JP4270485B2 - Taxane reduction method - Google Patents

Taxane reduction method Download PDF

Info

Publication number
JP4270485B2
JP4270485B2 JP2002153449A JP2002153449A JP4270485B2 JP 4270485 B2 JP4270485 B2 JP 4270485B2 JP 2002153449 A JP2002153449 A JP 2002153449A JP 2002153449 A JP2002153449 A JP 2002153449A JP 4270485 B2 JP4270485 B2 JP 4270485B2
Authority
JP
Japan
Prior art keywords
acid
iii
group
solvent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002153449A
Other languages
Japanese (ja)
Other versions
JP2003342269A (en
JP2003342269A5 (en
Inventor
昭夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Sankyo Co Ltd
Original Assignee
Daiichi Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Sankyo Co Ltd filed Critical Daiichi Sankyo Co Ltd
Priority to JP2002153449A priority Critical patent/JP4270485B2/en
Publication of JP2003342269A publication Critical patent/JP2003342269A/en
Publication of JP2003342269A5 publication Critical patent/JP2003342269A5/ja
Application granted granted Critical
Publication of JP4270485B2 publication Critical patent/JP4270485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明はタキサン類の9位オキソ基を還元して9β−ヒドロキシ基に変換する方法に関する。
【0002】
【従来の技術】
タキソール(taxol)はイチイの樹皮から抽出される特異な4環構造を有する抗腫瘍性化合物であり、卵巣癌、乳癌などに対して非常に有効な抗腫瘍剤として注目されている。また、タキソテル(taxotere)などのタキサン類はタキソールよりもさらに高い活性を有すると報告されている(米国特許第4814470号明細書)。これらのタキソールの4環構造の9位のオキソ基を還元して得られる9β−ヒドロキシ化合物も水溶性が高められた抗腫瘍剤として有望である。
【0003】
タキソール、タキソテール、バッカチンなどのタキサン類の9位オキソ基を還元して9β−ヒドロキシ基に変換する方法としては国際公開WO94/20485に記載された方法が知られている。この公報には、バッカチン(III)とn−Bu4NBH4とを塩化メチレン中で反応させることにより9−デスオキソ−9β−ヒドロキシバッカチン(III)が得られることが記載されており、同公報の実施例1には10−デアセチルバッカチン(III)を塩化メチレン中でn−Bu4NBH4で還元することにより10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)が得られることが記載されている(n−Buはノルマルブチル基を示す)。この実施例で得られる目的物の収率は85%であることが示されているが、本発明者らが追試を行ったところ、この方法で得られる目的物には多量の不純物が含有されており、工業的な利用には適しない低品質なものであることが判明した。
【0004】
【発明が解決しようとする課題】
本発明の課題は、タキサン類の9位オキソ基を効率的に9β−ヒドロキシ基に変換して高純度の9β−ヒドロキシ化合物を製造する方法を提供することにある。本発明の課題の一例は、例えば、タキサン類の製造用中間体として有用な高純度の10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)を10−デアセチルバッカチン(III)から高純度かつ高収率に製造する方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく鋭意研究を行った結果、タキサン類の9位オキソ基をn−Bu4NBH4などの還元剤で処理して9β−ヒドロキシ基に変換するにあたり、反応混合物に有機酸類を添加することにより不純物の生成を顕著に抑制でき、還元生成物を高純度かつ高収率に製造できることを見出した。また、10−デアセチルバッカチン(III)の9位オキソ基を還元して10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)を製造するに際して上記の方法を適用することにより、極めて高純度な目的物を高収率に製造できることを見出した。本発明は上記の知見を基にして完成されたものである。
【0006】
すなわち、本発明は、タキサン類の9位オキソ基を還元して9β−ヒドロキシ基に変換する方法であって、有機酸の存在下で金属水素化ホウ素化合物により還元を行うことを特徴とする方法を提供するものである。本発明の好ましい態様によれば、タキサン類が10−デアセチルバッカチン(III)であり、還元生成物が10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)である上記方法が提供される。また、別の観点からは、9β−ヒドロキシ基を有するタキサン類の製造方法であって、タキサン類の9位オキソ基を有機酸の存在下で金属水素化ホウ素化合物により還元を行う工程を含む方法が本発明により提供される。この発明の好ましい態様によれば、タキサン類が10−デアセチルバッカチン(III)であり、9β−ヒドロキシ基を有するタキサン類が10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)である上記方法が提供される。
【0007】
本発明の好ましい態様によれば、金属水素化ホウ素化合物がアルカリ金属ボロハイドライド及びテトラアルキルアンモニウムボロハイドライドからなる群から選ばれる金属水素化ホウ素化合物である上記の方法;金属水素化ホウ素化合物がNaBH4、(n−C49)4NBH4、(CH3)4NBH4、及び(C25)4NBH4からなる群から選ばれる金属水素化ホウ素化合物である上記の方法;金属水素化ホウ素化合物が(n−C49)4NBH4である上記の方法;溶媒としてエステル系溶媒、アミド系溶媒、ニトリル系溶媒、ケトン系溶媒、エーテル系溶媒、芳香族炭化水素類、及びアルカン類からなる群から選ばれる溶媒を用いる上記の方法;溶媒がエステル系溶媒である上記の方法;溶媒が酢酸アルキル類である上記の方法;溶媒が酢酸メチルである上記の方法;有機酸がマロン酸、クエン酸、アスパラギン酸、及びp−アミノベンゼンスルホン酸(スルファニル酸)からなる群から選ばれる酸である上記の方法;及び有機酸がマロン酸である上記の方法が提供される。
【0008】
本発明の特に好ましい態様によれば、還元剤の溶液を、有機酸の一部を含む反応混合物内に滴下した後、有機酸の残部を溶液の状態で反応系に滴下する工程を含む上記方法が提供される。また、別の好ましい態様によれば、タキサン類が10−デアセチルバッカチン(III)であり、還元生成物が10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)であり、金属水素化ホウ素化合物が(n−C49)4NBH4であり、溶媒が酢酸メチルであり、有機酸がマロン酸である上記方法;並びに、酢酸メチル中に10−デアセチルバッカチン(III)及びマロン酸を含む混合物に(n−C49)4NBH4の酢酸メチル溶液を滴下し、該滴下終了後、さらにマロン酸の酢酸メチル溶液を滴下する工程を含む10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)の製造方法が提供される。
【0009】
さらに本発明により、タキサン類の9位オキソ基が9β−ヒドロキシ基に変換された化合物の製造方法であって、有機酸の存在下で金属水素化ホウ素化合物により還元を行うことを特徴とする方法が提供される。
【0010】
【発明の実施の形態】
本発明の方法は、タキサン類の9位オキソ基を還元して9β−ヒドロキシ基に変換するにあたり、有機酸の存在下で金属水素化ホウ素化合物により還元を行うことを特徴としている。
【0011】
本明細書において「タキサン類」とは、タキソール、タキソテール、及びバッカチンなどを含め、これらに共通する4環構造を有する化合物を包含する意味で用いる。タキソールの構造式は下記に示す通りであり(式中、Phはフェニル基、Acはアセチル基を意味する)、本明細書において「9位オキソ基」という用語は、下記に示す4環構造に存在するオキソ基のことである。この番号付けは当業界で通常用いられるものであり、タキソール、タキソテール、及びバッカチンなどのタキサン類について共通する番号付けとして当業者に理解されている(例えば国際公開WO94/20485を参照)。もっとも、他の番号付けによるタキサン類については上記の番号付けに読み替えて本発明を適用することができ、当業者にはこのような番号付けの読み替えは自明である。
【0012】
【化1】

Figure 0004270485
【0013】
本発明の方法に適用可能なタキサン類としては9位にオキソ基を有するものであれば特に限定されず、天然由来の化合物のほか、半合成的又は合成的に得られる化合物なども適用対象である。タキサン類は、目的の反応時において不活性な官能基である限り、いかなる官能基を有するものであってもよい。また、反応時において活性な官能基については、適宜の保護基を用いて保護しておくことにより、本発明の方法を提供することができる。保護基の種類は反応時において不活性であり、反応後に適宜の手段で脱離させることができるものであれば特に限定されないが、例えば、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)、グリーン(T. W. Greene)著、ジョン・ワイリー・アンド・サンズ・インコーポレイテッド(John Wiley & Sons Inc.)(1981)などを参照することにより当業者は適宜の保護基を容易に選択することが可能である。
【0014】
発明の方法では、タキサン類の9位オキソ基が9β−ヒドロキシ基に変換されるが、その方法の一例として、タキサン類が10−デアセチルバッカチン(III)であり、その9位オキソ基を9β−ヒドロキシ基に変換して10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)を製造する工程を下記に示す。反応原料として用いる10−デアセチルバッカチン(III)は容易に入手できる。もっとも、本発明の方法は10−デアセチルバッカチン(III)を用いる特定の方法に限定されることはない。スキーム中、Acはアセチル基、Bzはベンジル基を示す。
【0015】
【化2】
Figure 0004270485
【0016】
還元剤として用いられる金属水素化ホウ素化合物の種類は特に限定されないが、例えば、NaBH4、(n−C49)4NBH4、(CH3)4NBH4、(C25)4NBH4、(CH3)4NBH(OOCCH3)3、NaBH(OOCCH3)3など好ましく用いることができるが、これらに限定されることはない。好ましくは、アルカリ金属ボロハイドライド及びテトラアルキルアンモニウムボロハイドライドからなる群から選ばれる金属水素化ホウ素化合物を用いることが好ましい。より具体的には、NaBH4、(n−C49)4NBH4、(CH3)4NBH4、(C25)4NBH4からなる群から選ばれる金属水素化ホウ素化合物が好ましい。有機溶媒、特に本発明の方法において好ましく用いられる酢酸エステル系有機溶媒への溶解度及び収率などの観点から、(n−C49)4NBH4を用いることが好ましい。還元剤の量は溶媒の種類や反応温度などの条件に応じて適宜選択でき、特に限定されることはないが、例えばタキサン類に対して1〜10倍モル、好ましくは2〜6倍モル程度である。
【0017】
本発明の方法は、溶媒の存在下に行うことができる。溶媒の種類は特に限定されず、例えば、エステル系溶媒(ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸n−ブチル、炭酸ジエチルなど)、ケトン系溶媒(ジエチルケトン、メチルイソブチルケトン、メチルイソプロピルケトン、ジシクロプロピルケトン、アセトンなど)、アルカン類(n−ヘキサンなど)、アルコール類(メタノール、n−プロピルアルコール、シクロヘキサノールなど)、ニトリル系溶媒(プロピオニトリル、アジポニトリル、n−ブチロニトリル、n−カプロニトリル、アセトニトリルなど)、アミド系溶媒(ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルプロピオンアミド、N,N−ジエチルプロピオンアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジエチルメタクリルアミドなど)、アルデヒド類(プロピオンアルデヒド、n−ブチルアルデヒドなど)、ジオール類(1,4−ブタンジオールなど)、エーテル系溶媒(ジメトキシメタン、ジメトキシエタン、イソプロピルエーテル、テトラヒドロフランなど)、ハロゲン系溶媒(1,2−ジクロロエタン、ジクロルメタンなど)、芳香族炭化水素系溶媒(トルエンなど)、ジメチルスルホキシドなどを用いることができるが、これらのうち、エステル系溶媒、アミド系溶媒、及びハロゲン系溶媒が好ましい。2種以上の溶媒を組み合わせて用いてもよい。
【0018】
これらのうち、環境汚染防止の観点からハロゲン含有溶媒よりエステル系溶媒又はアミド系溶媒を用いることが好ましく、より好ましくは酢酸メチルなどの酢酸アルキル類、N,N−ジエチルホルムアミド又はN,N−ジエチルアセトアミドなどのアミド系溶媒を用いることができる。特に好ましいのは酢酸メチルである。溶媒の量は特に限定されず、タキサン類の種類や還元剤の種類及び使用量などに応じて当業者が適宜選択可能であるが、通常はタキサン類1gに対して10ml〜100ml程度である。
【0019】
有機酸の種類は目的の反応を阻害しないか又は不活性であれば特に限定されず、一塩基酸又は多塩基酸のいずれを用いてもよい。光学活性の有機酸又はその任意の混合物、あるいはラセミ体である有機酸を用いてもよい。例えば、クエン酸、マロン酸、リンゴ酸、グルタミン酸、コハク酸、アジピン酸などのほか、アスパラギン酸やグリシンなどのアミノ酸又はp−アミノベンゼンスルホン酸などを用いてもよい。本明細書において用いられる「有機酸」という用語は1又は2以上の同一又は異なる酸性官能基、好ましくはカルボキシル基を有する低分子有機化合物を意味しているが、いかなる意味においてもこの用語を限定的に解釈してはならず、最も広義に解釈する必要がある。有機酸として、好ましくは、マロン酸、クエン酸、アスパラギン酸、及びスルファニル酸からなる群から選ばれる有機酸を用いることができ、特に好ましくはマロン酸を用いることができる。有機酸の使用量は特に限定されないが、一般的には、例えば還元剤と当倍モル程度を用いることができるが、タキサン類に対して1〜5倍モル程度を用いることが好ましい。必要以上に多量の有機酸を反応系に添加したり、一時に大量の有機酸を反応系に添加すると、反応速度の低下や不純物の増加などが認められる場合がある。なお、有機酸は、反応終了後は必要に応じて塩基水溶液で除去することができる。
【0020】
本発明の方法を行うにあたり、溶媒へのタキサン類、有機酸、及び還元剤の添加順序、反応温度、反応時間などは特に限定されず、当業者が適宜選択可能である。反応温度及び反応時間は、通常は室温〜溶媒の還流温度、好ましくは室温〜60℃程度、より好ましくは30〜50℃程度の反応温度で数分〜数日程度、好ましくは30分〜15時間程度の間で適宜選択できる。
【0021】
反応種の反応系への導入についても特に限定されず、例えば、タキサン類、有機酸、及び還元剤を溶媒に一時に添加して反応を行ってもよく、又はタキサン類及び有機酸を溶媒に溶解しておき、その溶液に還元剤を一時に、又は徐々に添加してもよい。あるいは、タキサン類と還元剤とを溶媒中に添加しておき、有機酸を反応の進行に合わせて徐々に添加してもよい。還元剤又は有機酸を反応系に添加するに際しては、そのままで添加してもよいが、溶媒に溶解して滴下してもよい。例えば、タキサン類及び1倍モル程度の有機酸を溶媒中に添加した後、還元剤を添加し、さらに1ないし数倍モルの有機酸を反応混合物に添加する方法を採用することができる。この方法は不純物の生成を抑制するために好ましく用いられるが、還元剤の添加及びその後に行う有機酸の添加は、それぞれ反応溶媒と同じ有機溶媒に溶解した溶液を滴下することにより行うことが望ましい。好ましくは、反応混合物のpHが6、好ましくは7を下回らないように反応の進行に合わせて有機酸を徐々に添加することができる。反応液のpHが5.5を下回ると転位体の生成が増加し、目的物の収率及び純度が低下する場合がある。
【0022】
本発明の方法で得られた9β−ヒドロキシ基を有する化合物の精製は、有機合成化学で常用される方法、例えば濾過、抽出、洗浄、乾燥、濃縮、結晶化、各種クロマトグラフィー等を適宜組み合わせて行うことができる。
【0023】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
例1(比較例)
ジクロルメタン(50ml)、10−デアセチルバッカチン(III)(300mg、0.55ミリモル)およびn−Bu4NBH4(709mg、2.76ミリモル)の混合物を室温で12時間攪拌した。得られた混合物を酢酸エチルで希釈し、NaHCO3水溶液と共に20分間攪拌して反応を停止した。有機相をNaHCO3水溶液および塩水で洗い、Na2SO4で乾燥した。この有機相を濃縮して得た残渣をフラッシュクロマトグラフィーにより精製し、酢酸エチル−メタノール(50:1)で溶出して10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)260mg(収率87%、純度22.6%)を得た。
【0024】
例2(実施例)
ジクロルメタン(50ml)、10−デアセチルバッカチン(III)(300mg、0.55ミリモル)、およびマロン酸(114.7mg、1.10ミリモル)の混合物を40℃で攪拌し、n−Bu4NBH4(709mg、2.76ミリモル)をCH2Cl2(10ml)に溶解して滴下した、次いでマロン酸(172.1mg、1.65ミリモル)を2時間かけて滴下した。得られた混合物を酢酸エチルで希釈し、NaHCO3水溶液と共に20分間攪拌することによって反応を停止した。有機相をNaHCO3水溶液および塩水で洗い、Na2SO4で乾燥した。有機相を濃縮して得た残渣をフラッシュクロマトグラフィーにより精製し、酢酸エチル−メタノール(50:1)で溶出して10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)270mg(収率90%、純度89.9%)を得た。
【0025】
例3(実施例)
酢酸メチル(100ml)、10−デアセチルバッカチン(III)(10g、10.82ミリモル)、およびマロン酸(1.9g、18.26ミリモル)の混合物を40℃で攪拌し、n−Bu4NBH4(11.7g、45.57ミリモル)を酢酸メチル(30ml)に溶解して滴下した。次いでマロン酸(2.85g、27.39ミリモル)を酢酸メチル(30ml)に溶解して2時間かけて滴下し、さらに水(10ml)を加えて反応を停止した。反応液を濃縮した後に、酢酸エチル(200ml)を加え析出してくる固形物を濾去した。濾液を水(80ml)で6回洗浄し、さらに0.2N塩酸とNaHCO3水溶液で洗浄してMgSO4で乾燥した。有機相を濃縮して、得られた濃縮物をメタノール(18ml)と酢酸エチル(18ml)の混合物に溶解し、この溶液にアセトニトリル(54ml)を加えることにより結晶を析出させた。析出した結晶をろ過して10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)7.0g(収率70%、純度91.5%)を得た。
【0026】
【発明の効果】
本発明の方法によりタキサン類の9位オキソ基を効率的に9β−ヒドロキシ基に変換して高純度の目的物を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reducing the 9-position oxo group of taxanes to convert it to a 9β-hydroxy group.
[0002]
[Prior art]
Taxol is an antitumor compound having a unique tetracyclic structure extracted from yew bark, and has attracted attention as a very effective antitumor agent for ovarian cancer, breast cancer and the like. Taxanes such as taxotere have been reported to have even higher activity than taxol (US Pat. No. 4,814,470). 9β-hydroxy compounds obtained by reducing the 9-position oxo group of the taxol tetracyclic structure are also promising as antitumor agents with improved water solubility.
[0003]
As a method for reducing the 9-position oxo group of taxanes such as taxol, taxotere and baccatin and converting it to a 9β-hydroxy group, a method described in International Publication WO94 / 20485 is known. This publication describes that 9-desoxo-9β-hydroxybaccatin (III) can be obtained by reacting baccatin (III) and n-Bu 4 NBH 4 in methylene chloride. In Example 1, 10-deacetylbaccatin (III) was reduced with n-Bu 4 NBH 4 in methylene chloride to obtain 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III). (N-Bu represents a normal butyl group). The yield of the target product obtained in this example was shown to be 85%. However, when the present inventors conducted additional tests, the target product obtained by this method contained a large amount of impurities. It was found to be of low quality that is not suitable for industrial use.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a high-purity 9β-hydroxy compound by efficiently converting the 9-position oxo group of taxanes to a 9β-hydroxy group. An example of the subject of the present invention is, for example, that high-purity 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III) useful as an intermediate for the production of taxanes is converted to 10-deacetylbaccatin (III). It is to provide a method for producing from a high purity and high yield.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have treated the 9-position oxo group of taxanes with a reducing agent such as n-Bu 4 NBH 4 to convert it to a 9β-hydroxy group. It has been found that by adding organic acids to the reaction mixture, the generation of impurities can be remarkably suppressed, and the reduced product can be produced with high purity and high yield. Also, by applying the above method in producing 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III) by reducing the 9-position oxo group of 10-deacetylbaccatin (III), It was found that an extremely high purity target product can be produced in a high yield. The present invention has been completed based on the above findings.
[0006]
That is, the present invention is a method for reducing the 9-position oxo group of a taxane to convert it to a 9β-hydroxy group, wherein the reduction is performed with a metal borohydride compound in the presence of an organic acid. Is to provide. According to a preferred embodiment of the present invention, there is provided the above method, wherein the taxane is 10-deacetylbaccatin (III) and the reduction product is 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III). Provided. From another viewpoint, a method for producing a taxane having a 9β-hydroxy group, the method comprising a step of reducing the 9-position oxo group of the taxane with a metal borohydride compound in the presence of an organic acid. Is provided by the present invention. According to a preferred embodiment of the present invention, the taxane is 10-deacetylbaccatin (III), and the taxane having a 9β-hydroxy group is 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III). The above method is provided.
[0007]
According to a preferred embodiment of the present invention, the above method wherein the metal borohydride compound is a metal borohydride compound selected from the group consisting of alkali metal borohydrides and tetraalkylammonium borohydrides; the metal borohydride compound is NaBH 4 The above process, which is a metal borohydride compound selected from the group consisting of: (n-C 4 H 9 ) 4 NBH 4 , (CH 3 ) 4 NBH 4 , and (C 2 H 5 ) 4 NBH 4 ; The above method wherein the boron halide compound is (nC 4 H 9 ) 4 NBH 4 ; ester solvents, amide solvents, nitrile solvents, ketone solvents, ether solvents, aromatic hydrocarbons, and The above method using a solvent selected from the group consisting of alkanes; the above method wherein the solvent is an ester solvent; the above method wherein the solvent is an alkyl acetate; the solvent is The above method wherein the acid is methyl; the above method wherein the organic acid is an acid selected from the group consisting of malonic acid, citric acid, aspartic acid, and p-aminobenzenesulfonic acid (sulfanilic acid); and the organic acid is malonic acid The above method is provided.
[0008]
According to a particularly preferred embodiment of the present invention, the method comprising the step of dropping a reducing agent solution into a reaction mixture containing a portion of an organic acid and then dropping the remainder of the organic acid into the reaction system in the form of a solution. Is provided. According to another preferred embodiment, the taxane is 10-deacetylbaccatin (III), the reduction product is 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III), and the metal borohydride compound is (n-C 4 H 9) 4 NBH 4, the solvent is methyl acetate, the method the organic acid is malonic acid; and, in methyl acetate 10-deacetylbaccatin (III ) And malonic acid in a methyl acetate solution of (n-C 4 H 9 ) 4 NBH 4 is dropped, and after completion of the dropwise addition, a methyl acetate solution of malonic acid is further dropped. A process for producing -hydroxy-9-deoxobaccatin (III) is provided.
[0009]
Further, according to the present invention, there is provided a process for producing a compound wherein the 9-position oxo group of a taxane is converted to a 9β-hydroxy group, wherein the reduction is performed with a metal borohydride compound in the presence of an organic acid. Is provided.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention is characterized in that reduction is performed with a metal borohydride compound in the presence of an organic acid when the 9-position oxo group of a taxane is reduced to be converted into a 9β-hydroxy group.
[0011]
In the present specification, the “taxanes” are used to include compounds having a tetracyclic structure common to taxol, taxotere, baccatin and the like. The structural formula of taxol is as shown below (wherein Ph represents a phenyl group and Ac represents an acetyl group). In this specification, the term “9-position oxo group” refers to the tetracyclic structure shown below. An oxo group present. This numbering is commonly used in the art and is understood by those skilled in the art as a common numbering for taxanes such as taxol, taxotere, and baccatin (see, eg, International Publication No. WO 94/20485). However, taxanes with other numbering can be replaced with the above numbering and the present invention can be applied, and those skilled in the art will understand such numbering.
[0012]
[Chemical 1]
Figure 0004270485
[0013]
Taxanes applicable to the method of the present invention are not particularly limited as long as they have an oxo group at the 9-position. In addition to naturally occurring compounds, semi-synthetic or synthetically obtained compounds are also applicable. is there. The taxanes may have any functional group as long as it is an inactive functional group at the time of the intended reaction. Moreover, about the functional group active at the time of reaction, the method of this invention can be provided by protecting using an appropriate protective group. The type of protecting group is not particularly limited as long as it is inactive during the reaction and can be removed by an appropriate means after the reaction. For example, Protective Groups in Organic Synthesis (Protective Groups in By referring to Organic Synthesis, TW Greene, John Wiley & Sons Inc. (1981), those skilled in the art can easily select an appropriate protecting group. It is possible.
[0014]
In the method of the invention, the 9-position oxo group of taxanes is converted to 9β-hydroxy group. As an example of the method, the taxane is 10-deacetylbaccatin (III), and the 9-position oxo group is A process for producing 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III) by converting to a 9β-hydroxy group is shown below. 10-deacetylbaccatin (III) used as a reaction raw material can be easily obtained. However, the method of the present invention is not limited to a specific method using 10-deacetylbaccatin (III). In the scheme, Ac represents an acetyl group, and Bz represents a benzyl group.
[0015]
[Chemical formula 2]
Figure 0004270485
[0016]
The type of the metal borohydride compound used as the reducing agent is not particularly limited. For example, NaBH 4 , (n-C 4 H 9 ) 4 NBH 4 , (CH 3 ) 4 NBH 4 , (C 2 H 5 ) 4 NBH 4 , (CH 3 ) 4 NBH (OOCCH 3 ) 3 , NaBH (OOCCH 3 ) 3 and the like can be preferably used, but are not limited thereto. Preferably, a metal borohydride compound selected from the group consisting of alkali metal borohydrides and tetraalkylammonium borohydrides is used. More specifically, a metal borohydride compound selected from the group consisting of NaBH 4 , (n—C 4 H 9 ) 4 NBH 4 , (CH 3 ) 4 NBH 4 , and (C 2 H 5 ) 4 NBH 4 is used. preferable. From the viewpoints of solubility and yield in an organic solvent, particularly an acetate type organic solvent preferably used in the method of the present invention, it is preferable to use (n-C 4 H 9 ) 4 NBH 4 . The amount of the reducing agent can be appropriately selected according to conditions such as the type of solvent and reaction temperature, and is not particularly limited. For example, it is 1 to 10 times mol, preferably about 2 to 6 times mol for the taxanes. It is.
[0017]
The method of the present invention can be carried out in the presence of a solvent. The type of the solvent is not particularly limited. For example, ester solvents (methyl formate, methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, diethyl carbonate, etc.), ketone solvents (diethyl ketone, methyl isobutyl ketone, methyl isopropyl) Ketone, dicyclopropyl ketone, acetone, etc.), alkanes (n-hexane, etc.), alcohols (methanol, n-propyl alcohol, cyclohexanol, etc.), nitrile solvents (propionitrile, adiponitrile, n-butyronitrile, n -Capronitrile, acetonitrile, etc.), amide solvents (formamide, N, N-dimethylformamide, N, N-dimethylpropionamide, N, N-diethylpropionamide, N, N-diethylformamide, N, N-diethylacetamide, N N-diethylmethacrylamide etc.), aldehydes (propionaldehyde, n-butyraldehyde etc.), diols (1,4-butanediol etc.), ether solvents (dimethoxymethane, dimethoxyethane, isopropyl ether, tetrahydrofuran etc.), Halogen solvents (1,2-dichloroethane, dichloromethane, etc.), aromatic hydrocarbon solvents (toluene, etc.), dimethyl sulfoxide, etc. can be used. Of these, ester solvents, amide solvents, and halogen solvents are used. A solvent is preferred. Two or more solvents may be used in combination.
[0018]
Of these, from the viewpoint of environmental pollution prevention, it is preferable to use an ester solvent or an amide solvent rather than a halogen-containing solvent, more preferably alkyl acetates such as methyl acetate, N, N-diethylformamide or N, N-diethyl. An amide solvent such as acetamide can be used. Particularly preferred is methyl acetate. The amount of the solvent is not particularly limited and can be appropriately selected by those skilled in the art depending on the type of taxane, the type and amount of reducing agent used, and is usually about 10 to 100 ml per 1 g of taxane.
[0019]
The type of the organic acid is not particularly limited as long as it does not inhibit the target reaction or is inactive, and either a monobasic acid or a polybasic acid may be used. An optically active organic acid or any mixture thereof, or a racemic organic acid may be used. For example, in addition to citric acid, malonic acid, malic acid, glutamic acid, succinic acid, adipic acid and the like, amino acids such as aspartic acid and glycine, p-aminobenzenesulfonic acid, and the like may be used. As used herein, the term “organic acid” means a low molecular weight organic compound having one or more identical or different acidic functional groups, preferably carboxyl groups, but is limited in any sense. It should not be interpreted as such, but it must be interpreted in the broadest sense. As the organic acid, an organic acid selected from the group consisting of malonic acid, citric acid, aspartic acid, and sulfanilic acid can be preferably used, and malonic acid can be particularly preferably used. Although the usage-amount of an organic acid is not specifically limited, Generally, For example, a reducing agent and about 1 time mole can be used, However, About 1-5 time mole is preferable with respect to taxanes. When an excessive amount of organic acid is added to the reaction system, or when a large amount of organic acid is added to the reaction system at one time, a decrease in reaction rate or an increase in impurities may be observed. The organic acid can be removed with an aqueous base solution as necessary after completion of the reaction.
[0020]
In carrying out the method of the present invention, the order of adding the taxanes, organic acid, and reducing agent to the solvent, the reaction temperature, the reaction time, etc. are not particularly limited and can be appropriately selected by those skilled in the art. The reaction temperature and reaction time are usually from room temperature to the reflux temperature of the solvent, preferably from room temperature to about 60 ° C, more preferably from about 30 to 50 ° C, for several minutes to several days, preferably from 30 minutes to 15 hours. The degree can be selected appropriately.
[0021]
The introduction of the reactive species into the reaction system is also not particularly limited. For example, the reaction may be performed by adding a taxane, an organic acid, and a reducing agent to the solvent at once, or the taxane and the organic acid are used as a solvent. It may be dissolved and a reducing agent may be added to the solution at once or gradually. Alternatively, taxanes and a reducing agent may be added to the solvent, and the organic acid may be gradually added as the reaction proceeds. When the reducing agent or organic acid is added to the reaction system, it may be added as it is, or may be added dropwise after dissolving in a solvent. For example, it is possible to employ a method of adding a taxane and about 1 mole of an organic acid in a solvent, then adding a reducing agent, and further adding 1 to several moles of an organic acid to the reaction mixture. Although this method is preferably used to suppress the formation of impurities, it is desirable to add the reducing agent and the subsequent addition of the organic acid by dropping a solution dissolved in the same organic solvent as the reaction solvent. . Preferably, the organic acid can be gradually added as the reaction proceeds so that the pH of the reaction mixture does not fall below 6, preferably 7. When the pH of the reaction solution is less than 5.5, the production of rearrangements increases, and the yield and purity of the target product may be reduced.
[0022]
Purification of the compound having a 9β-hydroxy group obtained by the method of the present invention is performed by appropriately combining methods commonly used in organic synthetic chemistry, for example, filtration, extraction, washing, drying, concentration, crystallization, various chromatography, and the like. It can be carried out.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, the scope of the present invention is not limited to the following Example.
Example 1 (comparative example)
A mixture of dichloromethane (50 ml), 10-deacetylbaccatin (III) (300 mg, 0.55 mmol) and n-Bu 4 NBH 4 (709 mg, 2.76 mmol) was stirred at room temperature for 12 hours. The resulting mixture was diluted with ethyl acetate and stirred with aqueous NaHCO 3 for 20 minutes to stop the reaction. The organic phase was washed with aqueous NaHCO 3 and brine and dried over Na 2 SO 4 . The residue obtained by concentrating the organic phase was purified by flash chromatography, eluting with ethyl acetate-methanol (50: 1), 260 mg of 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III) ( Yield 87%, purity 22.6%).
[0024]
Example 2 (Example)
A mixture of dichloromethane (50 ml), 10-deacetylbaccatin (III) (300 mg, 0.55 mmol), and malonic acid (114.7 mg, 1.10 mmol) was stirred at 40 ° C. and n-Bu 4 NBH. 4 (709 mg, 2.76 mmol) was dissolved in CH 2 Cl 2 (10 ml) and added dropwise, then malonic acid (172.1 mg, 1.65 mmol) was added dropwise over 2 hours. The resulting mixture was diluted with ethyl acetate and quenched by stirring with aqueous NaHCO 3 for 20 minutes. The organic phase was washed with aqueous NaHCO 3 and brine and dried over Na 2 SO 4 . The residue obtained by concentrating the organic phase was purified by flash chromatography, eluting with ethyl acetate-methanol (50: 1), 270 mg (yield) of 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III). Yield 90%, purity 89.9%).
[0025]
Example 3 (Example)
A mixture of methyl acetate (100 ml), 10-deacetylbaccatin (III) (10 g, 10.82 mmol), and malonic acid (1.9 g, 18.26 mmol) was stirred at 40 ° C. to obtain n-Bu 4. NBH 4 (11.7 g, 45.57 mmol) was dissolved in methyl acetate (30 ml) and added dropwise. Next, malonic acid (2.85 g, 27.39 mmol) was dissolved in methyl acetate (30 ml) and added dropwise over 2 hours, and water (10 ml) was added to stop the reaction. After the reaction solution was concentrated, ethyl acetate (200 ml) was added and the precipitated solid was removed by filtration. The filtrate was washed 6 times with water (80 ml), further washed with 0.2N hydrochloric acid and NaHCO 3 aqueous solution and dried over MgSO 4 . The organic phase was concentrated, and the resulting concentrate was dissolved in a mixture of methanol (18 ml) and ethyl acetate (18 ml), and acetonitrile (54 ml) was added to this solution to precipitate crystals. The precipitated crystals were filtered to obtain 7.0 g (yield 70%, purity 91.5%) of 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III).
[0026]
【The invention's effect】
By the method of the present invention, the 9-position oxo group of taxanes can be efficiently converted to a 9β-hydroxy group to produce a high-purity target product.

Claims (2)

10−デアセチルバッカチン(III)の9位オキソ基を還元して10−デアセチル−9β−ヒドロキシ−9−デオキソバッカチン(III)を製造する方法であって、エステル系溶媒中でマロン酸の存在下で(n−C49)4NBH4により還元を行う方法。A method for producing 10-deacetyl-9β-hydroxy-9-deoxobaccatin (III) by reducing the 9-position oxo group of 10-deacetylbaccatin (III), comprising malonic acid in an ester solvent In which reduction is performed with (n-C 4 H 9 ) 4 NBH 4 . エステル系溶媒が酢酸メチルである請求項1に記載の方法。  The method according to claim 1, wherein the ester solvent is methyl acetate.
JP2002153449A 2002-05-28 2002-05-28 Taxane reduction method Expired - Fee Related JP4270485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153449A JP4270485B2 (en) 2002-05-28 2002-05-28 Taxane reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153449A JP4270485B2 (en) 2002-05-28 2002-05-28 Taxane reduction method

Publications (3)

Publication Number Publication Date
JP2003342269A JP2003342269A (en) 2003-12-03
JP2003342269A5 JP2003342269A5 (en) 2005-09-29
JP4270485B2 true JP4270485B2 (en) 2009-06-03

Family

ID=29770488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153449A Expired - Fee Related JP4270485B2 (en) 2002-05-28 2002-05-28 Taxane reduction method

Country Status (1)

Country Link
JP (1) JP4270485B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792927B1 (en) 2004-09-22 2013-03-06 Nippon Kayaku Kabushiki Kaisha Novel block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US8323669B2 (en) 2006-03-28 2012-12-04 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of taxane
WO2007135910A1 (en) 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of podophyllotoxin
JP5503872B2 (en) 2006-11-06 2014-05-28 日本化薬株式会社 Polymer derivatives of nucleic acid antimetabolites
WO2008056654A1 (en) 2006-11-08 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
US8703878B2 (en) 2007-09-28 2014-04-22 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of steroids
US8920788B2 (en) 2008-03-18 2014-12-30 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of physiologically active substances
US9149540B2 (en) 2008-05-08 2015-10-06 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of folic acid or folic acid derivative
US8808749B2 (en) 2009-05-15 2014-08-19 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of bioactive substance having hydroxy group
CN103221054A (en) 2010-11-17 2013-07-24 日本化药株式会社 Novel polymer derivative of cytidine metabolism antagonist
PT2754682T (en) 2011-09-11 2017-08-29 Nippon Kayaku Kk Method for manufacturing block copolymer

Also Published As

Publication number Publication date
JP2003342269A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3394284B2 (en) Semi-synthesis of taxane derivatives using metal alkoxides and oxazinones
JP3320416B2 (en) Metal alkoxide
JP6162795B2 (en) Lysine-glutamic acid dipeptide derivative
JP4270485B2 (en) Taxane reduction method
JPH0686441B2 (en) Method for preparing derivatives of baccatin 111 and 10-deacetyl baccatin 111
JPH07502983A (en) Preparation of substituted isoserine esters using metal alkoxides and β-lactams
JPH03176495A (en) Dopamine and preparation of 4-o-phosphoric acid ester derived from said dopamine
JP2010523647A (en) Stable anhydrous crystalline docetaxel and method for producing the same
CN1680365A (en) Novel synthesis and crystallization of piperazine ring-containing compounds
CN110256297B (en) Preparation method of N-Boc- (R) -2-amino-4, 4-dimethylpentanoic acid
CN106632594B (en) Method for synthesizing pidotimod
CA2679159C (en) Process for the preparation of (2r,3s)-3-phenylisoserine methyl ester acetate salt
EP3260442B1 (en) Process for preparation of optically pure n-substituted-3-methoxypropionic acid derivatives
JP3233632B2 (en) (2R, 3S) -β-phenylisoserine, salt thereof, production and use thereof
US5684168A (en) β-phenylisoserine-(2R,3S), salts, preparation and use thereof
JPWO2013011999A1 (en) Process for producing optically active 2-methylproline derivative
CN111848423B (en) Preparation method of tert-butyl 3-oxocyclobutylcarbamate
US20030149284A1 (en) Method of synthesizing a paclitaxel derivative
CZ283290B6 (en) Process of stereoselective preparation of beta-phenylisoserine derivative and intermediate therefor
KR101117512B1 (en) Method for production of 4,10ß-diacetoxy-2a-benzoyloxy-5ß,20-epoxy-1,13a-dihydroxy-9-oxo-19-norcyclopropa[g]tax-11-ene
JP2007063267A (en) Method for producing optically active diphenylalanine compound
WO2023053054A1 (en) Process for the preparation of taxane derivatives
JP4329325B2 (en) Process for producing monoalkali metal salt of diallyl cyanurate
CN117683003A (en) New process for synthesizing englitjing intermediate
JP4157175B2 (en) Method for producing 2'-pyrrolidinepropanoic acid derivative

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090116

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees