JP4329325B2 - Process for producing monoalkali metal salt of diallyl cyanurate - Google Patents

Process for producing monoalkali metal salt of diallyl cyanurate Download PDF

Info

Publication number
JP4329325B2
JP4329325B2 JP2002306398A JP2002306398A JP4329325B2 JP 4329325 B2 JP4329325 B2 JP 4329325B2 JP 2002306398 A JP2002306398 A JP 2002306398A JP 2002306398 A JP2002306398 A JP 2002306398A JP 4329325 B2 JP4329325 B2 JP 4329325B2
Authority
JP
Japan
Prior art keywords
cyanurate
diallyl
metal salt
producing
monoalkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002306398A
Other languages
Japanese (ja)
Other versions
JP2004099582A (en
Inventor
隆司 森
文男 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP2002306398A priority Critical patent/JP4329325B2/en
Publication of JP2004099582A publication Critical patent/JP2004099582A/en
Application granted granted Critical
Publication of JP4329325B2 publication Critical patent/JP4329325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラスチックス原料、潤滑剤、合成ゴム原料および電気絶縁材料などとして有用なジアリルシアヌレートの前駆体であるジアリルシアヌレートのモノアルカリ金属塩の製造方法に関する。
【0002】
【従来の技術】
優れた耐熱性と耐薬品性を有するs−トリアジン環誘導体、特にトリアリルシアヌレート、トリアリルイソシアヌレートは、ポリマー原料として有用なものであるが、得られるポリマーは全く柔軟性がないという難点がある。これを補う技術として、ジアリルシアヌレート、ジアリルイソシアヌレートの開発などが進められてきた。これらの化合物は塩基存在下におけるシアヌル酸またはイソシアヌル酸とハロゲン化アリルの反応により直接合成されていたが、その方法では合成コストが高く、実用化は困難であった。
【0003】
【発明が解決しようとする課題】
本発明は、シアヌル酸エステル類に係わる上記の難点を改良し、汎用性の高い多機能性のs−トリアジン環化合物を提供することを目的とする。ジアリルシアヌレートの製造方法としては、上記で述べたシアヌル酸の部分的アリル化のほかに、トリアリルシアヌレートの部分的加水分解が考えられるが、水やアルコールなどのプロトン性極性溶媒中でのトリアリルシアヌレートの部分的加水分解は困難とされてきた。実際に、塩化シアヌルからトリアリルシアヌレートを経るジアリルシアヌレートのワンポット製造方法を検討する一環として、アリルアルコール中でトリアリルシアヌレートの加水分解を行なったが、純度の良いジアリルシアヌレートを収率良く得ることは困難であった。また、先行文献を調査したところ、ジアリルシアヌレートの前駆体であるジアリルシアヌレートのモノアルカリ金属塩の製造に、非プロトン性極性溶剤と水酸化アルカリを用いる本発明は、文献未記載の新規製造方法である。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、数多くの実験を重ね、鋭意分析・検討を加えた結果、トリアリルシアヌレートが非プロトン性極性溶剤中で水酸化アルカリと接触することにより、トリアリルシアヌレート分子から選択的に1分子のアリルアルコールが脱離するという知見を得て、本発明を完成するに至った。
すなわち、本発明の要旨は、非プロトン性極性有機溶剤中で水酸化アルカリとトリアリルシアヌレートとを接触させることを特徴とするジアリルシアヌレートのモノアルカリ金属塩の製造方法に存する。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。以下の一般式(I)は、本発明に従って、ジアリルシアヌレートのモノアルカリ金属塩を得、更に、このモノアルカリ金属塩を酸で処理してジアリルシアヌレートを得る、2つの工程を示している。
【化1】

Figure 0004329325
【0006】
本発明において、非プロトン性極性溶剤と水酸化アルカリを使用することにより、トリアリルシアヌレートからアリルアルコールが1分子のみ脱離することを見出したことで、熱安定性、高周波電気特性の優れたポリマー材料であるジアリルシアヌレートを合成することが可能になった。この一連の合成操作で生成するのは、目的物質のジアリルシアヌレート、アリルアルコール、硫酸アルカリ金属塩である。アリルアルコールはトリアリルシアヌレートの合成に再利用することが可能であり、回収した溶媒も再利用できることから、低コストの反応を実現できる。また、上記のように原料が無駄にならないことと併せて、溶媒にジメチルスルホキシド(以下DMSOと略す)などの毒性の低い溶剤を用いることで環境負荷の少ない製造方法でもある。
【0007】
本発明で使用する非プロトン性極性有機溶剤とは、DMSO、ジメチルホルムアミド(以下DMFと略す)、ジメチルアセトアミド(以下DMAAと略す)、1−メチル−2−ピロリジノン、ジメチルイミダゾリジノン(以下DMIと略す)からなる群から選ばれた、少なくとも1種のものであり、水酸化アルカリとは、水酸化ナトリウムまたは水酸化カリウムから選ばれた、少なくとも1種のものである。
【0008】
具体的には、DMSOやDMFなどの極性溶媒中に水酸化ナトリウムなどの水酸化アルカリを分散させ、そこへトリアリルシアヌレートを加えると、トリアリルシアヌレート分子の1つのアリルエステル部のみが加アルカリ分解され、ジアリルシアヌレートのモノアルカリ金属塩になる。この反応は、室温でも15−17時間でほぼ定量的に進行するが、60℃程度の加熱を行なえば反応時間を短縮することができる。
【0009】
この反応によって得られたジアリルシアヌレートのアルカリ金属塩の溶液から、アリルアルコールおよび溶媒を蒸留で除いた後、ジアリルシアヌレートアルカリ金属塩を水溶液とし、有機溶剤で分液操作を行なうことによって、未反応トリアリルシアヌレートやその他の微量不純物を有機層へ除くことができる。この分液操作の後、水溶液を当量の硫酸を用いて弱酸性にすることにより、晶析または有機溶剤による抽出で、フリーで純粋なジアリルシアヌレートを取り出すことが可能である。また、回収したアリルアルコールは原料であるトリアリルシアヌレートの合成原料に再利用することが可能となり、回収した溶媒も再利用することができる。
【0010】
以下、本発明を実施例によって説明する。
【実施例1】
四つ口フラスコ(500ml)にDMSO100ml、ペレット状の水酸化ナトリウム6.0g(150mmol)、トリアリルシアヌレート37.4g(150mmol)を仕込み、室温で17時間撹拌した。減圧蒸留によって反応溶液からアリルアルコールおよびDMSOを除き、水100mlを加え、トルエン50mlを用いた分液操作を2回行い、未反応物質やその他の不純物をトルエン層に抽出させることによって除いた。水層に酢酸エチル800mlを加え、引き続いて硫酸7.35g(75mmol)/水20mlを加えて、遊離してきたジアリルシアヌレートを分液操作にて有機層に抽出した。有機層を水100mlを用いた分液洗浄を2回行ったのち、無水硫酸ナトリウムを用いて乾燥し減圧下で濃縮すると、ジアリルシアヌレートの結晶29.2gを得た(収率93%。表1−実験番号1)。
【0011】
【表1】
Figure 0004329325
【0012】
尚、基本的反応操作および反応スケールは上記の実施例1に従い、反応溶媒をDMSOからDMF、DMAA、1−メチル−2−ピロリジノン、DMIにそれぞれ置き換えて行なった実験(表1−実験番号2〜5)、水酸化アルカリとして水酸化カリウムを使用した実験(表1−実験番号6)、60℃での加熱条件下で反応を行なった実験(表1−実験番号7)についてのジアリルシアヌレートの収率は、表1にまとめて記した。
【0013】
【実施例2】
四つ口フラスコ(500ml)にDMSO100ml、ペレット状の水酸化ナトリウム6.0g(150mmol)、トリアリルシアヌレート37.4g(150mmol)を仕込み、室温で17時間撹拌した。減圧蒸留によって反応溶液からアリルアルコールおよびDMSOを除き、水200mlを加え、トルエン50mlを用いた分液操作を2回行い、未反応物質やその他の不純物をトルエン層に抽出させることによって除いた。水層に硫酸7.35g(75mmol)/水100mlをゆっくり加えて遊離してきた結晶をろ過で分離し、充分に乾燥させると、ジアリルシアヌレートの結晶29.5gを得た(収率94%)。
【0014】
【比較例】
上記の実施例1に従い、反応溶媒のみDMSOをアリルアルコールに置き換えて反応を行なったところ、ジアリルシアヌレートの結晶が17.8g(収率57%)しか得られなかった。
【0015】
【発明の効果】
非プロトン性極性溶剤と水酸化アルカリを使用することにより、トリアリルシアヌレートからアリルアルコールを1分子のみ脱離することを見出したことで、多用途で高機能を有するジアリルシアヌレートを高収率、低コストで合成することが可能になった。本発明に関する技術は、ジアリルシアヌレートだけにとどまらず、そこから更に高い性能を持つ新しい誘導体へと導く可能性があり、その効果は多大である。
【図面の簡単な説明】
【図1】 実施例1に示すジアリルシアヌレートの合成工程を表した図である。
【図2】 実施例2に示すジアリルシアヌレートの合成工程を表した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a monoalkali metal salt of diallyl cyanurate which is a precursor of diallyl cyanurate useful as a raw material for plastics, a lubricant, a raw material for synthetic rubber, an electrical insulating material and the like.
[0002]
[Prior art]
Although s-triazine ring derivatives having excellent heat resistance and chemical resistance, particularly triallyl cyanurate and triallyl isocyanurate are useful as polymer raw materials, there is a problem that the resulting polymer has no flexibility at all. is there. Development of diallyl cyanurate and diallyl isocyanurate has been promoted as a technology to compensate for this. These compounds were directly synthesized by the reaction of cyanuric acid or isocyanuric acid with allyl halide in the presence of a base, but the synthesis cost was high and practical application was difficult by this method.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a versatile s-triazine ring compound having high versatility by improving the above-described difficulties associated with cyanuric acid esters. As a method for producing diallyl cyanurate, in addition to the partial allylation of cyanuric acid described above, partial hydrolysis of triallyl cyanurate can be considered, but in protic polar solvents such as water and alcohols. Partial hydrolysis of triallyl cyanurate has been difficult. Actually, as a part of studying one-pot production method of diallyl cyanurate from cyanuric chloride via triallyl cyanurate, triallyl cyanurate was hydrolyzed in allyl alcohol. It was difficult to get well. In addition, as a result of investigating the prior literature, the present invention using an aprotic polar solvent and an alkali hydroxide for the production of a monoalkali metal salt of diallyl cyanurate, which is a precursor of diallyl cyanurate, Is the method.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted numerous experiments and intensively analyzed and studied. As a result, triallyl cyanurate is in contact with an alkali hydroxide in an aprotic polar solvent. Obtaining the knowledge that one molecule of allyl alcohol is selectively eliminated from the allyl cyanurate molecule, the present invention has been completed.
That is, the gist of the present invention lies in a method for producing a monoalkali metal salt of diallyl cyanurate, which comprises contacting an alkali hydroxide with triallyl cyanurate in an aprotic polar organic solvent.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The following general formula (I) shows two steps according to the invention for obtaining a diallyl cyanurate monoalkali metal salt and further treating the monoalkali metal salt with an acid to obtain diallyl cyanurate. .
[Chemical 1]
Figure 0004329325
[0006]
In the present invention, it was found that by using an aprotic polar solvent and an alkali hydroxide, only one molecule of allyl alcohol is desorbed from triallyl cyanurate, which is excellent in thermal stability and high-frequency electrical characteristics. It has become possible to synthesize diallyl cyanurate, a polymer material. This series of synthesis operations produces the target substances diallyl cyanurate, allyl alcohol, and alkali metal sulfate. Allyl alcohol can be reused in the synthesis of triallyl cyanurate, and the recovered solvent can be reused, so that a low-cost reaction can be realized. In addition to the fact that the raw materials are not wasted as described above, it is also a production method with less environmental impact by using a low-toxic solvent such as dimethyl sulfoxide (hereinafter abbreviated as DMSO) as the solvent.
[0007]
The aprotic polar organic solvent used in the present invention is DMSO, dimethylformamide (hereinafter abbreviated as DMF), dimethylacetamide (hereinafter abbreviated as DMAA), 1-methyl-2-pyrrolidinone, dimethylimidazolidinone (hereinafter referred to as DMI). At least one member selected from the group consisting of (abbreviated), and the alkali hydroxide is at least one member selected from sodium hydroxide or potassium hydroxide.
[0008]
Specifically, when an alkali hydroxide such as sodium hydroxide is dispersed in a polar solvent such as DMSO or DMF and triallyl cyanurate is added thereto, only one allyl ester portion of the triallyl cyanurate molecule is added. Alkaline decomposition results in dialkyl cyanurate monoalkali metal salt. This reaction proceeds almost quantitatively at room temperature in 15-17 hours, but the reaction time can be shortened by heating at about 60 ° C.
[0009]
After removing allyl alcohol and the solvent by distillation from the diallyl cyanurate alkali metal salt solution obtained by this reaction, the diallyl cyanurate alkali metal salt is made into an aqueous solution and subjected to a liquid separation operation with an organic solvent. Reaction triallyl cyanurate and other trace impurities can be removed to the organic layer. After this liquid separation operation, the aqueous solution is made weakly acidic with an equivalent amount of sulfuric acid, whereby free and pure diallyl cyanurate can be taken out by crystallization or extraction with an organic solvent. Further, the recovered allyl alcohol can be reused as a raw material for synthesizing triallyl cyanurate, and the recovered solvent can also be reused.
[0010]
Hereinafter, the present invention will be described by way of examples.
[Example 1]
A four-necked flask (500 ml) was charged with 100 ml of DMSO, 6.0 g (150 mmol) of pelleted sodium hydroxide and 37.4 g (150 mmol) of triallyl cyanurate, and stirred at room temperature for 17 hours. Allyl alcohol and DMSO were removed from the reaction solution by distillation under reduced pressure, 100 ml of water was added, and a liquid separation operation using 50 ml of toluene was performed twice to remove unreacted substances and other impurities into the toluene layer. 800 ml of ethyl acetate was added to the aqueous layer, then 7.35 g (75 mmol) of sulfuric acid / 20 ml of water were added, and the released diallyl cyanurate was extracted into the organic layer by a liquid separation operation. The organic layer was separated and washed twice with 100 ml of water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain 29.2 g of diallyl cyanurate crystals (yield 93%, table). 1—Experiment number 1).
[0011]
[Table 1]
Figure 0004329325
[0012]
The basic reaction operation and reaction scale were the same as in Example 1 described above, except that the reaction solvent was changed from DMSO to DMF, DMAA, 1-methyl-2-pyrrolidinone, and DMI, respectively (Table 1-Experiment No. 2 5) Experiments using potassium hydroxide as the alkali hydroxide (Table 1-Experiment No. 6), diallyl cyanurate for experiments (Table 1-Experiment No. 7) in which the reaction was conducted under heating conditions at 60 ° C Yields are summarized in Table 1.
[0013]
[Example 2]
A four-necked flask (500 ml) was charged with 100 ml of DMSO, 6.0 g (150 mmol) of pelleted sodium hydroxide and 37.4 g (150 mmol) of triallyl cyanurate, and stirred at room temperature for 17 hours. Allyl alcohol and DMSO were removed from the reaction solution by distillation under reduced pressure, 200 ml of water was added, a liquid separation operation using 50 ml of toluene was performed twice, and unreacted substances and other impurities were extracted into the toluene layer. 7.35 g (75 mmol) of sulfuric acid / 100 ml of water was slowly added to the aqueous layer, and the released crystals were separated by filtration and sufficiently dried to obtain 29.5 g of diallyl cyanurate crystals (yield 94%). .
[0014]
[Comparative example]
According to Example 1 described above, DMSO was replaced with allyl alcohol in the reaction solvent alone, and only 17.8 g (yield 57%) of diallyl cyanurate crystals were obtained.
[0015]
【The invention's effect】
By finding that only one molecule of allyl alcohol is eliminated from triallyl cyanurate by using an aprotic polar solvent and alkali hydroxide, high yield of versatile and highly functional diallyl cyanurate is obtained. It became possible to synthesize at low cost. The technology related to the present invention is not limited to diallyl cyanurate, but may lead to a new derivative having higher performance therefrom, and its effect is great.
[Brief description of the drawings]
1 is a diagram showing a synthesis process of diallyl cyanurate shown in Example 1. FIG.
2 is a diagram showing a synthesis process of diallyl cyanurate shown in Example 2. FIG.

Claims (3)

非プロトン性極性有機溶剤中で水酸化アルカリとトリアリルシアヌレートとを接触させることを特徴とするジアリルシアヌレートのモノアルカリ金属塩の製造方法。  A method for producing a monoalkali metal salt of diallyl cyanurate, comprising contacting an alkali hydroxide and triallyl cyanurate in an aprotic polar organic solvent. 非プロトン性極性有機溶剤が、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、1−メチル−2−ピロリジノン、ジメチルイミダゾリジノンからなる群から選ばれた、少なくとも1種のものである請求項1記載のジアリルシアヌレートのモノアルカリ金属塩の製造方法。  The diallyl according to claim 1, wherein the aprotic polar organic solvent is at least one selected from the group consisting of dimethyl sulfoxide, dimethylformamide, dimethylacetamide, 1-methyl-2-pyrrolidinone and dimethylimidazolidinone. A process for producing a monoalkali metal salt of cyanurate. 水酸化アルカリが、水酸化ナトリウムまたは水酸化カリウムから選ばれた、少なくとも1種のものである請求項1記載のジアリルシアヌレートのモノアルカリ金属塩の製造方法。  The method for producing a monoalkali metal salt of diallyl cyanurate according to claim 1, wherein the alkali hydroxide is at least one selected from sodium hydroxide and potassium hydroxide.
JP2002306398A 2002-09-11 2002-09-11 Process for producing monoalkali metal salt of diallyl cyanurate Expired - Fee Related JP4329325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306398A JP4329325B2 (en) 2002-09-11 2002-09-11 Process for producing monoalkali metal salt of diallyl cyanurate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306398A JP4329325B2 (en) 2002-09-11 2002-09-11 Process for producing monoalkali metal salt of diallyl cyanurate

Publications (2)

Publication Number Publication Date
JP2004099582A JP2004099582A (en) 2004-04-02
JP4329325B2 true JP4329325B2 (en) 2009-09-09

Family

ID=32289376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306398A Expired - Fee Related JP4329325B2 (en) 2002-09-11 2002-09-11 Process for producing monoalkali metal salt of diallyl cyanurate

Country Status (1)

Country Link
JP (1) JP4329325B2 (en)

Also Published As

Publication number Publication date
JP2004099582A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP2009132676A (en) New method for producing strontium ranelate and its hydrate
JP2016528271A (en) □ Synthesis of biphenylalaninol via a novel intermediate
JP2015500325A5 (en)
JP4329325B2 (en) Process for producing monoalkali metal salt of diallyl cyanurate
JP4190879B2 (en) A novel intermediate for the production of theanine
EP3260442B1 (en) Process for preparation of optically pure n-substituted-3-methoxypropionic acid derivatives
JP6856471B2 (en) A method for producing a lactone compound and a method for producing biotin using the lactone compound.
KR102559870B1 (en) Method for preparing carbamate compound
JPWO2013011999A1 (en) Process for producing optically active 2-methylproline derivative
JP4356111B2 (en) Process for producing N- (2-amino-1,2-dicyanovinyl) formamidine
CN111848423B (en) Preparation method of tert-butyl 3-oxocyclobutylcarbamate
JP6336166B2 (en) Novel intermediate of imidafenacin, method for producing the same, and method for producing imidafenacin using the same
JP2002155058A (en) Method for producing 1-substituted hydratoin compound
KR860001900B1 (en) A process for preparing-chloroalanine
JP2002371061A (en) Method for treating 1-chlorocarbonylpiperidine derivative hydrochloric acid salt
JP2716243B2 (en) N-benzyl-3-hydroxysuccinamic acid and method for producing the same
JP3205975B2 (en) Method for producing pyrazinecarboxamide
KR20110054670A (en) A process for preparing 2-cyano-3-hydroxy-n-[(4-trifluoromethyl)phenyl] but-2-enamide
JP4495670B2 (en) Method for producing mercaptoalkylphosphonium compounds
JP2005075734A (en) Method for producing optically active homocitric acid
JP3526606B2 (en) Method for producing N-substituted pyrazinecarboxamides
JPH10218868A (en) Production of 5-methyltetrazole
JPH01197478A (en) Production of n-(2-chlorobenzyl)-2-(2-thienyl) ethylamine
CN115232020A (en) Method for synthesizing N, N-diethyl-2-hydroxyphenylacetamide and analogue thereof and application thereof
KR100525358B1 (en) Method for the preparation of carboxyl benzotriazole alkyl ester

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees