JP4271313B2 - Method for producing metal amide sulfonate - Google Patents

Method for producing metal amide sulfonate Download PDF

Info

Publication number
JP4271313B2
JP4271313B2 JP26542199A JP26542199A JP4271313B2 JP 4271313 B2 JP4271313 B2 JP 4271313B2 JP 26542199 A JP26542199 A JP 26542199A JP 26542199 A JP26542199 A JP 26542199A JP 4271313 B2 JP4271313 B2 JP 4271313B2
Authority
JP
Japan
Prior art keywords
metal salt
polyvalent metal
formula
water
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26542199A
Other languages
Japanese (ja)
Other versions
JP2001089437A (en
Inventor
洋平 金子
一弘 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP26542199A priority Critical patent/JP4271313B2/en
Publication of JP2001089437A publication Critical patent/JP2001089437A/en
Application granted granted Critical
Publication of JP4271313B2 publication Critical patent/JP4271313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、化粧料等の配合原料として有用なアミドスルホン酸多価金属塩の製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
アミドスルホン酸多価金属塩からなる顔料を配合した化粧料は、のび、平滑性、使用感等の諸性質に優れていることが知られている(特開平3−294210号)。
【0003】
アミドスルホン酸多価金属塩の製造法として、水溶性のアミドスルホン酸アルカリ金属塩と水溶性多価金属塩とを複分解する方法が知られている(特開平3−294210号)。また、水溶性のアミドスルホン酸アルカリ金属塩の製造法として、アルカリ物質存在下、アミノスルホン酸と脂肪酸ハライドを反応させるショッテン−バウマン(Schotten-Baumann)反応が知られており、種々の改良方法も開示されている(特開平4−154756号等)。
【0004】
しかし、これらの方法で得られるアミドスルホン酸多価金属塩は、長鎖脂肪酸が数%副生しておりアミドスルホン酸多価金属塩の特徴である、のび、平滑性、使用感等を十分満足させることが出来ず、また、脂肪酸由来の匂いも問題であることがわかった。長鎖脂肪酸又はその塩は、ショッテン−バウマン反応での副生物由来のものであり、その反応条件を最適化しても、副生を十分に抑制することはできず、アミドスルホン酸アルカリ金属塩製造時に脂肪酸又はその塩の除去工程を導入する必要があった。
【0005】
本発明の課題は、副生する長鎖脂肪酸の含量が少ない、高品質のアミドスルホン酸多価金属塩の製造法を提供することである。
【0006】
【課題を解決するための手段】
本発明は、一般式(I)
【0007】
【化5】

Figure 0004271313
【0008】
(式中、R1は炭素数7〜21の直鎖又は分岐鎖のアルキル基、アルケニル基又はヒドロキシアルキル基を示し、R2は水素原子又は炭素数1〜5のアルキル基を示し、Xは炭素数2〜3のアルキレン基、又は式
【0009】
【化6】
Figure 0004271313
【0010】
で表される基を示し、Aはアルカリ金属原子を示す。)
で表されるアミドスルホン酸アルカリ金属塩(以下アミドスルホン酸アルカリ金属塩(I)という)と水溶性多価金属塩とを、水の存在下、pH8〜13で反応させる、一般式(II)
【0011】
【化7】
Figure 0004271313
【0012】
(式中、R1、R2及びXは上記と同じ意味を示し、Mは多価金属原子を示し、mはMの原子価を示し、nは1〜4の整数を示す。)
で表されるアミドスルホン酸多価金属塩(以下アミドスルホン酸多価金属塩(II)という)の製造法である。
【0013】
【発明の実施の形態】
アミドスルホン酸アルカリ金属塩(I)は、炭素数8〜22、好ましくは10〜18の脂肪酸アミド基を有する化合物であり、R1が直鎖アルキル基である脂肪酸アミド基を有するものが更に好ましい。R2は水素原子又は炭素数1〜5のアルキル基であるが、水素原子又はメチル基が好ましい。また、アルカリ金属として、リチウム、ナトリウム、カリウム等が挙げられ、ナトリウム、カリウムが好ましい。
【0014】
アミドスルホン酸アルカリ金属塩(I)は、例えば、脂肪酸ハライドとアミノスルホン酸を、塩基性条件下、水又は水と水溶性溶剤との混合物を溶媒として反応させて得ることができる。アミノスルホン酸として、タウリン、N−メチルタウリン、3−アミノプロパンスルホン酸、3−アミノ−2−ヒドロキシプロパンスルホン酸等が挙げられ、タウリンが好ましい。
【0015】
本発明で用いられる水溶性多価金属塩は、20℃における溶解度が5重量%以上の化合物であり、例えば硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウムカリウム、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、硫酸マグネシウムカリウム、塩化カルシウム、硝酸カルシウム、塩化亜鉛、硝酸亜鉛、硫酸亜鉛、塩化バリウム、硝酸バリウム等が挙げられ、塩化マグネシウム、塩化カルシウム、塩化バリウムが好ましい。水溶性多価金属塩は、粉末、水溶液いずれの形態でも使用できるが、通常水溶液として用いる。水溶液濃度は、特に限定されないが、5〜40重量%が作業性が良好で好ましい。
【0016】
アミドスルホン酸アルカリ金属塩(I)と水溶性多価金属塩との反応に用いられる水の量は、混合、撹拌をするのに必要な量であり、アミドスルホン酸アルカリ金属塩(I)の濃度として1〜40重量%が好ましく、5〜30重量%が更に好ましい。スラリー、溶解いずれの状態でも良いが、溶解している方が好ましい。また、混合、撹拌を改善する目的で、水溶性有機溶媒、例えば、メタノール、エタノール、2−プロパノール、アセトン、テトラヒドロフラン等を添加することができる。
【0017】
アミドスルホン酸アルカリ金属塩(I)と水溶性多価金属塩との反応におけるpHは、アミドスルホン酸多価金属塩(II)中の不純物量を決定する重要な因子である。アミドスルホン酸アルカリ金属塩(I)中には、特に精製工程を導入しない限り、固形分当たり通常3重量%以上の脂肪酸又は脂肪酸アルカリ金属塩が含まれている。脂肪酸と水溶性多価金属塩とは、反応しないため、アミドスルホン酸多価金属塩(II)中に脂肪酸として残存し、使用感の低下や脂肪酸臭の原因となる。一方、脂肪酸アルカリ金属塩と水溶性多価金属塩とを反応させると脂肪酸多価金属塩が生成する。脂肪酸多価金属塩は、匂いの原因にはならず、使用感への影響もほとんどない。そこで、アミドスルホン酸アルカリ金属塩(I)と水溶性多価金属塩とを、pH8〜13、好ましくは9〜12で反応させることにより、アミドスルホン酸多価金属塩(II)中の脂肪酸を低減することができる。pH8未満であると脂肪酸が副生し、pH13を越えると多価金属の水酸化物の副生や、アミドスルホン酸アルカリ金属塩(I)の加水分解が起こり好ましくない。pHの調整は、水酸化ナトリウム、水酸化カリウム等のアルカリ水酸化物、又はアンモニア、トリエチルアミン、ピリジン等のアミン化合物、好ましくは水酸化ナトリウム、水酸化カリウムを用いて行う。
【0018】
アミドスルホン酸アルカリ金属塩(I)と水溶性多価金属塩の反応は、アミドスルホン酸アルカリ金属塩(I)中に水溶性多価金属塩を添加しても、水溶性多価金属塩中にアミドスルホン酸アルカリ金属塩(I)を添加しても、また、両者を同時に滴下しても良い。また、バッチ式、連続式いずれの方法でも良い。
【0019】
反応温度は、取り扱いやすさ、反応容器の材質にもよるが、0〜100℃が好ましく、20〜60℃が更に好ましい。
【0020】
水溶性多価金属塩の量は、品質や経済的な観点から、アミドスルホン酸アルカリ金属塩(I)に対し、0.7〜2.0当量倍が好ましく、更に0.9〜1.5当量倍、特に1.0〜1.2当量倍が好ましい。
【0021】
このような反応後、生成した結晶を濾過し、水又は温水でケーク洗浄し、更に乾燥することにより、感触が良好で、脂肪酸臭もない高品質なアミドスルホン酸多価金属塩(II)を得ることができる。
【0022】
アミドスルホン酸多価金属塩(II)として好ましいものは、一般式(III)で表される長鎖アシルタウリン多価金属塩である。
【0023】
【化8】
Figure 0004271313
【0024】
(式中、R1、n、M及びmは上記と同じ意味を示す。)
得られたアミドスルホン酸多価金属塩(II)は、そのまま化粧料に配合しても良いし、また、他の顔料を疎水化するための処理粉末として用いても良い。
【0025】
【実施例】
例中の%は、特記しない限り重量基準である。また実施例における評価は以下の方法で行った。
【0026】
<脂肪酸含量>
サンプルをエタノールに添加、分散し、室温で30分超音波洗浄機で処理後、フェノールフタレインを指示薬に0.1N水酸化カリウムで滴定した。消費した水酸化カリウム量より該当する脂肪酸量を算出した。
【0027】
<脂肪酸臭>
サンプル20gを200ml三角フラスコに入れ、一人の熟練したパネラーが、脂肪酸臭の有無について官能評価した。
【0028】
<感触>
肌上でののび、付着性を下記のようにマイカを基準として、一人の熟練したパネラーが官能評価した。
【0029】
5:評価サンプルがきわめて良好
4:評価サンプルが良好
3:マイカと同等
2:マイカに劣る
1:マイカにきわめて劣る
合成例1(N−ラウロイルタウリンナトリウム塩水溶液の合成)
フラスコにタウリン275.3g(2.2mol)、水2231.1g、48%水酸化ナトリウム水溶液183.3g(2.2mol)を仕込み溶解させた。次いで、40℃に昇温し、ラウリン酸クロリド437.6g(2.2mol)を48%水酸化ナトリウム水溶液166.7g(2.0mol)を用いてpH11.0に調整しながら、約1.5時間かけて添加した。更に40℃で1時間撹拌し、N−ラウロイルタウリンナトリウム塩17.0%、ラウリン酸ナトリウム2.0%を含む水溶液3294gを得た。
【0030】
実施例1
合成例1で得られた17.0%N−ラウロイルタウリンナトリウム塩水溶液1000.0g(0.516mol)をフラスコへ仕込んだ。pHは11.0であった。40℃に昇温し、30%塩化カルシウム水溶液123.6g(0.33mol)を30分かけて滴下した。同温度で1時間撹拌し、減圧濾過した。更に550gのイオン交換水で2回、通液洗浄した。得られたケークを減圧乾燥し、白色のラウロイルタウリンカルシウム塩を185g得た。生成物中の脂肪酸含量、感触評価、匂い評価結果を表1に示す。
【0031】
実施例2〜3、比較例1〜3
合成例1で得られた17.0%N−ラウロイルタウリンナトリウム塩水溶液を用い、48%水酸化ナトリウム又は35%塩酸により表1に示したpHに調整し、実施例1と同様にしてラウロイルタウリンカルシウム塩を得た。生成物中の脂肪酸含量、感触評価、匂い評価結果を表1に示す。
【0032】
【表1】
Figure 0004271313
【0033】
合成例2(N−ラウロイルタウリンナトリウム塩水溶液の合成)
フラスコにタウリン275.3g(2.2mol)、水913.5g、2−プロパノール219.6g、48%水酸化ナトリウム水溶液183.3g(2.2mol)を仕込み溶解させた。次いで、40℃に昇温し、ラウリン酸クロリド437.6g(2.0mol)を48%水酸化ナトリウム水溶液166.7g(2.0mol)を用いてpH11.0に調整しながら、約1.5時間かけて添加した。更に40℃で1時間撹拌後、48%水酸化ナトリウム水溶液66.7gを添加し、50℃で4時間撹拌し、副生したラウリン酸イソプロピルの加水分解を行った。塩酸でpHを11に調整し、N−ラウロイルタウリンナトリウム塩26.7%、ラウリン酸ナトリウム0.9%を含む水溶液2350gを得た。
【0034】
実施例4
合成例2で得られた26.7%N−ラウロイルタウリンナトリウム塩水溶液1000g(0.81mol)をフラスコへ仕込んだ。pHは11.0であった。40℃に昇温し、30%塩化カルシウム水溶液173.5g(0.47mol)を30分かけて滴下した。同温度で1時間撹拌し、減圧濾過した。更に800gのイオン交換水で2回、通液洗浄した。得られたケークを減圧乾燥し、白色のラウロイルタウリンカルシウム塩を271g得た。生成物中の脂肪酸含量、感触評価、匂い評価結果を表2に示す。
【0035】
実施例5
30%塩化カルシウム水溶液に代えて30%塩化マグネシウム水溶液149.2g(0.47mol)を用いた他は実施例4と同様にして白色のラウロイルタウリンマグネシウム塩を265g得た。生成物中の脂肪酸含量、感触評価、匂い評価結果を表2に示す。
【0036】
合成例3(N−パルミトイルタウリンナトリウム塩水溶液の合成)
タウリン275.3g(2.2mol)、水2321.4g、2−プロパノール388.5g、48%水酸化ナトリウム水溶液183.3g(2.2mol)を用い、ラウリン酸クロリドに代えてパルミチン酸クロリド549.8g(2.0mol)を用いる以外は合成例2と同様にしてN−パルミトイルタウリンナトリウム塩17.2%、パルミチン酸ナトリウム1.4%を含む水溶液4035gを得た。
【0037】
実施例6
合成例3で得られた17.2%N−パルミトイルタウリンナトリウム塩水溶液1000gを用いた他は実施例4と同様にして白色のパルミトイルタウリンカルシウム塩を180g得た。生成物中の脂肪酸含量、感触評価、匂い評価結果を表2に示す。
【0038】
【表2】
Figure 0004271313
【0039】
【発明の効果】
本発明の方法により、副生する長鎖脂肪酸含量が少なく、のび、平滑性、使用感等の諸性質及び脂肪酸臭も改善されたアミドスルホン酸多価金属塩を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an amidosulfonic acid polyvalent metal salt useful as a raw material for cosmetics and the like.
[0002]
[Prior art and problems to be solved by the invention]
It is known that cosmetics containing a pigment composed of a polyamido metal salt of amidosulfonic acid are excellent in various properties such as spreading, smoothness and feeling of use (Japanese Patent Laid-Open No. 3-294210).
[0003]
As a method for producing an amidosulfonic acid polyvalent metal salt, a method for metathesis of a water-soluble alkali metal salt of an amidosulfonic acid and a water-soluble polyvalent metal salt is known (Japanese Patent Laid-Open No. 3-294210). In addition, as a method for producing a water-soluble alkali metal amide sulfonate, a Schotten-Baumann reaction in which aminosulfonic acid and a fatty acid halide are reacted in the presence of an alkaline substance is known, and various improved methods are also available. (Japanese Patent Laid-Open No. 4-154756, etc.).
[0004]
However, the amide sulfonic acid polyvalent metal salt obtained by these methods has a long chain fatty acid as a by-product, and is characteristic of the amide sulfonic acid polyvalent metal salt. It was not possible to be satisfied, and the smell derived from fatty acids was found to be a problem. Long chain fatty acids or salts thereof are derived from by-products in the Schotten-Baumann reaction, and even if the reaction conditions are optimized, the by-products cannot be sufficiently suppressed, and the production of alkali metal amide sulfonates Sometimes it was necessary to introduce a fatty acid or salt removal step.
[0005]
It is an object of the present invention to provide a method for producing a high-quality amidosulfonic acid polyvalent metal salt with a low content of by-product long-chain fatty acids.
[0006]
[Means for Solving the Problems]
The present invention relates to general formula (I)
[0007]
[Chemical formula 5]
Figure 0004271313
[0008]
(In the formula, R 1 represents a linear or branched alkyl group, alkenyl group or hydroxyalkyl group having 7 to 21 carbon atoms, R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X represents An alkylene group having 2 to 3 carbon atoms, or a group represented by the formula:
[Chemical 6]
Figure 0004271313
[0010]
And A represents an alkali metal atom. )
A amidesulfonic acid alkali metal salt represented by the formula (hereinafter referred to as an amidesulfonic acid alkali metal salt (I)) is reacted with a water-soluble polyvalent metal salt in the presence of water at a pH of 8 to 13;
[0011]
[Chemical 7]
Figure 0004271313
[0012]
(Wherein R 1 , R 2 and X have the same meaning as above, M represents a polyvalent metal atom, m represents the valence of M, and n represents an integer of 1 to 4).
Is a process for producing an amidosulfonic acid polyvalent metal salt (hereinafter referred to as amidosulfonic acid polyvalent metal salt (II)).
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The alkali metal amide sulfonate (I) is a compound having a fatty acid amide group having 8 to 22 carbon atoms, preferably 10 to 18 carbon atoms, and more preferably having a fatty acid amide group in which R 1 is a linear alkyl group. . R 2 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom or a methyl group. Moreover, lithium, sodium, potassium etc. are mentioned as an alkali metal, Sodium and potassium are preferable.
[0014]
The alkali metal amide sulfonate (I) can be obtained, for example, by reacting a fatty acid halide and aminosulfonic acid under basic conditions with water or a mixture of water and a water-soluble solvent as a solvent. Examples of aminosulfonic acid include taurine, N-methyltaurine, 3-aminopropanesulfonic acid, 3-amino-2-hydroxypropanesulfonic acid, and taurine is preferable.
[0015]
The water-soluble polyvalent metal salt used in the present invention is a compound having a solubility at 20 ° C. of 5% by weight or more, for example, aluminum sulfate, aluminum chloride, aluminum nitrate, aluminum potassium sulfate, magnesium chloride, magnesium sulfate, magnesium nitrate, Examples include magnesium potassium sulfate, calcium chloride, calcium nitrate, zinc chloride, zinc nitrate, zinc sulfate, barium chloride, and barium nitrate. Magnesium chloride, calcium chloride, and barium chloride are preferred. The water-soluble polyvalent metal salt can be used in the form of either a powder or an aqueous solution, but is usually used as an aqueous solution. The concentration of the aqueous solution is not particularly limited, but 5 to 40% by weight is preferable because of good workability.
[0016]
The amount of water used for the reaction of the amide sulfonic acid alkali metal salt (I) and the water-soluble polyvalent metal salt is an amount necessary for mixing and stirring. The concentration is preferably 1 to 40% by weight, and more preferably 5 to 30% by weight. Either a slurry or a dissolved state may be used, but a dissolved state is preferred. In order to improve mixing and stirring, a water-soluble organic solvent such as methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, or the like can be added.
[0017]
The pH in the reaction between the amide sulfonic acid alkali metal salt (I) and the water-soluble polyvalent metal salt is an important factor that determines the amount of impurities in the amide sulfonic acid polyvalent metal salt (II). In the alkali metal amide sulfonate (I), a fatty acid or a fatty acid alkali metal salt is usually contained in an amount of 3% by weight or more per solid content unless a purification step is particularly introduced. Since the fatty acid does not react with the water-soluble polyvalent metal salt, it remains as a fatty acid in the amide sulfonic acid polyvalent metal salt (II), causing a decrease in feeling of use and a fatty acid odor. On the other hand, when a fatty acid alkali metal salt is reacted with a water-soluble polyvalent metal salt, a fatty acid polyvalent metal salt is produced. Fatty acid polyvalent metal salts do not cause odor and have little effect on the feeling of use. Therefore, the fatty acid in the amide sulfonic acid polyvalent metal salt (II) is reacted by reacting the amide sulfonic acid alkali metal salt (I) with the water-soluble polyvalent metal salt at a pH of 8 to 13, preferably 9 to 12. Can be reduced. If the pH is less than 8, fatty acids are by-produced. If the pH is more than 13, by-products of polyvalent metal hydroxides and hydrolysis of the amide sulfonic acid alkali metal salt (I) are undesirable. The pH is adjusted using an alkali hydroxide such as sodium hydroxide or potassium hydroxide, or an amine compound such as ammonia, triethylamine or pyridine, preferably sodium hydroxide or potassium hydroxide.
[0018]
The reaction of the amide sulfonic acid alkali metal salt (I) with the water-soluble polyvalent metal salt can be carried out by adding the water-soluble polyvalent metal salt to the amide sulfonic acid alkali metal salt (I). The alkali metal amide sulfonate (I) may be added to the solution, or both may be dropped simultaneously. Further, either a batch method or a continuous method may be used.
[0019]
The reaction temperature depends on ease of handling and the material of the reaction vessel, but is preferably 0 to 100 ° C, more preferably 20 to 60 ° C.
[0020]
The amount of the water-soluble polyvalent metal salt is preferably 0.7 to 2.0 equivalent times, more preferably 0.9 to 1.5 equivalent times, particularly 1.0 to 1.2 equivalents relative to the amide sulfonic acid alkali metal salt (I) from the viewpoint of quality and economy. Double is preferred.
[0021]
After such a reaction, the produced crystals are filtered, washed with water or warm water, and further dried to obtain a high-quality amidesulfonic acid polyvalent metal salt (II) having a good feel and no fatty acid odor. Obtainable.
[0022]
Preferred as the amidosulfonic acid polyvalent metal salt (II) is a long-chain acyltaurine polyvalent metal salt represented by the general formula (III).
[0023]
[Chemical 8]
Figure 0004271313
[0024]
(In the formula, R 1 , n, M and m have the same meaning as described above.)
The obtained amidosulfonic acid polyvalent metal salt (II) may be blended in cosmetics as it is, or may be used as a treated powder for hydrophobizing other pigments.
[0025]
【Example】
In the examples, “%” is based on weight unless otherwise specified. Moreover, the evaluation in an Example was performed with the following method.
[0026]
<Fatty acid content>
The sample was added and dispersed in ethanol, treated with an ultrasonic cleaner at room temperature for 30 minutes, and then phenolphthalein was titrated with 0.1N potassium hydroxide as an indicator. The corresponding amount of fatty acid was calculated from the amount of consumed potassium hydroxide.
[0027]
<Fatty acid odor>
A 20 g sample was placed in a 200 ml Erlenmeyer flask, and one skilled panelist performed a sensory evaluation on the presence or absence of fatty acid odor.
[0028]
<Feel>
One skilled panelist sensoryly evaluated the spread and adhesion on the skin based on mica as follows.
[0029]
5: Evaluation sample is very good 4: Evaluation sample is good 3: Equivalent to mica 2: Inferior to mica 1: Synthesis example 1 extremely inferior to mica (synthesis of N-lauroyl taurine sodium salt aqueous solution)
A flask was charged with 275.3 g (2.2 mol) of taurine, 2231.1 g of water, and 183.3 g (2.2 mol) of a 48% aqueous sodium hydroxide solution and dissolved therein. Next, the temperature was raised to 40 ° C., and 437.6 g (2.2 mol) of lauric acid chloride was added over about 1.5 hours while adjusting the pH to 11.0 using 166.7 g (2.0 mol) of a 48% aqueous sodium hydroxide solution. The mixture was further stirred at 40 ° C. for 1 hour to obtain 3294 g of an aqueous solution containing 17.0% N-lauroyl taurine sodium salt and 2.0% sodium laurate.
[0030]
Example 1
The flask was charged with 1000.0 g (0.516 mol) of the 17.0% N-lauroyl taurine sodium salt aqueous solution obtained in Synthesis Example 1. The pH was 11.0. The temperature was raised to 40 ° C., and 123.6 g (0.33 mol) of a 30% calcium chloride aqueous solution was added dropwise over 30 minutes. The mixture was stirred at the same temperature for 1 hour and filtered under reduced pressure. Further, the liquid was washed twice with 550 g of ion-exchanged water. The obtained cake was dried under reduced pressure to obtain 185 g of white lauroyl taurine calcium salt. Table 1 shows the fatty acid content, feel evaluation, and odor evaluation results in the product.
[0031]
Examples 2-3 and Comparative Examples 1-3
Using the 17.0% N-lauroyl taurine sodium salt aqueous solution obtained in Synthesis Example 1, the pH shown in Table 1 was adjusted with 48% sodium hydroxide or 35% hydrochloric acid, and lauroyl taurine calcium salt was prepared in the same manner as in Example 1. Got. Table 1 shows the fatty acid content, feel evaluation, and odor evaluation results in the product.
[0032]
[Table 1]
Figure 0004271313
[0033]
Synthesis Example 2 (Synthesis of N-lauroyl taurine sodium salt aqueous solution)
A flask was charged with 275.3 g (2.2 mol) of taurine, 913.5 g of water, 219.6 g of 2-propanol, and 183.3 g (2.2 mol) of a 48% aqueous sodium hydroxide solution and dissolved therein. Next, the temperature was raised to 40 ° C., and 437.6 g (2.0 mol) of lauric acid chloride was added over about 1.5 hours while adjusting the pH to 11.0 using 166.7 g (2.0 mol) of 48% aqueous sodium hydroxide. Further, after stirring at 40 ° C. for 1 hour, 66.7 g of a 48% sodium hydroxide aqueous solution was added, and the mixture was stirred at 50 ° C. for 4 hours to hydrolyze isopropyl laurate as a by-product. The pH was adjusted to 11 with hydrochloric acid to obtain 2350 g of an aqueous solution containing 26.7% N-lauroyl taurine sodium salt and 0.9% sodium laurate.
[0034]
Example 4
1000 g (0.81 mol) of a 26.7% N-lauroyl taurine sodium salt aqueous solution obtained in Synthesis Example 2 was charged into a flask. The pH was 11.0. The temperature was raised to 40 ° C., and 173.5 g (0.47 mol) of a 30% calcium chloride aqueous solution was added dropwise over 30 minutes. The mixture was stirred at the same temperature for 1 hour and filtered under reduced pressure. Further, the liquid was washed twice with 800 g of ion exchange water. The obtained cake was dried under reduced pressure to obtain 271 g of white lauroyl taurine calcium salt. Table 2 shows the fatty acid content, feel evaluation, and odor evaluation results in the product.
[0035]
Example 5
265 g of white lauroyl taurine magnesium salt was obtained in the same manner as in Example 4 except that 149.2 g (0.47 mol) of 30% magnesium chloride aqueous solution was used instead of the 30% calcium chloride aqueous solution. Table 2 shows the fatty acid content, feel evaluation, and odor evaluation results in the product.
[0036]
Synthesis Example 3 (Synthesis of N-palmitoyl taurine sodium salt aqueous solution)
275.3 g (2.2 mol) of taurine, 2321.4 g of water, 388.5 g of 2-propanol, 183.3 g (2.2 mol) of 48% sodium hydroxide aqueous solution, and 549.8 g (2.0 mol) of palmitic acid chloride are used instead of lauric acid chloride. Otherwise, 4035 g of an aqueous solution containing 17.2% N-palmitoyl taurine sodium salt and 1.4% sodium palmitate was obtained in the same manner as in Synthesis Example 2.
[0037]
Example 6
180 g of white palmitoyl taurine calcium salt was obtained in the same manner as in Example 4 except that 1000 g of the 17.2% N-palmitoyl taurine sodium salt aqueous solution obtained in Synthesis Example 3 was used. Table 2 shows the fatty acid content, feel evaluation, and odor evaluation results in the product.
[0038]
[Table 2]
Figure 0004271313
[0039]
【The invention's effect】
By the method of the present invention, it is possible to obtain an amidosulfonic acid polyvalent metal salt having a low content of by-product long chain fatty acids and improved properties such as stretchability, smoothness and feeling of use, and fatty acid odor.

Claims (2)

一般式(I)
Figure 0004271313
(式中、R1は炭素数7〜21の直鎖又は分岐鎖のアルキル基、アルケニル基又はヒドロキシアルキル基を示し、R2は水素原子又は炭素数1〜5のアルキル基を示し、Xは炭素数2〜3のアルキレン基、又は式
Figure 0004271313
で表される基を示し、Aはアルカリ金属原子を示す。)
で表されるアミドスルホン酸アルカリ金属塩と、アミドスルホン酸アルカリ金属塩に対し 0.9 1.5 当量倍の水溶性多価金属塩とを、水の存在下、pH8〜13で反応させる、一般式(II)
Figure 0004271313
(式中、R1、R2及びXは上記と同じ意味を示し、Mは多価金属原子を示し、mはMの原子価を示し、nは1〜4の整数を示す。)
で表されるアミドスルホン酸多価金属塩の製造法。
Formula (I)
Figure 0004271313
(In the formula, R 1 represents a linear or branched alkyl group, alkenyl group or hydroxyalkyl group having 7 to 21 carbon atoms, R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and X represents C2-C3 alkylene group or formula
Figure 0004271313
And A represents an alkali metal atom. )
Amide sulfonic acid alkali metal salt represented in, and a water-soluble polyvalent metal salt of 0.9-1.5 Toryobai amidic acid alkali metal salt in the presence of water, reacted at PH8~13, formula ( II)
Figure 0004271313
(Wherein R 1 , R 2 and X have the same meaning as above, M represents a polyvalent metal atom, m represents the valence of M, and n represents an integer of 1 to 4).
A process for producing an amidosulfonic acid polyvalent metal salt represented by the formula:
一般式(II)で表されるアミドスルホン酸多価金属塩が、一般式(III)で表される長鎖アシルタウリン多価金属塩である請求項1記載の製造法。
Figure 0004271313
(式中、R1、n、M及びmは上記と同じ意味を示す。)
The process according to claim 1, wherein the amidosulfonic acid polyvalent metal salt represented by the general formula (II) is a long-chain acyltaurine polyvalent metal salt represented by the general formula (III).
Figure 0004271313
(In the formula, R 1 , n, M and m have the same meaning as described above.)
JP26542199A 1999-09-20 1999-09-20 Method for producing metal amide sulfonate Expired - Fee Related JP4271313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26542199A JP4271313B2 (en) 1999-09-20 1999-09-20 Method for producing metal amide sulfonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26542199A JP4271313B2 (en) 1999-09-20 1999-09-20 Method for producing metal amide sulfonate

Publications (2)

Publication Number Publication Date
JP2001089437A JP2001089437A (en) 2001-04-03
JP4271313B2 true JP4271313B2 (en) 2009-06-03

Family

ID=17416934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26542199A Expired - Fee Related JP4271313B2 (en) 1999-09-20 1999-09-20 Method for producing metal amide sulfonate

Country Status (1)

Country Link
JP (1) JP4271313B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649708B2 (en) * 2000-06-20 2011-03-16 日油株式会社 Surfactant and detergent composition

Also Published As

Publication number Publication date
JP2001089437A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2015526460A (en) Process for producing N-acylamino acid surfactants using N-acylamino acid surfactants or their corresponding anhydrides as catalysts
US4304932A (en) Process for producing novel carboalkylated surface active agents and product
JP4271313B2 (en) Method for producing metal amide sulfonate
JP4550800B2 (en) Process for producing esters and ethers of probucol and its derivatives
JP4260320B2 (en) Process for producing amidosulfonic acid polyvalent metal salt
WO2021219377A1 (en) Process of making n,n-diacetyl-l-cystine disodium salt from cystine and acetyl chloride in methanol in the presence of sodium hydroxide
JPS5951532B2 (en) Novel amine amide compound, method for producing the same, and surfactant containing the amine amide compound
RU1773907C (en) N-acyl, n-dicarboxymethyl, n-ethylsuccinate-ethylene diaminohydroxide salts as moisteners, dispersers and foam formers for detergents
JPS59500B2 (en) Creatine manufacturing method
CN1086739A (en) Carbohydrate-derived surfactant and their precursor
JP3576416B2 (en) New amide compounds
JP3929201B2 (en) Method for synthesizing calcium aluminate gel and anion scavenger
JPS60258161A (en) Preparation of cysteine derivative
JP2698601B2 (en) Method for producing amphoteric surfactant composition
DE60004432T2 (en) Process for the preparation of hydroxamic acids
JP2001348367A (en) Method for purifying n-substituted unsaturated amide
JP4303364B2 (en) New amide compounds
JPH02160757A (en) Production of sulfobetaine
JPH0129789B2 (en)
JPH10204475A (en) Surfactant
SK180799A3 (en) Method for producing calcium pyruvates
JPH07316114A (en) Production of n-long-chain caylamino acid and salt thereof
JPS5931759A (en) Carboxymethyldithiocarbamic acid benzyl ester and its preparation
JPH01268667A (en) Production of surfactant
JP2000007628A (en) Production of unsaturated amidocarboxylic acids

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4271313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees