JP4269553B2 - Manufacturing method of fuel cell separator - Google Patents

Manufacturing method of fuel cell separator Download PDF

Info

Publication number
JP4269553B2
JP4269553B2 JP2001364060A JP2001364060A JP4269553B2 JP 4269553 B2 JP4269553 B2 JP 4269553B2 JP 2001364060 A JP2001364060 A JP 2001364060A JP 2001364060 A JP2001364060 A JP 2001364060A JP 4269553 B2 JP4269553 B2 JP 4269553B2
Authority
JP
Japan
Prior art keywords
mixture
mold
heating
polymer compound
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364060A
Other languages
Japanese (ja)
Other versions
JP2003168444A (en
Inventor
川島  勉
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001364060A priority Critical patent/JP4269553B2/en
Publication of JP2003168444A publication Critical patent/JP2003168444A/en
Application granted granted Critical
Publication of JP4269553B2 publication Critical patent/JP4269553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、黒鉛粉末と高分子化合物の混合物からなる成形品の製造方法及び製造装置に関するものであり、特に固体高分子型燃料電池に使用されるセパレータの製造方法に関するものである。
【0002】
【従来の技術】
燃料電池用セパレータは気体不透過性に優れ、高い導電性を有し、かつ耐食性、強度にも優れることが要求される。従来より、燃料電池のセパレータとして、黒鉛焼結体に樹脂を含浸させて得られる不浸透黒鉛を材料として製造したものや、黒鉛粉末と樹脂を混合、成形した黒鉛/樹脂成形品等が用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、前者は2000℃以上の高温熱処理を必要とし、更に高温熱処理時の収縮のため、切削加工が必要となるため、製造にコストがかかる。また、後者は、高い導電性を得るために黒鉛粉末の配合比を高くしているため、材料の流れ性が悪く、成形精度が悪いという問題点がある。更に、高分子化合物として熱可塑性樹脂を用いた場合は、金型の温度を混合物の供給温度から熱可塑性樹脂の融点以上の温度に上げて圧縮し、その後、金型の温度を熱可塑性樹脂の融点以下の温度に下げてセパレータを取り出すため、成形時間が長いという問題点がある。
【0004】
本発明は、上記課題を解決するものであり、黒鉛粉末の配合比が高く、流れ性が悪い黒鉛/樹脂コンパウンドにおいて、成形時間が短く、成形精度の良い燃料電池用セパレータの製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に記載の燃料電池用セパレータの製造方法は、上下の金型のうち、黒鉛粉末70〜90質量%と高分子化合物30〜10質量%との混合物を下金型内に供給し、前記下金型温度を一定とし前記上下金型を開いた状態で前記上下金型の間に加熱装置を挿入した後、前記加熱装置を加熱することで前記高分子化合物を溶融し、前記加熱装置を抜いた後前記金型を閉じて固化させることにより、前記混合物を所定の形状に成形することを特徴とする。
【0007】
また、本発明の請求項に記載の燃料電池用セパレータの製造方法は、請求項1に記載の構成において、前記加熱装置は、高周波加熱装置であって、前記混合物の加熱を、高周波を照射し前記混合物中の黒鉛粉末を誘導加熱することにより行うことを特徴とする。
【0008】
また、本発明の請求項に記載の燃料電池用セパレータの製造方法は、請求項1に記載の構成において、前記加熱装置は、マイクロ波加熱装置であって、前記混合物の加熱を、マイクロ波を照射し前記混合物中の高分子化合物を誘電加熱にすることにより行うことを特徴とする。
【0009】
また、本発明の請求項に記載の燃料電池用セパレータの製造方法は、請求項1に記載の構成において、前記加熱装置は、赤外線加熱装置であって、前記混合物の加熱を、赤外線により行うことを特徴とする。
【0010】
上記各構成により、本発明においては金型を一定温度とし、混合物のみを加熱して、この混合物中の熱可塑性樹脂の融点以上の温度に昇温し、圧縮成形するため、混合物自体の昇温、冷却の時間が短くなり、成形時間を短縮することができる。
【0013】
また、本発明の請求項5に記載の燃料電池用セパレータの製造方法は、上下の金型のうち、黒鉛粉末70〜90質量%と高分子化合物30〜10質量%との混合物を下金型内に供給し、前記上下金型を閉じた状態で前記混合物自体を超音波振動子により加熱し、前記混合物を冷却して所定の形状に成形することを特徴とする。
【0016】
上記各構成において、金型を閉じた状態で混合物を加熱するため、成形精度の良いセパレータを得ることができる。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態について述べる。
【0018】
(実施の形態1)
本発明の第1の実施形態は、黒鉛粉末と高分子化合物との混合物を金型に供給し、この混合物を加熱して高分子化合物を溶融、固化させることにより、所定の形状に成形するもので、これにより成形時間を短縮することができるものである。
【0019】
黒鉛粉末と高分子化合物の混合物において、黒鉛粉末は人造黒鉛、天然黒鉛のいずれかを用いることができる。黒鉛粉末の粒径は特に規定されるものではないが、高導電性を得るために平均粒径10μm〜200μm、好ましくは30μm〜100μmのものを用いることができる。高分子化合物としては、耐熱性、耐薬品性の点から、PPS、PPE、PBTなどの熱可塑性樹脂を用いることができる。
【0020】
黒鉛粉末と高分子化合物の配合比は導電性の点から、黒鉛粉末70〜90質量%、高分子化合物30〜10質量%のものを用いることができる。黒鉛粉末が70質量%より少ない場合、セパレータの体積固有抵抗が大きくなり、電池性能が悪くなる。また、黒鉛粉末が90wt%より多い場合、セパレータの強度が弱くなる。
【0021】
金型の形態として、上型と下型からなり、その両方あるいは片方にガス流路パターンが形成されている。金型の材質として、金属、セラミックス、グラファイト等を使用することができる。特に、金型強度、耐摩耗性の点から、金属を用いることが好ましい。
【0022】
高分子化合物として熱可塑性樹脂を用いた場合の成形条件に関して、時間経過に対する金型の温度、又は混合物の温度の変化を表す図1を用いて説明する。図1において、1は従来の製造方法における金型の温度変化を表す曲線、2は従来の製造方法における混合物の温度変化を表す曲線、3は本実施形態における金型の温度変化を表す線、4は本実施形態における混合物の温度変化を表す曲線、5は熱可塑性樹脂の融点温度を示す。
【0023】
図1に示すように、本実施形態では金型を一定温度とし、混合物のみを加熱してこの混合物中の熱可塑性樹脂の融点以上の温度に昇温し、圧縮成形するため、混合物自体の昇温、冷却の時間が短くなり、成形時間を短縮することができる。
【0024】
(実施の形態2)
本発明の第2の実施形態は、第1の実施形態同様、黒鉛粉末と高分子化合物との混合物を金型に供給し、ここでは特に金型6を開いた状態で前記混合物自体を加熱し、金型を閉じて所定の形状に成形するもので、これにより、混合物自体を容易に昇温することができる。
【0025】
図2を用いて本実施形態の燃料電池用セパレータの製造方法について説明する。図2(a)に示すように、金型6を開いた状態で混合物7を金型6内に供給する。その後、図2(b)に示すようにスキージ8で混合物7を平坦化した後、図2(c)に示すように加熱装置9を上型と下型の間で、混合物7の上方に進入せしめる。混合物7が所定の温度に加熱された後、図2(d)に示すように加熱装置9を抜き、金型6を閉じて所定の圧力で成形する。所定の圧力を保持した状態で冷却、固化した後、金型6を開き、成形品を取り出す。このように、金型6を開いた状態で混合物7を加熱するため、容易に混合物7を昇温させることができる。
【0026】
(実施の形態3)
本発明の第3の実施形態は、第2の実施形態同様、黒鉛粉末と高分子化合物との混合物を金型に供給し、金型を開いた状態で、ここでは高周波により前記混合物中の黒鉛粉末を誘導加熱した後、金型を閉じて所定の形状に成形するもので、これにより、混合物を短時間で加熱することができるため、成形時間が短くなる。更に、黒鉛粉末を加熱するため、この作用、効果は高分子化合物の種類によらない。
【0027】
図3は高周波加熱装置を用いた混合物の成形装置を示すものである。図3において、10は高周波加熱装置としての多巻コイルで、このコイル10からの高周波により、黒鉛粉末に渦電流が流れ、その抵抗損失によって発熱する。照射する高周波の周波数としては、例えば、1kHz〜300MHzの周波数を用いることができる。黒鉛粉末と高分子化合物の混合物7を金型6に供給し、コイル10からの高周波を混合物7に照射して、混合物7中の黒鉛粉末を誘導加熱することにより、高分子化合物を溶融し、その後、金型6を閉じて成形する。高周波は、混合物7中の黒鉛粉末自体を誘導加熱するため、高分子化合物の種類によらず、混合物7を加熱することができる。
【0028】
(実施の形態4)
本発明の第4の実施形態は、第3の実施形態同様、黒鉛粉末と高分子化合物との混合物を金型に供給し、金型を開いた状態で、ここではマイクロ波により前記混合物中の高分子化合物を誘電加熱した後、金型を閉じて所定の形状に成形するもので、これにより、効率的に短時間に均一に高分子化合物を溶融することができる。
【0029】
図4はマイクロ波加熱装置20を用いた混合物の成形装置を示すものである。マイクロ波発振器14から照射されたマイクロ波は導波管11を通って混合物7に照射される。導波管11の途中には反射電力を計測するパワーモニター12と反射電力を吸収させるアイソレータ13が付属しており、大出力のマイクロ波でも安定して高効率な照射を得ることができる。マイクロ波の照射により、高分子化合物が誘電加熱されるため、短時間に均一に高分子化合物を溶融することができ、成形時間を短くできる。
【0030】
マイクロ波としては、例えば、300MHz〜30GHzの周波数のマイクロ波を用いることができる。黒鉛粉末と高分子化合物の混合物7を金型6内に供給し、マイクロ波を混合物7に照射して、高分子化合物を誘電加熱し、高分子化合物が溶融した後、金型6を閉じて成形する。マイクロ波により、高分子化合物自体が誘電加熱されるため、上記高周波による誘導加熱方式と比較してより短時間に均一に高分子化合物を溶融することができる。ただし、高分子化合物の種類により、マイクロ波で加熱されにくいものもあり、その場合は上記第3の実施形態における高周波による誘導加熱方式が有効である。
【0031】
(実施の形態5)
本発明の第5の実施形態は、第3、第4の実施形態同様、黒鉛粉末と高分子化合物との混合物を金型に供給し、金型を開いた状態で、ここでは赤外線により前記混合物自体を加熱した後、金型を閉じて所定の形状に成形するもので、これにより、混合物を均一に加熱することができ、成形精度のよいセパレータを得ることができる。
【0032】
図5は赤外線加熱装置を用いた混合物の成形装置を示すものである。図5において、15は赤外線加熱装置としての赤外線照射装置で、混合物7中の黒鉛粉末と高分子化合物を同時に加熱することができる。赤外線の照射には、遠赤外線ヒーター、赤外線ランプ等を用いることができる。黒鉛粉末と高分子化合物の混合物7を金型6内に供給し、赤外線を照射して高分子化合物が溶融した後、金型6を閉じて成形する。赤外線を用いることにより、上記第3、第4の実施形態における高周波やマイクロ波による加熱方式と比較して、加熱時間は長くなるが、黒鉛粉末と高分子化合物を同時に加熱することができるため、流動性の悪いサンプルでもより精度良く、成形することが可能となる。
【0033】
(実施の形態6)
本発明の第6の実施形態は、上記第1乃至第5の実施形態同様、黒鉛粉末と高分子化合物との混合物を金型に供給し、ここでは金型を閉じた状態で前記混合物自体を加熱して所定の形状に成形するもので、これにより、成形精度の良いセパレータを得ることができる。図6を用いて本実施形態の燃料電池用セパレータの製造方法について説明する。
【0034】
図6(a)に示すように金型6を開いた状態で混合物7を金型に供給する。その後、図6(b)に示すようにスキージ8で混合物7を平坦化した後、図6(c)に示すように金型6を閉じて、所定の圧力をかけながら混合物7を所定の温度にまで加熱する。図6(d)に示すように所定の圧力を保持した状態で冷却、固化した後、金型6を開き、成形品を取り出す。このように、金型6を閉じた状態で混合物を加熱するため、成形精度の良いセパレータを得ることができる。
【0035】
(実施の形態7)
本発明の第7の実施形態は、上記第6の実施形態同様、黒鉛粉末と高分子化合物との混合物7を金型に供給した後、金型を閉じた状態とし、本実施形態では混合物7に通電することにより混合物7自体を加熱して所定の形状に成形するものである。図7は通電加熱による混合物の成形装置を示すものである。金型6の側面に通電するための端子17を設け、通電装置16から混合物7に通電する。
【0036】
金型6はセラミックス等の絶縁材料を用いるか、あるいは金型表面に絶縁材料を形成する。混合物7に通電する場合、通電する電力量は作製するセパレータの大きさ、通電時間、成形温度、混合物7の抵抗率によって決定する。金型6には、両面にセパレータのガス流路形状に対応した図示しない溝形状のガス流路パターンが設けられており、混合物7の上面から下面に通電すると、前記ガス流路パターンのため均一に混合物7に電流が流れず、加熱ムラをおこしやすい。
【0037】
そこで、混合物7への通電は、混合物7の面方向に電流が流れるように金型6に電極部17を設置する。この通電加熱方式によれば、金型6を閉じて圧力を加えながら混合物7を加熱、溶融できるため、金型6を開いた状態で混合物7を加熱、溶融する方式と比較して、成形精度の良いセパレータを得ることができる。更に、従来の金型からの熱伝導で混合物を加熱する方式と比較して、成形時間を短縮することが可能となる。
【0038】
(実施の形態8)
本発明の第8の実施形態は、上記第6、第7の実施形態同様、黒鉛粉末と高分子化合物との混合物を固体状態で金型に供給した後、金型を閉じた状態とし、金型を通じて混合物に超音波振動を付与し、混合物自体を加熱して所定の形状に成形するものである。図8は超音波振動を用いた成形装置を示すものである。超音波振動子18から超音波を照射し、L−L変換体19で方向を変換し、混合物7に振動エネルギーを与える。超音波振動を用いる場合、その振動周波数は1kHz〜100kHzが好ましく、振幅としては大きい方がその効果を十分発揮しやすいが、超音波振動子18の能力、金型6の疲労度に合わせて設定する。超音波振動は、金型6のキャビティの形成位置と共振の腹部とを一致させるようにする。また、共振の節部を金型保持部と一致させるようにすることにより、金型保持部での振動を少なくすることができる。
【0039】
超音波振動は、少なくとも黒鉛粉末と高分子化合物の混合物7を金型に供給し、金型6を閉じた時点から開くまでの時間、金型6全体に付与することが必要である。その際、金型6自体の温度も高分子化合物にあわせてコントロールすることが望ましい。超音波を与えることにより、混合物7自体が振動し、流動性が向上するため、成形精度が向上するとともに、混合物7の摩擦熱により混合物7を昇温させるため、加熱、冷却にかかる時間が短くなり、成形時間を短縮することができる。
【0040】
【実施例】
以下に本発明の実施例について述べる。
【0041】
(実施例1)
平均粒径50μmの人造黒鉛粉末(エスイーシー製SGBグレード)とPPS樹脂粉末(東レ製トレリナ粉末)を人造黒鉛粉末80質量%、PPS樹脂粉末20質量%の割合で混合し、図9(a)に示すように混合物7を金型6内に粉末状態で供給した。金型6の温度は150℃で一定に保っている。次に、図9(b)に示すようにスキージ8で混合物7を平坦化し、図9(c)に示すように金型を開いた状態で、コイル10からなる高周波発振装置21(富士電波工機製)を進入せしめ、混合物7の上部から周波数40MHzの高周波を照射した。混合物7の温度が350℃に達したとき、図9(d)に示すように高周波発振装置21を抜き、金型6を閉じて400kgf/cm2の圧力で加圧した。30秒後、金型6を開き成形品を取り出した。得られた成形体を用いた場合の電池特性は、従来のセパレータと同等の特性を示した。
【0042】
(実施例2)
平均粒径50μmの人造黒鉛粉末(エスイーシー製SGBグレード)とPPS樹脂粉末(東レ製トレリナ粉末)を人造黒鉛粉末80質量%、PPS樹脂粉末20質量%の割合で混合し、図10(a)に示すように混合物7を金型6内に粉末状態で供給した。金型6の温度は150℃で一定に保っている。次に、図10(b)に示すようにスキージ8で混合物7を平坦化し、図10(c)に示すように金型6を開いた状態で、マイクロ波発信器14(マグネトロン)を備えたマイクロ波加熱装置20を挿入し、混合物7の上部から周波数2450MHzのマイクロ波を照射した。混合物7の温度が350℃に達したとき、図10(d)に示すようにマイクロ波加熱装置20を抜き、金型6を閉じて400kg/cm2の圧力で加圧した。30秒後、金型6を開き成形品を取り出した。得られた成形体を用いた場合の電池特性は、従来のセパレータと同等の特性を示した。
【0043】
(実施例3)
平均粒径50μmの人造黒鉛粉末(エスイーシー製SGBグレード)とPPS樹脂粉末(東レ製トレリナ粉末)を人造黒鉛粉末80質量%、PPS樹脂粉末20質量%の割合で混合し、図11(a)に示すように混合物7を金型6内に粉末状態で供給した。金型温度は150℃で一定に保っている。次に、図11(b)に示すようにスキージ8で混合物7を平坦化し、図11(c)に示すように金型6を開いた状態で、遠赤外線ランプを備えた赤外線照射装置15を進入せしめ、混合物7の上部から加熱した。混合物7の温度が350℃に達したとき、図11(d)に示すように赤外線照射装置15を抜き、金型6を閉じて400kg/cm2の圧力で加圧した。30秒後、金型6を開き成形品を取り出した。得られた成形体を用いた場合の電池特性は、従来のセパレータと同等の特性を示した。
【0044】
(実施例4)
平均粒径50μmの人造黒鉛粉末(エスイーシー製SGBグレード)とPPS樹脂粉末(東レ製トレリナ粉末)を人造黒鉛粉末80質量%、PPS樹脂粉末20質量%の割合で混合し、図12(a)に示すように混合物7を金型6に粉末状態で供給した。金型温度は150℃で一定に保っている。次に、図12(b)に示すようにスキージ8で混合物7を平坦化し、図12(c)に示すように金型6を閉じて400kg/cm2の圧力で加圧しながら、金型6に設けた電極17を通して通電装置16で混合物7に通電した後、図12(d)に示すように通電を止めて同じ圧力で60秒保持した。得られた成形体を用いた場合の電池特性は、従来のセパレータと同等の特性を示した。
【0045】
(実施例5)
平均粒径50μmの人造黒鉛粉末(エスイーシー製SGBグレード)とPPS樹脂粉末(東レ製トレリナ粉末)を人造黒鉛粉末80質量%、PPS樹脂粉末20質量%の割合で混合し、図13(a)に示すように混合物7を金型6内に粉末状態で供給した。次に、図13(b)に示すようにスキージ8で混合物7を平坦化し、その時の金型温度は200℃であった。図13(c)に示すように金型6を閉じて400kg/cm2の圧力で加圧しながら、金型6を280℃まで昇温するとともに、金型6を通して超音波振動子18(精電舎電子工業製)から19kHzの超音波をL−L変換体19を通して50秒間付与した。その後、超音波を止めて同じ圧力で60秒保持しながら、金型6を200℃まで冷却した。得られた成形体を用いた場合の電池特性は、従来のセパレータと同等の特性を示した。
【0046】
【発明の効果】
本発明によれば、黒鉛粉末の配合比が高く、流れ性が悪い黒鉛/樹脂コンパウンドを用いて、成形時間が短く、成形精度の良い燃料電池用セパレータの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態における金型及び混合物の温度変化を示す図
【図2】(a)本発明の第2の実施形態における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)加熱装置を進入させた状態を示す図
(d)金型を閉じて成形する状態を示す図
【図3】本発明の第3の実施形態における高周波加熱装置を用いた成形装置の概略図
【図4】本発明の第4の実施形態におけるマイクロ波加熱装置を用いた成形装置の概略図
【図5】本発明の第5の実施形態における赤外線加熱装置を用いた成形装置の概略図
【図6】(a)本発明の第6の実施形態における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)金型を閉じる状態を示す図
(d)金型を閉じて圧力を維持する状態を示す図
【図7】本発明の第7の実施形態における通電加熱による成形装置の概略図
【図8】本発明の第8の実施形態における超音波振動を用いた成形装置の概略図
【図9】(a)本発明の実施例1における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)高周波発信装置を進入させ混合物に高周波を照射する状態を示す図
(d)金型を閉じて加圧し、成形する状態を示す図
【図10】(a)本発明の実施例2における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)マイクロ波加熱装置を進入させ混合物にマイクロ波を照射する状態を示す図
(d)金型を閉じて加圧し、成形する状態を示す図
【図11】(a)本発明の実施例3における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)赤外線照射装置を進入させ混合物を加熱する状態を示す図
(d)金型を閉じて加圧し、成形する状態を示す図
【図12】(a)本発明の実施例4における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)金型内の混合物に通電する状態を示す図
(d)金型を閉じて圧力を維持する状態を示す図
【図13】(a)本発明の実施例5における金型内への混合物供給状態を示す図
(b)本図(a)に示す金型内の混合物を平坦化した状態を示す図
(c)金型を閉じて超音波振動を付与する状態を示す図
【符号の説明】
1 従来の成形における金型の温度変化を表す曲線
2 従来の成形における混合物の温度変化を表す曲線
3 本発明の実施形態1における金型の温度変化を表す線
4 本発明の実施形態1における混合物の温度変化を表す曲線
5 熱可塑性樹脂の融点
6 金型
7 混合物
9 加熱装置
10 コイル(高周波加熱装置)
15 赤外線照射装置
16 通電装置
18 超音波振動子
20 マイクロ波加熱装置
21 高周波発信装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for producing a molded article comprising a mixture of graphite powder and a polymer compound, and more particularly to a method for producing a separator used in a polymer electrolyte fuel cell.
[0002]
[Prior art]
Fuel cell separators are required to have excellent gas impermeability, high electrical conductivity, and excellent corrosion resistance and strength. Conventionally, as separators for fuel cells, those manufactured using impregnated graphite obtained by impregnating a graphite sintered body with resin, graphite / resin molded products obtained by mixing and molding graphite powder and resin, etc. have been used. ing.
[0003]
[Problems to be solved by the invention]
However, the former requires high-temperature heat treatment at 2000 ° C. or higher, and further requires cutting because of shrinkage during the high-temperature heat treatment, which is expensive to manufacture. Further, the latter has a problem that since the blending ratio of the graphite powder is increased in order to obtain high conductivity, the flowability of the material is poor and the molding accuracy is poor. Further, when a thermoplastic resin is used as the polymer compound, the mold temperature is increased from the supply temperature of the mixture to a temperature equal to or higher than the melting point of the thermoplastic resin, and then the mold temperature is changed to that of the thermoplastic resin. Since the separator is taken out at a temperature lower than the melting point, there is a problem that the molding time is long.
[0004]
The present invention solves the above-mentioned problems, and provides a method for producing a separator for a fuel cell having a high molding accuracy and a short molding time in a graphite / resin compound having a high blending ratio of graphite powder and poor flowability. For the purpose.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a method for producing a fuel cell separator according to claim 1 of the present invention comprises: 70 to 90% by mass of graphite powder and 30 to 10% by mass of a polymer compound among upper and lower molds. The mixture is fed into the lower mold, the heating apparatus is heated after inserting the heating device between the upper and lower molds with the lower mold temperature fixed and the upper and lower molds opened. The mixture is formed into a predetermined shape by melting the polymer compound, removing the heating device, and then closing and solidifying the mold.
[0007]
A method of manufacturing a fuel cell separator according to claim 2 of the present invention, in the structure according to claim 1, wherein the heating apparatus is a high-frequency heating apparatus, the heating of said mixture, a high-frequency characterized Rigyo Ukoto by that irradiated inductively heating the graphite powder in the mixture.
[0008]
Further, the method of manufacturing a fuel cell separator according to claim 3 of the present invention, in the structure according to claim 1, wherein the heating device is a microwave heating apparatus, the heating of said mixture, Ma Micro the polymer compound in the mixture is irradiated with a wave, characterized in Rigyo Ukoto by the fact that dielectric heating.
[0009]
Further, the method of manufacturing a fuel cell separator according to claim 4 of the present invention, in the structure according to claim 1, wherein the heating device is an infrared heating apparatus, the heating of the mixture, the infrared characterized by Rigyo Ukoto.
[0010]
According to each of the above configurations, in the present invention, the mold is kept at a constant temperature, only the mixture is heated, the temperature is raised to a temperature equal to or higher than the melting point of the thermoplastic resin in the mixture, and compression molding is performed. The cooling time is shortened and the molding time can be shortened.
[0013]
In the method for producing a fuel cell separator according to claim 5 of the present invention, a mixture of graphite powder of 70 to 90% by mass and polymer compound of 30 to 10 % by mass of the upper and lower molds is used as the lower mold. The mixture itself is heated by an ultrasonic vibrator while the upper and lower molds are closed, and the mixture is cooled to be molded into a predetermined shape.
[0016]
In each said structure, since a mixture is heated in the state which closed the metal mold | die, a separator with a sufficient shaping | molding precision can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0018]
(Embodiment 1)
In the first embodiment of the present invention, a mixture of graphite powder and a polymer compound is supplied to a mold, and the mixture is heated to melt and solidify the polymer compound, thereby forming a predetermined shape. Thus, the molding time can be shortened.
[0019]
In the mixture of graphite powder and polymer compound, the graphite powder can be either artificial graphite or natural graphite. The particle size of the graphite powder is not particularly defined, but in order to obtain high conductivity, those having an average particle size of 10 μm to 200 μm, preferably 30 μm to 100 μm can be used. As the polymer compound, thermoplastic resins such as PPS, PPE, and PBT can be used from the viewpoint of heat resistance and chemical resistance.
[0020]
The compounding ratio of the graphite powder and the polymer compound may be 70 to 90% by mass of graphite powder and 30 to 10% by mass of polymer compound from the viewpoint of conductivity. When the graphite powder is less than 70% by mass , the volume specific resistance of the separator increases and the battery performance deteriorates. Moreover, when there are more graphite powders than 90 wt%, the intensity | strength of a separator will become weak.
[0021]
The mold is composed of an upper mold and a lower mold, and a gas flow path pattern is formed on both or one of them. Metal, ceramics, graphite, etc. can be used as the material of the mold. In particular, it is preferable to use a metal from the viewpoint of mold strength and wear resistance.
[0022]
The molding conditions when a thermoplastic resin is used as the polymer compound will be described with reference to FIG. 1 showing changes in the mold temperature or the mixture temperature over time. In FIG. 1, 1 is a curve representing the temperature change of the mold in the conventional manufacturing method, 2 is a curve representing the temperature change of the mixture in the conventional manufacturing method, 3 is a line representing the temperature change of the mold in this embodiment, 4 is a curve representing the temperature change of the mixture in the present embodiment, and 5 is the melting point temperature of the thermoplastic resin.
[0023]
As shown in FIG. 1, in this embodiment, the mold is kept at a constant temperature, only the mixture is heated to a temperature higher than the melting point of the thermoplastic resin in the mixture, and compression molding is performed. The time for temperature and cooling is shortened, and the molding time can be shortened.
[0024]
(Embodiment 2)
In the second embodiment of the present invention, as in the first embodiment, a mixture of graphite powder and a polymer compound is supplied to a mold, and in particular, the mixture itself is heated with the mold 6 opened. The mold is closed and molded into a predetermined shape, whereby the temperature of the mixture itself can be easily raised.
[0025]
The manufacturing method of the separator for fuel cells of this embodiment is demonstrated using FIG. As shown in FIG. 2A, the mixture 7 is supplied into the mold 6 with the mold 6 opened. Thereafter, the mixture 7 is flattened with a squeegee 8 as shown in FIG. 2 (b), and then the heating device 9 enters between the upper mold and the lower mold above the mixture 7 as shown in FIG. 2 (c). Let me. After the mixture 7 is heated to a predetermined temperature, the heating device 9 is removed as shown in FIG. 2D, the mold 6 is closed, and molding is performed at a predetermined pressure. After cooling and solidifying while maintaining a predetermined pressure, the mold 6 is opened and the molded product is taken out. Thus, since the mixture 7 is heated in a state where the mold 6 is opened, the temperature of the mixture 7 can be easily raised.
[0026]
(Embodiment 3)
In the third embodiment of the present invention, as in the second embodiment, a mixture of graphite powder and a polymer compound is supplied to a mold, and the mold is opened. After the powder is induction-heated, the mold is closed and molded into a predetermined shape. This allows the mixture to be heated in a short time, thereby shortening the molding time. Further, since the graphite powder is heated, this action and effect does not depend on the type of polymer compound.
[0027]
FIG. 3 shows an apparatus for forming a mixture using a high-frequency heating device. In FIG. 3, reference numeral 10 denotes a multi-turn coil as a high-frequency heating device. Due to the high frequency from the coil 10, an eddy current flows through the graphite powder, and heat is generated by the resistance loss. For example, a frequency of 1 kHz to 300 MHz can be used as the frequency of the high frequency to be irradiated. The mixture 7 of the graphite powder and the polymer compound is supplied to the mold 6, the high frequency from the coil 10 is irradiated to the mixture 7, and the graphite powder in the mixture 7 is induction-heated to melt the polymer compound, Thereafter, the mold 6 is closed and molded. Since the high frequency induction heats the graphite powder itself in the mixture 7, the mixture 7 can be heated regardless of the type of the polymer compound.
[0028]
(Embodiment 4)
In the fourth embodiment of the present invention, as in the third embodiment, a mixture of graphite powder and a polymer compound is supplied to a mold, and the mold is opened. After the dielectric heating of the polymer compound, the mold is closed and molded into a predetermined shape, whereby the polymer compound can be efficiently and uniformly melted in a short time.
[0029]
FIG. 4 shows an apparatus for forming a mixture using the microwave heating apparatus 20. The microwave irradiated from the microwave oscillator 14 is irradiated to the mixture 7 through the waveguide 11. A power monitor 12 that measures the reflected power and an isolator 13 that absorbs the reflected power are attached in the middle of the waveguide 11, and high-efficiency microwaves can be stably and highly efficiently irradiated. Since the polymer compound is dielectrically heated by the microwave irradiation, the polymer compound can be uniformly melted in a short time, and the molding time can be shortened.
[0030]
As the microwave, for example, a microwave having a frequency of 300 MHz to 30 GHz can be used. A mixture 7 of graphite powder and a polymer compound is supplied into the mold 6, microwaves are irradiated to the mixture 7, the polymer compound is dielectrically heated, and after the polymer compound is melted, the mold 6 is closed. Mold. Since the polymer compound itself is dielectrically heated by the microwave, the polymer compound can be uniformly melted in a shorter time than the induction heating method using the high frequency. However, some polymer compounds are difficult to be heated by microwaves, and in that case, the induction heating method using high frequency in the third embodiment is effective.
[0031]
(Embodiment 5)
In the fifth embodiment of the present invention, as in the third and fourth embodiments, a mixture of graphite powder and a polymer compound is supplied to a mold and the mold is opened. After heating itself, the mold is closed and molded into a predetermined shape, whereby the mixture can be heated uniformly and a separator with good molding accuracy can be obtained.
[0032]
FIG. 5 shows an apparatus for forming a mixture using an infrared heating device. In FIG. 5, 15 is an infrared irradiation device as an infrared heating device, which can simultaneously heat the graphite powder and the polymer compound in the mixture 7. A far infrared heater, an infrared lamp, etc. can be used for infrared irradiation. A mixture 7 of graphite powder and a polymer compound is supplied into a mold 6 and irradiated with infrared rays to melt the polymer compound, and then the mold 6 is closed and molded. By using infrared rays, the heating time is longer as compared with the heating method by the high frequency or microwave in the third and fourth embodiments, but the graphite powder and the polymer compound can be heated at the same time. Even samples with poor fluidity can be molded with higher accuracy.
[0033]
(Embodiment 6)
In the sixth embodiment of the present invention, as in the first to fifth embodiments, a mixture of graphite powder and a polymer compound is supplied to a mold, and the mixture itself is kept in a state where the mold is closed. By heating and forming into a predetermined shape, a separator with good forming accuracy can be obtained. The manufacturing method of the separator for fuel cells of this embodiment is demonstrated using FIG.
[0034]
As shown in FIG. 6A, the mixture 7 is supplied to the mold with the mold 6 opened. Then, after flattening the mixture 7 with the squeegee 8 as shown in FIG. 6B, the mold 6 is closed as shown in FIG. 6C, and the mixture 7 is kept at a predetermined temperature while applying a predetermined pressure. Heat to. As shown in FIG. 6 (d), after cooling and solidifying while maintaining a predetermined pressure, the mold 6 is opened and the molded product is taken out. Thus, since the mixture is heated in a state where the mold 6 is closed, a separator with good molding accuracy can be obtained.
[0035]
(Embodiment 7)
In the seventh embodiment of the present invention, as in the sixth embodiment, the mixture 7 of graphite powder and polymer compound is supplied to the mold and then the mold is closed. In the present embodiment, the mixture 7 The mixture 7 itself is heated by being energized to be molded into a predetermined shape. FIG. 7 shows an apparatus for forming a mixture by electric heating. A terminal 17 for energizing the mold 6 is provided, and the mixture 7 is energized from the energizing device 16.
[0036]
The mold 6 uses an insulating material such as ceramics or forms an insulating material on the mold surface. When the mixture 7 is energized, the amount of power to be energized is determined by the size of the separator to be produced, the energization time, the molding temperature, and the resistivity of the mixture 7. The mold 6 is provided with a groove-shaped gas flow path pattern (not shown) corresponding to the gas flow path shape of the separator on both sides. When the mixture 7 is energized from the upper surface to the lower surface, the gas flow path pattern is uniform. In addition, current does not flow through the mixture 7 and heating unevenness is likely to occur.
[0037]
Therefore, for energization of the mixture 7, the electrode portion 17 is installed on the mold 6 so that a current flows in the surface direction of the mixture 7. According to this energization heating method, since the mixture 7 can be heated and melted while the mold 6 is closed and pressure is applied, the molding accuracy is higher than the method of heating and melting the mixture 7 with the mold 6 opened. A good separator can be obtained. Furthermore, the molding time can be shortened as compared with a method in which the mixture is heated by heat conduction from a conventional mold.
[0038]
(Embodiment 8)
As in the sixth and seventh embodiments, the eighth embodiment of the present invention supplies a mixture of graphite powder and a polymer compound to a mold in a solid state, then closes the mold, Ultrasonic vibration is applied to the mixture through a mold, and the mixture itself is heated to be molded into a predetermined shape. FIG. 8 shows a molding apparatus using ultrasonic vibration. Ultrasonic waves are irradiated from the ultrasonic vibrator 18, the direction is changed by the LL converter 19, and vibration energy is given to the mixture 7. When ultrasonic vibration is used, the vibration frequency is preferably 1 kHz to 100 kHz, and the larger the amplitude, the more easily the effect is exhibited. However, the vibration frequency is set according to the ability of the ultrasonic vibrator 18 and the fatigue level of the mold 6. To do. The ultrasonic vibration causes the formation position of the cavity of the mold 6 to coincide with the resonance abdomen. Further, by causing the resonance node to coincide with the mold holding part, vibrations in the mold holding part can be reduced.
[0039]
It is necessary that ultrasonic vibration is applied to the entire mold 6 for a time from when the mold 6 is closed to when it is opened by supplying at least the mixture 7 of the graphite powder and the polymer compound to the mold. At that time, it is desirable to control the temperature of the mold 6 itself according to the polymer compound. By applying ultrasonic waves, the mixture 7 itself vibrates and fluidity is improved, so that the molding accuracy is improved and the temperature of the mixture 7 is raised by the frictional heat of the mixture 7, so that the time required for heating and cooling is short. Thus, the molding time can be shortened.
[0040]
【Example】
Examples of the present invention will be described below.
[0041]
Example 1
Artificial graphite powder with an average particle size of 50 μm (SCG grade manufactured by ESC) and PPS resin powder (Torellina powder made by Toray) were mixed at a ratio of 80% by mass of artificial graphite powder and 20% by mass of PPS resin powder. As shown, the mixture 7 was fed into the mold 6 in powder form. The temperature of the mold 6 is kept constant at 150 ° C. Next, the mixture 7 is flattened with a squeegee 8 as shown in FIG. 9 (b), and the high-frequency oscillator 21 (Fuji Electric Works) comprising the coil 10 is opened with the mold opened as shown in FIG. 9 (c). Machine), and a high frequency of 40 MHz was irradiated from the top of the mixture 7. When the temperature of the mixture 7 reached 350 ° C., the high-frequency oscillation device 21 was removed as shown in FIG. 9D, the mold 6 was closed, and the pressure was increased to 400 kgf / cm 2 . After 30 seconds, the mold 6 was opened and the molded product was taken out. The battery characteristics when the obtained molded body was used showed the same characteristics as those of the conventional separator.
[0042]
(Example 2)
Artificial graphite powder with an average particle size of 50 μm (SCG grade manufactured by ESC) and PPS resin powder (Torelina powder manufactured by Toray) were mixed at a ratio of 80% by mass of artificial graphite powder and 20% by mass of PPS resin powder, and the result is shown in FIG. As shown, the mixture 7 was fed into the mold 6 in powder form. The temperature of the mold 6 is kept constant at 150 ° C. Next, the mixture 7 was flattened with a squeegee 8 as shown in FIG. 10 (b), and a microwave transmitter 14 (magnetron) was provided with the mold 6 opened as shown in FIG. 10 (c). A microwave heating device 20 was inserted, and microwaves with a frequency of 2450 MHz were irradiated from the top of the mixture 7. When the temperature of the mixture 7 reached 350 ° C., the microwave heating device 20 was removed as shown in FIG. 10 (d), and the mold 6 was closed and pressurized with a pressure of 400 kg / cm 2 . After 30 seconds, the mold 6 was opened and the molded product was taken out. The battery characteristics when the obtained molded body was used showed the same characteristics as those of the conventional separator.
[0043]
(Example 3)
Artificial graphite powder having an average particle size of 50 μm (SCG grade manufactured by ESC) and PPS resin powder (Torellina powder manufactured by Toray) were mixed at a ratio of 80% by mass of artificial graphite powder and 20% by mass of PPS resin powder. As shown, the mixture 7 was fed into the mold 6 in powder form. The mold temperature is kept constant at 150 ° C. Next, the mixture 7 is flattened with a squeegee 8 as shown in FIG. 11B, and the infrared irradiation device 15 equipped with a far-infrared lamp is opened with the mold 6 opened as shown in FIG. 11C. It was allowed to enter and heated from the top of the mixture 7. When the temperature of the mixture 7 reached 350 ° C., the infrared irradiation device 15 was removed as shown in FIG. 11 (d), the mold 6 was closed, and the pressure was increased at a pressure of 400 kg / cm 2 . After 30 seconds, the mold 6 was opened and the molded product was taken out. The battery characteristics when the obtained molded body was used showed the same characteristics as those of the conventional separator.
[0044]
(Example 4)
Artificial graphite powder having an average particle size of 50 μm (SG grade manufactured by ESC) and PPS resin powder (Toray Rena powder made by Toray) were mixed at a ratio of 80% by mass of artificial graphite powder and 20% by mass of PPS resin powder. As shown, the mixture 7 was fed into the mold 6 in powder form. The mold temperature is kept constant at 150 ° C. Next, the mixture 7 is flattened with a squeegee 8 as shown in FIG. 12B, and the mold 6 is closed and pressurized with a pressure of 400 kg / cm 2 as shown in FIG. After the mixture 7 was energized by the energizing device 16 through the electrode 17 provided in Fig. 12, the energization was stopped and held at the same pressure for 60 seconds as shown in Fig. 12 (d). The battery characteristics when the obtained molded body was used showed the same characteristics as those of the conventional separator.
[0045]
(Example 5)
Artificial graphite powder with an average particle size of 50 μm (SG grade manufactured by ESC) and PPS resin powder (Toray Rena powder made by Toray) were mixed in a proportion of 80% by mass of artificial graphite powder and 20% by mass of PPS resin powder. As shown, the mixture 7 was fed into the mold 6 in powder form. Next, as shown in FIG.13 (b), the mixture 7 was planarized with the squeegee 8, and the mold temperature at that time was 200 degreeC. As shown in FIG. 13 (c), the mold 6 is closed and pressurized at a pressure of 400 kg / cm 2 , while the mold 6 is heated to 280 ° C. 19 kHz ultrasonic wave was applied through the LL converter 19 for 50 seconds. Thereafter, the mold 6 was cooled to 200 ° C. while the ultrasonic wave was stopped and held at the same pressure for 60 seconds. The battery characteristics when the obtained molded body was used showed the same characteristics as those of the conventional separator.
[0046]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the separator for fuel cells with a short shaping | molding time and a good shaping | molding precision can be provided using the graphite / resin compound with the high compounding ratio of graphite powder and bad flowability.
[Brief description of the drawings]
FIG. 1 is a diagram showing temperature changes of a mold and a mixture in a first embodiment of the present invention. FIG. 2 (a) is a diagram showing a mixture supply state into a mold in a second embodiment of the present invention. (B) The figure which shows the state which planarized the mixture in the metal mold | die shown to this figure (a) (c) The figure which shows the state which made the heating apparatus approach (d) The figure which shows the state which closes and molds a metal mold | die FIG. 3 is a schematic diagram of a molding apparatus using a high-frequency heating device according to a third embodiment of the present invention. FIG. 4 is a schematic diagram of a molding apparatus using a microwave heating device according to a fourth embodiment of the present invention. FIG. 5 is a schematic view of a molding apparatus using an infrared heating device according to a fifth embodiment of the present invention. FIG. 6 (a) is a diagram showing a supply state of a mixture into a mold according to a sixth embodiment of the present invention. (B) The figure which shows the state which planarized the mixture in the metal mold | die shown to this figure (a) (c) A metal mold | die is closed FIG. 7 (d) is a diagram showing a state in which the mold is closed and pressure is maintained. FIG. 7 is a schematic diagram of a molding apparatus by energization heating in the seventh embodiment of the present invention. FIG. 9 is a schematic view of a molding apparatus using ultrasonic vibration in the embodiment of the present invention. FIG. 9A is a diagram showing a state of supplying the mixture into the mold in Example 1 of the present invention. FIG. (C) A diagram showing a state in which the mixture in the mold is flattened (c) A diagram showing a state in which a high-frequency transmitter is entered to irradiate the mixture with a high frequency (d) A diagram showing a state in which the mold is closed and pressurized and molded. FIG. 10A is a diagram showing a mixture supply state into a mold in Example 2 of the present invention. FIG. 10B is a diagram showing a state in which the mixture in the mold shown in FIG. Figure (d) shows a state in which a microwave heating device is entered to irradiate the mixture with microwaves. FIGS. 11A and 11B are views showing a state of molding. FIG. 11A is a diagram showing a state of supplying the mixture into the mold in Example 3 of the present invention. FIG. 11B is a plan view of the mixture in the mold shown in FIG. (C) A diagram showing a state in which the mixture is heated by injecting an infrared irradiation device (d) A diagram showing a state in which the mold is closed and pressurizing and molding is performed. The figure which shows the mixture supply state in the metal mold | die in Example 4 (b) The figure which shows the state which planarized the mixture in the metal mold | die shown to this figure (a) (c) The state which supplies with electricity to the mixture in a metal mold | die Fig. 13 (d) is a diagram showing a state in which the mold is closed and pressure is maintained. Fig. 13 (a) is a diagram showing a state of supplying the mixture into the mold in Example 5 of the present invention. A diagram showing a state in which the mixture in the mold shown in a) is flattened. (c) A diagram showing a state in which the mold is closed and ultrasonic vibration is applied. Explanation of]
1 Curve representing temperature change of mold in conventional molding 2 Curve representing temperature change of mixture in conventional molding 3 Line representing temperature change of mold in Embodiment 1 of the present invention Mixture in Embodiment 1 of the present invention Curve 5 representing temperature change of thermoplastic resin Melting point of thermoplastic resin 6 Mold 7 Mixture 9 Heating device 10 Coil (high frequency heating device)
DESCRIPTION OF SYMBOLS 15 Infrared irradiation apparatus 16 Current supply apparatus 18 Ultrasonic vibrator 20 Microwave heating apparatus 21 High frequency transmission apparatus

Claims (5)

上下の金型のうち、黒鉛粉末70〜90質量%と高分子化合物30〜10質量%との混合物を下金型内に供給し、前記下金型温度を一定とし前記上下金型を開いた状態で前記上下金型の間に加熱装置を挿入した後、前記加熱装置を加熱することで前記高分子化合物を溶融し、前記加熱装置を抜いた後前記金型を閉じて固化させることにより、前記混合物を所定の形状に成形すること
を特徴とする燃料電池用セパレータの製造方法。
Among the upper and lower molds, a mixture of 70 to 90% by mass of graphite powder and 30 to 10% by mass of the polymer compound was supplied into the lower mold, the lower mold temperature was kept constant, and the upper and lower molds were opened. After inserting a heating device between the upper and lower molds in a state, the heating device is heated to melt the polymer compound, and after removing the heating device, the mold is closed and solidified, A method for producing a fuel cell separator, comprising molding the mixture into a predetermined shape.
前記加熱装置は、高周波加熱装置であって、前記混合物の加熱を、高周波を照射し前記混合物中の黒鉛粉末を誘導加熱することにより行うことを特徴とする請求項1に記載の燃料電池用セパレータの製造方法。  2. The fuel cell separator according to claim 1, wherein the heating device is a high-frequency heating device, and the heating of the mixture is performed by inductively heating graphite powder in the mixture by irradiating a high-frequency wave. 3. Manufacturing method. 前記加熱装置は、マイクロ波加熱装置であって、前記混合物の加熱を、マイクロ波を照射し前記混合物中の高分子化合物を誘電加熱にすることにより行うことを特徴とする請求項1に記載の燃料電池用セパレータの製造方法。  The said heating apparatus is a microwave heating apparatus, Comprising: The heating of the said mixture is performed by irradiating a microwave and making the high molecular compound in the said mixture into a dielectric heating. Manufacturing method of separator for fuel cell. 前記加熱装置は、赤外線加熱装置であって、前記混合物の加熱を、赤外線により行うことを特徴とする請求項1に記載の燃料電池用セパレータの製造方法。  The method for producing a fuel cell separator according to claim 1, wherein the heating device is an infrared heating device, and the mixture is heated by infrared rays. 上下の金型のうち、黒鉛粉末70〜90質量%と高分子化合物30〜10質量%との混合物を下金型内に供給し、前記上下金型を閉じた状態で前記混合物自体を超音波振動子により加熱し、前記混合物を冷却して所定の形状に成形すること
を特徴とする燃料電池用セパレータの製造方法。
Of the upper and lower molds, a mixture of 70 to 90% by mass of graphite powder and 30 to 10% by mass of the polymer compound is supplied into the lower mold, and the mixture itself is ultrasonicated with the upper and lower molds closed. A method for producing a separator for a fuel cell, characterized in that the mixture is heated by a vibrator, the mixture is cooled and formed into a predetermined shape.
JP2001364060A 2001-11-29 2001-11-29 Manufacturing method of fuel cell separator Expired - Fee Related JP4269553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364060A JP4269553B2 (en) 2001-11-29 2001-11-29 Manufacturing method of fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364060A JP4269553B2 (en) 2001-11-29 2001-11-29 Manufacturing method of fuel cell separator

Publications (2)

Publication Number Publication Date
JP2003168444A JP2003168444A (en) 2003-06-13
JP4269553B2 true JP4269553B2 (en) 2009-05-27

Family

ID=19174301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364060A Expired - Fee Related JP4269553B2 (en) 2001-11-29 2001-11-29 Manufacturing method of fuel cell separator

Country Status (1)

Country Link
JP (1) JP4269553B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758958B2 (en) 2004-12-29 2014-06-24 Clearedge Power, Llc Fuel cell separator plate assembly
JP5138154B2 (en) * 2005-03-07 2013-02-06 日清紡ホールディングス株式会社 Manufacturing method of fuel cell separator
DE102017219453A1 (en) 2017-10-30 2019-05-02 Robert Bosch Gmbh Method and device for producing a functional element for an electrode unit of a battery cell
WO2019225105A1 (en) 2018-05-21 2019-11-28 マイクロ波化学株式会社 Molding device, mold, and molded product manufacturing method
JP6762573B2 (en) 2018-05-21 2020-09-30 マイクロ波化学株式会社 Molding equipment, molds and molded product manufacturing methods
KR102322622B1 (en) * 2020-01-29 2021-11-04 재단법인 한국첨단제조기술연구원 Manufacturing method of fuel cell bipolar plate

Also Published As

Publication number Publication date
JP2003168444A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
CN100596249C (en) Method of heating materials in order to produce objects and device for implementing said method
CN108472843B (en) Method and apparatus for manufacturing a particle foam component
US8668802B2 (en) Method and device for electromagnetic welding of moulded parts
CN101909839B (en) System and method for forming polymer
CA2091334A1 (en) Method and an apparatus for manufacturing an article of a composite material, an article, disc brake, a commutator and a commutator brush made by the method
CN107848216B (en) Method for joining a device to an object by means of ultrasonic vibrational energy, and device and apparatus suitable for the method
JPH0596548A (en) Multi-layer metal die structure short in cycle time for molding high temperature surface
GB1599343A (en) Apparatus for effecting by microwaves a substantially uniform heating of a material in a cavity
EP0416791A2 (en) Method and apparatus for compression moulding with dielectric heating
JP4269553B2 (en) Manufacturing method of fuel cell separator
CN112876721B (en) High-performance 3D printing piezoelectric part and preparation method thereof
US6984352B1 (en) Dielectric mold for uniform heating and molding of polymers and composites in microwave ovens
US20030224082A1 (en) Microwave molding of polymers
US20220088838A1 (en) Method and device for heating a mould
US20160318246A1 (en) Electromagnetic blunting of defects within fused deposition modeling (fdm)components
TW201819136A (en) Method and device for consolidating a textile preform and overmoulding
Ku et al. Variable frequency microwave processing of thermoplastic composites
CN210139557U (en) Equipment for manufacturing foamed plastic by adopting wireless radio frequency
US11770895B2 (en) Resin member and method for producing resin member
CN113690041A (en) Hot-press molding and curing system and method for magnetic composite material
JP6922946B2 (en) Resin member and manufacturing method of resin member
US6676880B1 (en) PTFE seal fabrication method
JPS63309409A (en) Mold device for induction heat forming
WO2016129566A1 (en) Method for molding frp product, and method for manufacturing frp product
JP6501702B2 (en) Microwave dielectric heating weldment and welding method thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees