JP4271093B2 - Wheel bearing device with variable preload mechanism - Google Patents

Wheel bearing device with variable preload mechanism Download PDF

Info

Publication number
JP4271093B2
JP4271093B2 JP2004199376A JP2004199376A JP4271093B2 JP 4271093 B2 JP4271093 B2 JP 4271093B2 JP 2004199376 A JP2004199376 A JP 2004199376A JP 2004199376 A JP2004199376 A JP 2004199376A JP 4271093 B2 JP4271093 B2 JP 4271093B2
Authority
JP
Japan
Prior art keywords
preload
outer ring
variable
variable mechanism
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199376A
Other languages
Japanese (ja)
Other versions
JP2006022850A (en
Inventor
剛 齋藤
茂明 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004199376A priority Critical patent/JP4271093B2/en
Publication of JP2006022850A publication Critical patent/JP2006022850A/en
Application granted granted Critical
Publication of JP4271093B2 publication Critical patent/JP4271093B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

この発明は、車両の走行状態に合わせて最適な予圧量に可変設定できる予圧可変機構付車輪用軸受装置に関する。   The present invention relates to a wheel bearing device with a preload variable mechanism that can be variably set to an optimal preload amount in accordance with the running state of a vehicle.

自動車等の車両において、エンジン動力を車輪に伝達する動力伝達装置は、エンジンから車輪へ動力を伝達するだけでなく、悪路走行時におけるバウンドや、車両の旋回時に生じる車輪からの径方向・軸方向変位、およびモーメント荷重を許容する必要がある。このため、このような動力伝達装置では、エンジン側と駆動車輪側との間に介装されるドライブシャフトの一端を、摺動型等速ジョイントを介してディファレンシャルに連結し、他端を、固定型等速ジョイントを含む車輪用軸受装置を介して車輪に連結している。   In vehicles such as automobiles, the power transmission device that transmits engine power to wheels not only transmits power from the engine to the wheels, but also bounces when driving on rough roads, and the radial direction and axis from the wheels that occur when the vehicle turns. It is necessary to allow directional displacement and moment load. For this reason, in such a power transmission device, one end of the drive shaft interposed between the engine side and the drive wheel side is connected to the differential through a sliding type constant velocity joint, and the other end is fixed. The wheel is connected to a wheel through a wheel bearing device including a constant velocity joint.

上記車輪用軸受装置では、所望の軸受剛性を確保するため、所定の軸受予圧を付与することが従来から行われている。その際に、軸受予圧量が大きいと、軸受剛性が向上し、径方向・軸方向変位やモーメント荷重等に対しての軸受の傾き角を小さくでき、車両旋回時に発生するブレーキロータの傾きを抑制することができるという利点がある。その反面、軸受予圧量が大きいと、軸受の回転トルクが大きくなり、フリクションロスが増大し、燃費が悪化してしまうという欠点を併せ持っている。逆に、軸受予圧量が小さいと、軸受の回転トルクが小さくなり、フリクションロスが低減されるが、軸受剛性が小さくなってしまう。
車の走行状態を考えると、直線走行時はできる限り回転トルクが小さくなるようにし、旋回時はできる限り軸受剛性を大きくしてブレーキロータの傾きを抑制することが望まれる。
In the wheel bearing device, a predetermined bearing preload has been conventionally applied in order to ensure a desired bearing rigidity. At that time, if the bearing preload is large, the bearing rigidity is improved, and the tilt angle of the bearing with respect to radial / axial displacement, moment load, etc. can be reduced, and the brake rotor tilt that occurs when the vehicle turns is suppressed. There is an advantage that you can. On the other hand, when the bearing preload amount is large, the rotational torque of the bearing increases, friction loss increases, and fuel consumption deteriorates. Conversely, when the bearing preload is small, the rotational torque of the bearing is reduced and friction loss is reduced, but the bearing rigidity is reduced.
Considering the running state of the car, it is desired to reduce the rotational torque as much as possible during straight running and to increase the bearing rigidity as much as possible during turning to suppress the tilt of the brake rotor.

従来、軸受の予圧量を可変設定するものとして、図8に示すような予圧可変軸受ユニットが知られている(例えば特許文献1)。この予圧可変軸受ユニットは、偶数個の転がり軸受34を外側円筒部36および内側円筒部32で保持し、例えば内側円筒部32の軸方向端面に配置した圧電素子42に、電圧制御手段43から電圧を制御して印加するようにしたものである。前記円筒部32,36は圧電素子42と共に、前記内側円筒部32が嵌合するねじ38や、このねじ38が螺合して支持されるベース37からなる軸受支持部材に挟持固定される。軸受の予圧量は、電圧制御手段43による圧電素子42の伸長・収縮により可変設定される。
特開平11−223216号公報
Conventionally, a variable preload bearing unit as shown in FIG. 8 is known as one that variably sets a preload amount of a bearing (for example, Patent Document 1). In this variable preload bearing unit, an even number of rolling bearings 34 are held by the outer cylindrical portion 36 and the inner cylindrical portion 32, and voltage is applied from the voltage control means 43 to the piezoelectric element 42 disposed on the axial end surface of the inner cylindrical portion 32, for example. Is controlled and applied. The cylindrical portions 32 and 36 are sandwiched and fixed together with the piezoelectric element 42 by a screw 38 into which the inner cylindrical portion 32 is fitted and a bearing support member including a base 37 to which the screw 38 is screwed. The preload amount of the bearing is variably set by the expansion / contraction of the piezoelectric element 42 by the voltage control means 43.
JP-A-11-223216

しかし、この予圧可変軸受ユニットは、初期に設定された2組の転がり軸受の予圧量が温度変化によって変動するのを圧電素子を制御することで単に抑制するものであって、車輪用軸受装置において、車両の走行状態に合わせて最適な予圧量に可変設定するものと異なる。すなわち、車輪用軸受装置においては、車両の直進と旋回とがランダムに繰り返され、その走行状態が常時変化すると共に、走行状態の変化に伴い装置に負荷される荷重も常時変化する。このため、温度変化によって転がり軸受の予圧量が変動するのを圧電素子の制御で抑制する上記予圧可変軸受ユニットの構成では、車両の走行状態に合わせて車輪用軸受装置を常に最適な予圧量に可変設定することができない。また、車輪用軸受装置に必要な予圧量は大きく、圧電素子では荷重が出せず、利用できない。   However, this variable preload bearing unit simply suppresses fluctuations in the preload amount of the two sets of rolling bearings set in the initial stage due to temperature changes by controlling the piezoelectric element. This is different from the one that variably sets the optimal preload amount according to the running state of the vehicle. That is, in the wheel bearing device, the straight traveling and turning of the vehicle are repeated at random, and the running state constantly changes, and the load applied to the device constantly changes with the change of the running state. For this reason, in the configuration of the preload variable bearing unit that suppresses the fluctuation of the preload amount of the rolling bearing due to the temperature change by controlling the piezoelectric element, the wheel bearing device is always set to the optimum preload amount according to the running state of the vehicle. Cannot be variably set. Further, the amount of preload required for the wheel bearing device is large, and the piezoelectric element cannot be used because a load cannot be produced.

この発明の目的は、車両の走行状態に合わせて最適な予圧量に可変設定できる予圧可変機構付車輪用軸受装置を提供することである。   An object of the present invention is to provide a wheel bearing device with a preload variable mechanism that can be variably set to an optimum preload amount in accordance with the running state of a vehicle.

この発明の予圧可変機構付車輪用軸受装置は、内周に複列の軌道面を有する外方部材と、これら軌道面に対向する軌道面を有する内方部材と、対向する軌道面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、この軸受に予圧を変更可能に付与する予圧可変機構と、車両の走行状態を検出する検出手段と、この検出手段の出力により前記予圧可変機構に予圧変更動作を行わせる手段とを備えたものである。
この構成によると、検出手段が検出する車両の走行状態に応じて予圧可変機構が予圧変更動作を行うので、車両の走行状態に合わせて軸受に付与する予圧量を最適に可変設定できる。例えば、車両の直進と旋回とがランダムに常時変化するような走行状態の場合において、車輪用軸受装置の予圧量を直進走行時は小さくし、旋回走行時は大きくなるように可変設定することができる。これにより、直進走行時におけるフリクションロスの低減による燃費向上、寿命の向上を図ることができる。また、旋回走行時のブレーキロータの傾きを抑制することができ、走行安定性を向上させることができる。
The wheel bearing device with a variable preload mechanism according to the present invention includes an outer member having a double-row raceway surface on an inner periphery, an inner member having a raceway surface facing these raceway surfaces, and an opposing raceway surface. And a detecting means for detecting the running state of the vehicle, in a wheel bearing for rotatably supporting the wheel with respect to the vehicle body, and a preload variable mechanism for changing the preload to the bearing. And means for causing the variable preload mechanism to perform a preload changing operation based on the output of the detecting means.
According to this configuration, since the variable preload mechanism performs the preload changing operation according to the traveling state of the vehicle detected by the detecting means, the amount of preload applied to the bearing can be optimally variably set according to the traveling state of the vehicle. For example, in a traveling state in which straight travel and turning of the vehicle always change randomly, the preload amount of the wheel bearing device can be variably set to be small during straight traveling and large during cornering. it can. As a result, it is possible to improve fuel efficiency and life by reducing friction loss during straight traveling. Moreover, the inclination of the brake rotor at the time of cornering can be suppressed, and traveling stability can be improved.

記外方部材を外環部材と外輪とでなる。前記外環部材は、外周に車体取付用フランジを一体に有し、かつ内周にアウトボード側列の軌道面が形成され、このアウトボード側軌道面から段差面を介して軸方向に延びる円筒面状で前記軌道面よりも大径の外輪嵌合面を有するものとする。前記外輪はインボード側列の軌道面が形成されて前記外環部材の前記外輪嵌合面に嵌合する。これら外環部材の前記段差面と外輪の端面との間に、前記予圧可変機構を介在させる。
この予圧可変機構は、ボールを介して軸方向に対面する一対のカム面の相対回転により軸方向に伸縮するカム機構とし、前記外輪を前記外環部材に対して回転させることで、前記カム機構が動作し、予圧を変更可能なものとする
Ing in the front Kigaikata member and the outer ring member and the outer ring. The outer ring member has a vehicle body mounting flange integrally on the outer periphery, and an outboard side row raceway surface is formed on the inner circumference, and a cylinder extending in the axial direction from the outboard side raceway surface via a step surface. The outer ring fitting surface is planar and has a larger diameter than the raceway surface. The outer ring is formed with an inboard side raceway surface and is fitted to the outer ring fitting surface of the outer ring member. The variable preload mechanism is interposed between the step surface of the outer ring member and the end surface of the outer ring.
The variable preload mechanism is a cam mechanism that expands and contracts in the axial direction by relative rotation of a pair of cam surfaces facing in the axial direction via a ball, and rotates the outer ring with respect to the outer ring member, whereby the cam mechanism but works, it is assumed capable of changing the preload.

この構成の場合、外輪を回転させると、予圧可変機構におけるボールの介在する一対のカム面が相対回転して、予圧可変機構が軸方向に伸縮するので、外方部材のアウトボード側列の軌道面が形成される外環部材と、インボード側列の軌道面が形成される外輪との軸方向間隔が変化し、これにより軸受に付与する予圧を変更できる。
また、ボールを介して軸方向に対面する一対のカム面の相対回転により軸方向に伸縮するカム機構を用いるため、小さな力で大きな軸力を発生させることができ、車輪用軸受装置の内部に軽量・コンパクトに予圧可変機構を収めることができる。
In this configuration, when the outer ring is rotated, the pair of cam surfaces interposing the balls in the preload variable mechanism rotate relative to each other so that the preload variable mechanism expands and contracts in the axial direction. The axial interval between the outer ring member on which the surface is formed and the outer ring on which the raceway surface of the inboard side row is formed changes, whereby the preload applied to the bearing can be changed.
In addition, since a cam mechanism that expands and contracts in the axial direction by the relative rotation of a pair of cam surfaces facing in the axial direction via the ball can be used, a large axial force can be generated with a small force, and the inside of the wheel bearing device Preload variable mechanism can be housed in a lightweight and compact.

この構成の場合に、前記外輪は、外環部材のインボード側へ突出する回転被伝達部を有し、この回転被伝達部を介して、前記予圧可変機構に予圧を変更動作させるための外輪の回転の駆動力を受けるものとする。回転被伝達部は、例えばギヤとする。
このように外環部材のインボード側へ突出する回転被伝達部を外輪に設けることで、外輪に駆動源の回転を簡単な構成で与えることができる。
In this configuration, the outer ring has a rotationally transmitted portion that protrudes toward the inboard side of the outer ring member, and the outer ring that causes the preload variable mechanism to change the preload via the rotationally transmitted portion. It shall receive the driving force of the rotation. The rotation receiving part is, for example, a gear.
Thus, by providing the outer ring with the rotation transmitted portion that protrudes toward the inboard side of the outer ring member, the rotation of the drive source can be given to the outer ring with a simple configuration.

この発明において、前記車両の走行状態を検出する手段は、車両の直進走行と旋回走行との判別が可能なものであり、前記予圧可変機構に予圧変更動作を行わせる手段は、予圧量を直進走行時は小さく、旋回走行時は大きくするように予圧変更動作を行わせるものとしても良い。
このような走行状態検出手段を設けることで、直線走行と旋回走行に応じた予圧変更が可能になる。前記検出手段による直進走行と旋回走行との判別は、2値によっても、また複数段階や連続的な値として判別を行うものであっても良い。予圧量を直進走行時は小さく、旋回走行時は大きくすることで、上記のように直進走行時におけるフリクションロスの低減による燃費向上、寿命の向上を図ると共に、旋回走行時の走行安定性を向上させることができる。
In the present invention, the means for detecting the traveling state of the vehicle is capable of discriminating between straight traveling and turning traveling of the vehicle, and the means for causing the preload varying mechanism to perform a preload changing operation proceeds straight ahead. The preload changing operation may be performed so as to be small during traveling and large during turning.
By providing such a traveling state detection means, it is possible to change the preload according to straight traveling and turning traveling. The discrimination between the straight running and the turning run by the detection means may be performed by binary values, or by a plurality of steps or continuous values. By reducing the preload amount during straight traveling and increasing during turning, the fuel consumption and life are improved by reducing friction loss during straight traveling as described above, and the running stability during turning is also improved. Can be made.

この発明において、前記予圧可変機構に予圧変更動作を行わせる前記手段は、初期予圧量は小さく設定しておき、車両の走行状態に合わせて、直進走行時は初期予圧量のままとし、旋回時は予圧量を大きくするものとしても良い。
これにより、走行時間のうちの大部分を占める直線走行時は予圧量の変更のための駆動を行わずに済み、予圧量変更のための駆動を少なくできる。また、予圧量変更の制御も簡単となる。
In the present invention, the means for causing the preload varying mechanism to perform the preload changing operation sets the initial preload amount to a small value, and keeps the initial preload amount during straight traveling in accordance with the traveling state of the vehicle. May increase the amount of preload.
As a result, it is not necessary to drive for changing the preload amount during straight running, which occupies most of the travel time, and the drive for changing the preload amount can be reduced. Further, the control for changing the preload amount is also simplified.

前記予圧可変機構に予圧変更動作を行わせる前記手段は、車両走行状態で直線走行時には軸受隙間が−10〜0μmで、旋回走行時には軸受隙間が−50〜−10μmとなるように予圧を可変設定するものとしても良い。
予圧量が大きくなり過ぎて過度の軸受剛性を設定すると、回転トルク等の増大による効率の低下と共に、軸受寿命の低下を招くが、上記の軸受隙間の範囲に設定すると、適正な軸受予圧を保つことができて、軸受寿命の延長も見込める。そのため、従来例の場合に比べて軸受装置の小型化も可能となる。
The means for causing the preload variable mechanism to perform a preload changing operation variably sets the preload so that the bearing clearance is −10 to 0 μm when the vehicle is running straight and the bearing clearance is −50 to −10 μm when the vehicle is turning. It is good to do.
Setting excessive bearing rigidity due to excessive preload amount will lead to a decrease in efficiency due to an increase in rotational torque, etc., and a decrease in bearing life. However, if it is set within the above bearing clearance range, an appropriate bearing preload will be maintained. It is possible to extend the bearing life. Therefore, the bearing device can be downsized as compared with the case of the conventional example.

この発明の予圧可変機構付車輪用軸受装置は、内周に複列の軌道面を有する外方部材と、これら軌道面に対向する軌道面を有する内方部材と、対向する軌道面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、この軸受に予圧を変更可能に付与する予圧可変機構と、車両の走行状態を検出する検出手段と、この検出手段の出力により前記予圧可変機構に予圧変更動作を行わせる手段とを設け、前記外方部材が外環部材と外輪とでなり、前記外環部材は、外周に車体取付用フランジを一体に有し、かつ内周にアウトボード側列の軌道面が形成され、このアウトボード側軌道面から段差面を介して軸方向に延びる円筒面状で前記軌道面よりも大径の外輪嵌合面を有し、前記外輪はインボード側列の軌道面が形成されて前記外環部材の前記外輪嵌合面に嵌合し、これら外環部材の前記段差面と外輪の端面との間に、前記予圧可変機構を介在させ、この予圧可変機構は、ボールを介して軸方向に対面する一対のカム面の相対回転により軸方向に伸縮するカム機構とし、前記外輪を前記外環部材に対して回転させることで、前記カム機構が動作し、予圧を変更可能なものとし、前記外輪は、外環部材のインボード側へ突出する回転被伝達部を有し、この回転被伝達部を介して、前記予圧可変機構に予圧を変更動作させるための外輪の回転の駆動力を受けるものとしたため、車両の走行状態に合わせて最適な予圧量に可変設定できる。そのため、例えば、直進走行時におけるフリクションロスの低減による燃費向上、寿命の向上を図ると共に、旋回走行時の走行安定性を向上させることができる。 The wheel bearing device with a variable preload mechanism according to the present invention includes an outer member having a double-row raceway surface on an inner periphery, an inner member having a raceway surface facing these raceway surfaces, and an opposing raceway surface. And a detecting means for detecting the running state of the vehicle, in a wheel bearing for rotatably supporting the wheel with respect to the vehicle body, and a preload variable mechanism for changing the preload to the bearing. When, only set and means for causing a preload changing operation to the preload variable mechanism by an output of the detection means, the outer member is in the outer ring member and the outer ring, the outer ring member, a body mounted on the outer periphery The track surface of the outboard side row is formed on the inner periphery with a flange integrally, and is a cylindrical surface extending in the axial direction from the outboard side track surface through the step surface and having a diameter larger than that of the track surface. It has an outer ring fitting surface, and the outer ring is arranged on the inboard side row. A road surface is formed and is fitted to the outer ring fitting surface of the outer ring member, and the preload variable mechanism is interposed between the step surface of the outer ring member and an end surface of the outer ring, and the preload variable mechanism. Is a cam mechanism that expands and contracts in the axial direction by relative rotation of a pair of cam surfaces facing in the axial direction via the ball, and the cam mechanism operates by rotating the outer ring with respect to the outer ring member, In order to change the preload, the outer ring has a rotationally transmitted portion that protrudes toward the inboard side of the outer ring member, and the preload changing mechanism operates to change the preload via the rotationally transmitted portion. Therefore, it is possible to variably set the optimal preload amount in accordance with the traveling state of the vehicle. Therefore, for example, it is possible to improve fuel efficiency and life by reducing friction loss during straight traveling, and improve traveling stability during turning.

この発明の第1の実施形態を図1ないし図3と共に説明する。この実施形態の予圧可変機構付車輪用軸受装置は、第3世代型の内輪回転タイプで、かつ駆動輪支持用の車輪用軸受に適用した例である。なお、この明細書において、車両に取付けた状態で車両の車幅方向外側寄りとなる側をアウトボード側と言い、車両の中央寄りとなる側をインボード側と呼ぶ。図1では左側がアウトボード側、右側がインボード側となる。
図1において、この車輪用軸受装置は、内周に複列の軌道面4を有する外方部材1と、これら軌道面4にそれぞれ対向する軌道面5を外周に有する内方部材2と、これら複列の軌道面4,5間に介在させた複列の転動体3とを備える。上記各軌道面4,5は断面円弧状であり、各軌道面4,5は接触角が背面合わせとなるように形成されている。転動体3はボールからなり、各列毎に保持器6で保持されている。
A first embodiment of the present invention will be described with reference to FIGS. The wheel bearing device with a preload varying mechanism of this embodiment is an example applied to a wheel bearing for driving wheel support, which is a third generation inner ring rotating type. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side. In FIG. 1, the left side is the outboard side and the right side is the inboard side.
In FIG. 1, this wheel bearing device includes an outer member 1 having double-row raceway surfaces 4 on the inner periphery, an inner member 2 having raceway surfaces 5 on the outer periphery, which respectively face the raceway surfaces 4, A double row rolling element 3 interposed between the double row raceway surfaces 4 and 5. Each of the raceway surfaces 4 and 5 has a circular arc shape in cross section, and each of the raceway surfaces 4 and 5 is formed so that the contact angle is back to back. The rolling elements 3 are formed of balls and are held by the cage 6 for each row.

外方部材1は固定側の部材となるものであって、外周に車体取付フランジ1aを一体に有する外環部材7と、この外環部材7のインボード側の端部内径に嵌合した別体の外輪8とからなる。外環部材7の内周にアウトボード側列の軌道面4が形成され、外輪8の内周にインボード側列の軌道面4が形成される。車体取付フランジ1aは、車体(図示せず)に設置されたナックルに周方向複数箇所のボルト(図示せず)で締結される。   The outer member 1 is a member on the fixed side, and is provided with an outer ring member 7 integrally having a vehicle body mounting flange 1a on the outer periphery and an inner diameter of the end portion on the inboard side of the outer ring member 7 It consists of the outer ring 8 of the body. An outboard side raceway surface 4 is formed on the inner circumference of the outer ring member 7, and an inboard side raceway surface 4 is formed on the inner circumference of the outer ring 8. The vehicle body mounting flange 1a is fastened to a knuckle installed in a vehicle body (not shown) with a plurality of bolts (not shown) in the circumferential direction.

外環部材7の内周は、アウトボード側軌道面4から段差面7aを介して軸方向に延びる円筒面状で前記軌道面4よりも大径の外輪嵌合面7bを有する。この外輪嵌合面7bに前記外輪8が相対回転可能に嵌合される。
外環部材7の段差面7aと、この段差面7aに対向する前記外輪8の端面との間には、この軸受に予圧を変更可能に付与する予圧可変機構9が介在させてある。
The inner periphery of the outer ring member 7 has a cylindrical surface extending in the axial direction from the outboard side raceway surface 4 via the step surface 7 a and has an outer ring fitting surface 7 b having a larger diameter than the raceway surface 4. The outer ring 8 is fitted to the outer ring fitting surface 7b so as to be relatively rotatable.
A variable preload mechanism 9 is provided between the stepped surface 7a of the outer ring member 7 and the end surface of the outer ring 8 facing the stepped surface 7a so that the preload can be changed.

予圧可変機構9は、外環部材7の内周の段差面7aから外輪嵌合面7bの一部に渡って嵌合固定されたリング状の固定部材10と、外輪8の前記固定部材10に対向する端面に固定されたリング状の回転部材11と、これら部材10,11に形成され軸方向に対面する一対のカム面10a,11aと、両カム面10a,11a間に介在させたボール12とからなるカム機構である。すなわち、この予圧可変機構9は、ボールランプ機構を有するトルクカムとされている。
予圧可変機構9は、詳しくは、上記固定部材10および回転部材11の互いに軸方向に対向する面に、図3のように周方向に沿って延びる複数本(ここでは3本)の溝状カム面10a,11aが形成されている。図2に示すように、これらカム面10a,11aは、両端部から中間部に向けて漸次深くなっていて、対向する各一対のカム面10a,11a間にボール12が挟まれている。これらカム面10a,11aの相対回転により、予圧可変機構9の全体が軸方向に伸縮する。
The variable preload mechanism 9 includes a ring-shaped fixing member 10 that is fitted and fixed over a part of the outer ring fitting surface 7 b from the step surface 7 a on the inner periphery of the outer ring member 7, and the fixing member 10 of the outer ring 8. A ring-shaped rotating member 11 fixed to the opposing end surfaces, a pair of cam surfaces 10a, 11a formed on these members 10, 11 facing each other in the axial direction, and a ball 12 interposed between both cam surfaces 10a, 11a It is a cam mechanism consisting of That is, the preload variable mechanism 9 is a torque cam having a ball ramp mechanism.
Specifically, the variable preload mechanism 9 includes a plurality (three in this case) of groove-shaped cams extending along the circumferential direction as shown in FIG. 3 on the surfaces of the fixed member 10 and the rotating member 11 that are opposed to each other in the axial direction. Surfaces 10a and 11a are formed. As shown in FIG. 2, the cam surfaces 10a and 11a are gradually deepened from both ends toward the intermediate portion, and the ball 12 is sandwiched between each pair of opposing cam surfaces 10a and 11a. Due to the relative rotation of the cam surfaces 10a and 11a, the entire preload variable mechanism 9 expands and contracts in the axial direction.

前記回転部材11の固定された外輪8は、図1に示すように、外環部材7よりもインボード側に突出した端部外周に歯車部8aが一体に形成されている。この歯車部8aに噛み合った歯車14を介して、予圧量変更用の駆動源となるモータ13の回転が外輪8に伝えられる。   As shown in FIG. 1, the outer ring 8 to which the rotating member 11 is fixed is integrally formed with a gear portion 8 a on an outer periphery of an end portion that protrudes inward from the outer ring member 7. The rotation of the motor 13 serving as a drive source for changing the preload amount is transmitted to the outer ring 8 through the gear 14 meshed with the gear portion 8a.

内方部材2は回転側の部材となるものであって、車輪取付フランジ2aを有するハブ輪2Aと、このハブ輪2Aのインボード側の端部外径に嵌合した別体の内輪2Bとからなり、ハブ輪2Aおよび内輪2Bに各列の軌道面5がそれぞれ形成される。内輪2Bは、ハブ輪2Aのインボード側端部に設けられた加締部2Aaにより、ハブ輪2Aに対して軸方向に締め付け固定される。内外の部材2,1間に形成される環状空間のアウトボード側およびインボード側の各開口端部は、それぞれ接触式のシール15,16で密封されている。ハブ輪2Aの中央の内径穴17には等速ジョイント外輪のステム部(図示せず)が挿通されて連結される。   The inner member 2 is a member on the rotation side, and includes a hub wheel 2A having a wheel mounting flange 2a, and a separate inner ring 2B fitted to the outer diameter of the end portion on the inboard side of the hub wheel 2A. Each row of raceway surfaces 5 is formed on the hub wheel 2A and the inner ring 2B. The inner ring 2B is clamped and fixed in the axial direction with respect to the hub wheel 2A by a crimping portion 2Aa provided at the inboard side end of the hub wheel 2A. The open end portions on the outboard side and the inboard side of the annular space formed between the inner and outer members 2 and 1 are sealed with contact-type seals 15 and 16, respectively. A stem portion (not shown) of the constant velocity joint outer ring is inserted into and connected to the inner diameter hole 17 at the center of the hub wheel 2A.

図1に示すように、この車輪用軸受装置を備える自動車の例えばECU(電気制御ユニット)18内には、車両の走行状態を検出する走行状態検出手段19と、この検出手段19の出力により前記予圧可変機構9に予圧変更動作を行わせる予圧変更制御手段20が設けられている。走行状態検出手段19は、車両の各車輪用軸受等に設けられた車輪回転センサ21A,21B…や、車輪荷重センサ22A,22B…の検出信号から、車両の走行状態、例えば直進状態や旋回状態などの区別や程度を検出するものである。予圧変更制御手段20は、走行状態検出手段19が検出した走行状態に基づき、前記モータ13を正逆に回転制御することで、前記予圧可変機構9に予圧変更動作を行わせる。   As shown in FIG. 1, in an automobile (ECU) 18 of an automobile equipped with this wheel bearing device, for example, a running state detecting means 19 for detecting the running state of the vehicle, and the output of the detecting means 19 Preload change control means 20 is provided for causing the preload variable mechanism 9 to perform a preload change operation. The traveling state detection means 19 is based on detection signals from the wheel rotation sensors 21A, 21B... And the wheel load sensors 22A, 22B. This is to detect the distinction and degree. The preload change control means 20 causes the preload variable mechanism 9 to perform a preload change operation by controlling the motor 13 to rotate in the forward and reverse directions based on the running state detected by the running state detecting means 19.

次に、上記予圧可変機構付車輪用軸受装置における予圧可変機構9の予圧変更動作について説明する。車輪用軸受に対する予圧量の初期値は小さく設定されている。すなわち、予圧可変機構9では、ボール12が両カム面10a,11aの深い部分で挟まれて予圧可変機構9の全体が軸方向に縮小した状態にある。このとき、外方部材1のアウトボード側列の軌道面4が形成された外環部材7と、インボード側列の軌道面4が形成された外輪8との間の軸方向間隔が小さくなっている。   Next, the preload changing operation of the preload variable mechanism 9 in the wheel bearing device with the preload variable mechanism will be described. The initial value of the preload amount for the wheel bearing is set small. That is, in the preload variable mechanism 9, the ball 12 is sandwiched between the deep portions of the cam surfaces 10a and 11a, and the entire preload variable mechanism 9 is in a state of being contracted in the axial direction. At this time, the axial interval between the outer ring member 7 formed with the raceway surface 4 on the outboard side row of the outer member 1 and the outer ring 8 formed with the raceway surface 4 on the inboard side row becomes small. ing.

車両の各車輪用軸受等に設けられた車輪回転センサ21A,21B…や、車輪荷重センサ22A,22B…の検出信号から、車両が直進状態にあると走行状態検出手段19が判断すると、予圧変更制御手段20はモータ13に対して制御信号を出力せず、予圧可変機構9は予圧変更動作を行わない。このため、軸受の予圧量は小さい初期値のままとされる。これにより、直線走行時に、軸受の回転トルクが低減されてフリクションが減少し、燃費が向上する。   When the traveling state detection means 19 determines that the vehicle is in a straight traveling state from the detection signals of the wheel rotation sensors 21A, 21B,... The control means 20 does not output a control signal to the motor 13, and the preload varying mechanism 9 does not perform the preload changing operation. For this reason, the preload amount of the bearing is kept at a small initial value. As a result, during straight running, the rotational torque of the bearing is reduced, friction is reduced, and fuel efficiency is improved.

車輪回転センサ21A,21B…や、車輪荷重センサ22A,22B…の検出信号から、車両が旋回走行に移行したと走行状態検出手段19が判断すると、予圧変更制御手段20はモータ13に対して制御信号を出力し、モータ13を例えば正回転させる。これにより、外方部材1の外輪8が回転して、予圧可変機構9における固定部材10と回転部材11との間に相対回転が生じ、ボール12が両カム面10a,11aの浅い部分で挟まれて予圧可変機構9の全体が軸方向に伸長した状態となる。その結果、外方部材1の外環部材7と外輪8とに軸方向に離反する荷重が働き、軸受に作用する予圧量が大きくなる。軸受予圧量が高いと、軸受剛性が向上するので、径方向・軸方向変位やモーメント荷重に対する軸受の傾き角を小さくでき、車両の旋回時に発生するブレーキロータの傾きを抑制することができる。   When the traveling state detecting means 19 determines that the vehicle has shifted to turning from the detection signals of the wheel rotation sensors 21A, 21B... And the wheel load sensors 22A, 22B. A signal is output, and the motor 13 is rotated forward, for example. As a result, the outer ring 8 of the outer member 1 rotates and relative rotation occurs between the fixed member 10 and the rotating member 11 in the preload variable mechanism 9, and the ball 12 is sandwiched between the shallow portions of the cam surfaces 10a and 11a. As a result, the entire preload variable mechanism 9 is extended in the axial direction. As a result, a load separating in the axial direction acts on the outer ring member 7 and the outer ring 8 of the outer member 1, and the amount of preload acting on the bearing increases. When the bearing preload amount is high, the bearing rigidity is improved, so that the inclination angle of the bearing with respect to radial / axial displacement and moment load can be reduced, and the inclination of the brake rotor that occurs when the vehicle turns can be suppressed.

車両が旋回走行から直線走行に戻ると、その走行状態を検出する走行状態検出手段19の検出信号により、予圧変更制御手段20がモータ13を逆回転に制御する。これにより、外輪8が逆回転して、予圧可変機構9全体が軸方向に縮小して、軸受に作用する予圧量が初期値に戻る。これにより、軸受の回転トルクが低減されてフリクションが減少し、燃費が向上する。車両が直進走行と旋回走行を繰り返すことにより、予圧可変機構9が上記したように軸受の予圧量を可変調整し、走行状態に合った予圧量に設定される。   When the vehicle returns from turning to straight running, the preload change control means 20 controls the motor 13 in reverse rotation based on a detection signal from the running condition detection means 19 that detects the running condition. As a result, the outer ring 8 rotates in the reverse direction, the entire preload variable mechanism 9 is reduced in the axial direction, and the amount of preload acting on the bearing returns to the initial value. As a result, the rotational torque of the bearing is reduced, friction is reduced, and fuel efficiency is improved. When the vehicle repeats straight traveling and turning, the variable preload mechanism 9 variably adjusts the preload amount of the bearing as described above, and is set to a preload amount suitable for the traveling state.

なお、上記車輪用軸受装置には予圧が負荷されることから、その軸受隙間は、軸方向弾性変位によるマイナス隙間となる。車輪用軸受装置が量産製品の場合、その軸受隙間の公差は、製造上の公差範囲と軸受寿命を考慮して、通常、−30〜0μmの範囲に設定されており、この軸受隙間に対応する予圧量が設定される。そこで、この実施形態において、予圧可変機構9に予圧変更動作を行わせる予圧変更制御手段20は、車両走行状態が直線走行時には軸受隙間が−10〜0μmに対応する予圧量、旋回走行時には軸受隙間が−50〜10μmに対応する予圧量となるように、予圧量を可変設定するものとしている。
予圧量が大きくなり過ぎて過度の軸受剛性を設定すると、回転トルク等の増大による効率の低下と共に、軸受寿命の低下を招くが、上記したように適正な軸受予圧(すなわち適正な軸受隙間)を保つこととすれば、軸受寿命の延長も見込めるので、従来例の場合に比べて軸受装置の小型化も可能となる。
In addition, since a preload is applied to the wheel bearing device, the bearing gap becomes a minus gap due to elastic displacement in the axial direction. When the wheel bearing device is a mass-produced product, the tolerance of the bearing gap is normally set in the range of −30 to 0 μm in consideration of the manufacturing tolerance range and the bearing life, and corresponds to this bearing gap. A preload amount is set. Therefore, in this embodiment, the preload change control means 20 for causing the preload variable mechanism 9 to perform the preload changing operation is a preload amount corresponding to a bearing gap of −10 to 0 μm when the vehicle running state is linear running, and a bearing gap when turning. The preload amount is variably set so that the preload amount corresponds to −50 to 10 μm.
If the preload amount becomes too large and excessive bearing rigidity is set, the efficiency will decrease due to an increase in rotational torque, etc. and the bearing life will be reduced. However, as described above, an appropriate bearing preload (that is, an appropriate bearing gap) If this is to be maintained, the bearing life can be extended, so that the bearing device can be made smaller than in the case of the conventional example.

図4は、この発明の他の実施形態を示す。この実施形態の予圧可変機構付車輪用軸受装置は、図1〜図3に示した第1の実施形態において、予圧可変機構9の回転部材11を外輪8と一体化したものである。すなわち、独立部品の回転部材11を省略して、予圧可変機構9の固定部材10と軸方向に対向する外輪8の端面に、固定部材10のカム面10aと対面するカム面11aを形成したものである。この場合もカム面11aは、第1の実施形態における回転部材11のカム面11aと同じである。   FIG. 4 shows another embodiment of the present invention. The wheel bearing device with a variable preload mechanism according to this embodiment is obtained by integrating the rotating member 11 of the variable preload mechanism 9 with the outer ring 8 in the first embodiment shown in FIGS. That is, the rotating member 11 which is an independent part is omitted, and the cam surface 11a facing the cam surface 10a of the fixing member 10 is formed on the end surface of the outer ring 8 which faces the fixing member 10 of the preload variable mechanism 9 in the axial direction. It is. Also in this case, the cam surface 11a is the same as the cam surface 11a of the rotating member 11 in the first embodiment.

このように、予圧可変機構9の回転部材11を外輪8と一体化することにより、外輪8と回転部材11との間での回転ガタの影響を無くすことができ、確実に予圧量の可変制御を行うことができる。その他の構成および効果は第1の実施形態の場合と同じである。   Thus, by integrating the rotating member 11 of the preload variable mechanism 9 with the outer ring 8, the influence of the rotation play between the outer ring 8 and the rotating member 11 can be eliminated, and the variable control of the preload amount is ensured. It can be performed. Other configurations and effects are the same as those in the first embodiment.

図5は、この発明の他の実施形態を示す。この実施形態の予圧可変機構付車輪用軸受装置は、図4に示した実施形態において、さらに予圧可変機構9の固定部材10を外環部材7と一体化したものである。すなわち、独立部品の固定部材10を省略して、外輪8のカム面11aに対向する外環部材7の段差面7aに、外輪8のカム面11aと対面するカム面10aを形成したものである。この場合もカム面10aは、第1の実施形態における固定部材10のカム面10aと同じである。   FIG. 5 shows another embodiment of the present invention. The wheel bearing device with a preload variable mechanism according to this embodiment is obtained by further integrating the fixing member 10 of the preload variable mechanism 9 with the outer ring member 7 in the embodiment shown in FIG. That is, the fixing member 10 which is an independent part is omitted, and the cam surface 10 a facing the cam surface 11 a of the outer ring 8 is formed on the step surface 7 a of the outer ring member 7 facing the cam surface 11 a of the outer ring 8. . Also in this case, the cam surface 10a is the same as the cam surface 10a of the fixing member 10 in the first embodiment.

このように、予圧可変機構9の回転部材11を外輪8と一体化するだけでなく、固定部材10を外環部材7と一体化することにより、外輪8と回転部材11との間だけでなく、外環部材7と固定部材10との間での回転ガタの影響も無くすことができ、より確実に予圧量の可変制御を行うことができる。その他の構成および効果は第1の実施形態の場合と同じである。   In this way, not only the rotating member 11 of the preload varying mechanism 9 is integrated with the outer ring 8 but also the fixing member 10 is integrated with the outer ring member 7, so that not only between the outer ring 8 and the rotating member 11. Further, the influence of the rotation play between the outer ring member 7 and the fixing member 10 can be eliminated, and the variable control of the preload amount can be performed more reliably. Other configurations and effects are the same as those in the first embodiment.

図6はこの発明の参考提案例を示す。この予圧可変機構付車輪用軸受装置は、図1〜図3に示した第1の実施形態において、内方部材2をハブ輪だけの一体部材とし、内外の部材2,1の複列の軌道面4,5は、それらの接触角が第1の実施形態の場合と逆向き、すなわち逆ハ字状のDFセット、すなわち正面合わせとされている。
予圧可変機構9Aは、外輪8のインボード側に向く端面に固定されたリング状の固定部材10と、この固定部材10よりインボード側に配置されて外環部材7の外輪嵌合面7bに回転可能に嵌合する回転部材11と、ボール12とでなるものとされている。この予圧可変機構9Aも、第1の実施形態と同様に、ボールランプ機構を有するトルクカムとされている。予圧可変機構9Aは、詳しくは、固定部材10の回転部材11と軸方向に対向する面にカム面10aが形成され、回転部材11の固定部材10と軸方向に対向する面にはカム面11aが形成され、これらの両カム面10a,11aがボール12を介して互いに軸方向に対面している。
FIG. 6 shows a reference proposal example of the present invention. This wheel bearing device with a variable preload mechanism, in the first embodiment shown in FIGS. 1 to 3, has the inner member 2 as an integral member of only the hub wheel, and a double row track of the inner and outer members 2 and 1. The surfaces 4 and 5 have a contact angle opposite to that in the case of the first embodiment, that is, an inverted half-shaped DF set, that is, face-to-face alignment.
The preload variable mechanism 9A includes a ring-shaped fixing member 10 fixed to an end surface of the outer ring 8 facing the inboard side, and is disposed on the inboard side of the fixing member 10 and is arranged on the outer ring fitting surface 7b of the outer ring member 7. The rotating member 11 that fits in a rotatable manner and the ball 12 are used. This preload variable mechanism 9A is also a torque cam having a ball ramp mechanism, as in the first embodiment. Specifically, the preload variable mechanism 9A has a cam surface 10a formed on a surface of the fixed member 10 facing the rotating member 11 in the axial direction, and a cam surface 11a formed on the surface of the rotating member 11 facing the fixed member 10 in the axial direction. These cam surfaces 10a and 11a face each other in the axial direction via the balls 12.

なお、この参考提案例では、外輪8は、外環部材7の外輪嵌合面7bに軸方向変位可能で且つ回転不能に嵌合している。カム面10a,11aの構成、およびカム面10a,11aとボール12の関係は、図2,図3と共に前述した第1の実施形態の場合と同じである。回転部材11のインボード側端部外周には、モータ13で回転駆動される歯車14に噛合する歯車部11bが一体形成されている。ECU内に設けられる走行状態検出手段や予圧変更制御手段などは図示しないが、これらの構成は第1の実施形態の場合と同じであり、ここではその説明を省略する。 In this reference proposal example , the outer ring 8 is fitted to the outer ring fitting surface 7b of the outer ring member 7 so as to be axially displaceable and non-rotatable. The configuration of the cam surfaces 10a and 11a and the relationship between the cam surfaces 10a and 11a and the ball 12 are the same as those in the first embodiment described above with reference to FIGS. A gear portion 11 b that meshes with a gear 14 that is rotationally driven by the motor 13 is integrally formed on the outer periphery of the inboard side end portion of the rotating member 11. Although the travel state detection means, the preload change control means, and the like provided in the ECU are not shown in the drawing, these configurations are the same as those in the first embodiment, and the description thereof is omitted here.

この参考提案例の場合も、予圧可変機構9Aの回転部材11が回転することにより、予圧可変機構9Aの全体が軸方向に伸縮する。すなわち、初期状態および車両の直進走行時には予圧可変機構9Aは軸方向に縮小した状態にあり、外輪7を介して予圧可変機構9Aから軸受に加えられる予圧量は小さい初期値に設定される。車両が旋回走行に移行すると、予圧可変機構9Aの回転部材11が回転駆動されることで、予圧可変機構9A全体が軸方向に伸長して、軸受に加えられる予圧量が大きくなる。 Also in this reference proposal example , the rotation of the rotating member 11 of the preload variable mechanism 9A causes the entire preload variable mechanism 9A to expand and contract in the axial direction. That is, the variable preload mechanism 9A is contracted in the axial direction during the initial state and when the vehicle is traveling straight, and the amount of preload applied to the bearing from the variable preload mechanism 9A via the outer ring 7 is set to a small initial value. When the vehicle shifts to turning, the rotary member 11 of the preload variable mechanism 9A is rotationally driven, whereby the preload variable mechanism 9A as a whole extends in the axial direction, and the amount of preload applied to the bearing increases.

図7は、この発明のさらに他の参考提案例を示す。この参考提案例の予圧可変機構付車輪用軸受装置は、図6の参考提案例において、予圧可変機構9Aの固定部材10を外輪8と一体化したものである。すなわち、独立部品の固定部材10を省略して、予圧可変機構9Aの回転部材11と軸方向に対向する外輪8の端面に、回転部材11のカム面11aと対面するカム面10aを形成したものである。この場合もカム面10aは、第1の実施形態における固定部材10のカム面10aと同じである。 FIG. 7 shows still another reference proposal example of the present invention. The wheel bearing device with a preload variable mechanism of this reference proposal example is obtained by integrating the fixing member 10 of the preload variable mechanism 9A with the outer ring 8 in the reference proposal example of FIG. That is, the fixing member 10 which is an independent part is omitted, and the cam surface 10a facing the cam surface 11a of the rotating member 11 is formed on the end surface of the outer ring 8 facing the rotating member 11 of the preload variable mechanism 9A in the axial direction. It is. Also in this case, the cam surface 10a is the same as the cam surface 10a of the fixing member 10 in the first embodiment.

このように、予圧可変機構9Aの固定部材10を外輪8と一体化することにより、外輪8と固定部材10との間での回転ガタの影響を無くすことができ、確実に予圧量の可変制御を行うことができる。その他の構成および効果は図6の参考提案例の場合と同じである。 Thus, by integrating the fixing member 10 of the preload variable mechanism 9A with the outer ring 8, the influence of the rotation play between the outer ring 8 and the fixing member 10 can be eliminated, and the variable control of the preload amount is reliably performed. It can be performed. Other configurations and effects are the same as those of the reference proposal example of FIG.

この発明の第1の実施形態にかかる予圧可変機構付車輪用軸受装置の断面図およびその制御系のブロック図を組合せた説明図である。It is explanatory drawing which combined sectional drawing of the wheel bearing apparatus with a preload variable mechanism concerning 1st Embodiment of this invention, and the block diagram of the control system. 同軸受装置における予圧可変機構の断面図である。It is sectional drawing of the preload variable mechanism in the same bearing apparatus. 同軸受装置における予圧可変機構の固定部材,回転部材の正面図である。It is a front view of the fixing member of the preload variable mechanism in the same bearing device, and a rotation member. この発明の他の実施形態にかかる予圧可変機構付車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a preload variable mechanism concerning other embodiment of this invention. この発明のさらに他の実施形態にかかる予圧可変機構付車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a preload variable mechanism concerning further another embodiment of this invention. この発明の参考提案例にかかる予圧可変機構付車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a preload variable mechanism concerning the example of a reference proposal of this invention. この発明のさらに他の参考提案例にかかる予圧可変機構付車輪用軸受装置の断面図である。It is sectional drawing of the wheel bearing apparatus with a preload variable mechanism concerning the further another reference proposal example of this invention. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1…外方部材
1a…車体取付フランジ
2…内方部材
3…転動体
4,5…軌道面
7…外環部材
7a…段差面
7b…外輪嵌合面
8…外輪
9,9A…予圧可変機構
10…固定部材
11…回転部材
10a,11a…カム面
12…ボール
19…走行状態検出手段
20…予圧変更制御手段
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Car body mounting flange 2 ... Inner member 3 ... Rolling elements 4, 5 ... Track surface 7 ... Outer ring member 7a ... Step surface 7b ... Outer ring fitting surface 8 ... Outer ring 9, 9A ... Preload variable mechanism DESCRIPTION OF SYMBOLS 10 ... Fixed member 11 ... Rotating member 10a, 11a ... Cam surface 12 ... Ball 19 ... Running condition detection means 20 ... Preload change control means

Claims (4)

内周に複列の軌道面を有する外方部材と、これら軌道面に対向する軌道面を有する内方部材と、対向する軌道面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
この軸受に予圧を変更可能に付与する予圧可変機構と、車両の走行状態を検出する検出手段と、この検出手段の出力により前記予圧可変機構に予圧変更動作を行わせる手段とを備え、
前記外方部材が外環部材と外輪とでなり、前記外環部材は、外周に車体取付用フランジを一体に有し、かつ内周にアウトボード側列の軌道面が形成され、このアウトボード側軌道面から段差面を介して軸方向に延びる円筒面状で前記軌道面よりも大径の外輪嵌合面を有し、前記外輪はインボード側列の軌道面が形成されて前記外環部材の前記外輪嵌合面に嵌合し、
これら外環部材の前記段差面と外輪の端面との間に、前記予圧可変機構を介在させ、 この予圧可変機構は、ボールを介して軸方向に対面する一対のカム面の相対回転により軸方向に伸縮するカム機構とし、前記外輪を前記外環部材に対して回転させることで、前記カム機構が動作し、予圧を変更可能なものとし、
前記外輪は、外環部材のインボード側へ突出する回転被伝達部を有し、この回転被伝達部を介して、前記予圧可変機構に予圧を変更動作させるための外輪の回転の駆動力を受けるものとした予圧可変機構付車輪用軸受装置。
An outer member having a double-row raceway surface on the inner periphery, an inner member having a raceway surface facing these raceway surfaces, and a double-row rolling element interposed between the opposing raceway surfaces, In the wheel bearing that supports the wheel rotatably,
A preload adjustment mechanism for changeably impart a preload to the bearing, e Bei detecting means for detecting a running condition of the vehicle, and means for causing a preload changing operation to the preload variable mechanism by an output of the detection means,
The outer member is composed of an outer ring member and an outer ring, and the outer ring member has a body mounting flange integrally on the outer periphery, and a raceway surface of the outboard side row is formed on the inner periphery. A cylindrical surface extending in the axial direction from the side raceway surface through a step surface, and having an outer ring fitting surface larger in diameter than the raceway surface, and the outer ring is formed with a raceway surface in an inboard side row to form the outer ring Fitting to the outer ring fitting surface of the member,
The preload variable mechanism is interposed between the step surface of the outer ring member and the end surface of the outer ring, and the preload variable mechanism is axially driven by relative rotation of a pair of cam surfaces facing in the axial direction via balls. The cam mechanism is operated by rotating the outer ring with respect to the outer ring member, and the preload can be changed.
The outer ring has a rotationally transmitted portion that protrudes toward the inboard side of the outer ring member, and through this rotationally transmitted portion, a driving force for rotating the outer ring for causing the preload variable mechanism to change the preload. Wheel bearing device with variable preload mechanism to receive .
請求項1において、前記車両の走行状態を検出する手段は、車両の直進走行と旋回走行との判別が可能なものであり、前記予圧可変機構に予圧変更動作を行わせる手段は、予圧量を直進走行時は小さく、旋回走行時は大きくするように予圧変更動作を行わせるものとした予圧可変機構付車輪用軸受装置。 Oite to claim 1, means for detecting a traveling state of the vehicle are those that can distinguish between the turning and straight running of the vehicle, means for causing a preload changing operation to the preload variable mechanism, preload A wheel bearing device with a variable preload mechanism that performs a preload changing operation so that the amount is small during straight traveling and large during turning. 請求項1または請求項2において、前記予圧可変機構に予圧変更動作を行わせる前記手段は、初期予圧量は小さく設定しておき、車両の走行状態に合わせて、直進走行時は初期予圧量のままとし、旋回時は予圧量を大きくするものとした予圧可変機構付車輪用軸受装置。 In the first or second aspect , the means for causing the preload variable mechanism to perform the preload changing operation sets the initial preload amount to be small, and sets the initial preload amount during straight traveling according to the traveling state of the vehicle. A wheel bearing device with a variable preload mechanism that keeps the amount of preload increased during turning. 請求項1ないし請求項のいずれか1項において、前記予圧可変機構に予圧変更動作を行わせる前記手段は、車両走行状態で直線走行時には軸受隙間が−10〜0μmで、旋回走行時には軸受隙間が−50〜−10μmとなるように予圧を可変設定するものとした予圧可変機構付車輪用軸受装置。 In any one of claims 1 to 3, wherein the means for causing a preload changing operation to the preload variable mechanism, the bearing clearance at the time of straight running by the vehicle running state in -10~0Myuemu, bearing clearance during cornering A wheel bearing device with a preload variable mechanism, in which the preload is variably set so that becomes -50 to -10 m.
JP2004199376A 2004-07-06 2004-07-06 Wheel bearing device with variable preload mechanism Expired - Fee Related JP4271093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199376A JP4271093B2 (en) 2004-07-06 2004-07-06 Wheel bearing device with variable preload mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199376A JP4271093B2 (en) 2004-07-06 2004-07-06 Wheel bearing device with variable preload mechanism

Publications (2)

Publication Number Publication Date
JP2006022850A JP2006022850A (en) 2006-01-26
JP4271093B2 true JP4271093B2 (en) 2009-06-03

Family

ID=35796279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199376A Expired - Fee Related JP4271093B2 (en) 2004-07-06 2004-07-06 Wheel bearing device with variable preload mechanism

Country Status (1)

Country Link
JP (1) JP4271093B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196570A (en) * 2007-02-13 2008-08-28 Jtekt Corp Rolling bearing device
JP5939086B2 (en) * 2012-08-23 2016-06-22 日本精工株式会社 Rolling bearing device
JP6631247B2 (en) * 2015-12-25 2020-01-15 株式会社ジェイテクト Bearing device
JP2018044670A (en) * 2016-09-13 2018-03-22 株式会社ジェイテクト Hub unit
WO2018051986A1 (en) * 2016-09-13 2018-03-22 株式会社ジェイテクト Hub unit
WO2018168199A1 (en) 2017-03-13 2018-09-20 株式会社日立製作所 Deflection electromagnet device

Also Published As

Publication number Publication date
JP2006022850A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US10816089B2 (en) Gear unit for motor vehicle
US11731693B2 (en) Hub unit with steering function, steering system, and vehicle
JP6408327B2 (en) Friction type continuously variable transmission
JP4271093B2 (en) Wheel bearing device with variable preload mechanism
CN105257692B (en) Flanged hub bearing unit
JP2005170064A (en) Steering device for vehicle
JP4386349B2 (en) Wheel bearing device
EP2957432B1 (en) Hub-bearing having a light alloy rotor-hub
US7021417B2 (en) Vehicle steering apparatus
US20160375725A1 (en) Hub-bearing having a light alloy rotor-hub
EP3926195A1 (en) Hub unit having steering function, and vehicle equipped with same
JP2006248258A (en) Bearing for supporting wheel with pneumatic control mechanism
JP2007132526A5 (en)
JP2020131806A (en) Electric power steering device
JP4380493B2 (en) Electric wheel drive device
US6868749B2 (en) Bearing configuration and method for reducing noise in a bearing
JP4371319B2 (en) Wheel drive device for vehicle
JP4706306B2 (en) Bearing unit with rotation detector
WO2019054383A1 (en) Hub unit with auxiliary steering function and vehicle comprising said hub unit
JP2020125804A (en) Ball screw device
WO2019065779A1 (en) Steering function-equipped hub unit and vehicle provided therewith
US11788578B2 (en) Wheel hub assembly with optimized raceways
JP4026656B2 (en) Method for manufacturing hub unit for driving wheel support
JP4359313B2 (en) Belt drive mechanism
JP2004306919A (en) Telescopic shaft for vehicle steering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees