JP4270342B2 - ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路 - Google Patents

ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路 Download PDF

Info

Publication number
JP4270342B2
JP4270342B2 JP2003189973A JP2003189973A JP4270342B2 JP 4270342 B2 JP4270342 B2 JP 4270342B2 JP 2003189973 A JP2003189973 A JP 2003189973A JP 2003189973 A JP2003189973 A JP 2003189973A JP 4270342 B2 JP4270342 B2 JP 4270342B2
Authority
JP
Japan
Prior art keywords
circuit
signal
output
input
lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189973A
Other languages
English (en)
Other versions
JP2005026998A (ja
Inventor
秀夫 中根
純也 工藤
達治 松浦
聡 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2003189973A priority Critical patent/JP4270342B2/ja
Publication of JP2005026998A publication Critical patent/JP2005026998A/ja
Application granted granted Critical
Publication of JP4270342B2 publication Critical patent/JP4270342B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複数の信号線により並列に伝送される信号を他の信号線へシフトするビットシフト回路およびアナログ信号をディジタル信号に変換するためのアナログ−ディジタル(A/D)変換回路さらには半導体集積回路で実現するのに好適なΣΔ(シグマ・デルタ)型A/D変換回路およびそれを内蔵した通信用半導体集積回路に利用して有効な技術に関するものである。
【0002】
【従来の技術】
現在、携帯電話器のような無線通信システムは、一般に、送信信号の変調機能および受信信号の復調機能を有する半導体集積回路(RF−IC)や送信データを基本波に対し同相成分のI信号および直交成分のQ信号に変換したり受信信号から復調されたI,Q信号を処理してデータを復元したりするベースバンド回路などの半導体集積回路と、送信信号を電力増幅してアンテナより出力させるパワーアンプやインピーダンス整合回路、フィルタなどからなるパワーモジュールなどにより構成されている。従来、上記RF−ICとベースバンドLSIとの間で伝達されるI,Q信号はアナログ信号であることが多かった。
【0003】
本発明者等は、上記RF−ICとベースバンドLSIとの間で、I,Q信号をディジタル信号で伝達することを検討した。I,Q信号をディジタル化することにより、S/Nを向上させることができるとともに、RF−ICの受信系回路においては復調回路の後段に設けられる高利得増幅回路やフィルタを簡略化してチップサイズの低減が可能になるためである。
【0004】
従来より、A/D変換器には、逐次比較型やオーバーサンプル型など種々の形式のものが開発されている。一般に、A/D変換器でアナログ入力信号をディジタル信号に変換する場合、サンプリング周波数を高くすれば、信号周波数近傍のS/N(Signal to Noise Ratio)特性を向上させることができる。オーバーサンプル型A/D変換器は、オーバーサンプル比(信号帯域の周波数に対するナイキスト(サンプリング周波数の1/2)周波数の比を高くすることによりS/N特性を向上させた方式である。
【0005】
オーバーサンプル型A/D変換器は、△(デルタ)変調方式、Σ△変調方式、それらの混合方式に大別できる。このうち、Σ△変調方式は、出力信号と入力信号との差を積分器で積分し、この積分器の出力が最小となるようにフィードバック制御するものである。このΣ△変調方式においては、アナログ積分の次数すなわち積分器の数を増やすことにより、S/N特性をさらに改善することができる。つまり、アナログ積分の次数を1次増やす毎に、ほぼオーバーサンプリング比の2乗に逆比例したノイズシェイピング特性(雑音整形)が期待できる。
【0006】
本発明者等は、上記RF−ICに内蔵されて、復調回路で復調されたI,Q信号をディジタル信号に変換するA/D変換器としては、変調精度および変換速度の点からオーバーサンプリング型A/D変換器、その中でも特にΣ△変調方式のA/D変換器(以下、ΣΔ型A/D変換器と称する)が適していると考えた。なお、ΣΔ型A/D変換器に関する発明としては例えば特許文献1に記載の発明が、またRF−ICに内蔵されて復調回路で復調されたI,Q信号をディジタル信号に変換してベースバンド回路へ伝達するようにした発明としては例えば特許文献2に記載の発明がある。
【0007】
【特許文献1】
特開2001−274685号公報
【特許文献2】
特開2002−368621号公報
【0008】
【発明が解決しようとする課題】
本発明者等が検討したところによると、RF−ICに内蔵されて復調回路で復調されたI,Q信号をディジタル信号に変換するΣΔ型A/D変換器としては、10数ビットの有効分解能と数百kHzの信号帯域が必要である。ΣΔ型A/D変換器において、分解能を高めるには、量子化回路のビット数、積分の次数、オーバーサンプル比(ナイキスト周波数と信号帯域との比)を大きくすれば良い。ところが、RF−ICでは、内部クロックの周波数が数10MHzとあまり高くないため、オーバーサンプル比を大きくすることはできない。また、積分の次数を高くすると、系の安定性が低下するとともに消費電力が多くなるという不具合がある。
【0009】
そこで、量子化回路のビット数を多くすることが考えられる。ところが、量子化回路のビット数を多くすると、帰還経路上に設けられるローカルD/A変換回路のビット数も多くしなければならない。ローカルD/A変換回路のビット数が多くなると、ローカルD/A変換回路を構成する電流源や容量素子などの単位要素の製造ばらつきにより変換誤差が生じ、それが入力にそのまま帰還されてA/D変換精度や有効分解能を低下させてしまうという問題がある。
【0010】
このローカルD/A変換回路を構成する電流源や容量素子などの単位要素の製造ばらつきによる変換誤差を補正する技術として、バレルシフタを用いて量子化回路の出力信号をビットシフトさせることで単位要素の不整合をナイキスト周波数内にノイズとして拡散させ、ノイズシェーピング効果により信号帯域内のノイズを低減させるDEM(ダイナミック・エレメント・マッチング)と呼ばれる技術が知られている(例えば前記特許文献1参照)。
【0011】
しかしながら、上記先願発明におけるDEM回路は、論理ゲートで構成されているため、ゲート遅延が生じる。変換速度がそれほど要求されないシステムでは、かかるゲート遅延はそれほど問題にならないが、本発明者等が検討したRF−ICにおけるI,Q信号の変換用のA/D変換器ではDEM回路で生じる僅かな遅延によってもA/D変換精度が低下するおそれがあることが分かった。
【0012】
本発明の目的は、帰還経路での遅延を低減しA/D変換精度を高めることが可能なΣΔ型A/D変換器を内蔵した半導体集積回路を提供することにある。
本発明の他の目的は、信号の遅延量の少ないビット変換回路およびそれを用いたA/D変換精度の高いΣΔ型A/D変換器を内蔵した半導体集積回路を提供することにある。
本発明の他の目的は、受信系回路で復調されたI,Q信号を精度良くディジタル信号に変換して出力することができる通信用半導体集積回路を提供することにある。
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0013】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
すなわち、本願の第1の発明は、2個以上の積分器を有し各積分器に対応してそれぞれ量子化回路の出力をD/A変換するD/A変換器が設けられた2次以上のN次ΣΔ型A/D変換器(Nは2以上の自然数)を内蔵した半導体集積回路において、第nの積分器(1≦n≦N−1)と第n+1の積分器の動作をクロック信号の半周期分ずらして、第nの積分器が積分動作をしているときに第n+1の積分器では入力信号のサンプリングをさせるようにしたものである。
【0014】
上記した手段によれば、D/A変換器での遅れがあっても第nの積分器より前段の積分器に対応したD/A変換器の出力が整定すればよいタイミングが半周期後へ延ばされるため、D/A変換器の動作遅れによって精度の低い信号が第n積分器より前段の積分器に入力されなくなり、これによりA/D変換精度を高めることができる。
【0015】
また、本願の第2の発明は、ビット変換回路を入力線と出力線との間に接続された複数のスイッチ素子とこれらのスイッチ素子をオン、オフ制御する制御回路とで構成するようにしたものである。かかる手段によれば、信号遅延の少ないビット変換回路を実現できるとともに、このビット変換回路をΣΔ型A/D変換器の帰還経路上に設けられるDEM回路として用いることにより信号の遅延を減らして第1の積分器に対応したD/A変換器の出力精度を高め、A/D変換精度を高めることができる。
【0016】
さらに、上記のように構成されたΣΔ型A/D変換器を、無線通信システムの受信系回路において復調されたI,Q信号をディジタル信号に変換する手段として用いることにより、AD変換精度を高め、復調回路の後段に設けられる高利得増幅回路やフィルタを簡略化してチップサイズを低減させることができる。
【0017】
【発明の実施の形態】
以下、図面を用いて本発明の実施形態を説明する。
図1には、本発明にかかるΣ△変調方式のA/D変換回路の第1の実施例が示されている。
図1に示されているA/D変換回路は、2次のΣ△変調方式とされ、特に制限されないが、公知の半導体集積回路製造技術により単結晶シリコンチップのような一つの半導体基板に形成される。
【0018】
図1の実施例のΣ△型A/D変換回路は、アナログ入力信号Vinと帰還信号Vf1との差分をとる第1加算回路11と、該第1加算回路11の出力の積分を行なう第1積分回路12と、該第1積分回路12の出力A1と帰還信号Vf2との差分をとる第2加算回路13と、該第2加算回路13の出力の積分を行なう第2積分回路14と、該第2積分回路14の出力を量子化(ディジタル信号化)する量子化回路15と、該量子化回路15の出力をエンコードするエンコーダ16と、量子化回路15の出力をそれぞれD/A変換して第1加算回路11と第2加算回路12へ供給する第1のローカルD/A変換回路(DAC1)17と第2のローカルD/A変換回路(DAC2)18とにより構成されている。
【0019】
量子化回路15は第2積分回路14の出力電圧を2のN乗個(Nは2以上の整数)の参照電圧と比較する電圧比較回路51と、該電圧比較回路51から得られる2のN乗個の信号をラッチするラッチ回路52とにより構成されている。そして、上記ラッチ回路52にラッチされた電圧比較回路51の出力信号が、エンコーダ16によりNビットの信号にエンコードされてこの実施例のΣ△型A/D変換回路の出力信号として後段回路に伝達される。
【0020】
これとともに、上記ラッチ回路52にラッチされた電圧比較回路51の出力信号はローカルD/A変換回路17,18へも伝達され、ローカルD/A変換回路17,18でアナログ信号に変換された信号が、上記帰還信号Vf1,Vf2として上記第1加算回路11と第2加算回路12に供給されるようにされている。なお、ある値aからbを減算する減算回路は、aに−bを加算する加算回路とみることができるので、この明細書では減算回路を加算回路と記すこととした。
【0021】
上記積分回路12,14は、例えば図2に示されているように、入力端子INに接続された切替えスイッチSW1と、該スイッチSW1と接地点との間に接続されたサンプリング容量Ciと、差動増幅回路AMP1と、該差動増幅回路AMP1の出力端子と反転入力端子との間に接続された帰還容量Cfとからなり、まず図2(A)のようにスイッチSW1を入力端子IN側に接続してサンプリング容量Ciに入力信号を取り込んでから、図2(B)のようにスイッチSW1を差動増幅回路AMP1側に切り替えて積分を行なうように制御される。
【0022】
次に、本実施例のΣ△型A/D変換回路の動作タイミングを、図3を用いて説明する。
図3に示されているように、本実施例のΣ△型A/D変換回路においては、クロックφの各周期の前半T1,T3,……で第1積分器12により入力データ信号のサンプルホールドを行ない、クロックφの各周期の後半T2,T4,……で第1積分器12がサンプルホールドした信号の積分を行なう。また、第2積分器14は、クロックφの各周期の後半T2,T4,……すなわち第1積分器12よりも半周期遅いタイミングで入力データ信号のサンプルホールドを行ない、クロックφの各周期の前半T3,T5,……でサンプルホールドした信号の積分を行なう。そして、量子化回路15が第1積分器12のサンプリング動作よりも1周期遅いクロックφの各周期の前半T3,T5,……で比較動作を行ない、クロックφの各周期の後半T4,T6,……で比較結果のホールドを行なうようにされている。
【0023】
従来のΣ△型A/D変換回路においては、一般に、第2積分器14は、第1積分器12のサンプルホールドの期間よりも1周期遅いクロックφの前半T3,T5,……で入力信号のサンプルホールドを行ない、1周期遅れのクロックφの後半T4,T6,……でサンプルホールドした信号の積分を行なう。そして、量子化回路15では1周期遅れのクロックφの前半T3,T5,……で比較結果のホールドを行ない、1周期遅れのクロックφの後半T4,T6,……で比較動作を行なうようにされている。つまり、第1積分器12における第2データの積分と第2積分器14における第1データの積分と比較器における比較動作が同じタイミングで行なわれていた。
【0024】
かかる従来のタイミング制御の場合、次段の回路の動作に間に合わせるため、ローカルD/A変換回路17,18が積分動作を開始する時点すなわち図3のタイミングt1までに、出力値が整定されなければならないため、帰還系の遅延tdによりD/A変換回路17,18での実効処理時間が充分にとれなくなるおそれがあった。ここで、帰還系の遅延によりD/A変換回路17,18に入力される信号が遅れると、信号のレベルが完全に確定する前に各回路でのD/A変換動作が終了してしまうため、その出力は精度の低いものになる。従って、各積分器でのサンプル動作開始時までにはD/A変換回路からの帰還信号のレベルが確定している必要がある。
【0025】
ところが、量子化回路15を多ビットで構成した場合には、図1の量子化回路15とD/A変換回路17,18との間に、D/A変換回路17,18を構成する素子の製造バラツキによる変換精度低下を防止するためDEM(ダイナミック・エレメント・マッチング)と呼ばれる回路を設けると、その分帰還信号の遅延が大きくなるため、D/A変換回路17,18での実効処理時間が一層短くなってしまう。なお、DEMについては後に詳しく説明する。
【0026】
一方、本実施例のΣ△型A/D変換回路においては、図3に示されているようなタイミングで第1積分器12における積分と第2積分器14における積分と比較器における比較動作が行なわれるため、第1積分器12における積分動作の開始に合わせてD/A変換回路17の出力値が整定しなければならないタイミングがt2のように、後へ延ばされる。これにより、帰還系の遅延tdが多少大きくてもD/A変換回路17での実効処理時間が充分とれるようになる。ここで、D/A変換回路18の出力値が整定しなければならないタイミングは従来と同じt1であり、実効処理時間が充分に取れないように見える。
【0027】
しかし、第2積分器14に入力される信号は1次のノイズシェイプを受けるのに対し、第1積分器12に入力される信号はそのまま出力信号に現われるため、帰還信号に対して要求される雑音レベルは、第2積分器14よりも第1積分器12に対するものの方が小さくなくてはならない。つまり、入力に対して許容される雑音レベル条件は第2積分器14の方が第1積分器12よりも緩い。そのため、図3のように、D/A変換回路17の出力値整定タイミングがt1からt2へ延ばされて、D/A変換回路17の実効処理時間が充分とれるようになると、第1積分器12に対して入力される信号の雑音レベルを第2積分器14の入力信号の雑音レベルよりも小さくすることができる。その結果、A/D変換回路全体としての変換精度を高めることができる。
【0028】
なお、DEM回路を挿入しない帰還系の遅延tdが小さい場合におけるA/D変換回路の出力ディジタル波形は、図4(A)のようになる。これに対し、DEM回路を挿入するとこれによって帰還系の遅延tdが大きくなって、D/A変換回路18のデータ入力タイミングt0が図3のt1よりも後になった場合におけるA/D変換回路の出力ディジタル波形は、図4(B)のようになる。このとき、出力信号には信号帯域に非常に大きな雑音が存在し、出力波形Bは図4(A)の波形とはかけ離れたものとなり、もはやA/D変換回路は正常に機能しなくなるので、DEM回路の挿入により帰還系の遅延tdが大きくなってD/A変換回路18のデータ入力タイミングt0がt1よりも後になるのは回避しなければならない。
【0029】
次に、帰還系の遅延tdを最小限に抑えることができるDEM回路とそれを用いたΣΔ型のA/D変換回路の実施例を、図5および図6を用いて説明する。この実施例においては、帰還系の遅延tdを小さくできるので、従来のΣΔ型のA/D変換回路と同様なタイミングで動作させても良いが、図3に示されているタイミングで動作させることによってローカルD/A変換回路17における実効処理時間に余裕を持たせてAD変換精度を高めるようにしても良い。
【0030】
図5に示されているA/D変換回路は、2次のΣ△変調方式とされ、特に制限されないが、公知の半導体集積回路製造技術により単結晶シリコンチップのような一つの半導体基板に形成される。
この実施例のΣ△型A/D変換回路は、アナログ入力信号Vinと帰還信号Vf1との差分をとる第1加算回路11と、該第1加算回路11の出力の積分を行なう第1積分回路12と、該第1積分回路12の出力A1と帰還信号Vf2との差分をとる第2加算回路13と、該第2加算回路13の出力の積分を行なう第2積分回路14と、該第2積分回路14の出力を量子化(ディジタル信号化)する量子化回路15と、該量子化回路15の出力をエンコードするエンコーダ16と、量子化回路15の出力をそれぞれD/A変換して第1加算回路11と第2加算回路12へ供給する第1のローカルD/A変換回路(DAC1)17と第2のローカルD/A変換回路(DAC2)18と、量子化回路15とローカルD/A変換回路17,18との間に設けられたDEM(ダイナミック・エレメント・マッチング)回路19とにより構成されている。
【0031】
DEM回路19は、D/A変換回路17,18を構成する素子の製造バラツキによる変換精度低下を防止するための回路であり、量子化回路15から出力される温度計符号のような信号を所定のアルゴリズムにて変換してD/A変換回路17,18へ供給する。温度計符号信号とは、量を表わす値が小さい方から000001,000011,000111……111111のように、LSB(もしくはMSB)の側から連続する“1”の数で値の大小関係を示すものである。DEM回路19における変換アルゴリズムとしては種々のものが提案されているが、最も一般的なものはDWA(データ・ウェイテッド・アベレージング)と呼ばれるアルゴリズムである。このアルゴリズムを8個のエレメントからなるD/A変換回路に適用した場合について、図6を用いて説明する。
【0032】
DWAアルゴリズムは、これを適用しない場合は、図6(A)のように温度計符号の入力信号をエレメント0の側から順に割り当てられるものが、適用した場合には、図6(B)のように、ある入力の次の入力の際には直前の入力で使用されなかったエレメントのうち最小のものから順に割り当て、最後のエレメント7まで行った時は最初のエレメント0に戻るようにする方式である。これにより、各エレメントの使用回数が平均化され、仮に各エレメントにばらつきがあっても、そのばらつきによるノイズを入力信号の周波数帯域よりも高い周波数領域に拡散させ、周波数帯域でのノイズを低減することができる。
【0033】
図7は、2つの積分回路を有する2次の変調方式のΣΔ型A/D変換回路が理想的な特性を有すると仮定した場合に、A/D変換出力をDFT(離散フーリエ変換)解析した結果を、サンプリング周波数を1とする正規化周波数を横軸にとって各周波数での振幅の大きさを表わしたものである。オーバーサンプリング型A/D変換回路では、入力信号の周波数に対してサンプリング周波数は充分に高くされるため、図7においては、入力信号は「0」の近傍に振幅ピークAとして現われる。横軸は正規化周波数であるので、0.5はナイキスト周波数に相当する。なお、DFT解析では、振幅分布は0.5を中心に左右対称になるので、図7には半分のみ示してある。
【0034】
図8は、DEM回路19を設けない2次の変調方式のΣΔ型A/D変換回路において、ローカルD/A変換回路17,18を構成する電流源や容量などの要素が製造バラツキで不整合を起こしている場合に、A/D変換出力をDFT解析した結果を、正規化周波数を横軸にとって各周波数での振幅の大きさを表わしたものである。図8と図7を比較すると明らかなように、DEM回路19を設けないΣΔ型A/D変換回路の特性を表わす図8においては、正規化周波数で0〜0.05の範囲に相当する信号帯域に近い周波数領域において、図7よりも振幅レベルが大きいつまりノイズフロアが上昇していることが分かる。
【0035】
図9は、DEM回路19を設けた2次の変調方式のΣΔ型A/D変換回路において、ローカルD/A変換回路17,18を構成する電流源や容量などの要素が製造バラツキで不整合を起こしている場合に、A/D変換出力をDFT解析した結果を、正規化周波数を横軸にとって各周波数での振幅の大きさを表わしたものである。図9と図8を比較すると明らかなように、DEM回路19を設けたΣΔ型A/D変換回路の特性を表わす図9においては、正規化周波数で0〜0.05の範囲に相当する信号帯域に近い周波数領域において、図8よりも振幅レベルが小さいつまりノイズフロアが低下していることが分かる。一方、信号帯域から離れた周波数領域では図9の方が、振幅が全体的に高くなっており、このことからローカルD/A変換回路17,18の構成要素の不整合に起因するノイズが、入力信号の周波数帯域よりも高い周波数領域に拡散されていることが分かる。例えば、図7においては0.4〜0.5の範囲で40dBに達するピークの数が1つであるが、図9では5つある。
【0036】
図10には、DEM回路19の具体的な構成例が示されている。図10に示されているように、DEM回路19はマトリックス状に配置されたスイッチSW01〜SW77からなるスイッチ回路91と、これらのスイッチのオン・オフ制御信号CS0〜CS7を生成するスイッチ制御回路92とにより構成されている。特に制限されるものでないが、この実施例では、量子化回路15の出力が8ビットの場合が示されている。スイッチSW01〜SW77には、各々PチャネルMOSFETあるいはNチャネルMOSFETのような単チャネルのMOSFETを使用することができる。
【0037】
スイッチ回路91は、量子化回路15の出力i0〜i7が入力される8本の入力線Li0〜Li7と、入力線の数に対応して設けられた8本の出力線Lo0〜Lo7と、入力線Li0〜Li7と出力線Lo0〜Lo7のそれぞれ交点に設けられた64個のスイッチSW01〜SW77とからなる。これにより、入力線Li0〜Li7に入力された信号は8本の出力線Lo0〜Lo7のいずれに対しても出力可能にされる。ただし、同一行のスイッチSW01〜SW07……スイッチSW71〜SW77は、スイッチ制御回路92からのオン・オフ制御信号CS0〜CS7によって、いずれか1つがオン状態にされ、1つの入力信号が同時に2つ以上の出力線へ出力されることはない。つまり、オン・オフ制御信号CS0〜CS7のうちハイレベルにされるのは1つであり、残りの7つの信号はロウレベルとされる。
【0038】
さらに、スイッチ制御回路92からのオン・オフ制御信号CS0〜CS7は、各スイッチ行のスイッチに対して1つずつ供給され、かつ隣接するスイッチ列のスイッチに対しては1つずれた状態で供給される。具体的には、1行目のスイッチSW00に供給される制御信号CS0は2行目のスイッチSW11と3行目のスイッチSW22と……8行目のスイッチSW77とに供給され、1行目のスイッチSW01に供給される制御信号CS1は2行目のスイッチSW12と3行目のスイッチSW23と……8行目のスイッチSW70とに供給される。以下同様にして、1行目のスイッチSW07に供給される制御信号CS7は2行目のスイッチSW10と3行目のスイッチSW21と……8行目のスイッチSW76のように供給される。
【0039】
その結果、スイッチ回路91においてオン状態にされるスイッチは、スイッチマトリックスに対応する制御マトリックスを示す図11(A)や(B)において、“1”が立っているものに対応するスイッチとされる。同図より、スイッチ回路91において同じにオン状態にされるスイッチは、斜め方向に並んだ1列のスイッチであることが分かる。
【0040】
スイッチ制御回路92は、量子化回路15の出力i0〜i7を3ビットのバイナリコードに変換する2進エンコーダ921と、クロックφによってカウントアップされる3ビットのカウンタからなるポインタ922と、該ポインタ922から出力される3ビットのコードをデコードして前記スイッチ回路91内のスイッチSW01〜SW77のオン・オフ制御信号CS0〜CS7を生成するデコーダ923と、前記2進エンコーダ921でエンコードされた3ビットのコードとポインタ922が示す3ビットのコードを加算する加算器924とから構成されている。そして、この加算器924の加算結果が上記ポインタ922にセットされるように構成されている。
【0041】
また、上記スイッチ制御回路92を構成する回路のうちポインタ922はクロックφに同期して加算器924の値を取り込むダイナミックな動作を行ない、エンコーダ921とポインタ922と加算器924はスタティックな動作を行なう。
【0042】
量子化回路15の出力i0〜i7を3ビットのバイナリコードに変換する上記2進エンコーダ921は、量子化回路15の出力i0〜i7が温度計符号であるため、出力i0〜i7のうちビットが“1”である信号数Nに応じて次の表1のような3ビットのバイナリコードに変換する。
【0043】
【表1】
Figure 0004270342
【0044】
ポインタ922は初期設定により、値が「000」にされる。このときデコーダ923の出力は、制御信号CS0〜CS7のうちCS0のみハイレベルとされCS1〜CS7はロウレベルとされる。そのため、スイッチ回路91では、スイッチSW00,SW11,SW22,SW33,SW44,SW55,SW66,SW77がオン状態にされ、他のスイッチはすべてオフ状態とされる。これにより、入力線Li0〜Li7に入力された信号i0〜i7は出力線Lo0〜Lo7へそのまま出力される。
【0045】
このとき、入力信号i0〜i7のうちビットが“1”である信号数が図6(B)の「時刻:1」のように、3つであった場合には、エンコーダ921からコード「011」が出力される(表1参照)。これが加算器924でポインタ922のそのときの値(ここでは「000」)と加算されてポインタ922へ戻されるため、次の「時刻:2」におけるポインタ922の値は「011」となる。すると、デコーダ923の出力は、制御信号CS0〜CS7のうちCS3のみハイレベルとされCS0〜CS2,CS4〜CS7はロウレベルとされる。そのため、スイッチ回路91では、スイッチSW03,SW14,SW25,SW36,SW47,SW50,SW61,SW72がオン状態にされ、他のスイッチはすべてオフ状態とされる。
【0046】
これにより、入力線Li0〜Li7に入力された信号i0〜i7は3本ずれた出力線へ出力される。そのため、i0はLo3へ、i1はLo4へ、i2はLo5へ、i3はLo6へ、i4はLo7へ、i5はLo0へ、i6はLo1へ、そしてi7はLo2ヘそれぞれ出力される。つまり、図6(B)の「時刻:2」のように3要素ずれた出力とされる。このとき、入力信号i0〜i7のうちビットが“1”である信号数が図6(B)の「時刻:2」のように、4つであった場合には、エンコーダ921からコード「100」が出力される(表1参照)。
【0047】
このコード「100」が加算器924でポインタ922のそのときの値(ここでは「011」)と加算されてポインタ922へ戻されるため、次の「時刻3」におけるポインタ922の値は「111」となる。すると、デコーダ923の出力は、制御信号CS0〜CS7のうちCS7のみハイレベルとされCS0〜CS6はロウレベルとされる。そのため、スイッチ回路91では、スイッチSW07,SW10,SW21,SW32,SW43,SW54,SW65,SW76がオン状態にされ、他のスイッチはすべてオフ状態とされる。
【0048】
これにより、入力線Li0〜Li7に入力された信号i0〜i7は7本ずれた出力線へ出力される。そのため、i0はLo7へ、i1はLo0へ、i2はLo1へ、i3はLo2へ、i4はLo3へ、i5はLo4へ、i6はLo5へ、そしてi7はLo6ヘそれぞれ出力される。つまり、図6(B)の「時刻:3」のように7要素ずれた出力とされる。
【0049】
従来のΣΔ型A/D変換器においてはDEM回路は論理ゲート回路で構成されていたため信号の遅延が大きかったが、この実施例のDEM回路19は、以上のようにスイッチ回路91とそれを制御するスイッチ制御回路92とから構成されているため、信号の遅延を生じることなく量子化回路の出力のビットをバレルシフトした信号を後段のローカルD/A変換回路へ渡すことができる。
【0050】
なお、この実施例のDEM回路19は、図12(A)に示すように、スイッチ制御回路92が量子化回路15の出力i0〜i7に基づいてスイッチ回路91に対するオン・オフ制御信号CS0〜CS7を生成するように構成されているが、これに限定されるものでない。スイッチ回路91を通過した前と後で、量子化回路15の出力i0〜i7は基本的には変わらないので、例えば、図12(B)や(C)に示すように、スイッチ制御回路92がスイッチ回路91を通過した後の信号や、スイッチ回路91を通過した前と後の信号に基づいて、スイッチ回路91に対するオン・オフ制御信号CS0〜CS7を生成するように構成することも可能である。
【0051】
さらに、スイッチ回路91に対するオン・オフ制御信号CS0〜CS7を、量子化回路15の出力i0〜i7に基づかないで生成する図12(D)に示すような構成も可能である。このような方式は、図13に示すように、スイッチ制御回路92を、ランダム値発生回路925とデコーダ923とから構成するような場合である。デコーダ923はランダム値発生回路925が発生する値に応じてスイッチ回路91に対するオン・オフ制御信号CS0〜CS7のうちいずれか1つをハイレベル“1”とし、残りをロウレベル“0”にする。かかかる方式を適用した場合にも、比較的長い時間に着目すると各エレメントの使用回数が平均化され、D/A変換回路17,18を構成する素子の製造バラツキによる変換精度低下を防止することができる。
【0052】
次に、DEM回路の他の構成例を、図14〜図19を用いて説明する。図14はDEM回路を構成するスイッチ回路91の他の例を示す。
この実施例のスイッチ回路は、1ビットシフタからなるローカルシフト回路911と、図11のスイッチ回路91よりも規模の小さなスイッチマトリックス912とから構成されている。ローカルシフト回路911は、入力線Li0〜Li7の信号を各々隣接する信号線に1ビットだけずらす回路であり、かかる回路は例えば図15に示されているように、本来の信号入力線Li0〜Li7上に設けられたスイッチ素子SWi10〜SWi17と、隣接信号線間に設けられたスイッチ素子SWi20〜SWi27とから構成することができる。
【0053】
これらのスイッチ素子をオン、オフ制御する信号は、図11に示されているスイッチ制御回路92と同様な構成からなる回路により生成することができる。オン、オフ制御信号は、CSとその反転信号/CSのみであり、対をなすスイッチ素子SWi10とSWi20、SWi11とSWi21、……SWi17とSWi27は、互いに一方がオン状態にされるときは、他方はオフ状態とされる。
【0054】
スイッチマトリックス912は、図16に示されているように、奇数番目の入力線Li0,Li2……Lin-2と奇数番目の出力線Lo0,Lo2……Lon-2との間に設けられたスイッチSW00,SW02……と、偶数番目の入力線Li1,Li3……Lin-1と偶数番目の出力線Lo1,Lo3……Lon-1との間に設けられたスイッチSW11,SW12……とから構成される。これにより、スイッチマトリックス912のスイッチの数を図11のスイッチ回路91の半分の32個とすることができる。従って、ローカルシフト回路911のスイッチを合わせたトータルのスイッチの数も48個であり、図10の回路の64個に比べて少なくなる。
【0055】
上記ローカルシフト回路911は、スイッチマトリックス912の入力側でなく出力側に設けても良い。また、図14のローカルシフト回路911の前段もしくは後段に、2ビットシフトさせるビットシフタを設ければ、スイッチマトリックス912のスイッチ数をさらに半減させることができる。このような2のn乗のビットシフトを行うローカルシフタを直列にn段設ける(例えばn=3であれば、1ビット、2ビット、4ビットのローカルシフタを用いる)ことで、スイッチマトリックス912のスイッチ数を削減することができる。これにより、スイッチマトリックス912を構成するスイッチの数をさらに減らすことが可能となる。
【0056】
図17には、実施例のΣ△型A/D変換回路におけるDEM回路19として使用することが可能な図12(D)に示すビット変換回路の例が示されている。この実施例では、スイッチ回路91は入力線Li0と出力線Lo0,Lo7との間に設けられたスイッチSW00,SW07と、入力線Li1と出力線Lo1,Lo6との間に設けられたスイッチSW11,SW16と、入力線Li2と出力線Lo2,Lo5との間に設けられたスイッチSW22,SW25と、……入力線Li7と出力線Lo0,Lo7との間に設けられたスイッチSW70,SW77のように、2つの対角線上に沿って配置された7×2個のスイッチからなり、一方の対角線に沿った7個のスイッチSW00,SW11……SW77はスイッチ制御回路92からの制御信号C0によって同時にオン、オフされ、他方の対角線に沿った7個のスイッチSW07,SW16……SW70はスイッチ制御回路92からの制御信号C1によって同時にオン、オフされる。
【0057】
スイッチ制御回路92は、一方の入力端子がハイレベル“1”に固定された排他的論理和回路926と、該回路の出力を遅延して他方の入力端子にフィードバックする遅延回路927と、排他的論理和回路926の出力信号をデコードするデコーダ923とから構成されている。遅延回路927の遅延時間は、スイッチ回路91への入力信号すなわち量子化回路15の出力i0〜i7の入力周期に応じた時間に設定される。この実施例のスイッチ制御回路92では、排他的論理和回路926の出力信号は、遅延回路927の遅延時間に応じてハイレベルとロウレベルとに交互に変化する。その結果、デコーダ923からは何れか一方がハイレベルで他方がロウレベルの制御信号C0,C1が出力される。
【0058】
これによって、スイッチ回路91においてオン状態にされるスイッチは、スイッチ回路91に対応する制御マトリックスを示す図18(A)と(B)において、“1”が立っているものに対応するスイッチとされる。つまり、2つの対角線上のスイッチSW00〜SW77またはSW07〜SW70のいずか一方が全てオンで、他方は全てオフとなる状態が交互に繰り返される。
【0059】
従って、この実施例のビット変換回路を使用したDEM回路は、図19に示すように、奇数時刻には温度計符号の入力信号をエレメント0の側からエレメント7へ向って順に割り当て、偶数時刻には温度計符号の入力信号をエレメント7の側からエレメント0へ向って順に割り当てるように動作する。この実施例においては、8種類の温度計符号信号が均等に現われるとすると、比較的長い時間に着目すると各エレメントの使用回数が平均化され、D/A変換回路17,18を構成する素子の製造バラツキによる変換精度低下を防止することができる。また、本実施例は、前記実施例に比べれば素子の製造バラツキによる変換精度低下の抑制効果は小さいものの、スイッチ回路91を構成するスイッチの数が非常に少なくて済む。
【0060】
なお、本実施例をDEM回路に適用した場合、温度計符号信号の「3」以下の現われる頻度の高いシステムではエレメント3やエレメント4の使用頻度が少なくなり、逆に温度計符号信号の「4」以上の現われる頻度の高いシステムではエレメント3やエレメント4の使用頻度が多くなるという若干の偏りが発生するという不具合があるが、実際のシステムではそれほど問題にはならない。
【0061】
次に、本発明に係るΣ△型A/D変換回路の他の実施例を、図20および図21を用いて説明する。図20および図21に示されているA/D変換回路は、3次のΣ△変調方式とされている。
図20および図21の実施例のΣ△型A/D変換回路は、図5の実施例のΣ△型A/D変換回路を構成する回路に加えて、第2積分回路14と量子化回路15との間に、第2積分回路14の出力と帰還信号Vf3との差分をとる第3加算回路21と、該第3加算回路21の出力の積分を行なう第3積分回路22とが設けられている。これとともに、量子化回路15から出力された帰還信号をアナログ信号に変換する第3のローカルD/A変換回路(DAC3)23と、帰還経路上のDEM回路19の後段に量子化回路15から出力された信号を半周期〜1周期遅延させる遅延手段24とが設けられている。
図20の実施例と図21の実施例との違いは、この遅延手段24をローカルD/A変換回路23と18との間に設けるか、ローカルD/A変換回路18と17との間に設けるかにある。
【0062】
図22には図20の実施例のΣ△型A/D変換回路の動作タイミング例が、また図23には図21の実施例のΣ△型A/D変換回路の動作タイミング例が示されている。
図22より、図20の実施例のΣ△型A/D変換回路においては、第1〜第3の積分回路12,14,22におけるサンプルホールドと積分のタイミングをそれぞれクロックφの半周期分ずつずらすことによって、第1積分器12における積分動作の開始に合わせてローカルD/A変換回路17,18(DAC1,DAC2)の出力値が整定しなければならないタイミングがt3のように、後へ延ばされる。これにより、帰還系の遅延tdが多少大きくてもD/A変換回路17および18での実効処理時間が充分とれるようになる。D/A変換回路23のデータ入力タイミングは半周期前であるが、前述したように、後段のD/A変換回路は前段のD/A変換回路に比べて入力に対して許容される雑音レベル条件が緩いので問題はない。
【0063】
また、図20の実施例とは遅延手段24の位置が異なる図21の実施例のΣ△型A/D変換回路においては、図23より、ローカルD/A変換回路18(DAC2)のデータの入力タイミングが図20の実施例よりも半周期だけ前にずれるが、第1積分器12における積分動作の開始に合わせてローカルD/A変換回路17の出力値が整定しなければならないタイミングがt3のように後へ延ばされることにより、帰還系の遅延tdが多少大きくても少なくともD/A変換回路17での実効処理時間が充分とれるようになる。その結果、回路全体としての変換精度が高くなる。
【0064】
本実施例では、全ての積分器が前段積分器の動作タイミングと半周期ずれた場合を示したが、最も精度を必要とする第1積分器12に対しD/A変換器の実効処理時間が取れるようにすればよく、第1積分器12、第2積分器14の動作タイミングは同じで、第3積分器22のみ半周期ずらすように構成してもよい。
【0065】
次に、上記実施例のΣ△型A/D変換回を、RF−ICに内蔵されて復調回路で復調されたI,Q信号をディジタル信号に変換するA/D変換器として使用したRF−ICおよび無線通信システムの構成例を、図24を用いて説明する。
図24に示されているように、この実施例の無線通信システムは信号電波の送受信用アンテナ100、送受信切り替え用のスイッチ110、受信信号から不要波を除去するSAWフィルタなどからなる高周波フィルタ120a〜120d、送信信号を増幅する高周波電力増幅回路(パワーモジュール)130、受信信号を復調したり送信信号を変調したりする高周波IC200、送信データをI,Q信号に変換したり高周波IC200を制御したりするベースバンド回路300などで構成される。高周波IC200とベースバンド回路300は、各々別個の半導体チップ上に半導体集積回路として構成される。
【0066】
特に制限されるものでないが、この実施例の高周波IC200は、GSM850とGSM900、DCS1800、PCS1900の通信方式による4つの周波数帯の信号の変復調が可能に構成されている。また、これに応じて、高周波フィルタは、GSM850の周波数帯の受信信号を通過させるフィルタ120aと、GSM900の周波数帯の受信信号を通過させるフィルタ120bと、DCS1800の周波数帯の受信信号を通過させるフィルタ120cと、PCS1900の周波数帯の受信信号を通過させるフィルタ120dとが設けられている。
【0067】
本実施例の高周波IC200は、大きく分けると、受信系回路RXCと、送信系回路TXCと、それ以外の制御回路やクロック生成回路など送受信系に共通の回路からなる制御系回路CTCとで構成される。
【0068】
受信系回路RXCは、GSM850、GSM900、DCS1800、PCS1900の各周波数帯の受信信号をそれぞれ増幅するロウノイズアンプ210a,210b,210c,210dと、高周波発振回路(RFVCO)250で生成された局部発振信号φRFを分周し互いに90°位相がずれた直交信号を生成する分周移相回路211a,211bと、ロウノイズアンプ210a,210bで増幅されたGSM系の受信信号に分周移相回路211で生成された直交信号をミキシングすることにより復調およびダウンコンバートを行なうミキサ回路212aと、ロウノイズアンプ210c,210dで増幅されたDCSとPCS系の受信信号に分周移相回路211bで生成された直交信号をミキシングすることにより復調およびダウンコンバートを行なうミキサ回路212bと、復調されたI,Q信号をそれぞれ増幅してベースバンド回路300へ出力する各周波数帯に共通の高利得増幅部220A,220Bと、高利得増幅部220A,220B内のアンプの入力DCオフセットをキャンセルするためのオフセットキャンセル回路213と、高利得増幅部220A,220Bで増幅されたI,Q信号をそれぞれ例えば3ビットのディジタル信号に変換するA/D変換回路231A,231Bと、変換された3ビットの時間軸方向に高い解像度を有する信号を14ビットの電圧方向に高い解像度を有する信号に変換するデシメーションフィルタ回路232A,232Bなどからなる。3ビットの信号を14ビットの低周波数の信号に変換することにより、高周波IC200からベースバンド回路300へのデータの転送速度を落とすことができる。
【0069】
高利得増幅部220Aは、複数のロウパスフィルタLPF11,LPF12,LPF13,LPF14と利得制御アンプPGA11,PGA12,PGA13とが交互に直列形態に接続され、最終段に利得が固定のアンプAMP1が接続された構成を有しており、復調されたI信号を不要波を除去しつつ所定の振幅レベルまで増幅する。高利得増幅部220Bも同様に、複数のロウパスフィルタLPF21,LPF22,LPF23,LPF24と利得制御アンプPGA21,PGA22,PGA23とが交互に直列形態に接続され、最終段に利得が固定のアンプAMP2が接続された構成を有しており、復調されたQ信号を所定の振幅レベルまで増幅する。
【0070】
オフセットキャンセル回路213は、各利得制御アンプPGA11〜PGA23に対応して設けられ入力端子間を短絡した状態におけるそれらの出力電位差をディジタル信号に変換するA/D変換回路(ADC)と、これらのA/D変換回路による変換結果に基づき、対応する利得制御アンプPGA11〜PGA23の出力のDCオフセットを「0」とするような入力オフセット電圧を生成し差動入力に対して与えるD/A変換回路(DAC)と、これらのA/D変換回路(ADC)とD/A変換回路(DAC)を制御してオフセットキャンセル動作を行なわせる制御回路などから構成される。デシメーションフィルタ回路232A,232Bにより変換された14ビットのディジタルI,Q信号は、ディジタルインタフェース回路240を介してベースバンドLSI300へ出力される。
【0071】
送信系回路TXCは、図示しないが、ベースバンド回路300から供給されるI信号とQ信号により変調をかける変調回路と、変調された信号を送信周波数の信号にアップコンバートする周波数変換回路とが設けられている。アップコンバートされた送信信号はパワーモジュール130により電力増幅され、フィルタ141,142により不要波を除去された後、切替えスイッチ110を経てアンテナ100に供給される。特に制限されるものでないが、パワーモジュールには、GSM系の送信信号を増幅するパワーアンプ131と、DCSとPCS系の送信信号を増幅するパワーアンプ132とが設けられている。GSM方式では、送信と受信は時間的に別々に行なわれるので、RF−VCO250を受信系回路RXCと送信系回路TXCの共通の発振回路として使用するように構成することも可能である。
【0072】
また、この実施例の高周波IC200のチップ上には、チップ全体を制御する制御回路260と、基準発振信号φrefを生成する基準発振回路(VCXO)261と、該基準発振信号φrefに基づいて前記A/D変換回路231A,231Bの動作タイミングを与えるクロック信号φや制御回路260により生成されるチップ内部の制御信号の基準となるクロック信号を生成するタイミング発生回路262とが設けられている。
【0073】
なお、基準発振信号φrefは周波数精度の高いことが要求されるため、基準発振回路261には外付けの水晶振動子が接続される。基準発振信号φrefとしては、26MHzあるいは13MHzのような周波数が選択される。かかる周波数の水晶振動子は、汎用部品であり容易に手に入れることができるためである。
【0074】
制御回路260には、ベースバンドLSI300から同期用のクロック信号CLKと、データ信号SDATAと、制御信号としてのロードイネーブル信号LENとが供給されており、制御回路260は、ロードイネーブル信号LENが有効レベルにアサートされると、ベースバンド回路300から伝送されてくるデータ信号SDATAをクロック信号CLKに同期して順次取り込んで、チップ内部の制御信号を生成する。特に制限されるものでないが、データ信号SDATAはシリアルで伝送される。ベースバンドLSI300はマイクロプロセッサなどから構成される。
【0075】
本実施例の高周波IC200においては、受信系回路の最終段にA/D変換回路を設けてI,Q信号をディジタル化するようにしているため、ベースバンド回路300への伝送ロスがなく、S/Nを向上させることができる。また、ディジタルI,Q信号を受けるベースバンド回路300側においてディジタルフィルタ処理などを行なうように構成することで、高利得増幅部220A,220Bではそれほど高いゲインで受信信号を増幅してノイズを除去しなくても精度の高い受信データを得ることができるようになるので、高利得増幅部220A,220Bの多段接続されている利得制御アンプとフィルタを簡略化することができ、これによりチップサイズの低減が可能になる。
【0076】
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。例えば、実施例においては2次および3次のΣ△型A/D変換回路について説明したが、本発明は、4次以上の変調方式のΣ△型A/D変換回路にも適用することができる。また、実施例においては、各積分回路におけるサンプルホールド動作と積分動作が、デューティがほぼ50%のクロック信号φのパルス期間に応じてほぼ同一時間内に実行されるように構成されているが、デューティが50%でないクロック信号を用いて例えば積分動作をサンプルホールド動作よりも長い時間かけて行なうまたはその逆に行なうように構成することも可能である。
【0077】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野である携帯電話機のような無線通信システムに用いられる高周波ICに適用した場合について説明したが、本発明はそれに限定されるものでなく、ΣΔ型A/D変換器やバレルシフタを内蔵した通信用以外の半導体集積回路に対しても本発明を適用することができる。
【0078】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記のとおりである。
すなわち、本発明に従うと、2個以上の積分器を有し各積分器に対応してそれぞれ量子化回路の出力をD/A変換するD/A変換器が設けられた2次以上のΣΔ型A/D変換器において、フィードバック経路での遅延を低減しA/D変換精度を高めることができる。
【0079】
また、本発明に従うと、ΣΔ型A/D変換器のフィードバック経路に設けられるDEM回路を構成するのに好適な信号遅延量の少ないビット変換回路を実現することできる。
【0080】
さらに、受信系回路で復調されたI,Q信号をディジタル信号に変換するA/D変換器を有する通信用半導体集積回路において、I,Q信号を精度良くディジタル信号に変換して出力することができるという効果がある。
【図面の簡単な説明】
【図1】本発明にかかるΣ△変調方式のA/D変換回路の第1の実施例の機能ブロック図である。
【図2】上記ΣΔ型A/D変換器における積分回路の具体例を示す回路図である。
【図3】第1の実施例のΣΔ型A/D変換回路の動作タイミングを示すタイミングチャートである。
【図4】(A)はDEM回路を挿入しないフィードバック系の遅延tdが小さい場合におけるA/D変換回路の出力ディジタル波形を示す波形図、(B)はDEM回路を挿入したフィードバック系の遅延tdが大きい場合におけるA/D変換回路の出力ディジタル波形を示す波形図である。
【図5】本発明にかかるΣ△変調方式のA/D変換回路の第2の実施例の機能ブロック図である。
【図6】(A)はDWAアルゴリズムを適用しない場合のローカルD/A変換回路における入力の例を示す説明図、(B)はDWAアルゴリズムを適用した場合のローカルD/A変換回路における入力の例を示す説明図である。
【図7】2次の変調方式のΣΔ型A/D変換回路が理想的な特性を有すると仮定した場合に、A/D変換出力をDFT解析した結果を、正規化周波数を横軸にとって各周波数での振幅レベルを表わした周波数特性図である。
【図8】DEM回路を設けない2次の変調方式のΣΔ型A/D変換回路において、ローカルD/A変換回路を構成する電流源や容量などの要素が製造バラツキで不整合を起こしている場合に、A/D変換出力をDFT解析した結果を、正規化周波数を横軸にとって各周波数での振幅レベルを表わした周波数特性図である。
【図9】DEM回路を設けた2次の変調方式のΣΔ型A/D変換回路において、ローカルD/A変換回路を構成する電流源や容量などの要素が製造バラツキで不整合を起こしている場合に、A/D変換出力をDFT解析した結果を、正規化周波数を横軸にとって各周波数での振幅レベルを表わした周波数特性図である。
【図10】DEM回路の具体的な構成例を示す回路構成図である。
【図11】(A)〜(C)は図10のスイッチ回路を構成するスイッチマトリックスのオン・オフ状態の例を示す説明図である。
【図12】(A)〜(D)は図10のスイッチ制御回路へ入力される信号の取り出し方(入力信号がない場合を含む)の例を示す説明図である。
【図13】図12(D)の方式に対応したスイッチ制御回路の構成例を示すブロック図である。
【図14】DEM回路を構成するスイッチ回路の他の例を示す構成図である。
【図15】図14のスイッチ回路のビットシフタの具体例を示す回路図である。
【図16】図14のスイッチ回路のスイッチマトリックスの具体例を示す回路図である。
【図17】DEM回路として使用することが可能なビット変換回路の例を示す回路構成図である。
【図18】図17のビット変換回路のスイッチ回路を構成するスイッチのオン・オフ状態の例を示す説明図である。
【図19】図17のビット変換回路をDEM回路として使用した場合の各エレメントの使用状態を、時間を追って示した説明図である。
【図20】本発明にかかるΣ△変調方式のA/D変換回路の第3の実施例の機能ブロック図である。
【図21】図20のΣ△型A/D変換回路の変形例を示すブロック図である。
【図22】図20のΣ△型A/D変換回路の動作タイミングを示すタイミングチャートである。
【図23】図21のΣ△型A/D変換回路の動作タイミングを示すタイミングチャートである。
【図24】実施例のΣ△型A/D変換回を、RF−ICに内蔵されて復調されたI,Q信号をディジタル信号に変換するA/D変換器として使用したRF−ICおよび無線通信システムの構成例を示すブロック図である。
【符号の説明】
11,13,21 加算回路
12,14,22 積分回路
15 量子化回路
16 エンコーダ
17,18,23 ローカルD/A変換回路
19 DEM回路

Claims (7)

  1. 複数の入力線および複数の出力線並びに前記複数の入力線と前記複数の出力線との間に設けられたスイッチ素子を有するスイッチ回路と、
    前記複数の入力線または前記複数の出力線により伝送される信号に基づいて前記スイッチ素子の制御信号を生成する制御回路とを備え、
    前記スイッチ素子のオン、オフ状態に応じて前記複数の入力線より入力された信号を任意のビットだけシフトして前記複数の出力線より出力可能にされたシフト回路を内蔵し、
    前記スイッチ回路の入力側もしくは出力側には、前記複数の入力線により伝送される各信号を他の入力線へ伝達可能にするスイッチ素子または前記複数の出力線により伝送される各信号を他の出力線へ伝達可能にするスイッチ素子からなるローカルシフト回路が設けられ、該ローカルシフト回路を構成するスイッチ素子の制御信号が前記制御回路により生成されるようにされていることを特徴とする半導体集積回路。
  2. 前記複数の入力線より入力される信号は温度計符号信号であり、前記制御回路は、前記複数の入力線より前記シフト回路に入力される信号をエンコードして入力信号のシフト量を決定し、決定したシフト量に応じて前記スイッチ素子の制御信号を生成するようにされていることを特徴とする請求項1に記載の半導体集積回路。
  3. 入力されたアナログ信号と帰還信号との差を求める第1加算回路および該第1加算回路の出力信号を積分する第1積分回路と、該第1積分回路の出力信号と帰還信号との差を求める第2加算回路および該第2加算回路の出力信号を積分する第2積分回路とを有する変調部と、該変調部の出力電圧を量子化する量子化回路と、該量子化回路から出力される複数ビットの信号をアナログ信号に変換して前記第1加算回路に供給される帰還信号を生成する第1ローカルD/A変換回路と、前記量子化回路から出力される複数ビットの信号をアナログ信号に変換して前記第2加算回路に供給される帰還信号を生成する第2ローカルD/A変換回路とを含む2次以上のΣΔ型A/D変換回路であって、
    前記量子化回路から前記第1および第2ローカルD/A変換回路への帰還経路に、複数の入力線および複数の出力線並びに前記複数の入力線と前記複数の出力線との間に設けられたスイッチ素子を有するスイッチ回路と、前記複数の入力線または前記複数の出力線の信号に基づいて前記スイッチ素子の制御信号を生成する制御回路もしくは前記複数の入力線および前記複数の出力線の信号を参照することなく前記スイッチ素子の制御信号を生成する制御回路とを備え、前記スイッチ素子のオン、オフ状態に応じて前記複数の入力線より入力された信号を任意のビットだけシフトして前記複数の出力線より出力可能にされたシフト回路を備えたΣΔ型A/D変換回路を内蔵して、
    前記スイッチ回路の入力側もしくは出力側には、前記複数の入力線の各信号を他の入力線へ伝達可能にするスイッチ素子または複数の出力線の各信号を他の出力線へ伝達可能にするスイッチ素子からなるローカルシフト回路が設けられ、該ローカルシフト回路を構成するスイッチ素子のオン、オフ制御信号が前記制御回路により生成されるようにされていることを特徴とする半導体集積回路。
  4. 前記複数の入力線より入力される信号は温度計符号信号であり、前記制御回路は、前記複数の入力線より入力される信号をエンコードして入力信号のシフト量を決定し、決定したシフト量に応じて前記スイッチ素子の制御信号を生成するようにされていることを特徴とする請求項3に記載の半導体集積回路。
  5. 前記第1積分回路における積分動作と前記第2積分回路における入力信号の取込み動作が並行して行なわれ、前記第1積分回路における入力信号の取込み動作と前記第2積分回路における積分動作と前記量子化回路における量子化動作が並行して行なわれ、前記第1積分回路における積分動作と前記第2積分回路における入力信号の取込み動作と前記第2 ローカルD/A変換回路における変換動作が並行して行なわれるようにされていることを特徴とする請求項4に記載の半導体集積回路。
  6. 前記第2積分回路の後段に、該第2積分回路の出力信号と帰還信号との差を求める第3加算回路および該第3加算回路の出力信号を積分する第3積分回路をさらに備え、少なくとも前記第1加算回路へは前記量子化回路の出力信号が遅延回路により所定時間遅れたタイミングで供給されるようにされていることを特徴とする請求項5に記載の半導体集積回路。
  7. 前記量子化回路は、前記変調部の出力電圧を複数の参照電圧と比較して量子化する複数の電圧比較回路と、該複数の電圧比較回路の出力を保持するラッチ回路とを備え、該ラッチ回路による電圧比較回路の出力の比較動作は最終段積分回路の積分動作と並行して行なわれるようにされていることを特徴とする請求項6に記載の半導体集積回路。
JP2003189973A 2003-07-02 2003-07-02 ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路 Expired - Fee Related JP4270342B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189973A JP4270342B2 (ja) 2003-07-02 2003-07-02 ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189973A JP4270342B2 (ja) 2003-07-02 2003-07-02 ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路

Publications (2)

Publication Number Publication Date
JP2005026998A JP2005026998A (ja) 2005-01-27
JP4270342B2 true JP4270342B2 (ja) 2009-05-27

Family

ID=34187990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189973A Expired - Fee Related JP4270342B2 (ja) 2003-07-02 2003-07-02 ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路

Country Status (1)

Country Link
JP (1) JP4270342B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005020372D1 (de) 2005-09-28 2010-05-12 Fujitsu Ltd Verzerrungskompensationseinrichtung
CN101252347B (zh) * 2008-03-25 2010-04-14 苏州思瑞浦微电子有限公司 基于数字调制的高精度匹配电路
WO2010058492A1 (ja) * 2008-11-20 2010-05-27 パナソニック株式会社 デルタシグマ変調器及び無線通信装置
JP4809450B2 (ja) * 2009-02-26 2011-11-09 パナソニック株式会社 デルタシグマad変調器
JP5129298B2 (ja) * 2010-06-11 2013-01-30 旭化成エレクトロニクス株式会社 DWA(Data−Weighted−Averaging)回路、それを用いたデルタシグマ変調器
WO2012153371A1 (ja) * 2011-05-12 2012-11-15 パナソニック株式会社 Dcオフセット補正機能を備えたデルタシグマa/d変換器

Also Published As

Publication number Publication date
JP2005026998A (ja) 2005-01-27

Similar Documents

Publication Publication Date Title
US9735797B2 (en) Digital measurement of DAC timing mismatch error
US9716509B2 (en) Digital measurement of DAC switching mismatch error
US9660662B2 (en) Successive approximation sigma delta analog-to-digital converters
US6426714B1 (en) Multi-level quantizer with current mode DEM switch matrices and separate DEM decision logic for a multibit sigma delta modulator
US9654135B2 (en) AD converter including a capacitive DAC
Kester Which ADC architecture is right for your application
US8947285B2 (en) ADC with noise-shaping SAR
EP2119005B1 (en) Apparatus comprising frequency selective circuit and method
US7242337B2 (en) Band-pass Δ-Σ AD modulator for AD-converting high frequency narrow-band signal with higher precision and lower power consumption
US20190123751A1 (en) Apparatus for correcting linearity of a digital-to-analog converter
US7760121B2 (en) Dual data weighted average dynamic element matching in analog-to-digital converters
US20190363730A1 (en) Dynamic-zoom analog to digital converter (adc) having a coarse flash adc and a fine passive single-bit modulator
US7034730B2 (en) Pipelined delta sigma modulator analog to digital converter
US20020180629A1 (en) Delta-sigma modulator
JP2006254261A (ja) Σδ型a/d変換回路を内蔵した通信用半導体集積回路
JP4270342B2 (ja) ビット変換回路またはシフト回路を内蔵した半導体集積回路およびa/d変換回路を内蔵した半導体集積回路並びに通信用半導体集積回路
Yang et al. An area-efficient SAR ADC with mismatch error shaping technique achieving 102-dB SFDR 90.2-dB SNDR over 20-kHz bandwidth
US20030222805A1 (en) Apparatus for generating at least one digital output signal representative of an analog signal
EP3675364B1 (en) Mismatch compensation in an analog-to-digital converter using reference path reconfiguration
JP4541060B2 (ja) A/d変換回路を内蔵した半導体集積回路および通信用半導体集積回路
JP4840947B2 (ja) A/d変換回路を内蔵した半導体集積回路
Rivoir Nyquist-Rate Converters: an Overview
Steyaert et al. ADCs and DACs for Software‐Defined Radio
Brannon et al. Data Conversion in Software Defined Radios

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees