JP4268535B2 - High-strength cold-rolled steel sheet with excellent balance of strength formability - Google Patents

High-strength cold-rolled steel sheet with excellent balance of strength formability Download PDF

Info

Publication number
JP4268535B2
JP4268535B2 JP2004040127A JP2004040127A JP4268535B2 JP 4268535 B2 JP4268535 B2 JP 4268535B2 JP 2004040127 A JP2004040127 A JP 2004040127A JP 2004040127 A JP2004040127 A JP 2004040127A JP 4268535 B2 JP4268535 B2 JP 4268535B2
Authority
JP
Japan
Prior art keywords
steel sheet
strength
residual
phase
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004040127A
Other languages
Japanese (ja)
Other versions
JP2005232493A (en
Inventor
正裕 野村
浩一 槙井
陽一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004040127A priority Critical patent/JP4268535B2/en
Publication of JP2005232493A publication Critical patent/JP2005232493A/en
Application granted granted Critical
Publication of JP4268535B2 publication Critical patent/JP4268535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、強度と成形性とのバランスに優れた高強度冷延鋼板に関するものである。本発明冷延鋼板は、そのままの裸での使用や、めっき、塗装などの表面処理が施されて使用される場合を含むものである。   The present invention relates to a high-strength cold-rolled steel sheet having an excellent balance between strength and formability. The cold-rolled steel sheet of the present invention includes a case where the steel sheet is used as it is, or after being subjected to a surface treatment such as plating or painting.

自動車車体など、軽量化のために高強度が要求される種々の用途に、高強度鋼板が使用されている。これら高強度鋼板として、プレス成形性を低下させずに、鋼板を高強度化する強化機構として、固溶強化や、マルテンサイトやベイナイトをフェライトマトリクス中に微細分散させた複合組織強化を用いた高強度鋼板が開発されてきた。   High-strength steel sheets are used in various applications such as automobile bodies that require high strength for weight reduction. As these high-strength steel sheets, as a strengthening mechanism that increases the strength of the steel sheet without reducing the press formability, a high-strength structure using solid solution strengthening or a composite structure strengthening in which martensite and bainite are finely dispersed in a ferrite matrix is used. Strength steel sheets have been developed.

この複合組織強化を用いた高強度鋼板としての、デュアルフェーズ型の鋼(以下、単にDP鋼とも言う)や、トライフェーズ型の鋼(加工誘起変態型の鋼:以下、単にTRIP鋼とも言う)は、伸びフランジ性などの優れた成形性と高い強度を備えているため、自動車部材などに汎用され、自動車の軽量化に寄与している。   Dual phase type steel (hereinafter also simply referred to as DP steel) and triphase type steel (processing induced transformation type steel: hereinafter also simply referred to as TRIP steel) as high-strength steel sheets using this composite structure strengthening Since it has excellent formability such as stretch flangeability and high strength, it is widely used in automobile parts and the like, and contributes to weight reduction of automobiles.

このデュアルフェーズ型の鋼は、最終的に得られる鋼板のミクロ組織は、フェライト相を主相とし、硬質のマルテンサイト相を前記鋼板の相当歪で5%の成形加工後に体積分率で3〜50%含むその他の低温生成相との複合組織である場合に高い動的変形抵抗を示すこと更に、動的変形特性に優れて、衝撃エネルギー吸収能が高く、自動車の衝突安全用部材などに好適であることも、これまでも知られている (特許文献1、2参照) 。
特開2000−17385号公報(第1〜6頁) 特開平11−80878号公報(第1〜6頁)
In this dual phase type steel, the microstructure of the finally obtained steel sheet has a ferrite phase as the main phase and a hard martensite phase with a volume fraction of 3 to 3% after forming with an equivalent strain of the steel sheet. High dynamic deformation resistance when it is a composite structure with other low-temperature generation phase containing 50%. Furthermore, it has excellent dynamic deformation characteristics, high impact energy absorption capability, and suitable for automobile crash safety members It has been known so far (see Patent Documents 1 and 2).
JP 2000-17385 A (pages 1 to 6) Japanese Patent Laid-Open No. 11-80878 (pages 1 to 6)

ただ、プレス成形性の良否は引張試験の伸びにだけ依存するものではなく、伸びフランジ加工の厳しい部材では穴拡げ性(λ)と言われる剪断端面の延性の良否にも大きく依存する。そして、この引張試験の伸びと穴拡げ性とは、相矛盾する課題(トレードオフの関係)であり、両立させることが難しい。   However, the quality of the press formability does not depend only on the elongation of the tensile test, but also depends on the quality of the ductility of the shear end face, which is called hole expansibility (λ), in a member having a severe stretch flange process. The elongation and hole expansibility of this tensile test are contradictory issues (a trade-off relationship) and are difficult to make compatible.

鋼板の穴拡げ性を改善する手法としては、従来から、MnSのように展伸した介在物の増加につながるSを低減することや、変形応力が大きく異なる相境界に形成される鋭いボイドを裂けるためマルテンサイトの混在を避けることが提案されている。   Conventional methods for improving the hole expandability of steel plates include reducing S, which leads to an increase in the number of inclusions expanded like MnS, and tearing sharp voids formed at phase boundaries where the deformation stress is greatly different. It has been proposed to avoid mixing martensite.

しかしながら、鋼中のSを極端に低減することはコストの著しい増加を招くばかりか、産業上容易に実現できるものではないうえ、Sを含む介在物が見られなくなれば別の介在物の悪影響が顕在化する可能性もあり、現実的なものではない。   However, extremely reducing S in steel causes not only a significant increase in cost, but also cannot be easily realized industrially, and if inclusions containing S are not found, there is an adverse effect of other inclusions. There is a possibility of actualization, which is not realistic.

また、マルテンサイトの存在を避けて高強度化しようとしても、引張強さ590MPa以上の高強度を得ようとすれば、ベイナイトを主体とする金属組織としたり、Ti、Nb、Mo、Vといった元素を添加して析出強化を図らなければならない。しかし、一般にこれらの方法では降伏強さの引張強さに対する比、すなわち降伏比が高くなるため、プレス成形性からは好ましくなく、さらにTi、Nb、Mo、Vといった元素は再結晶温度を上げるため、冷延鋼板では再結晶状態でその析出強化を十分に活用することが難しい。   Even if it is intended to increase the strength while avoiding the presence of martensite, if an attempt is made to obtain a high strength of 590 MPa or more, a metal structure mainly composed of bainite or an element such as Ti, Nb, Mo, or V Must be added to enhance precipitation. However, in general, the ratio of the yield strength to the tensile strength, that is, the yield ratio is high in these methods, which is not preferable from the press formability. Further, elements such as Ti, Nb, Mo, and V increase the recrystallization temperature. In cold-rolled steel sheets, it is difficult to fully utilize the precipitation strengthening in a recrystallized state.

このため、このデュアルフェーズ型鋼の引張試験の伸びと穴拡げ性との両立化のためには、フェライト相、マルテンサイト相などの主相や、微量な残留オーステナイト(残留γとも言う)を含め、最終的に得られる鋼板のミクロ組織の解明が必要となる。   For this reason, in order to achieve both elongation and hole expandability in the tensile test of this dual phase type steel, including main phases such as ferrite phase and martensite phase, and a small amount of retained austenite (also referred to as residual γ), It is necessary to clarify the microstructure of the steel sheet finally obtained.

しかし、特に、デュアルフェーズ型鋼における残留γは、多量に、あるいは積極的に残留γを含ませるトライフェーズ型鋼などとは違い、伸びフランジ性阻害の観点から、含有量が微量であるし、積極的に残留γを含ませないように規制もしている(特許文献3)。このため、通常の残留γ量の測定に用いられるX線回折法や、あるいはFE−SEM/EBSP法では、デュアルフェーズ型鋼における微量残留γは、正確に測定できない。これは、測定試料表面の集合組織の影響などの種々の理由による。   However, the residual γ in the dual-phase steel is particularly small and positive from the viewpoint of hindering stretch flangeability, unlike the tri-phase steel that contains a large amount or actively contains the residual γ. Is also regulated so as not to contain residual γ (Patent Document 3). For this reason, the trace residual γ in the dual-phase steel cannot be accurately measured by the X-ray diffraction method or the FE-SEM / EBSP method used for the usual measurement of the residual γ amount. This is due to various reasons such as the influence of the texture on the surface of the measurement sample.

このX線回折法あるいはFE−SEM/EBSP法に代わる、より正確な鋼中の残留γの測定方法として、飽和磁化測定法が提案されている(特許文献4、5)。ただ、この飽和磁化測定法も、やはり、測定対象を、残留γを多量に、あるいは積極的に含ませるサブゼロ処理用鋼板としており、デュアルフェーズ型鋼のような微量な残留γを測定対象とするものではない。このため、デュアルフェーズ型鋼のような微量な残留γを、飽和磁化測定法によって、X線回折法よりも正確に測定できるか否かも不明であった。
特開2000−328186号公報(請求項1、第1〜19頁) 特開2002−161338号公報(請求項1、第1〜6頁) 特開2003−90825号公報(図5、第1〜6頁)
A saturation magnetization measurement method has been proposed as a more accurate method for measuring residual γ in steel, replacing the X-ray diffraction method or the FE-SEM / EBSP method (Patent Documents 4 and 5). However, in this saturation magnetization measurement method, too, the measurement object is a steel plate for sub-zero treatment that contains a large amount or actively contains residual γ, and the measurement target is a very small amount of residual γ, such as dual-phase steel. is not. For this reason, it was also unclear whether a small amount of residual γ as in the dual phase type steel could be measured more accurately by the saturation magnetization measurement method than by the X-ray diffraction method.
JP 2000-328186 A (Claim 1, pages 1 to 19) JP 2002-161338 A (Claim 1, pages 1 to 6) Japanese Patent Laying-Open No. 2003-90825 (FIG. 5, pages 1-6)

したがって、デュアルフェーズ型鋼の引張試験の伸びと穴拡げ性との両立化のためにの、フェライト相、マルテンサイト相などの主相や、微量な残留γを含めた鋼板ミクロ組織の解明は未だ不十分であった。この結果、従来のデュアルフェーズ型の鋼では、引張試験の伸びと穴拡げ性とを両立させることが難しく、プレス成形加工と穴拡げ加工との両方が施されるなど、この両者の特性を要求される自動車部材用途には適用しにくい限界があった。   Therefore, in order to achieve both the tensile test elongation and hole expansibility of dual-phase steel, it is still unclear how the main phase of ferrite phase, martensite phase, etc. It was enough. As a result, it is difficult for conventional dual-phase steels to achieve both the tensile test elongation and hole expandability, and both the press forming process and the hole expanding process are required. However, there is a limit that is difficult to apply to automotive parts.

本発明の目的はこのような課題を解決するためになされたものであって、引張試験の伸びと穴拡げ性とを両立させたデュアルフェーズ型の強度成形性バランスに優れた高強度冷延鋼板を提供することである。   The object of the present invention was made to solve such problems, and is a high-strength cold-rolled steel sheet excellent in a dual-phase strength formability balance that achieves both elongation and hole expandability in a tensile test. Is to provide.

この目的を達成するために、本発明の強度成形性バランスに優れた高強度冷延鋼板の要旨は、質量%で、C:0.02〜0.25%、Si:0.02〜4.0%、Mn:0.15〜3.5%、B:0.01%以下(但し0%を含まない)、AlとPとを合計で1.0%以下(但し0%を含まない)を各々含有し、残部鉄及び不可避的不純物からなり、フェライト相とマルテンサイト相との複合組織からなる冷延鋼板であって、マルテンサイト相の平均硬さがHv400〜480であり、かつ、フェライト相の体積分率が30〜60%であり、これら複合組織における残留γの飽和磁化測定法により測定した体積分率が0vol%を含む1vol%以下であることとする。 In order to achieve this object, the gist of the high-strength cold-rolled steel sheet having an excellent balance of strength formability according to the present invention is mass%, C: 0.02 to 0.25%, Si: 0.02 to 4. 0%, Mn: 0.15 to 3.5%, B: 0.01% or less (excluding 0%), and Al and P in total 1.0% or less (excluding 0%) Each of which is composed of a balance iron and inevitable impurities, and is a cold-rolled steel sheet having a composite structure of a ferrite phase and a martensite phase, the average hardness of the martensite phase is Hv 400 to 480, and ferrite The volume fraction of the phase is 30 to 60%, and the volume fraction measured by the saturation magnetization measurement method of residual γ in these composite tissues is 1 vol% or less including 0 vol%.

本発明者らは、DP鋼板(冷延鋼板)において、フェライト相、マルテンサイト相などの主相や、微量な残留γを含めた鋼板ミクロ組織を解明し、マルテンサイト相の平均硬さと、フェライト相の体積分率などの主相の特性とともに、微量な残留γの分率が、引張試験の伸びと穴拡げ性との両立に大きく影響することを知見した。   In the DP steel sheet (cold-rolled steel sheet), the present inventors have elucidated the main phase such as the ferrite phase and martensite phase and the microstructure of the steel sheet including a small amount of residual γ, and the average hardness of the martensite phase and the ferrite It was found that the fraction of residual γ, along with the characteristics of the main phase such as the volume fraction of the phase, greatly affects the balance between elongation and hole expansibility in the tensile test.

通常、DP鋼板においては、複合組織における残留γの分率は極く低いものとなっている。しかし、本発明者らは、この微量な残留γの中でも、更に、残留γの分率が低い方が、引張試験の伸びを低下させずに、穴拡げ性を向上させることを知見した。   Usually, in the DP steel sheet, the fraction of residual γ in the composite structure is extremely low. However, the present inventors have found that among these small amounts of residual γ, the lower residual γ fraction improves the hole expansibility without decreasing the tensile test elongation.

前記した通り、このようなDP鋼板における微量な残留γの分率は、従来のX線回折法や電子線を照射した際に現れるEBSPを解析するFE−SEM/EBSP法(Electron BackScatter diffraction Pattern)では正確な測定ができない。このため、本発明者らは、従来は多量の残留γの分率の測定に用いられていた飽和磁化測定法を用い、従来のX線回折法では残留γの体積分率が0vol%である(残留γが無い)と測定したDP鋼板の残留γ量を、飽和磁化測定法により測定し直した。すると、X線回折法により残留γの体積分率が0%であると測定した場合でも、飽和磁化測定法によれば、必ずしも残留γの体積分率が0vol%とはならず、残留γが微量の体積分率で存在していることが判明した。   As described above, the fraction of residual γ in such DP steel sheet is determined by the conventional X-ray diffraction method or FE-SEM / EBSP method (Electron BackScatter diffraction pattern) for analyzing EBSP that appears when irradiated with electron beams. With this, accurate measurement is not possible. For this reason, the present inventors use the saturation magnetization measurement method that has been conventionally used for the measurement of a large amount of residual γ, and the volume fraction of residual γ is 0 vol% in the conventional X-ray diffraction method. The amount of residual γ of the DP steel sheet measured as (no residual γ) was measured again by the saturation magnetization measurement method. Then, even when the volume fraction of residual γ is measured by the X-ray diffraction method to be 0%, the volume fraction of residual γ is not necessarily 0 vol% according to the saturation magnetization measurement method. It was found to exist with a small volume fraction.

しかも、これら飽和磁化測定法による、残留γが微量の体積分率で存在する場合に、残留γの体積分率が1vol%を超えるか、残留γの体積分率が1vol%以下(0vol%を含む)によって、引張試験の伸びと穴拡げ性との特性が大きく変わることを合わせて知見した。   Moreover, when the residual γ is present in a very small volume fraction according to these saturation magnetization measurement methods, the residual γ volume fraction exceeds 1 vol%, or the residual γ volume fraction is 1 vol% or less (0 vol%). It was also found that the characteristics of elongation and hole expansibility in the tensile test change greatly.

即ち、マルテンサイト相の平均硬さと、フェライト相の体積分率などの主相の特性とともに、飽和磁化測定法による、残留γが微量の体積分率が1vol%以下(0vol%を含む)の場合に、DP鋼板における、引張試験の伸びを低下させずに、穴拡げ性を向上させることが可能となる。   That is, when the volume fraction of residual γ is 1 vol% or less (including 0 vol%) by the saturation magnetization measurement method, along with the characteristics of the main phase such as the average hardness of the martensite phase and the volume fraction of the ferrite phase Furthermore, it becomes possible to improve the hole expansibility without reducing the elongation of the tensile test in the DP steel sheet.

なお、TRIP鋼板では、残留γが低減された場合、引張試験の伸びが低下する。これに対して、本発明DP鋼板では、残留γが低減されても、引張試験の伸びが低下しない。この理由は、本発明DP鋼板において問題とする残留γの量が、上記した通り、TRIP鋼などの比して、著しく微量な領域であるためと考えられる。このような微量な残留γの低減は、引張試験の伸びには影響しないものと推考される。   In the TRIP steel sheet, when the residual γ is reduced, the elongation in the tensile test is lowered. On the other hand, in the DP steel sheet of the present invention, even if the residual γ is reduced, the elongation in the tensile test does not decrease. The reason for this is considered that the amount of residual γ, which is a problem in the DP steel sheet of the present invention, is an extremely small region as compared with TRIP steel as described above. It is assumed that such a small reduction in residual γ does not affect the elongation of the tensile test.

先ず、本発明冷延鋼板における、ミクロ組織の要件を以下に説明する。
(フェライト相)
本発明では、主相であるフェライト相の体積分率を30〜60%とする。フェライト相の体積分率が下限の30%未満では、引張試験の伸びが低下し、例えば平均Elが12%以下となる。一方、フェライト相の体積分率が上限の60%を超えた場合、逆に穴拡げ性が低下し、例えば平均λが50%以下となる。したがって、フェライト相の体積分率は、引張試験の伸びを低下させずに、穴拡げ性を向上させるために、30〜60%の範囲とする。
First, the requirements of the microstructure in the cold rolled steel sheet of the present invention will be described below.
(Ferrite phase)
In the present invention, the volume fraction of the ferrite phase as the main phase is set to 30 to 60%. When the volume fraction of the ferrite phase is less than the lower limit of 30%, the elongation in the tensile test is lowered, for example, the average El is 12% or less. On the other hand, when the volume fraction of the ferrite phase exceeds the upper limit of 60%, the hole expansibility decreases, and for example, the average λ becomes 50% or less. Therefore, the volume fraction of the ferrite phase is set in the range of 30 to 60% in order to improve the hole expandability without reducing the elongation of the tensile test.

ここで、フェライト相の平均硬さはDP鋼板のYPを支配し、低YP化のためには平均硬さがHv260以下であることが好ましい。このようなフェライト相の平均硬さとすることで、950MPa以上の高強度のDP鋼板の平均YPを850MPa以下に低くでき、引張試験の伸びを確保することができ、平均ELで13%以上にできる。フェライト相の平均硬さがHv260を超えた場合、平均YPを850MPaを超えて高くなり、引張試験の伸びが低下し、プレス成形時の形状凍結性が低下する可能性が高い。   Here, the average hardness of the ferrite phase dominates the YP of the DP steel sheet, and the average hardness is preferably Hv260 or less in order to reduce the YP. By setting the average hardness of such a ferrite phase, the average YP of a high-strength DP steel sheet of 950 MPa or more can be lowered to 850 MPa or less, the elongation of a tensile test can be secured, and the average EL can be made 13% or more. . When the average hardness of the ferrite phase exceeds Hv260, the average YP exceeds 850 MPa, the tensile test elongation decreases, and the shape freezeability during press molding is likely to decrease.

(マルテンサイト相)
本発明では、主相であるマルテンサイト相の平均硬さをHv400〜480とする。マルテンサイト相の平均硬さが下限のHv400未満では、鋼板の強度が確保しにくくなる。一方、マルテンサイト相の平均硬さが上限のHv480を超えた場合、穴拡げ加工などの際にマルテンサイト相が破壊の起点として作用しやすくなり、逆に穴拡げ性が低下し、平均λが確保できなくなる。したがって、マルテンサイト相の平均硬さは、鋼板の強度と穴拡げ性とを確保するために、Hv400〜480の範囲とする。
(Martensite phase)
In the present invention, the average hardness of the martensite phase that is the main phase is set to Hv400 to 480. If the average hardness of the martensite phase is less than the lower limit of Hv400, it is difficult to ensure the strength of the steel sheet. On the other hand, when the average hardness of the martensite phase exceeds the upper limit of Hv480, the martensite phase tends to act as a starting point of fracture during hole expansion processing, and conversely, the hole expansion property decreases, and the average λ becomes It cannot be secured. Therefore, the average hardness of the martensite phase is set to a range of Hv 400 to 480 in order to ensure the strength and hole expandability of the steel plate.

(残留γ)
前記した通り、DP鋼板において、微量な残留γは、引張試験の伸びと穴拡げ性との両立に対する支配因子となる。本発明では、DP鋼板における残留γの飽和磁化測定法により測定した体積分率を0vol%を含む1vol%以下とする。この残留γの飽和磁化測定法により測定した体積分率が上限の1vol%を超えた場合、穴拡げ性が低下し、例えば平均λが35%以下となる。
(Residual γ)
As described above, in the DP steel sheet, a small amount of residual γ becomes a controlling factor for achieving both the elongation of the tensile test and the hole expandability. In the present invention, the volume fraction measured by the saturation magnetization measurement method of residual γ in the DP steel sheet is set to 1 vol% or less including 0 vol%. When the volume fraction measured by the saturation magnetization measuring method of the residual γ exceeds the upper limit of 1 vol%, the hole expansibility decreases, for example, the average λ becomes 35% or less.

このDP鋼板における微量な残留γの飽和磁化による測定方法は、前記した特許文献4などに記載された方法により、以下のように行なうことができる。   The measuring method by saturation magnetization of a small amount of residual γ in the DP steel sheet can be performed as follows by the method described in Patent Document 4 described above.

飽和磁化測定法は次の様な測定原理に基づくものである。即ち、室温にて金属組織中のフェライト相やマルテンサイト相等の組織は強磁性を示すのに対し、オーステナイト相は常磁性である。従って、フェライト相やマルテンサイト相といった強磁性を示す組織のみからなる (残留γ相が実質的に存在しない) DP鋼板の金属組織の単位体積当たりの飽和磁化量(Is)を予め求めておき、残留γ相を含む試料の飽和磁化(I)を測定することにより、γ相の割合を後述するように計算式から求めることができる。   The saturation magnetization measurement method is based on the following measurement principle. That is, a structure such as a ferrite phase or a martensite phase in a metal structure exhibits ferromagnetism at room temperature, whereas an austenite phase is paramagnetic. Accordingly, the saturation magnetization amount (Is) per unit volume of the metal structure of the DP steel sheet consisting only of a structure exhibiting ferromagnetism such as a ferrite phase and a martensite phase (substantially no residual γ phase) is obtained in advance. By measuring the saturation magnetization (I) of the sample containing the residual γ phase, the proportion of the γ phase can be obtained from the calculation formula as described later.

図1に該飽和磁化測定に用いる直流磁気測定装置の一部分を概略的に例示する。電極石を用いて磁界を発生させ、電磁石間に磁化検出用の4πIコイル1と磁界検出用のHコイル3を装着し、4πIコイル1中に棒状試料2を挿入して閉磁路を形成し、反磁界の影響をなくした状態で磁化曲線を測定して求める。なお、4はコイル1用の導線である。   FIG. 1 schematically illustrates a part of a DC magnetometer used for the saturation magnetization measurement. A magnetic field is generated using electrode stones, a 4πI coil 1 for magnetization detection and an H coil 3 for magnetic field detection are mounted between electromagnets, a rod-like sample 2 is inserted into the 4πI coil 1 to form a closed magnetic circuit, It is obtained by measuring the magnetization curve in a state where the influence of the demagnetizing field is eliminated. In addition, 4 is a conducting wire for the coil 1.

即ち、測定対象試料の飽和磁化量(I)および、測定対象試料と実質的に同一成分であって残留γ量が実質的に体積分率で0vol%である場合の飽和磁化量(Is)を実測または計算により求め、下記式(1)により、測定対象試料中の残留γ(γR )量を算出する。
γR (体積%)=(1−I/Is)×100…(1)
That is, the saturation magnetization amount (I) of the measurement target sample and the saturation magnetization amount (Is) when the residual γ amount is substantially the same component as the measurement target sample and the volume fraction is substantially 0 vol%. The amount of residual γ (γR) in the sample to be measured is calculated according to the following formula (1) by actual measurement or calculation.
γR (volume%) = (1−I / Is) × 100 (1)

これら飽和磁化測定には、供試材である冷延板を2枚重ね、4mmW×30mmLの試験片を用いた。そして、前記図1の直流磁気測定装置の電極石間ギャップを30mm、室温(例えば23℃±3℃)において、印加磁化を4000Oe(エルステッド)として、試験片のヒステリシスループを測定し、該ヒステリシスループの両極最大磁化平均値をもって飽和磁化量とした。この飽和磁化量は測定温度条件の影響を受けやすいので、室温で測定する場合は、前記23℃±3℃の範囲内で行なう。尚、絶対値の精度は標準校正試料(4Nの純鉄試料)を用いて磁化の校正を行った。   For the saturation magnetization measurement, two cold-rolled plates as test materials were stacked and a 4 mmW × 30 mmL test piece was used. Then, the hysteresis loop of the test piece was measured at a gap between the electrode stones of the DC magnetometer of FIG. The saturation magnetization amount was defined as the maximum magnetization average value of both poles. Since this saturation magnetization is easily affected by the measurement temperature condition, the measurement is performed within the range of 23 ° C. ± 3 ° C. when measured at room temperature. The accuracy of the absolute value was obtained by calibrating magnetization using a standard calibration sample (4N pure iron sample).

この際、実測により前記フェライト相やマルテンサイト相のみからなるDP鋼板の飽和磁化量(Is)を求める場合には、測定対象試料と実質的に同一成分の鋼に400℃×15hの長時間オーステンパ処理を施した、残留γ相を実質的に含まない試料を用いた。   At this time, when the saturation magnetization (Is) of the DP steel plate consisting only of the ferrite phase and the martensite phase is obtained by actual measurement, a long-time austempering temperature of 400 ° C. × 15 h is applied to the steel having substantially the same composition as the measurement target sample. A sample that was treated and substantially free of residual γ phase was used.

(鋼板の成分組成)
以下に、上記したミクロ組織とし、また、自動車車体などの用途に要求される、高強度、高成形性、高穴拡げ性等の特性を合わせて具備するために必要な、あるいは好ましい、本発明冷延鋼板の化学成分組成と、各元素の限定理由を説明する。
(Component composition of steel sheet)
In the following, the present invention has the above-described microstructure, and is necessary or preferable to have the characteristics such as high strength, high formability, and high hole expansibility required for applications such as automobile bodies. The chemical component composition of the cold-rolled steel sheet and the reasons for limitation of each element will be described.

本発明冷延鋼板の基本的な化学成分組成は、上記必要特性を具備するために、質量%で、C:0.02〜0.25%、Si:0.02〜4.0%、Mn:0.15〜3.5%、B:0.01%以下(但し0%を含まない)、AlとPとを合計で1.0%以下(但し0%を含まない)を各々含有し、残部鉄及び不可避的不純物からなるものとする。このような、化学成分組成とすることによって、上記ミクロ組織の規定とともに、好ましくは、TSが950MPa以上、YPが850MPa以下、ELが13%以上、λが50%以上のDP鋼板の特性が確保される。 The basic chemical composition of the cold-rolled steel sheet according to the present invention is, by mass%, C: 0.02 to 0.25%, Si: 0.02 to 4.0%, Mn, in order to have the necessary characteristics. : 0.15 to 3.5%, B: 0.01% or less (excluding 0%), Al and P in total containing 1.0% or less (excluding 0%), respectively And the balance iron and inevitable impurities. With such a chemical component composition, it is preferable to ensure the characteristics of the DP steel sheet having TS of 950 MPa or more, YP of 850 MPa or less, EL of 13% or more, and λ of 50% or more, in addition to the definition of the above microstructure. Is done.

その他の、Al、P、Cr、Ni、Cu、Mo、Nb、Ti、V、Zn、S、Nなどの元素は基本的に不純物であり、含有量は少ない方が好ましい。但し、有用な効果がある元素もあるので、各々、B0.01質量%以下、Al、Pを合計で1.0質量%以下、Cr、Ni、Cu、Moの1種または2種以上を合計で1.0質量%以下、Nb、Ti、V、Znの1種または2種以上を合計で1.0質量%以下、を含有することを許容する。   Other elements such as Al, P, Cr, Ni, Cu, Mo, Nb, Ti, V, Zn, S, and N are basically impurities, and it is preferable that the content is small. However, since some elements have useful effects, B is 0.01% by mass or less, Al and P are 1.0% by mass or less in total, and one or more of Cr, Ni, Cu, and Mo are added in total. And 1.0% by mass or less, and one or more of Nb, Ti, V and Zn are allowed to be contained in total of 1.0% by mass or less.

(C:0.02〜0.25%)
Cは、高強度を確保し、鋼板の組織に強く影響を与える元素であり、その含有量が0.02%未満に少なくなると、上記目的とする量および硬度(強度)のマルテンサイト相を得るのが困難になる。一方、含有量が0.25%を超えて多くなると不必要な炭化物の析出を招き、引張試験の伸びや穴拡げ性を低下させ、成形性を劣化させる。また、溶接性も劣化させる。したがって、C含有量は0.02〜0.25%の範囲とする。
(C: 0.02-0.25%)
C is an element that ensures high strength and strongly influences the structure of the steel sheet. When the content is reduced to less than 0.02%, a martensite phase having the above desired amount and hardness (strength) is obtained. It becomes difficult. On the other hand, if the content exceeds 0.25%, unnecessary carbide precipitation occurs, and the elongation and hole expansibility of the tensile test are lowered, and the moldability is deteriorated. Also, the weldability is deteriorated. Therefore, the C content is in the range of 0.02 to 0.25%.

(Si:0.02〜4.0%)
Siはマルテンサイトを生成させるために有用な元素であり、フェライトの生成を促進し、炭化物の生成を抑制することにより、穴拡げ性を改善するとともに、マルテンサイトを確保する作用がある。また、鋼板の伸びが大きく損なわれずに強度が増す固溶強化作用と、脱酸作用を有する。このように、Siは低降伏比で、引張試験における伸びと穴拡げ性の両立を実現するために重要である。Si含有量が0.02%未満では、これらの効果を発揮できず、Si含有量は0.02%以上とする必要がある。一方、4.0%を超える過度の含有は、DP鋼板の延性を低下させ、成形性を低下させるるため、その上限を4.0%とする。したがって、Si含有量は0.02〜4.0%の範囲とする。
(Si: 0.02 to 4.0%)
Si is an element useful for generating martensite, and has the effect of improving the hole expansibility and securing the martensite by promoting the formation of ferrite and suppressing the formation of carbides. In addition, it has a solid solution strengthening action and a deoxidizing action in which the strength is increased without greatly reducing the elongation of the steel sheet. Thus, Si has a low yield ratio and is important for realizing both elongation and hole expansibility in a tensile test. If the Si content is less than 0.02%, these effects cannot be exhibited, and the Si content needs to be 0.02% or more. On the other hand, excessive content exceeding 4.0% lowers the ductility of the DP steel sheet and lowers the formability, so the upper limit is made 4.0%. Therefore, the Si content is in the range of 0.02 to 4.0%.

(Mn:0.15〜3.5%)
Mnはオーステナイトを安定化してマルテンサイトを確保する作用があると共に強化元素でもある。0.15%未満では、これらの効果を発揮できず、Mn含有量は0.15%以上とする必要がある。一方、3.5%を超える過度の含有は上記効果を飽和し、逆にフェライト変態抑制等の悪影響を生じる。したがって、Mn含有量は0.15〜3.5%の範囲とする。
(Mn: 0.15 to 3.5%)
Mn stabilizes austenite to ensure martensite and is also a strengthening element. If it is less than 0.15%, these effects cannot be exhibited, and the Mn content needs to be 0.15% or more. On the other hand, an excessive content exceeding 3.5% saturates the above effect, and adversely affects ferrite transformation and the like. Therefore, the Mn content is in the range of 0.15 to 3.5%.

(Al、P)
Al、Pはマルテンサイトを生成させる効果があり、フェライトの生成を促進し、炭化物の生成を抑制することによりマルテンサイトを確保する作用があると共に固溶強化作用も有する。また、Alは脱酸作用も有する。したがって、合計で1.0質量%以下まで含有させる。
(Al, P)
Al and P have the effect of generating martensite, have the effect of ensuring the martensite by promoting the formation of ferrite and suppressing the formation of carbides, and also have a solid solution strengthening effect. Al also has a deoxidizing action. Accordingly, the total content is 1.0% by mass or less .

(Cr、Ni、Cu、Mo)
Cr、Ni、Cu、Moは、Mnと同様にオーステナイト安定化元素でもあり、鋼の焼き入れ性を高め、マルテンサイトの生成を容易にする効果がある。したがって、合計で1.0質量%以下までの含有は許容する。
(Cr, Ni, Cu, Mo)
Cr, Ni, Cu, and Mo are austenite stabilizing elements like Mn, and have the effect of enhancing the hardenability of steel and facilitating the formation of martensite. Therefore, the total content up to 1.0% by mass is allowed.

(Nb、Ti、V、Zn)
これらの元素は、炭化物、窒化物、炭窒化物を形成し、鋼板の高強度化に有効な効果もある。したがって、合計で1.0質量%以下までの含有は許容する。但し、合計で1.0質量%を超える過度の含有は、焼鈍によっても、炭化物などのC濃化領域を十分に分解させることができずに、DP鋼板における残留γの分率を高めてしまう。この結果、引張試験の伸びや穴拡げ性を低下させ、成形性を劣化させる。したがって、合計で1.0質量%以下までの含有は許容する。
(Nb, Ti, V, Zn)
These elements form carbides, nitrides, and carbonitrides, and are effective in increasing the strength of the steel sheet. Therefore, the total content up to 1.0% by mass is allowed. However, the excessive content exceeding 1.0 mass% in total increases the fraction of residual γ in the DP steel sheet without sufficiently decomposing the C-enriched region such as carbide even by annealing. . As a result, the elongation and hole expansibility of the tensile test are lowered, and the moldability is deteriorated. Therefore, the total content up to 1.0% by mass is allowed.

(B≦0.01%)
Bはフェライト相の硬さを増し、平均硬さの確保、あるいは制御に有効である。Bを含有した場合、Bは低温ではBNといて固着しているが、鋼板を高温に保持すると分解し、固溶Bとなる。この固溶Bが存在する状態から焼入れると、マルテンサイトが増える。その結果、フェライトの拘束が大きくなり、フェライトの硬さが増すと推考される。Bは、通常の鋼板の不純物レベルで5ppm程度含まれるが、この程度の含有でも上記効果があり、フェライト相の平均硬さがHv260以下の範囲で確保できる。したがって、本発明では、通常の不純物レベルでのB含有を許容し、上限は0.01%まで含有させる。B含有量が0.01%を超えた場合、フェライト相の平均硬さがHv260を超える恐れがあり、平均YPが850MPaを超えて高くなり、引張試験の伸びが低下し、プレス成形時の形状凍結性が低下する可能性が高い。
(B ≦ 0.01%)
B increases the hardness of the ferrite phase and is effective in ensuring or controlling the average hardness. When B is contained, B is fixed as BN at a low temperature, but decomposes and becomes a solid solution B when the steel plate is held at a high temperature. When quenching from the state where this solid solution B exists, martensite increases. As a result, it is presumed that the constraint of the ferrite increases and the hardness of the ferrite increases. B is contained at an impurity level of about 5 ppm in a normal steel plate. Even if the content is about this level, the above effect is obtained, and the average hardness of the ferrite phase can be ensured within a range of Hv 260 or less. Therefore, in the present invention, the B content at a normal impurity level is allowed and the upper limit is 0.01% . If the B content exceeds 0.01%, the average hardness of the ferrite phase may exceed Hv260, the average YP exceeds 850 MPa, the tensile test elongation decreases, and the shape during press molding There is a high possibility that the freezing property will decrease.

(製造方法)
次に、本発明冷延鋼板の好ましい製造条件について以下に説明する。
本発明による冷延鋼板は、熱延、巻き取り後の各工程を経た鋼板を、冷間圧延し、焼鈍に付される。
(Production method)
Next, preferable production conditions for the cold-rolled steel sheet of the present invention will be described below.
The cold-rolled steel sheet according to the present invention is cold-rolled and subjected to annealing after undergoing the respective steps after hot rolling and winding.

この際、熱延の巻き取り温度は600℃以上の高い方が好ましい、巻き取り温度が低いと、冷延鋼板の焼鈍によっても、フェライト相の平均硬さがHv260を超えやすく、平均YPが850MPaを超えて高くなり、引張試験の伸びが低下する可能性がる。   At this time, the coiling temperature for hot rolling is preferably higher than 600 ° C. If the coiling temperature is low, the average hardness of the ferrite phase easily exceeds Hv260 and the average YP is 850 MPa even by annealing of the cold-rolled steel sheet. It becomes high exceeding this, and the elongation of a tensile test may fall.

冷延鋼板は、バッチ焼鈍、連続焼鈍などの焼鈍工程で焼鈍して、最終的な製品DP鋼板(冷延鋼板)とする。但し、この焼鈍の際に、DP鋼板における残留γの分率を、飽和磁化測定法により測定して、0vol%を含む1vol%以下とするために、焼鈍加熱(均熱)を2段で行なうことが好ましい。   The cold-rolled steel sheet is annealed in an annealing process such as batch annealing or continuous annealing to obtain a final product DP steel sheet (cold-rolled steel sheet). However, during this annealing, annealing heating (soaking) is performed in two stages so that the fraction of residual γ in the DP steel sheet is measured by a saturation magnetization measurement method and is 1 vol% or less including 0 vol%. It is preferable.

通常のDP鋼板は、加熱(均熱)温度がAc1 〜Ac3 の温度範囲において1段の加熱(均熱)で行なわれる。この通常の焼鈍で、焼鈍前の前組織は、この加熱(均熱)工程で分解し、前組織の影響は、残留γ形成能に影響しないとこれまでは言われてきた。即ち、この通常の焼鈍後のDP鋼板組織において、前記したX線回折法による測定結果からも、残留γは実質的に存在しないと言われてきた。   A normal DP steel sheet is heated by one stage of heating (soaking) in a temperature range of Ac1 to Ac3. In this normal annealing, the pre-anneal structure before annealing is decomposed in this heating (soaking) process, and it has been said so far that the influence of the pre-structure does not affect the residual γ forming ability. That is, in the DP steel sheet structure after the normal annealing, it has been said that the residual γ does not substantially exist from the measurement result by the X-ray diffraction method.

しかし、本発明者らの知見によれば、勿論DP鋼板の化学成分組成の影響もあるが、焼鈍前の前組織のC濃化領域は、上記通常の加熱(均熱)工程では完全にCが拡散せず、当該C濃化領域周辺のオーステナイトが安定化して、残留γとして残る可能性が高い。   However, according to the knowledge of the present inventors, there is of course the influence of the chemical composition of the DP steel sheet, but the C-enriched region of the previous structure before annealing is completely C in the normal heating (soaking) process. Is not diffused, and the austenite around the C-enriched region is stabilized and is likely to remain as residual γ.

これが、従来のX線回折法では残留γ量の体積分率が0であると測定したDP鋼の残留γ量を、飽和磁化測定法により測定し直した場合に、必ずしも残留γ量の体積分率が0vol%とはならず、残留γが1vol%内外の微量の体積分率で存在している理由でもある。   This is because when the residual γ content of DP steel, which is measured by the conventional X-ray diffraction method, is 0, the volume fraction of the residual γ content is not necessarily measured. This is also because the rate does not become 0 vol% and the residual γ exists in a small volume fraction inside and outside 1 vol%.

したがって、焼鈍の際に、炭化物などの前組織のC濃化領域を、十分に分解させる熱履歴を鋼板に対して行なうと、DP鋼板における残留γの分率を、飽和磁化測定法により測定して、0vol%を含む1vol%以下とできる。この熱履歴のためには、通常の焼鈍に対して、焼鈍加熱(均熱)を2段で行なうことが好ましい。あるいは焼鈍の前に加熱工程を入れて、熱履歴を2段で行なっても良い。   Therefore, when the steel sheet is subjected to a thermal history that sufficiently decomposes the C-enriched region of the previous structure such as carbide during annealing, the fraction of residual γ in the DP steel sheet is measured by the saturation magnetization measurement method. And 1 vol% or less including 0 vol%. For this thermal history, it is preferable to perform annealing heating (soaking) in two stages with respect to normal annealing. Alternatively, a heating process may be performed before annealing, and the heat history may be performed in two stages.

熱履歴を2段で行なう際に、1段目の加熱(均熱)で前組織のC濃化領域を十分に分解させるべく、この1段目の加熱(均熱)温度を高くする。この温度は、DP鋼板の化学成分組成や、炭化物の析出状態などに応じて、Ac1 〜Ac3 の温度範囲内から、保持時間を含めて選択する。また、2段目の加熱(均熱)は、焼入れ開始温度を確保する意味で行なう。   When the heat history is performed in two stages, the first stage heating (soaking) temperature is increased so that the C-enriched region of the previous tissue is sufficiently decomposed by the first stage heating (soaking). This temperature is selected from the temperature range of Ac1 to Ac3, including the holding time, according to the chemical composition of the DP steel sheet, the precipitation state of carbides, and the like. Further, the second stage heating (soaking) is performed in the sense of securing the quenching start temperature.

なお、加熱(均熱)温度が、Ac1 未満ではオーステナイトが生成しないため、その後、マルテンサイトを得ることができず、Ac3 超では粗大なオーステナイトの単相組織となるため、その後、所望のフェライトやマルテンサイトの体積分率を得ることができない。   If the heating (soaking) temperature is less than Ac1, no austenite is formed, and then martensite cannot be obtained, and if it exceeds Ac3, a coarse austenite single phase structure is formed. The volume fraction of martensite cannot be obtained.

上記焼鈍後の冷却については、平均冷却速度を5℃/秒以上とすることが好ましい。平均冷却速度が5℃/秒未満では、所望のフェライト分率/マルテンサイト分率が得られない。その上限は特に設けるものではないが、冷却時の温度制御性から、300℃/秒が好ましい。   About the cooling after the said annealing, it is preferable that an average cooling rate shall be 5 degrees C / sec or more. When the average cooling rate is less than 5 ° C./second, a desired ferrite fraction / martensite fraction cannot be obtained. The upper limit is not particularly provided, but 300 ° C./second is preferable from the viewpoint of temperature controllability during cooling.

以上述べたような鋼板組成と製造方法を採用することにより、本発明冷延鋼板のミクロ組織を、フェライト相とマルテンサイト相との複合組織からなり、マルテンサイト相の平均硬さがHv400〜480であり、かつ、フェライト相の体積分率が30〜60%であり、これら複合組織における残留γの飽和磁化測定法により測定した体積分率が0vol%を含む1vol%以下とすることができる。そして、引張試験の伸びと穴拡げ性とが両立した、強度成形性バランスに優れたDP鋼板とすることができる。   By adopting the steel sheet composition and manufacturing method as described above, the microstructure of the cold-rolled steel sheet of the present invention is composed of a composite structure of a ferrite phase and a martensite phase, and the average hardness of the martensite phase is Hv 400 to 480. In addition, the volume fraction of the ferrite phase is 30 to 60%, and the volume fraction measured by the saturation magnetization measurement method of residual γ in these composite structures can be 1 vol% or less including 0 vol%. And it can be set as the DP steel plate excellent in the strength formability balance in which the elongation of the tensile test and the hole expandability were compatible.

なお、本発明による冷延鋼板は、更に、焼鈍、調質圧延、電気/溶融めっき、化成処理、塗装等を適宜施して目的とする製品とすることも可能である。   In addition, the cold-rolled steel sheet according to the present invention can be further subjected to annealing, temper rolling, electric / hot-plating, chemical conversion treatment, coating, and the like as desired products.

以下に本発明の実施例を説明する。
実施例1として、表1に示す本発明成分組成範囲内の鋼種1を溶製し連続鋳造によりスラブを製造してから、スラブを1150℃に加熱し、2.5mmの厚さに熱延後、冷却し、表2に示す温度で巻取りを行った。この熱延を酸洗後、1.4mmの厚さに冷延して冷延鋼板を製造した。
Examples of the present invention will be described below.
As Example 1, a steel slab 1 within the composition range of the present invention shown in Table 1 was melted and a slab was produced by continuous casting, and then the slab was heated to 1150 ° C. and hot-rolled to a thickness of 2.5 mm. Then, it was cooled and wound up at the temperature shown in Table 2. The hot rolled steel was pickled and then cold rolled to a thickness of 1.4 mm to produce a cold rolled steel sheet.

なお、表1に記載以外の成分元素において、各例とも共通して、P、Cr、Ni、Cu、Mo、Nb、Ti、V、Znは、これらの合計で1.0質量%以下であった。   In addition, in the constituent elements other than those described in Table 1, in each example, P, Cr, Ni, Cu, Mo, Nb, Ti, V, and Zn were 1.0% by mass or less in total. It was.

上記各冷延鋼板を、表2に例1〜6までを示した各条件で焼鈍した。均熱は、各々の温度と時間で(℃×S)で均熱1を行なった後、室温あるいは低温まで冷却せずに、均熱2の温度まで放冷、あるいは均熱2の温度まで加熱して、そのまま均熱2を行なった。   Each cold-rolled steel sheet was annealed under the conditions shown in Table 2 for Examples 1 to 6. For soaking, after soaking 1 at each temperature and time (° C. × S), cool to room temperature 2 or cool to room temperature 2 without cooling to room temperature or low temperature. Then, soaking 2 was performed as it was.

この均熱後、表2に示した各々の焼入開始(直前)温度から水焼入し、その後、表2に示した各々の温度で焼戻を行ない、各々DP鋼板とした。   After this soaking, water quenching was performed from each quenching start (immediately before) temperature shown in Table 2, and then tempering was performed at each temperature shown in Table 2 to obtain DP steel sheets.

これらの各DP鋼板の、ミクロ組織を調査し、特性を評価した。これらの結果も表2に示す。ミクロ組織は、マルテンサイト相の平均硬さHvα' (Hv)、フェライト相の体積分率Vfα (%)と平均硬さHvα(Hv)、飽和磁化測定による残留γの体積分率VfγR (%)と、X線回折法による残留γの体積分率VfγR (%)を調査した。 The microstructure of each DP steel sheet was investigated and the characteristics were evaluated. These results are also shown in Table 2. The microstructure includes the average hardness Hvα ′ (Hv) of the martensite phase, the volume fraction Vfα (%) and the average hardness Hvα (Hv) of the ferrite phase, and the volume fraction Vfγ R (% ) And volume fraction Vfγ R (%) of residual γ by X-ray diffraction.

フェライト相の体積分率Vfαは、鏡面研磨して更に硝酸とエタノールの混合溶液でエッチングした試料を、倍率1000倍のSEM(走査型電子顕微鏡)にて観察した写真5視野を画像解析して、その平均値を求めた。   The volume fraction Vfα of the ferrite phase was obtained by analyzing the image of five fields of view of a sample polished with a mirror-polished and further etched with a mixed solution of nitric acid and ethanol with a SEM (scanning electron microscope) at a magnification of 1000 times. The average value was obtained.

マルテンサイト相の平均硬さHvα' とフェライト相の平均硬さHvαとは、各相部分のマイクロビッカース試験を荷重3gfで行い、5点の平均値を求めた。   The average hardness Hvα ′ of the martensite phase and the average hardness Hvα of the ferrite phase were obtained by conducting a micro Vickers test of each phase portion with a load of 3 gf and calculating an average value of five points.

飽和磁化測定による残留γの体積分率VfγR は、前記した測定方法の好ましい条件により行なった。また、比較のために、X線回折法でも、残留γの体積分率VfγR を測定した。 The volume fraction Vfγ R of residual γ by saturation magnetization measurement was performed under the preferable conditions of the above-described measurement method. For comparison, the volume fraction Vfγ R of residual γ was also measured by X-ray diffraction.

鋼板の特性は、引張強度TS(MPa) 、降伏点YP(MPa) 、伸びEL(%) 、穴拡げ性λ(%) を測定した。この際、引張強度TSは980MPa 以上、降伏点YPは850MPa 以下、伸びは11%以上、穴拡げ性λは60%以上、の各特性を兼備することを、強度成形性バランスに優れた高強度冷延鋼板の基準とした。   The steel sheet was measured for tensile strength TS (MPa), yield point YP (MPa), elongation EL (%), and hole expansibility λ (%). At this time, the tensile strength TS is 980 MPa or more, the yield point YP is 850 MPa or less, the elongation is 11% or more, and the hole expansibility λ is 60% or more. It was set as a standard for cold-rolled steel sheets.

引張強度TS(MPa) 、降伏点YP(MPa) 、伸びEL(%) は、JIS5号試験片を採取して、常温にて引張試験を行ない求めた。   Tensile strength TS (MPa), yield point YP (MPa), and elongation EL (%) were obtained by taking a JIS No. 5 test piece and conducting a tensile test at room temperature.

穴拡げ性λは、穴拡げ試験で評価した。具体的には、150mm×150mmの長方形に冷延鋼板を切り出し、その中央に直径d0 =10mmの穴を約12%のクリアランスで打ち抜き加工後、そのかえりをダイ側になるように試験機にセットし、5tonのしわ押え力で押し拡げ部へ材料が流入しないように拘束のうえ、60°円錐ポンチで穴を押し拡げ、穴縁端面にクラックが板厚貫通した時の穴径dを測定し、穴径の増加率、すなわちλ=(d−d0 )/d0 を穴拡げ率として評価した。 The hole expansion property λ was evaluated by a hole expansion test. Specifically, a cold-rolled steel sheet is cut out into a rectangle of 150 mm × 150 mm, a hole with a diameter d 0 = 10 mm is punched at the center with a clearance of about 12%, and the burr is placed on the testing machine so as to be on the die side. Set and constrain the material so that it does not flow into the expanded portion with a 5 ton wrinkle pressing force, then expand the hole with a 60 ° conical punch and measure the hole diameter d when the crack penetrates the edge of the hole edge. Then, the increase rate of the hole diameter, that is, λ = (d−d 0 ) / d 0 was evaluated as the hole expansion rate.

表1、2から明らかな通り、発明例1、4は、本発明の範囲内の化学成分組成の鋼種1からなり、焼鈍加熱(均熱)を2段で行なっている。この結果、マルテンサイト相の平均硬さがHv400〜480の範囲内であり、かつ、フェライト相の体積分率が30〜60%の範囲内である。そして、これら複合組織における残留γの飽和磁化測定法により測定した体積分率VfγR が1vol%以下の0vol%である。このため、発明例1、4は、1000MPa 以上の高い引張強度、850MPa 以下の低降伏点、14%の伸び、70%以上の穴拡げ性λを有している。 As is clear from Tables 1 and 2, Invention Examples 1 and 4 are made of steel type 1 having a chemical composition within the scope of the present invention, and annealing heating (soaking) is performed in two stages. As a result, the average hardness of the martensite phase is in the range of Hv 400 to 480, and the volume fraction of the ferrite phase is in the range of 30 to 60%. The volume fraction Vfγ R measured by the saturation magnetization measurement method of residual γ in these composite tissues is 0 vol%, which is 1 vol% or less. Therefore, Invention Examples 1 and 4 have a high tensile strength of 1000 MPa or more, a low yield point of 850 MPa or less, an elongation of 14%, and a hole expansibility λ of 70% or more.

これに対して、発明例3は、1段目の焼鈍加熱(均熱)の時間が比較的短く、若干不十分である。この結果、複合組織における残留γの飽和磁化測定法により測定した体積分率VfγR が0.5vol%と比較的高い。このため、上記発明例1、4に比較すると、伸びは15%と高いものの、穴拡げ性λが60%と、比較的低くなっている。 On the other hand, Invention Example 3 has a relatively short time for first-stage annealing (soaking), which is slightly insufficient. As a result, the volume fraction Vfγ R measured by the saturation magnetization measurement method of residual γ in the composite tissue is relatively high at 0.5 vol%. For this reason, compared with the said invention example 1 and 4, although elongation is as high as 15%, hole expansibility (lambda) is comparatively low as 60%.

発明例5は、熱延巻き取り温度が低く、フェライト相の平均硬さがHv270と、好ましい上限Hv260を超えている。このため、平均YPが880MPaと、好ましい上限850MPaを超えて高くなっており、マルテンサイト相の平均硬さや、フェライト相の体積分率、そして、残留γの飽和磁化測定法により測定した体積分率VfγR は0vol%であり、穴拡げ性λは80%と高いものの、引張試験の伸びが11%と、上記発明例に比して低い。なお、この発明例5の1段目の焼鈍加熱(均熱)温度は低いが、加熱時間が長いために、低残留γ化には十分の焼鈍条件となっている。 In Invention Example 5, the hot rolling coiling temperature is low, and the average hardness of the ferrite phase is Hv270, which exceeds the preferable upper limit Hv260. For this reason, the average YP is 880 MPa, which is higher than the preferable upper limit of 850 MPa, the average hardness of the martensite phase, the volume fraction of the ferrite phase, and the volume fraction measured by the saturation magnetization measurement method of residual γ. Vfganma R is 0 vol% although the hole expandability lambda 80% and higher, the elongation of the tensile test and 11%, lower than the above invention examples. Although the first stage annealing (soaking) temperature of Invention Example 5 is low, since the heating time is long, the annealing conditions are sufficient for reducing the residual γ.

また、比較例2は、本発明範囲内の鋼種1からなるが、焼鈍加熱(均熱)を通常の1段のみで行なっている。この結果、複合組織における残留γの飽和磁化測定法により測定した体積分率VfγR が1vol%を超える、1.5vol%ある。このため、比較例2は、1000MPa 以上の高い引張強度において、伸びは15%と高いものの、穴拡げ性λが20%と極端に低く、両者を兼備できていない。 Moreover, although the comparative example 2 consists of the steel type 1 within the scope of the present invention, the annealing heating (soaking) is performed in only one ordinary stage. As a result, the volume fraction Vfγ R measured by the saturation magnetization measurement method of residual γ in the composite tissue is more than 1 vol%, which is 1.5 vol%. For this reason, Comparative Example 2 has an elongation as high as 15% at a high tensile strength of 1000 MPa or more, but the hole expansibility λ is extremely low as 20%, and both cannot be used together.

比較例6は、本発明範囲内の鋼種1からなるが、焼鈍後の焼戻温度が500℃と高い。この結果、マルテンサイト相の平均硬さがHv360と、下限Hv400を下回り、800MPa 程度の低強度でしかない。   Although the comparative example 6 consists of the steel type 1 within the range of this invention, the tempering temperature after annealing is as high as 500 degreeC. As a result, the average hardness of the martensite phase is Hv360, which is lower than the lower limit Hv400, and has a low strength of about 800 MPa.

比較例7は、本発明範囲内の鋼種1からなるが、焼鈍後の焼戻が無く、マルテンサイト相の平均硬さがHv500と、上限Hv480を下回っている。この結果、穴拡げ性λは70%であるものの、引張試験の伸びが9%と、上記発明例に比して著しく低い。   Although the comparative example 7 consists of the steel type 1 within the scope of the present invention, there is no tempering after annealing, and the average hardness of the martensite phase is Hv500, which is lower than the upper limit Hv480. As a result, the hole expansibility λ is 70%, but the elongation in the tensile test is 9%, which is significantly lower than that of the above-described invention example.

これらの結果から明らかな通り、表2において、X線回折法による残留γの体積分率VfγR が0%であっても、飽和磁化測定による残留γの体積分率VfγR は0〜1.5vol%の範囲で明確な有意差があることが裏付けられた。しかも、飽和磁化測定による残留γの体積分率VfγR は、1vol%を境として、引張試験の伸びと穴拡げ性との特性が大きく変わることが裏付けられた。また、本発明組織要件の意義や、好ましい製造条件の意義も裏付けられる。
As is apparent from these results, in Table 2, even when the volume fraction Vfγ R of residual γ by X-ray diffraction is 0%, the volume fraction Vfγ R of residual γ by saturation magnetization measurement is 0 to 1. It was confirmed that there was a clear significant difference in the range of 5 vol%. In addition, it was confirmed that the volume fraction Vfγ R of residual γ measured by saturation magnetization greatly changes the characteristics of elongation and hole expansibility in the tensile test with 1 vol% as a boundary. Moreover, the significance of the organization requirements of the present invention and the significance of preferable production conditions are supported.

Figure 0004268535
Figure 0004268535

Figure 0004268535
Figure 0004268535

次ぎに、実施例2として、表1に示す各鋼種2〜5を、表3に示すように、実施例1の鋼種1と同じ条件で、冷延鋼板に製造し、かつ焼鈍(焼入、焼戻)して各々DP鋼板とした。   Next, as Example 2, each steel type 2-5 shown in Table 1 was manufactured into a cold-rolled steel sheet under the same conditions as Steel Type 1 of Example 1 as shown in Table 3, and annealed (quenched, Each DP steel sheet was tempered.

これらの各DP鋼板のミクロ組織、鋼板の特性を、実施例1と同様に調査し、特性を評価した。これらの結果を表3に示す。   The microstructure of each DP steel sheet and the characteristics of the steel sheet were investigated in the same manner as in Example 1 to evaluate the characteristics. These results are shown in Table 3.

表3から明らかな通り、発明例1(実施例1の発明例1と同じ)はもとより、発明例8は、本発明の範囲内の化学成分組成の鋼種2からなり、焼鈍加熱(均熱)を2段で行なっている。この結果、マルテンサイト相の平均硬さが本発明範囲内であり、かつ、フェライト相の体積分率が本発明範囲内である。そして、これら複合組織における残留γの飽和磁化測定法により測定した体積分率VfγR が1vol%以下の0vol%である。このため、発明例8は、1010MPa の高い引張強度、848MPa 以下の低降伏点、14%の伸び、75%以上の穴拡げ性を有している。 As is apparent from Table 3, Invention Example 8 is composed of steel type 2 having a chemical composition within the scope of the present invention, as well as Invention Example 1 (same as Invention Example 1 of Example 1), and is annealed (soaking). Is performed in two stages. As a result, the average hardness of the martensite phase is within the scope of the present invention, and the volume fraction of the ferrite phase is within the scope of the present invention. The volume fraction Vfγ R measured by the saturation magnetization measurement method of residual γ in these composite tissues is 0 vol%, which is 1 vol% or less. Therefore, Invention Example 8 has a high tensile strength of 1010 MPa, a low yield point of 848 MPa or less, an elongation of 14%, and a hole expandability of 75% or more.

これに対して、比較例9、10、11は、各々表1の鋼種3、4、5からなり、Cが下限0.02%を下回る0.01%、Siが下限0.02%を下回る0.01%、Mnが下限0.15%を下回る0.13%と、必須成分が各々、外れている。   On the other hand, Comparative Examples 9, 10, and 11 are each made of steel types 3, 4, and 5 of Table 1, C is 0.01% below the lower limit of 0.02%, and Si is below the lower limit of 0.02%. 0.01% and Mn are 0.13% lower than the lower limit of 0.15%, and the essential components are off.

この結果、比較例9は、飽和磁化測定による残留γの体積分率VfγR は範囲内であるものの、Cが少ないために、フェライト相の体積分率が高過ぎ、マルテンサイト相の硬度が低く、強度が低い。比較例10も、飽和磁化測定による残留γの体積分率VfγR は範囲内であるものの、Siが少ないために、フェライト相の体積分率が低過ぎ、伸びが低い。比較例11も、飽和磁化測定による残留γの体積分率VfγR は範囲内であるものの、Mnが少ないために、マルテンサイト相の硬度が低く、強度が低く、穴拡げ性も低い。 As a result, in Comparative Example 9, although the volume fraction of residual γ Vfγ R measured by saturation magnetization is within the range, since C is small, the volume fraction of the ferrite phase is too high and the hardness of the martensite phase is low. The strength is low. In Comparative Example 10 as well, although the volume fraction of residual γ Vfγ R measured by saturation magnetization is within the range, the volume fraction of the ferrite phase is too low and the elongation is low due to the small amount of Si. Comparative Example 11 also, although the volume fraction Vfganma R of residual γ by saturation magnetization measurement is in the range, for Mn is small, low hardness of the martensite phase, low strength, hole expandability is also low.

これらの結果から、本発明化学成分組成の意義が裏付けられる。
These results support the significance of the chemical component composition of the present invention.

Figure 0004268535
Figure 0004268535

以上説明したように、本発明によれば、引張試験の伸びと穴拡げ性とを両立させたデュアルフェーズ型の強度成形性バランスに優れた高強度冷延鋼板を提供することができる。このため、プレス成形加工と穴拡げ加工との両方が施されるなど、この両者の特性を要求され、軽量化のために高強度が要求される自動車部材などの用途に最適である。   As described above, according to the present invention, it is possible to provide a high-strength cold-rolled steel sheet excellent in a dual-phase strength formability balance in which both elongation in tensile testing and hole expandability are achieved. For this reason, both the press molding process and the hole expanding process are performed, and both characteristics are required, and it is optimal for applications such as automobile members that require high strength for weight reduction.

飽和磁化測定に用いる直流磁気測定装置の一部分を示す斜視図である。It is a perspective view which shows a part of DC magnetic measuring apparatus used for saturation magnetization measurement.

符号の説明Explanation of symbols

1:コイル、2:試料、3:磁界検出用のHコイル、4:導線
1: Coil, 2: Sample, 3: H coil for magnetic field detection, 4: Conductor

Claims (4)

質量%で、C:0.02〜0.25%、Si:0.02〜4.0%、Mn:0.15〜3.5%、B:0.01%以下(但し0%を含まない)、AlとPとを合計で1.0%以下(但し0%を含まない)を各々含有し、残部鉄及び不可避的不純物からなり、フェライト相とマルテンサイト相との複合組織からなる冷延鋼板であって、マルテンサイト相の平均硬さがHv400〜480であり、かつ、フェライト相の体積分率が30〜60%であり、これら複合組織における残留γの飽和磁化測定法により測定した体積分率が0vol%を含む1vol%以下であることを特徴とする強度成形性バランスに優れた高強度冷延鋼板。 In mass%, C: 0.02 to 0.25%, Si: 0.02 to 4.0%, Mn: 0.15 to 3.5%, B: 0.01% or less (including 0%) A total of 1.0% or less (excluding 0%) of Al and P, each of which is composed of the balance iron and unavoidable impurities, and is composed of a composite structure of a ferrite phase and a martensite phase. It is a rolled steel sheet, the average hardness of the martensite phase is Hv 400 to 480, and the volume fraction of the ferrite phase is 30 to 60%, measured by the saturation magnetization measurement method of residual γ in these composite structures A high-strength cold-rolled steel sheet having an excellent balance of strength formability, wherein the volume fraction is 1 vol% or less including 0 vol%. 更に、Cr、Ni、Cu、Moの中から選ばれる1種以上を合計で1.0質量%以下(但し0%を含まない)含有するものである請求項1に記載の強度成形性バランスに優れた高強度冷延鋼板。The strength formability balance according to claim 1, further comprising a total of one or more selected from Cr, Ni, Cu, and Mo in an amount of 1.0% by mass or less (excluding 0%). Excellent high-strength cold-rolled steel sheet. 更に、Nb、Ti、V、Znの中から選ばれる1種以上を合計で1.0質量%以下(但し0%を含まない)含有するものである請求項1または2に記載の強度成形性バランスに優れた高強度冷延鋼板。The strength formability according to claim 1 or 2, further comprising one or more selected from Nb, Ti, V, and Zn in a total amount of 1.0 mass% or less (excluding 0%). High-strength cold-rolled steel sheet with excellent balance. 前記フェライト相の平均硬さがHv260以下である、請求項1から3のいずれかに記載の強度成形性バランスに優れた高強度冷延鋼板。The high-strength cold-rolled steel sheet excellent in strength formability balance according to any one of claims 1 to 3, wherein an average hardness of the ferrite phase is Hv260 or less.
JP2004040127A 2004-02-17 2004-02-17 High-strength cold-rolled steel sheet with excellent balance of strength formability Expired - Fee Related JP4268535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040127A JP4268535B2 (en) 2004-02-17 2004-02-17 High-strength cold-rolled steel sheet with excellent balance of strength formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040127A JP4268535B2 (en) 2004-02-17 2004-02-17 High-strength cold-rolled steel sheet with excellent balance of strength formability

Publications (2)

Publication Number Publication Date
JP2005232493A JP2005232493A (en) 2005-09-02
JP4268535B2 true JP4268535B2 (en) 2009-05-27

Family

ID=35015751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040127A Expired - Fee Related JP4268535B2 (en) 2004-02-17 2004-02-17 High-strength cold-rolled steel sheet with excellent balance of strength formability

Country Status (1)

Country Link
JP (1) JP4268535B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767659A1 (en) * 2005-09-21 2007-03-28 ARCELOR France Method of manufacturing multi phase microstructured steel piece
JP4964494B2 (en) * 2006-05-09 2012-06-27 新日本製鐵株式会社 High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP4725973B2 (en) * 2006-10-18 2011-07-13 株式会社神戸製鋼所 High strength steel plate with excellent stretch flangeability and method for producing the same
CN103805838B (en) 2012-11-15 2017-02-08 宝山钢铁股份有限公司 High formability super strength cold-roll steel sheet and manufacture method thereof
JP2013067866A (en) * 2012-11-16 2013-04-18 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet superior in bending property
CN115181899B (en) * 2021-04-02 2023-07-07 宝山钢铁股份有限公司 980 MPa-level low-carbon low-alloy TRIP steel and rapid heat treatment manufacturing method thereof

Also Published As

Publication number Publication date
JP2005232493A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
EP1391526B2 (en) Dual phase steel sheet with good bake-hardening properties
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP2053140B1 (en) High-strength steel sheets and processes for production of the same
KR102060522B1 (en) High strength cold rolled steel sheet and method of producing such steel sheet
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
EP2604715B1 (en) Method for manufacturing a high-strength cold-rolled steel sheet having excellent formability and crashworthiness
US8828154B2 (en) Hot-rolled steel sheet, method for making the same, and worked body of hot-rolled steel sheet
KR102044693B1 (en) High strength cold rolled steel sheet and method of producing such steel sheet
JP5739669B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent ductility
KR20150000892A (en) High strength cold rolled steel sheet and method of producing such steel sheet
MX2011002559A (en) High-strength steel plate and manufacturing method thereof.
JP2007302918A (en) High strength steel sheet with excellent bore expandability and formability, and its manufacturing method
EP2562272B1 (en) Method for producing steel product or steel component having excellent mechanical properties, steel product produced by the method and use of steel pipe made of strain hardened steel
JP2015528058A (en) Cold rolled steel sheet product and method for producing the same
EP3848479A1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same
JP4119758B2 (en) High-strength steel sheet excellent in workability and shape freezing property, and its production method
JP5811725B2 (en) High-tensile cold-rolled steel sheet excellent in surface distortion resistance, bake hardenability and stretch flangeability, and method for producing the same
JP4156889B2 (en) Composite steel sheet with excellent stretch flangeability and method for producing the same
KR101917452B1 (en) Cold rolled steel sheet with excellent bendability and hole expansion property, and method for manufacturing the same
JP2005213603A (en) High workability high strength cold rolled steel plate and its manufacturing method
JP2002069574A (en) Low yield ratio and high strength cold rolled steel sheet excellent in pore expansibility, and its production method
JP4268535B2 (en) High-strength cold-rolled steel sheet with excellent balance of strength formability
KR100946066B1 (en) Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements
EP3730651A1 (en) High yield ratio-type high-strength steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090220

R150 Certificate of patent or registration of utility model

Ref document number: 4268535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees