info

Publication number
JP4271363B2
JP4271363B2 JP2000382465A JP2000382465A JP4271363B2 JP 4271363 B2 JP4271363 B2 JP 4271363B2 JP 2000382465 A JP2000382465 A JP 2000382465A JP 2000382465 A JP2000382465 A JP 2000382465A JP 4271363 B2 JP4271363 B2 JP 4271363B2
Authority
JP
Japan
Prior art keywords
mol
alkenyl polyether
catalyst
formula
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000382465A
Other languages
Japanese (ja)
Other versions
JP2002179788A (en
Inventor
広樹 沢田
厚人 森
善信 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000382465A priority Critical patent/JP4271363B2/en
Publication of JP2002179788A publication Critical patent/JP2002179788A/en
Application granted granted Critical
Publication of JP4271363B2 publication Critical patent/JP4271363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、乳化重合用反応性界面活性剤あるいはその中間体等として有用な末端不飽和アルケニルポリエーテルの製法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
末端不飽和アルケニルポリエーテルは、乳化重合用反応性界面活性剤あるいはその中間体等として有用な化合物である。特表平3−503168には、アリルアルコールに、アルカリ触媒下、ブチレンオキシドとエチレンオキシドを付加して末端不飽和アルケニルポリエーテルを得る方法が開示されている。
【0003】
また、Macromolecules,32巻,5967頁(1999年)には、乳化重合用反応性界面活性剤として3−メチル−3−ブテン−1−オールから10−(3−メチル−3−ブテニル)オキシ−1−デカンスルホン酸ナトリウムを合成する方法が記載されている。しかしながら、該アルコールにアルキレンオキシド等のエポキシ化合物を反応させて乳化重合用反応性界面活性剤あるいはその中間体等として有用な、末端不飽和アルケニルポリエーテルを製造する方法は、これまで知られていなかった。
【0004】
本発明の課題は、乳化重合用反応性界面活性剤あるいはその中間体等として有用な末端不飽和アルケニルポリエーテルを製造する方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明は、式(I)で表される不飽和アルコール(以下化合物(I)という)と炭素数2〜18のアルキレンオキシドとを、ルイス酸触媒又は複合金属酸化物触媒を用いて反応させる、式(II)で表わされるアルケニルポリエーテル(以下化合物(II)という)の製法、並びにこの化合物(II)に、さらにエチレンオキシドを反応させる、式(III)で表わされるアルケニルポリエーテル(以下化合物(III)という)の製法を提供する。
【0006】
【化3】
【0007】
[式中、pは2〜16の整数、AOは炭素数2〜18のオキシアルキレン基、mは1〜50の数を示す。またm個の-(AO)-基は、同一でも異なっていてもよい。]
【0008】
【化4】
【0009】
[式中、p,AO及びmは前記と同じ意味を示し、EOはオキシエチレン基、nは1〜100の数を示す。〕
【0010】
【発明の実施の形態】
式(I)において、pは2〜16の整数であり、2〜9が好ましい。化合物(I)としては、3−メチル−3−ブテン−1−オール、4−メチル−4−ペンテン−1−オール、7−メチル−7−オクテン−1−オール等を挙げることができる。
【0011】
式(II)及び(III)において、AOは炭素数2〜18のオキシアルキレン基であり、具体的には、オキシエチレン、オキシプロピレン、オキシブチレン、オキシジメチルエチレン、オキシデシルエチレン、オキシドデシルエチレン、オキシテトラデシルエチレン、オキシヘキサデシルエチレン等が挙げられる。
【0012】
mはオキシアルキレン基の平均付加モル数を示す1〜50の数で、好ましくは、1〜20、特に好ましくは5〜20の数であり、m個の -(AO)-は、同一でも異なっていてもよい。(AO)mは、界面活性剤の疎水基を構成するので、m個のオキシアルキレン基の半分以上は炭素数3以上のオキシアルキレン基であることが好ましく、特にすべてオキシブチレン基であることが好ましい。
【0013】
式(III)において、nはオキシエチレン基の平均付加モル数を示す1〜100の数で、好ましくは1〜50の数である。
【0014】
化合物(I)から化合物(II)を合成するときには、触媒としてルイス酸触媒又は複合金属酸化物触媒を用いる。反応触媒として水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド、水素化ナトリウム等の塩基性触媒を用いると、二重結合の転移が起こり、乳化重合用反応性界面活性剤として用いた場合に共重合性に劣ることになる、内部に2重結合をもったアルケニルポリエーテルが、副生する。一方、反応触媒としてルイス酸又は複合金属酸化物を用いると、実質上、二重結合の異性化を生じさせずに反応させることができ、化合物(II)を高純度で得ることができる。
【0015】
ルイス酸を触媒とする場合、使用できるルイス酸としては、塩化チタン、塩化第二鉄、四塩化スズ、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、アルコキシチタン、臭化ホウ素、塩化ホウ素、三フッ化ホウ素、三フッ化ホウ素ジエチルエーテル錯体、塩化アルミニウム、臭化アルミニウム等が挙げられ、三フッ化ホウ素ジエチルエーテル錯体、四塩化スズが特に好ましい。ルイス酸の使用量は、生成する化合物(II)に対して0.1〜3重量%が適当である。反応温度は、0〜80℃、好ましくは0〜50℃、より好ましくは0〜30℃である。反応時の圧力は常圧ないし加圧(好ましくは1MPa以下)である。
【0016】
複合金属酸化物触媒としては、特開平7−227540、特開平1−164437等に記載のマグネシウムを含有する複合酸化物触媒が好ましく、マグネシウムと、Zn、Sb、Sn、Ti、Zr、Al、Ga、In、Tl、Co、Sc、La、Mnから選ばれる1種以上の金属とを複合させたものが挙げられる。特に好ましい複合金属酸化物はマグネシウム以外にZnとAlを含有する触媒である。複合金属酸化物触媒の使用量は、特に限定されないが、生成する化合物(II)に対して0.3〜3重量%が、適当である。反応温度は、80〜180℃、好ましくは100〜150℃、より好ましくは110〜140℃である。反応時の圧力は常圧ないし加圧(好ましくは1MPa以下)である。
【0017】
化合物(II)にエチレンオキシドを反応させて化合物(III)を合成する場合には、触媒を含んだままの化合物(II)に、エチレンオキシドを導入し同一の触媒で続けて付加反応をおこなっても良いし、別の触媒を用いて反応させてもよい。触媒を変えるときには、化合物(II)の合成に用いた触媒は除去ないし失活させることが好ましい。化合物(II)から化合物(III)を合成するときには、塩基性触媒を使用することもできる。塩基性触媒の例としては水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等のアルカリ金属の水酸化物やアルコキシド、水酸化バリウム等のアルカリ土類金属の水酸化物、テトラメチルアンモニウムヒドロキシド等の水酸化第4級アンモニウム塩等があげられる。特に水酸化カリウムが好ましい。塩基性触媒の使用量は、化合物(II)に対して0.5〜10モル%が好ましく、1〜5モル%が更に好ましい。反応温度は80〜180℃、好ましくは100〜150℃、特に好ましくは110〜130℃である。
【0018】
本発明の製造法によって得られるアルケニルポリエーテルは、高純度でラジカル重合性に富んでいる。化合物(III)はそれ自身反応性の非イオン界面活性剤として使用できる。さらに化合物(II)又は(III)の末端OH基を修飾してアニオン性の反応性界面活性剤を合成することができる。化合物(II)又は(III)に、たとえばスルファミン酸を反応させることにより、硫酸エステルアンモニウム塩を合成することができる。その他スルホン酸塩化、リン酸エステル塩化、カルボキシメチル化等の修飾反応を、特表平3−503168号第7頁に記載されている方法で行うことができる。
これらの反応性界面活性剤は、乳化重合の乳化剤やポリマーの改質剤として使用できる。
【0019】
【実施例】
実施例1
攪拌機、温度計、滴下漏斗を備えた反応容器に3−メチル−3−ブテン−1−オール(東京化成(株)製)60.0g(0.697モル)を仕込み、窒素雰囲気下10℃に冷却し、三フッ化ホウ素ジエチルエーテル錯体(和光純薬(株)製)1.98g(0.0140モル)を添加し、1,2−エポキシブタン(ブチレンオキシド)251g(3.48モル)を7〜10℃で滴下し、滴下後、10℃で、1時間熟成した。吸着剤キョワード500SH(協和化学工業(株)製)6.2gを添加し、室温で1時間撹拌した後、減圧ろ過し、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体(以下アルケニルポリエーテルA-1という)を得た。得られたアルケニルポリエーテルA-1の1H−NMRスペクトルを図1に示す。
【0020】
実施例2
実施例1において三フッ化ホウ素ジエチルエーテル錯体(和光純薬(株)製)を2.97g(0.0209モル)に、1,2−エポキシブタンを603g(8.36モル)にした以外は、実施例1と同様にして3−メチル−3−ブテン−1−オールの1,2−エポキシブタン12モル付加体(以下アルケニルポリエーテルA-2という)を得た。
【0021】
実施例3
実施例1において、三フッ化ホウ素ジエチルエーテル錯体を四塩化スズ(和光純薬(株)製)3.63g(0.0139モル)に変える以外は、実施例1と同様にして3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体(以下アルケニルポリエーテルA-3という)を得た。
【0022】
実施例4
攪拌機、温度計、滴下漏斗、還流管を備えた反応容器に3−メチル−3−ブテン−1−オール60.0g(0.697モル)、及び下記の方法に従って調製したZn/Al/Mgの複合金属酸化物触媒5.0gを仕込み、窒素雰囲気下100〜110℃で1,2−エポキシブタン251g(3.48モル)を滴下した。滴下後、110℃で1時間熟成を行い室温まで冷却し、減圧ろ過して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体(以下アルケニルポリエーテルA-4という)を得た。
【0023】
<複合金属酸化物触媒の製法>
Zn(NO32・6H2O 55.8g、Al(NO33・9H2O112.5g及びMg(NO32・6H2O 144.2gをイオン交換水1299gに溶解した溶液、0.24mol/L Na2CO3水溶液、及び4mol/L NaOH水溶液をそれぞれ12.5mL/min、9mL/min、及び5〜7.5mL/minの液流量で5L容積の反応槽に同時供給した。反応槽には、予め水を500g入れておき、定速攪拌機で250rpmで撹拌した。反応槽は、液温度が15±2℃になるように温度制御し、さらにpHが、9.7〜10.3になるようにNaOH水溶液の添加量を調節し、2時間沈澱反応を行った後、各水溶液の供給を停止し、懸濁液を撹拌したまま1時間熟成させた。この懸濁液をろ過し、得られた白色固体をイオン交換水を用いて十分に洗浄した。洗浄後、110℃の温風乾燥器中で12時間乾燥させ、式:[(Zn0.25Mg0.755/7Al2/7(OH)2](CO31/7・cH2O]で表される白色固体状の触媒前駆体を得た。次いで、乾燥後の触媒前駆体を窒素気流中で550℃、2時間焼成し触媒を得た。
【0024】
比較例1
攪拌機、温度計、蒸留管を備えた反応容器に3−メチル−3−ブテン−1−オール66.0g(0.766モル)、水酸化カリウム3.52g(0.0627モル)を仕込み、減圧下90℃に加熱して水分及び該アルコール7.5gを留出させた。蒸留管を滴下漏斗と還流管に換え、窒素雰囲気下100〜110℃で1,2−エポキシブタン251g(3.48モル)を滴下した。滴下後、110℃で3時間熟成を行い室温まで冷却し、減圧ろ過して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体(以下アルケニルポリエーテルA-5という)を得た。得られたアルケニルポリエーテルA-5の1H−NMRスペクトルを図2に示す。
【0025】
比較例2
オートクレーブに3−メチル−3−ブテン−1−オール390g(4.53モル)、粉末ナトリウムメトキシド7.34g(0.136モル)を仕込み、65℃、0.007MPaで脱メタノール後、140℃、0.3MPaの条件で1,2−エポキシブタン1631g(22.6モル)を注入し、3時間熟成を行い室温まで冷却し、減圧ろ過して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体(以下アルケニルポリエーテルA-6という)を得た。
【0026】
比較例3
オートクレーブに3−メチル−3−ブテン−1−オール390g(4.53モル)、KOH7.58g(0.1351モル)を仕込み、145℃、0.3MPaの条件で1,2−エポキシブタン1621g(22.5モル)を付加して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体(以下アルケニルポリエーテルA-7という)を得た。続いて150℃、0.3MPaの条件でエチレンオキシ1985g(45.1モル)を付加して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル及びエチレンオキシド10モル付加体(以下アルケニルポリエーテルA-8という)を得た。
【0027】
実施例5
オートクレーブに実施例1で得られた3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体500g(1.12モル)、KOH1.88g(0.0336モル)を仕込み、100℃、0.004MPaで脱水後、120℃、0.3MPaの条件でエチレンオキシド493g(11.2モル)を付加して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル及びエチレンオキシド10モル付加体(以下アルケニルポリエーテルA-9という)を得た。
【0028】
実施例6
実施例5と同様にして3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル付加体500g(1.12モル)にエチレンオキシド986g(22.4モル)を付加して、3−メチル−3−ブテン−1−オールの1,2−エポキシブタン5モル及びエチレンオキシド20モル付加体(以下アルケニルポリエーテルA-10という)を得た。
【0029】
実施例1〜6及び比較例1〜3で製造されたアルケニルポリエーテル中の3−メチル−2−ブテニルポリエーテルの含有率Iを下記の式により求めた。結果を表1に示す。
【0030】
I(%)=100×a/(a+b)
(ここで、aは、1H−NMRにより分析した3−メチル−2−ブテニル基の1位のメチレンプロトン(CDCl3、δ=4.0)の積分値であり、bは3−メチル−3−ブテニル基の2位のメチレンプロトン(CDCl3、δ=2.3)の積分値である。)
【0031】
【表1】
【0032】
【発明の効果】
本発明に従えば、乳化重合用反応性界面活性剤あるいはその中間体等として有用な末端不飽和アルケニルポリエーテルが製造できる。
【図面の簡単な説明】
【図1】 実施例1で得られたアルケニルポリエーテルA-1の1H−NMRスペクトルである。
【図2】 比較例1で得られたアルケニルポリエーテルA-5の1H−NMRスペクトルである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing a terminal unsaturated alkenyl polyether useful as a reactive surfactant for emulsion polymerization or an intermediate thereof.
[0002]
[Prior art and problems to be solved by the invention]
The terminal unsaturated alkenyl polyether is a useful compound as a reactive surfactant for emulsion polymerization or an intermediate thereof. JP-T-3-503168 discloses a method of obtaining terminally unsaturated alkenyl polyether by adding butylene oxide and ethylene oxide to allyl alcohol in the presence of an alkali catalyst.
[0003]
Also, Macromolecules, 32, 5967 (1999) describes 3-methyl-3-buten-1-ol to 10- (3-methyl-3-butenyl) oxy- as a reactive surfactant for emulsion polymerization. A method for synthesizing sodium 1-decanosulfonate is described. However, a method for producing a terminal unsaturated alkenyl polyether useful as an emulsion polymerization reactive surfactant or an intermediate thereof by reacting the alcohol with an epoxy compound such as alkylene oxide has not been known so far. It was.
[0004]
An object of the present invention is to provide a method for producing a terminal unsaturated alkenyl polyether useful as a reactive surfactant for emulsion polymerization or an intermediate thereof.
[0005]
[Means for Solving the Problems]
In the present invention, an unsaturated alcohol represented by formula (I) (hereinafter referred to as compound (I)) and an alkylene oxide having 2 to 18 carbon atoms are reacted using a Lewis acid catalyst or a composite metal oxide catalyst. A process for producing an alkenyl polyether represented by formula (II) (hereinafter referred to as compound (II)) and an alkenyl polyether represented by formula (III) (hereinafter referred to as compound (III), wherein this compound (II) is further reacted with ethylene oxide. ))).
[0006]
[Chemical 3]
[0007]
[Wherein, p represents an integer of 2 to 16, AO represents an oxyalkylene group having 2 to 18 carbon atoms, and m represents a number of 1 to 50. The m-(AO)-groups may be the same or different. ]
[0008]
[Formula 4]
[0009]
[Wherein, p, AO and m represent the same meaning as described above, EO represents an oxyethylene group, and n represents a number of 1 to 100. ]
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In formula (I), p is an integer of 2-16, and 2-9 are preferable. Examples of compound (I) include 3-methyl-3-buten-1-ol, 4-methyl-4-penten-1-ol, 7-methyl-7-octen-1-ol, and the like.
[0011]
In the formulas (II) and (III), AO is an oxyalkylene group having 2 to 18 carbon atoms, specifically, oxyethylene, oxypropylene, oxybutylene, oxydimethylethylene, oxydecylethylene, oxydecylethylene, Examples thereof include oxytetradecylethylene and oxyhexadecylethylene.
[0012]
m is a number of 1 to 50 indicating the average number of added moles of the oxyalkylene group, preferably 1 to 20, particularly preferably 5 to 20, and the m-(AO)-may be the same or different. It may be. (AO) m constitutes the hydrophobic group of the surfactant, so that more than half of the m oxyalkylene groups are preferably oxyalkylene groups having 3 or more carbon atoms, and in particular all oxybutylene groups. preferable.
[0013]
In the formula (III), n is a number of 1 to 100, preferably 1 to 50, indicating the average number of moles of oxyethylene group added.
[0014]
When synthesizing compound (II) from compound (I), a Lewis acid catalyst or a composite metal oxide catalyst is used as a catalyst. When a basic catalyst such as sodium hydroxide, potassium hydroxide, sodium methoxide, or sodium hydride is used as the reaction catalyst, double bond transfer occurs and copolymerization occurs when used as a reactive surfactant for emulsion polymerization. An alkenyl polyether having a double bond inside is produced as a by-product. On the other hand, when a Lewis acid or a composite metal oxide is used as a reaction catalyst, the reaction can be carried out substantially without causing double bond isomerization, and the compound (II) can be obtained with high purity.
[0015]
When a Lewis acid is used as a catalyst, usable Lewis acids include titanium chloride, ferric chloride, tin tetrachloride, zinc chloride, zinc bromide, zinc iodide, alkoxy titanium, boron bromide, boron chloride, trifluoride. Examples thereof include boron fluoride, boron trifluoride diethyl ether complex, aluminum chloride, aluminum bromide, and boron trifluoride diethyl ether complex and tin tetrachloride are particularly preferable. The amount of Lewis acid used is suitably from 0.1 to 3% by weight based on the resulting compound (II). The reaction temperature is 0 to 80 ° C, preferably 0 to 50 ° C, more preferably 0 to 30 ° C. The pressure during the reaction is normal pressure or pressurization (preferably 1 MPa or less).
[0016]
As the composite metal oxide catalyst, a composite oxide catalyst containing magnesium described in JP-A-7-227540, JP-A-1-164437 and the like is preferable. Magnesium, Zn, Sb, Sn, Ti, Zr, Al, Ga , In, Tl, Co, Sc, La, and Mn may be combined with one or more metals. A particularly preferable composite metal oxide is a catalyst containing Zn and Al in addition to magnesium. Although the usage-amount of a composite metal oxide catalyst is not specifically limited, 0.3-3 weight% is suitable with respect to the compound (II) to produce | generate. The reaction temperature is 80 to 180 ° C, preferably 100 to 150 ° C, more preferably 110 to 140 ° C. The pressure during the reaction is normal pressure or pressurization (preferably 1 MPa or less).
[0017]
When compound (III) is synthesized by reacting compound (II) with ethylene oxide, ethylene oxide may be introduced into compound (II) containing the catalyst and the addition reaction may be continued with the same catalyst. However, the reaction may be performed using another catalyst. When changing the catalyst, it is preferable to remove or deactivate the catalyst used in the synthesis of compound (II). When synthesizing compound (III) from compound (II), a basic catalyst can also be used. Examples of basic catalysts include hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and sodium methoxide, alkoxides, hydroxides of alkaline earth metals such as barium hydroxide, and tetramethylammonium hydroxide. Examples thereof include quaternary ammonium hydroxide salts. In particular, potassium hydroxide is preferred. 0.5-10 mol% is preferable with respect to compound (II), and, as for the usage-amount of a basic catalyst, 1-5 mol% is still more preferable. The reaction temperature is 80 to 180 ° C, preferably 100 to 150 ° C, particularly preferably 110 to 130 ° C.
[0018]
The alkenyl polyether obtained by the production method of the present invention is highly pure and rich in radical polymerizability. Compound (III) can itself be used as a reactive nonionic surfactant. Furthermore, an anionic reactive surfactant can be synthesized by modifying the terminal OH group of compound (II) or (III). A sulfate ammonium salt can be synthesized by reacting compound (II) or (III) with, for example, sulfamic acid. Other modification reactions such as sulfonate formation, phosphate esterification, carboxymethylation and the like can be carried out by the methods described in JP-T-3-503168, page 7.
These reactive surfactants can be used as an emulsifier for emulsion polymerization or a modifier for polymers.
[0019]
【Example】
Example 1
A reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel was charged with 60.0 g (0.697 mol) of 3-methyl-3-buten-1-ol (manufactured by Tokyo Chemical Industry Co., Ltd.) and brought to 10 ° C. under a nitrogen atmosphere. After cooling, 1.98 g (0.0140 mol) of boron trifluoride diethyl ether complex (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and 251 g (3.48 mol) of 1,2-epoxybutane (butylene oxide) was added. The solution was dropped at 7 to 10 ° C., and after the dropping, aging was performed at 10 ° C. for 1 hour. Adsorbent Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) (6.2 g) was added, stirred at room temperature for 1 hour, filtered under reduced pressure, and 1,2-epoxybutane of 3-methyl-3-buten-1-ol. A 5-mol adduct (hereinafter referred to as alkenyl polyether A-1) was obtained. The 1 H-NMR spectrum of the obtained alkenyl polyether A-1 is shown in FIG.
[0020]
Example 2
In Example 1, except that boron trifluoride diethyl ether complex (manufactured by Wako Pure Chemical Industries, Ltd.) was changed to 2.97 g (0.0209 mol) and 1,2-epoxybutane was changed to 603 g (8.36 mol). In the same manner as in Example 1, a 1,2-epoxybutane 12-mol adduct of 3-methyl-3-buten-1-ol (hereinafter referred to as alkenyl polyether A-2) was obtained.
[0021]
Example 3
In Example 1, except that the boron trifluoride diethyl ether complex was changed to 3.63 g (0.0139 mol) of tin tetrachloride (manufactured by Wako Pure Chemical Industries, Ltd.), 3-methyl- A 1,2-epoxybutane 5-mol adduct of 3-buten-1-ol (hereinafter referred to as alkenyl polyether A-3) was obtained.
[0022]
Example 4
In a reaction vessel equipped with a stirrer, thermometer, dropping funnel and reflux tube, 60.0 g (0.697 mol) of 3-methyl-3-buten-1-ol, and Zn / Al / Mg prepared according to the following method A mixed metal oxide catalyst (5.0 g) was charged, and 251 g (3.48 mol) of 1,2-epoxybutane was added dropwise at 100 to 110 ° C. in a nitrogen atmosphere. After dropping, the mixture was aged at 110 ° C. for 1 hour, cooled to room temperature, filtered under reduced pressure, and 1,2-epoxybutane 5-mol adduct of 3-methyl-3-buten-1-ol (hereinafter referred to as alkenyl polyether A-). 4).
[0023]
<Production method of composite metal oxide catalyst>
A solution obtained by dissolving 55.8 g of Zn (NO 3 ) 2 .6H 2 O, 112.5 g of Al (NO 3 ) 3 .9H 2 O and 144.2 g of Mg (NO 3 ) 2 .6H 2 O in 1299 g of ion-exchanged water, A 0.24 mol / L Na 2 CO 3 aqueous solution and a 4 mol / L NaOH aqueous solution were simultaneously supplied to a 5 L reaction vessel at a liquid flow rate of 12.5 mL / min, 9 mL / min, and 5-7.5 mL / min, respectively. . In the reaction tank, 500 g of water was put in advance and stirred at 250 rpm with a constant speed stirrer. The temperature of the reaction vessel was controlled so that the liquid temperature became 15 ± 2 ° C., and the addition amount of the NaOH aqueous solution was adjusted so that the pH became 9.7 to 10.3, and the precipitation reaction was performed for 2 hours. Thereafter, the supply of each aqueous solution was stopped, and the suspension was aged for 1 hour with stirring. This suspension was filtered, and the resulting white solid was thoroughly washed with ion exchange water. After washing, it is dried in a hot air dryer at 110 ° C. for 12 hours, and the formula: [(Zn 0.25 Mg 0.75 ) 5/7 Al 2/7 (OH) 2 ] (CO 3 ) 1/7 · cH 2 O] A white solid catalyst precursor represented by the formula (1) was obtained. Next, the dried catalyst precursor was calcined at 550 ° C. for 2 hours in a nitrogen stream to obtain a catalyst.
[0024]
Comparative Example 1
A reaction vessel equipped with a stirrer, thermometer and distillation tube was charged with 66.0 g (0.766 mol) of 3-methyl-3-buten-1-ol and 3.52 g (0.0627 mol) of potassium hydroxide, and the pressure was reduced. The mixture was heated to 90 ° C. to distill water and 7.5 g of the alcohol. The distillation tube was replaced with a dropping funnel and a reflux tube, and 251 g (3.48 mol) of 1,2-epoxybutane was added dropwise at 100 to 110 ° C. in a nitrogen atmosphere. After dropping, the mixture was aged at 110 ° C. for 3 hours, cooled to room temperature, filtered under reduced pressure, and a 1,2-epoxybutane 5-mol adduct of 3-methyl-3-buten-1-ol (hereinafter referred to as alkenyl polyether A-). 5). The 1 H-NMR spectrum of the obtained alkenyl polyether A-5 is shown in FIG.
[0025]
Comparative Example 2
The autoclave was charged with 390 g (4.53 mol) of 3-methyl-3-buten-1-ol and 7.34 g (0.136 mol) of powdered sodium methoxide, and after methanol removal at 65 ° C. and 0.007 MPa, 140 ° C. Then, 1631 g (22.6 mol) of 1,2-epoxybutane was injected under the condition of 0.3 MPa, aged for 3 hours, cooled to room temperature, filtered under reduced pressure, and 3-methyl-3-buten-1-ol. 1,2-epoxybutane 5-mol adduct (hereinafter referred to as alkenyl polyether A-6) was obtained.
[0026]
Comparative Example 3
An autoclave was charged with 390 g (4.53 mol) of 3-methyl-3-buten-1-ol and 7.58 g (0.1351 mol) of KOH, and 1621 g of 1,2-epoxybutane under the conditions of 145 ° C. and 0.3 MPa ( 22.5 mol) was added to give a 1,2-epoxybutane 5-mol adduct of 3-methyl-3-buten-1-ol (hereinafter referred to as alkenyl polyether A-7). Subsequently, 1985 g (45.1 mol) of ethyleneoxy was added under conditions of 150 ° C. and 0.3 MPa, and 5 mol of 1,2-epoxybutane of 3-methyl-3-buten-1-ol and 10 mol of ethylene oxide were added. The product (hereinafter referred to as alkenyl polyether A-8) was obtained.
[0027]
Example 5
An autoclave was charged with 500 g (1.12 mol) of 1,2-epoxybutane 5-mol adduct of 3-methyl-3-buten-1-ol obtained in Example 1 and 1.88 g (0.0336 mol) of KOH. After dehydration at 100 ° C. and 0.004 MPa, 493 g (11.2 mol) of ethylene oxide was added under the conditions of 120 ° C. and 0.3 MPa to give 1,2-epoxy of 3-methyl-3-buten-1-ol. An adduct of 5 mol of butane and 10 mol of ethylene oxide (hereinafter referred to as alkenyl polyether A-9) was obtained.
[0028]
Example 6
In the same manner as in Example 5, 986 g (22.4 mol) of ethylene oxide was added to 500 g (1.12 mol) of 1,2-epoxybutane 5-mol adduct of 3-methyl-3-buten-1-ol, An adduct of 5 moles of 1,2-epoxybutane and 20 moles of ethylene oxide (hereinafter referred to as alkenyl polyether A-10) of 3-methyl-3-buten-1-ol was obtained.
[0029]
The content I of 3-methyl-2-butenyl polyether in the alkenyl polyether produced in Examples 1 to 6 and Comparative Examples 1 to 3 was determined by the following formula. The results are shown in Table 1.
[0030]
I (%) = 100 × a / (a + b)
(Where a is the integral value of the 1-position methylene proton (CDCl 3 , δ = 4.0) of the 3-methyl-2-butenyl group analyzed by 1 H-NMR, and b is 3-methyl-3- (This is the integral value of the 2-position methylene proton (CDCl 3 , δ = 2.3) of the butenyl group.)
[0031]
[Table 1]
[0032]
【The invention's effect】
According to the present invention, a terminal unsaturated alkenyl polyether useful as a reactive surfactant for emulsion polymerization or an intermediate thereof can be produced.
[Brief description of the drawings]
1 is a 1 H-NMR spectrum of alkenyl polyether A-1 obtained in Example 1. FIG.
2 is a 1 H-NMR spectrum of alkenyl polyether A-5 obtained in Comparative Example 1. FIG.

Claims (3)

式(I)で表される不飽和アルコールと炭素数〜18のアルキレンオキシドとを、ルイス酸触媒又は複合金属酸化物触媒を用いて反応させ式(II)で表わされるアルケニルポリエーテルを得、得られた式( II) で表わされるアルケニルポリエーテルにさらにエチレンオキシドを反応させる、式 (III) で表わされるアルケニルポリエーテルの製法。
[式中、pは2〜16の整数、AOは炭素数〜18のオキシアルキレン基、mは1〜50の数、EOはオキシエチレン基、nは1〜100の数を示す。またm個の-(AO)-基は、同一でも異なっていてもよい。]
Give the unsaturated alcohols and number 4-18 alkylene oxide carbon represented by the formula (I), the alkenyl polyether represented by by reacting formula (II) using a Lewis acid catalyst or composite metal oxide catalyst A process for producing an alkenyl polyether represented by formula (III) , wherein the obtained alkenyl polyether represented by formula ( II) is further reacted with ethylene oxide .
[Wherein, p represents an integer of 2 to 16, AO represents an oxyalkylene group having 4 to 18 carbon atoms, m represents a number of 1 to 50 , EO represents an oxyethylene group, and n represents a number of 1 to 100 . The m-(AO)-groups may be the same or different. ]
ルイス酸触媒が三フッ化ホウ素ジエチルエーテル錯体又は四塩化スズであり、複合金属酸化物触媒がマグネシウムを含有するものである請求項1記載の製法。  The process according to claim 1, wherein the Lewis acid catalyst is boron trifluoride diethyl ether complex or tin tetrachloride, and the composite metal oxide catalyst contains magnesium. AOがオキシブチレン基である請求項1又は2記載の製法。The process according to claim 1 or 2, wherein AO is an oxybutylene group.
JP2000382465A 2000-12-15 2000-12-15 Preparation of alkenyl polyether Expired - Fee Related JP4271363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000382465A JP4271363B2 (en) 2000-12-15 2000-12-15 Preparation of alkenyl polyether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000382465A JP4271363B2 (en) 2000-12-15 2000-12-15 Preparation of alkenyl polyether

Publications (2)

Publication Number Publication Date
JP2002179788A JP2002179788A (en) 2002-06-26
JP4271363B2 true JP4271363B2 (en) 2009-06-03

Family

ID=18850284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000382465A Expired - Fee Related JP4271363B2 (en) 2000-12-15 2000-12-15 Preparation of alkenyl polyether

Country Status (1)

Country Link
JP (1) JP4271363B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7098250B2 (en) * 2000-09-11 2006-08-29 Kao Corporation Surfactant for emulsion polymerization
JP5005176B2 (en) * 2005-03-03 2012-08-22 花王株式会社 Paint composition
WO2007037466A1 (en) * 2005-09-29 2007-04-05 Nippon Shokubai Co., Ltd. Hydrophilized polyalkylene glycol, production method thereof, and application thereof
WO2007135770A1 (en) 2006-05-19 2007-11-29 Dow Corning Toray Co., Ltd. Polyether and method for producing the same
CN114015034A (en) * 2021-12-08 2022-02-08 江苏奥克化学有限公司 Preparation method and application of sodium alkoxide catalyst for synthesizing water reducer polyether

Also Published As

Publication number Publication date
JP2002179788A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JPH08169861A (en) Production of fatty acid polyoxyalkylene alkyl ether
EP2165996B1 (en) Novel ether compound
CN101928389A (en) Method for preparing glycidol ether terminated propenol polyoxyethylene ether
CN109369903B (en) Preparation method of fatty alcohol polyether
US4625057A (en) Process for the production of carboxymethylated alchols, ether alcohols, thioalcohols, or alkyl phenols
JP4568830B2 (en) Process for the production of methylcellulose ether
JP4271363B2 (en) Preparation of alkenyl polyether
WO2022048099A1 (en) Method for preparing narrow-distribution triethanolamine block polyether, block polyether, and use thereof
JPH02245025A (en) Ether carboxylate,its preparation,surface active agent comprising it,and washing cleaning system,hydraulic liquid,andlubricant containing it
CN109317187B (en) Catalyst for synthesis of fatty acid ester alkoxylates and application thereof
JP4166369B2 (en) Surfactant
WO2008134387A1 (en) Novel alkyloxy-ethers and alkoxylates thereof
CN107474236A (en) A kind of reactive emulsifier, its preparation method and application
JP5172627B2 (en) Process for producing polyoxyalkylene adduct
JPH01223123A (en) Production of terminal blocked polyglycol ether
US5847229A (en) Process for the production of end-capped nonionic surfactants
JP4201649B2 (en) Method for producing high concentration alkyl ether sulfate
US20100168450A1 (en) Novel branched alkoxylates
JP4368784B2 (en) Process for producing alkenyl polyether
JPH1171328A (en) Production of fatty acid polyoxyalkylenealkyl ether, and composite metal oxide catalyst used for the production
JP3871731B2 (en) Method for producing ether compounds
JPH10251181A (en) Production of ether compound
JP4450982B2 (en) Method for producing sulfate ester salt
JP2005350402A (en) Monohydric alcohol alkylene oxide adduct and method for producing the same
JP2010047656A (en) Liquid detergent composition

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4271363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees