JP2002069574A - Low yield ratio and high strength cold rolled steel sheet excellent in pore expansibility, and its production method - Google Patents

Low yield ratio and high strength cold rolled steel sheet excellent in pore expansibility, and its production method

Info

Publication number
JP2002069574A
JP2002069574A JP2000267311A JP2000267311A JP2002069574A JP 2002069574 A JP2002069574 A JP 2002069574A JP 2000267311 A JP2000267311 A JP 2000267311A JP 2000267311 A JP2000267311 A JP 2000267311A JP 2002069574 A JP2002069574 A JP 2002069574A
Authority
JP
Japan
Prior art keywords
martensite
steel sheet
retained austenite
strength
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000267311A
Other languages
Japanese (ja)
Other versions
JP4358418B2 (en
Inventor
Koji Sakuma
康治 佐久間
Shunji Hiwatari
俊二 樋渡
Akinobu Murasato
映信 村里
Atsushi Itami
淳 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000267311A priority Critical patent/JP4358418B2/en
Publication of JP2002069574A publication Critical patent/JP2002069574A/en
Application granted granted Critical
Publication of JP4358418B2 publication Critical patent/JP4358418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low yield ratio and high strength steel sheet whose elongation in a tensile test and hole expansibility are made compatible with each other, and to provide its production method. SOLUTION: The steel controlled to be (%Ti)/(%S)>=5 (wherein, %S and %Ti respectively denote S and Ti contents) is hot-rolled at the finish outlet side temperature of (900+50×%Si) deg.C or lower and is then annealed at 700 to 900 deg.C being a two phase coexistent temperature region of ferrite and austenite to form a metallic structure in which the total volume ratio of martensite and retained austenite is >=6%, and the hard phase structure of martensite, retained austenite and bainite are contained by fixed ratios in accordance with the amounts of precipitation strengthening elements such as Ti, Nb, Mo and V to be added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は穴拡げ性に優れた低
降伏比高強度鋼板およびめっき鋼板とその製造方法に関
わるものである。本発明が係わる高強度鋼板とは、自動
車部品、家庭電気製品、建築などの用途にプレス加工を
して使用されるものであり、防錆の改善のために溶融亜
鉛めっきや電気亜鉛めっきを施したり、さらにそのいっ
そうの改善を図るために金属酸化物皮膜、有機皮膜を表
面処理した鋼板やプレス成形性の改善のために上層に鉄
めっきを施した鋼板を含む。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-yield-ratio high-strength steel sheet and a plated steel sheet having excellent hole expandability and a method for producing the same. The high-strength steel sheet according to the present invention is used by press working in applications such as automobile parts, home electric appliances, and construction, and is subjected to hot-dip galvanizing or electro-galvanizing to improve rust prevention. In addition, a steel sheet having a surface treated with a metal oxide film or an organic film for further improvement or a steel sheet having an upper layer provided with iron plating for improving press formability is included.

【0002】[0002]

【従来の技術】自動車車体には衝突時に乗員を保護する
ような機能の確保がCO2をはじめとした排出ガスの低
減を燃費向上により実現するような軽量化とともに要求
されている。これに呼応し、プレス加工性を悪化させず
に鋼板を高強度化する強化機構として一般に考えられて
いる固溶強化やマルテンサイトやベイナイトをフェライ
トマトリクス中に微細分散させた複合組織強化を用いた
高強度鋼板が開発されてきた。さらに近年では登録特許
第2017320号公報や登録特許第2545316号
公報にあるように残留オーステナイトの変態誘起塑性を
利用し、引張試験における伸びの改善を試みた鋼板が開
発されているが、プレス加工性の良否は引張試験の伸び
にだけ依存するものではなく、伸びフランジ加工の厳し
い部材では穴拡げ性と言われる剪断端面の延性の良否に
も大きく依存するため、穴拡げ性が必ずしも良好ではな
いかかる高強度鋼板の使用は限定された範囲にとどまっ
ている。
The an automobile body have been required along with lighter, such as secure functions such as protecting the occupant realized by improved fuel economy and reduction of exhaust gas including CO 2 in the event of a collision. In response to this, we used solid solution strengthening and composite structure strengthening in which martensite and bainite are finely dispersed in a ferrite matrix, which are generally considered as strengthening mechanisms that strengthen steel sheets without deteriorating press workability. High strength steel plates have been developed. Further, in recent years, steel sheets have been developed which attempt to improve elongation in a tensile test by utilizing transformation-induced plasticity of retained austenite as disclosed in Japanese Patent No. 2017320 and Japanese Patent No. 2545316. The quality of not only depends on the elongation of the tensile test, but also depends on the quality of the ductility of the sheared end face, which is called the hole-expanding property in a member with severe stretch flange processing, so the hole-expanding property is not always good. The use of high-strength steel sheets has been limited.

【0003】鋼板の穴拡げ性を改善する手法としては、
MnSのように展伸した介在物の増加につながるSを低
減することや、変形応力が大きく異なる相境界に形成さ
れる鋭いボイドを裂けるためマルテンサイトの混在を避
けることが提案されている。しかしながら鋼中のSを極
端に低減することはコストの著しい増加を招くばかり
か、産業上容易に実現できるものではないうえ、Sを含
む介在物が見られなくなれば別の介在物の悪影響が顕在
化する可能性もあり、現実的なものではない。またマル
テンサイトの存在を避けて高強度化しようとしても引張
強さ590MPa以上の高強度を得ようとすれば、ベイ
ナイトを主体とする金属組織としたり、Ti、Nb、M
o、Vといった元素を添加して析出強化を図らなければ
ならないが、一般にこれらの方法では降伏強さの引張強
さに対する比、すなわち降伏比が高くなるため、プレス
加工性からは好ましくなく、さらにTi、Nb、Mo、
Vといった元素は再結晶温度を上げるため、冷延鋼板で
は再結晶状態でその析出強化を十分に活用することが難
しい。
[0003] As a method of improving the hole expandability of a steel sheet,
It has been proposed to reduce S, which leads to an increase in expanded inclusions such as MnS, and to avoid the mixing of martensite to break sharp voids formed at phase boundaries where the deformation stress differs greatly. However, extremely reducing S in steel not only causes a remarkable increase in cost, but also cannot be realized industrially easily. In addition, if inclusions containing S cannot be seen, adverse effects of other inclusions are evident. This is not realistic. Further, even if it is attempted to increase the strength by avoiding the presence of martensite, in order to obtain a high strength of 590 MPa or more, a metal structure mainly composed of bainite, Ti, Nb, M
Although elements such as o and V must be added to enhance precipitation strengthening, in general, in these methods, the ratio of yield strength to tensile strength, that is, the yield ratio is high, which is not preferable from the viewpoint of press workability. Ti, Nb, Mo,
Since elements such as V increase the recrystallization temperature, it is difficult for cold rolled steel sheets to fully utilize the precipitation strengthening in the recrystallized state.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、マ
ルテンサイト、残留オーステナイトおよびベイナイトを
フェライトマトリクス中に微細分散させ、プレス加工性
を改善しようとした複合組織高強度鋼板において、低降
伏比を確保しながら、伸びフランジ加工の厳しい部材に
もプレス加工できるように、引張試験における伸びと穴
拡げ性の両立を図ることを課題とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a high-strength composite microstructure steel sheet in which martensite, retained austenite and bainite are finely dispersed in a ferrite matrix to improve the press workability. It is an object of the present invention to achieve both elongation and hole expandability in a tensile test so that a member with strict stretch flange processing can be pressed while securing the same.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するべく、剪断端面においてフェライトとマル
テンサイトの相境界に鋭いボイドが形成されないような
金属組織はマルテンサイト近傍のフェライト自体を微細
なTi、Nb、Mo、Vといった元素を含む微細析出物
で強化し、隣接組織間の変形応力差を低減することによ
って実現できるという見地から、C、Si、Mn、Sの
含有量を調節したうえで、Ti、Nb、Mo、Vといっ
た析出強化元素を添加した鋼を用いて、熱間圧延温度と
冷間圧延後の焼鈍温度条件について鋭意検討を加えた結
果、%S、%TiをそれぞれS、Ti含有量とした時に
(%Ti)/(%S)≧5となるように成分調整された
鋼を、%SiをSi含有量とした時に仕上出側温度を
(900+50×%Si)℃以下とする熱間圧延を行っ
たうえで、700〜900℃のフェライト、オーステナ
イトの二相共存温度域で焼鈍し、マルテンサイトおよび
残留オーステナイトが合計で体積率6%以上で、かつマ
ルテンサイト、残留オーステナイトおよびベイナイトの
硬質相組織がTi、Nb、Mo、Vといった析出強化元
素の添加量に対応した一定割合で含まれる金属組織を形
成すれば、必要な強度が確保されたうえで低降伏比で、
引張試験における伸びと穴拡げ性を両立できることを見
出した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have developed a metal structure in which sharp voids are not formed at the phase boundary between ferrite and martensite on the sheared end face. Can be realized by strengthening with fine precipitates containing elements such as fine Ti, Nb, Mo, and V, and reducing the difference in deformation stress between adjacent structures. After the adjustment, the steels to which the precipitation strengthening elements such as Ti, Nb, Mo, and V were added, and the hot rolling temperature and the annealing temperature conditions after the cold rolling were intensively studied. As a result,% S,% Ti When the content is adjusted to S and Ti, respectively, the steel whose composition is adjusted so that (% Ti) / (% S) ≧ 5 is obtained. When the content of% Si is set to Si, the finishing temperature is set to (900 + 50 ×% i) After performing hot rolling at a temperature of not more than ° C, annealing is performed in a temperature range of coexistence of ferrite and austenite at 700 to 900 ° C, so that the martensite and the retained austenite have a total volume ratio of 6% or more, and If the hard phase structure of the site, retained austenite and bainite forms a metal structure that is contained at a certain ratio corresponding to the added amount of the precipitation strengthening element such as Ti, Nb, Mo, and V, the required strength is ensured and the strength is lowered. In the yield ratio,
It has been found that both elongation and hole expandability in a tensile test can be achieved.

【0006】本発明はこのような思想と新知見に基づい
て構成された従来にはない全く新しい穴拡げ性に優れた
低降伏比高強度鋼板であり、その要旨とするところは以
下のとおりである。
[0006] The present invention is an unprecedented and completely new low-yield-ratio high-strength steel sheet having an excellent hole-expansion property based on such ideas and new findings. is there.

【0007】(1) 質量%で、C:0.04〜0.1
4%、Si:0.4〜2.2%、Mn:1.2〜2.4
%、P:0.02%以下、S:0.01%以下、Al:
0.002〜0.5%、Ti:0.005〜0.1%、
N:0.006%以下を含有し、さらに%S、%Tiを
それぞれS、Ti含有量とした時に(%Ti)/(%
S)≧5を満足し、残部Feおよび不可避的不純物から
なることを特徴とする穴拡げ性に優れた低降伏比高強度
冷延鋼板。
(1) In mass%, C: 0.04 to 0.1
4%, Si: 0.4 to 2.2%, Mn: 1.2 to 2.4
%, P: 0.02% or less, S: 0.01% or less, Al:
0.002-0.5%, Ti: 0.005-0.1%,
N: not more than 0.006%, and when% S and% Ti are respectively S and Ti contents, (% Ti) / (%
S) A low-yield-ratio high-strength cold-rolled steel sheet which satisfies ≧ 5 and is composed of a balance of Fe and inevitable impurities, and is excellent in hole expandability.

【0008】(2) 質量%で、C:0.04〜0.1
4%、Si:0.4〜2.2%、Mn:1.2〜2.4
%、P:0.02%以下、S:0.01%以下、Al:
0.002〜0.5%、Ti:0.005〜0.1%、
N:0.006%以下とさらにNb、Mo、Vの1種以
上を合計で0.005〜0.1%含有し、さらに%S、
%TiをそれぞれS、Ti含有量とした時に(%Ti)
/(%S)≧5を満足し、残部Feおよび不可避的不純
物からなることを特徴とする穴拡げ性に優れた低降伏比
高強度冷延鋼板。
(2) C: 0.04 to 0.1 in mass%
4%, Si: 0.4 to 2.2%, Mn: 1.2 to 2.4
%, P: 0.02% or less, S: 0.01% or less, Al:
0.002-0.5%, Ti: 0.005-0.1%,
N: 0.006% or less and further contains at least one of Nb, Mo, and V in an amount of 0.005 to 0.1%, and further contains% S,
% Ti as S and Ti content respectively (% Ti)
A low-yield-ratio high-strength cold-rolled steel sheet that satisfies / (% S) ≧ 5 and is composed of a balance of Fe and inevitable impurities, and is excellent in hole expandability.

【0009】(3) 質量%で、B:0.0010〜
0.003%を含有する上記(1)または(2)に記載
の穴拡げ性に優れた低降伏比高強度冷延鋼板。
(3) B: 0.0010% by mass
The low-yield-ratio high-strength cold-rolled steel sheet excellent in hole expandability according to the above (1) or (2), containing 0.003%.

【0010】(4) 上記(1)、(2)または(3)
に記載の穴拡げ性に優れた低降伏比高強度めっき鋼板。
(4) The above (1), (2) or (3)
Low yield ratio high strength plated steel sheet with excellent hole expandability described in 1.

【0011】(5) 上記(1)、(2)または(3)
に記載の化学成分からなり、その金属組織におけるマル
テンサイトおよび残留オーステナイトの体積率が合計で
6%以上で、かつマルテンサイト、残留オーステナイト
およびベイナイトの硬質相組織の体積率をα%、Ti、
Nb、Mo、Vの添加量をそれぞれ%Ti、%Nb、%
Mo、%Vとした時に、α≦50000×((%Ti)
/48+(%Nb)/93+(%Mo)/96+(%
V)/51)であることを特徴とする穴拡げ性に優れた
低降伏比高強度冷延鋼板。
(5) The above (1), (2) or (3)
Wherein the total volume fraction of martensite and retained austenite in the metal structure is 6% or more, and the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti,
The addition amounts of Nb, Mo, and V were respectively set to% Ti,% Nb,%
When Mo and% V, α ≦ 50,000 × ((% Ti)
/ 48 + (% Nb) / 93 + (% Mo) / 96 + (%
V) / 51). A low-yield-ratio high-strength cold-rolled steel sheet excellent in hole expandability, characterized by being V) / 51).

【0012】(6) 上記(1)、(2)または(3)
に記載の化学成分からなり、その金属組織におけるマル
テンサイトおよび残留オーステナイトの体積率が合計で
6%以上で、かつマルテンサイト、残留オーステナイト
およびベイナイトの硬質相組織の体積率をα%、Ti、
Nb、Mo、Vの添加量をそれぞれ%Ti、%Nb、%
Mo、%Vとした時に、α≦50000×((%Ti)
/48+(%Nb)/93+(%Mo)/96+(%
V)/51)であることを特徴とする穴拡げ性に優れた
低降伏比高強度めっき鋼板。
(6) The above (1), (2) or (3)
Wherein the total volume fraction of martensite and retained austenite in the metal structure is 6% or more, and the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti,
The addition amounts of Nb, Mo, and V were respectively set to% Ti,% Nb,%
When Mo and% V, α ≦ 50,000 × ((% Ti)
/ 48 + (% Nb) / 93 + (% Mo) / 96 + (%
V) / 51) A low yield ratio high-strength plated steel sheet excellent in hole expandability, characterized in that:

【0013】(7) 上記(1)、(2)または(3)
に記載の化学成分からなる組成のスラブに%SiをSi
含有量とした時、仕上出側温度を(900+50×%S
i)℃以下とする熱間圧延を行い、50〜85%の冷間
圧延を施した冷延板を700〜900℃のフェライト、
オーステナイトの二相共存温度域で10秒〜5分焼鈍
し、700℃から500℃までの間の平均冷却速度を1
〜120℃/秒として250〜500℃に冷却し、必要
に応じて再加熱した後250〜600℃の範囲の温度域
に30秒〜10分保持してから常温まで冷却することを
特徴とする、その金属組織におけるマルテンサイトおよ
び残留オーステナイトの体積率が合計で6%以上で、か
つマルテンサイト、残留オーステナイトおよびベイナイ
トの硬質相組織の体積率をα%、Ti、Nb、Mo、V
の添加量をそれぞれ%Ti、%Nb、%Mo、%Vとし
た時に、α≦50000×((%Ti)/48+(%N
b)/93+(%Mo)/96+(%V)/51)であ
ることを特徴とする穴拡げ性に優れた低降伏比高強度冷
延鋼板の製造方法。
(7) The above (1), (2) or (3)
% Slab to a slab having a composition consisting of the chemical components described in
When the content is determined, the finishing temperature is (900 + 50 ×% S
i) A hot-rolled sheet subjected to hot rolling at 50 ° C. or less and cold-rolled at 50 to 85% is subjected to ferrite at 700 to 900 ° C.
Austenite is annealed in a two-phase coexisting temperature range for 10 seconds to 5 minutes, and the average cooling rate between 700 ° C and 500 ° C is 1
It is characterized by cooling to 250 to 500 ° C. at a temperature of 120 to 120 ° C./sec, reheating if necessary, maintaining the temperature in the range of 250 to 600 ° C. for 30 seconds to 10 minutes, and then cooling to room temperature. The volume fraction of martensite and retained austenite in the metal structure is 6% or more in total, and the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti, Nb, Mo, V
Α = 50,000 × ((% Ti) / 48 + (% N
b) / 93 + (% Mo) / 96 + (% V) / 51), and a method for producing a low-yield-ratio high-strength cold-rolled steel sheet excellent in hole expandability.

【0014】(8) 上記(1)、(2)または(3)
に記載の化学成分からなる組成のスラブに%SiをSi
含有量とした時、仕上出側温度を(900+50×%S
i)℃以下とする熱間圧延を行い、50〜85%の冷間
圧延を施した冷延板を700〜900℃のフェライト、
オーステナイトの二相共存温度域で10秒〜5分焼鈍
し、700℃から500℃までの間の平均冷却速度を1
〜120℃/秒として250〜500℃に冷却し、必要
に応じて再加熱した後250〜600℃の範囲の温度域
に30秒〜10分保持してから常温まで冷却することを
特徴とする、その金属組織におけるマルテンサイトおよ
び残留オーステナイトの体積率が合計で6%以上で、か
つマルテンサイト、残留オーステナイトおよびベイナイ
トの硬質相組織の体積率をα%、Ti、Nb、Mo、V
の添加量をそれぞれ%Ti、%Nb、%Mo、%Vとし
た時に、α≦50000×((%Ti)/48+(%N
b)/93+(%Mo)/96+(%V)/51)であ
ることを特徴とする穴拡げ性に優れた低降伏比高強度め
っき鋼板の製造方法。
(8) The above (1), (2) or (3)
% Slab to a slab having a composition consisting of the chemical components described in
When the content is determined, the finishing temperature is (900 + 50 ×% S
i) A hot-rolled sheet subjected to hot rolling at 50 ° C. or less and cold-rolled at 50 to 85% is subjected to ferrite at 700 to 900 ° C.
Austenite is annealed in a two-phase coexisting temperature range for 10 seconds to 5 minutes, and the average cooling rate between 700 ° C and 500 ° C is 1
It is characterized by cooling to 250 to 500 ° C. at a temperature of 120 to 120 ° C./sec, reheating if necessary, maintaining the temperature in the range of 250 to 600 ° C. for 30 seconds to 10 minutes, and then cooling to room temperature. The volume fraction of martensite and retained austenite in the metal structure is 6% or more in total, and the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti, Nb, Mo, V
Α = 50,000 × ((% Ti) / 48 + (% N
b) / 93 + (% Mo) / 96 + (% V) / 51), which is a method for producing a low-yield-ratio high-strength plated steel sheet having excellent hole expandability.

【0015】[0015]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.

【0016】まず、C、Si、Mn、P、S、Al、T
i、Nb、Mo、V、Nの数値限定理由について述べ
る。
First, C, Si, Mn, P, S, Al, T
The reasons for limiting the numerical values of i, Nb, Mo, V, and N will be described.

【0017】Cはマルテンサイトや残留オーステナイト
による組織強化を低コストで実現する場合に必須の元素
であり、Cが0.04%未満ではマルテンサイトや残留
オーステナイトの体積率が低下するため、必要とする引
張強さの確保が困難である。一方Cが0.14%を超え
ると、マルテンサイトや残留オーステナイトの体積率が
増加し、引張強さを高めることは容易であるものの、剪
断端面において鋭いボイドが形成され穴拡げ性の劣化が
著しい。
C is an essential element for realizing the structural strengthening by martensite and retained austenite at low cost. If C is less than 0.04%, the volume ratio of martensite and retained austenite decreases, so C is necessary. It is difficult to secure sufficient tensile strength. On the other hand, if C exceeds 0.14%, the volume ratio of martensite or retained austenite increases, and it is easy to increase the tensile strength, but sharp voids are formed at the shear end face, and the hole expandability is significantly deteriorated. .

【0018】Siの添加により鋼板の伸びが大きく損な
われずに強度が増すことはよく知られており、またパー
ライトおよびベイナイト変態の進行を著しく遅滞させて
粗大炭化物の形成を阻害することにより穴拡げ性を改善
すると同時に、室温まで冷却後の金属組織にマルテンサ
イトおよび残留オーステナイトの存在が容易として引張
試験における伸びを大きくするうえ、特に本発明では一
定の条件で熱間圧延することにより焼鈍後の金属組織に
おいてマルテンサイト近傍のフェライトを主体にTi、
Nb、Mo、Vといった元素を含む微細析出物で強化
し、隣接組織間の変形応力差を低減するうえで有用であ
り、本発明の特徴とする低降伏比で、引張試験における
伸びと穴拡げ性の両立を実現するために重要である。パ
ーライトおよびベイナイト変態の進行を著しく遅滞させ
て粗大炭化物の形成を阻害することにより穴拡げ性を改
善し、また室温まで冷却後の金属組織にマルテンサイト
および残留オーステナイトの存在を容易とし、引張試験
における伸びを大きくするためには0.4%を超す添加
が必要である。しかしその添加量が2.2%を超える
と、焼鈍後の金属組織においてマルテンサイト近傍のフ
ェライトを主体にTi、Nb、Mo、Vといった元素を
含む微細析出物で強化するように熱間圧延を行うことが
困難となり、低降伏比と穴拡げ性の両立が困難となる。
It is well known that the addition of Si increases the strength of the steel sheet without significantly impairing the elongation of the steel sheet. In addition, the addition of Si significantly delays the progress of the pearlite and bainite transformations and inhibits the formation of coarse carbides, thereby increasing the hole expansion property. At the same time, the presence of martensite and residual austenite in the metal structure after cooling to room temperature facilitates the elongation in the tensile test.In addition, in the present invention, the metal after annealing by hot rolling under certain conditions is particularly used. The structure is mainly composed of ferrite near martensite,
It is strengthened by fine precipitates containing elements such as Nb, Mo, and V, and is useful in reducing the difference in deformation stress between adjacent structures. The low yield ratio characteristic of the present invention provides elongation and hole expansion in a tensile test. It is important to achieve gender balance. It significantly slows down the progress of the pearlite and bainite transformations and inhibits the formation of coarse carbides, improves hole-expandability, and facilitates the presence of martensite and residual austenite in the metal structure after cooling to room temperature, In order to increase the elongation, it is necessary to add more than 0.4%. However, when the addition amount exceeds 2.2%, hot rolling is performed so that ferrite near martensite is mainly contained in the metal structure after annealing and fine precipitates containing elements such as Ti, Nb, Mo, and V are strengthened. This makes it difficult to achieve a low yield ratio and hole expandability at the same time.

【0019】MnはCとともにオーステナイトの自由エ
ネルギーを下げ、鋼の焼入れ性を増す元素として知られ
ており、必要とする引張強さで伸びを改善するためにマ
ルテンサイトおよび残留オーステナイトを合計で体積率
6%以上存在する金属組織とすることを目的に1.2%
以上添加する。しかし添加量が過大になると低降伏比の
ままで穴拡げ性の劣化しないようなTiの添加量が見出
せないため、2.2%を上限とする。
Mn is known as an element that lowers the free energy of austenite together with C and increases the hardenability of steel. To improve elongation at a required tensile strength, martensite and retained austenite are combined in a volume ratio of Mn. 1.2% for the purpose of having a metal structure existing at 6% or more
Add above. However, if the addition amount is excessive, the addition amount of Ti that does not deteriorate the hole expandability at a low yield ratio cannot be found, so the upper limit is 2.2%.

【0020】Pは一般に不可避的不純物として鋼に含ま
れるが、その量が0.02%を超えると、本発明におけ
るような引張強さが590MPaを超すような高強度鋼
板では靭性とともに冷間圧延性が著しく劣化し、工業的
に多量生産することが困難となる。
P is generally contained in steel as an unavoidable impurity, but if its amount exceeds 0.02%, cold rolling as well as toughness of a high-strength steel sheet having a tensile strength exceeding 590 MPa as in the present invention is performed. The properties are remarkably deteriorated, and it becomes difficult to mass-produce industrially.

【0021】Sも一般に不可避的不純物として鋼に含ま
れるが、その量が0.01%を超えると鋼板のスポット
溶接性におよぼす悪影響が顕著となる。
S is generally contained in steel as an inevitable impurity, but if its content exceeds 0.01%, the adverse effect on the spot weldability of the steel sheet becomes significant.

【0022】Alは鋼の脱酸元素として、またAlNに
よる熱延素材の細粒化、および一連の熱処理工程におけ
る結晶粒の粗大化を抑制し材質を改善するために0.0
02%以上添加する必要があるが、0.5%を超えるこ
とはコスト高となるばかりか、表面性状を劣化させる。
Al is used as a deoxidizing element of steel, and is used in order to improve the material quality by suppressing the grain size of the hot-rolled material by AlN and suppressing the coarsening of the crystal grains in a series of heat treatment steps.
It is necessary to add 02% or more, but if it exceeds 0.5%, not only the cost is increased but also the surface properties are deteriorated.

【0023】Tiはマルテンサイト近傍のフェライトを
主体に微細析出し、隣接組織間の変形応力差を低減する
とともに、SがMnSとして展伸介在物となり穴拡げ性
を劣化するのを防ぐ目的で添加する。一般にはTiが微
細析出すると引張強さが高くなると同時に再結晶温度も
上昇し、フェライト、オーステナイトの二相共存温度域
でもフェライトが未再結晶状態となることがあるが、本
発明では鋼のSiを添加のうえで熱間圧延条件を調整す
ることにより焼鈍温度にかかわらず、十分に再結晶した
フェライトを主体にマルテンサイトおよび残留オーステ
ナイトが合計で体積率6%以上含まれる金属組織を形成
できる。Tiの添加量が0.005%未満ではマルテン
サイト近傍のフェライトの析出強化に効果がなく、また
%S、%TiをそれぞれS、Ti含有量とした時に(%
Ti)/(%S)が5未満では展伸したMnSの生成を
抑制することが困難であり、穴拡げ性は改善できない。
しかしTiの量が0.1%を超えるとフェライトの析出
強化が著しいために降伏比が増大するばかりか、本発明
で規定するように鋼のSi含有量とともに熱間圧延条件
を調整したとしても短時間の焼鈍でフェライトを再結晶
させることが難しいため、引張試験における伸びも小さ
くなる。
Ti is added for the purpose of finely precipitating mainly ferrite in the vicinity of martensite to reduce the difference in deformation stress between adjacent structures, and to prevent S from becoming an expanded inclusion as MnS and deteriorating hole expandability. I do. In general, when Ti precipitates finely, the recrystallization temperature increases at the same time as the tensile strength increases, and the ferrite may be in an unrecrystallized state even in the two-phase coexistence temperature region of ferrite and austenite. By adjusting the hot rolling conditions after the addition of manganese, a metal structure containing martensite and retained austenite in a total volume ratio of at least 6% mainly composed of sufficiently recrystallized ferrite can be formed regardless of the annealing temperature. If the addition amount of Ti is less than 0.005%, there is no effect on the precipitation strengthening of ferrite in the vicinity of martensite, and when% S and% Ti are respectively S and Ti contents,
If Ti) / (% S) is less than 5, it is difficult to suppress the formation of expanded MnS, and the hole expandability cannot be improved.
However, when the amount of Ti exceeds 0.1%, not only the yield ratio increases due to significant precipitation strengthening of ferrite, but even if the hot rolling conditions are adjusted together with the Si content of the steel as specified in the present invention. Since it is difficult to recrystallize ferrite by short-time annealing, elongation in a tensile test is also small.

【0024】Nは不可避的不純物として鋼に含まれると
ともに、Ti、Nb、Mo、Vと窒化物を析出し、鋼を
高強度化するが、その量が0.006%を超えると、引
張試験における伸びが劣化するため、これを上限とす
る。
N is contained in steel as an unavoidable impurity, and precipitates Ti, Nb, Mo, V and nitrides to increase the strength of the steel. When the amount exceeds 0.006%, the tensile test is performed. , The elongation is deteriorated.

【0025】Nb、Mo、VもまたTiと同じように析
出強化元素であり、マルテンサイト近傍のフェライトを
主体に微細析出し、隣接組織間の変形応力差を低減する
ことで穴拡げ性を改善し、合わせて必要とする引張強さ
を確保する目的で合計で0.005〜0.1%を添加し
てもよい。しかしその添加量が0.1%を超すと、Ti
とともにフェライトの再結晶を著しく阻害し、加工性が
劣化する。
Nb, Mo, and V are also precipitation strengthening elements, like Ti, and finely precipitate mainly ferrite near martensite, thereby improving the hole expandability by reducing the deformation stress difference between adjacent structures. Then, a total of 0.005 to 0.1% may be added for the purpose of securing the required tensile strength. However, if the added amount exceeds 0.1%, Ti
At the same time, recrystallization of ferrite is significantly inhibited, and workability is deteriorated.

【0026】これらを主成分とする鋼にCu、Sn、Z
n、Zr、W、Cr、Ni、Bを合計で1%以下含有し
ても本発明の効果を損なわず、その量によっては耐食性
が改善される等好ましい場合もある。
The steels containing these as main components include Cu, Sn, Z
Even if n, Zr, W, Cr, Ni, and B are contained in a total amount of 1% or less, the effect of the present invention is not impaired, and depending on the amount, the corrosion resistance may be improved.

【0027】次に製造条件の限定理由について述べる。
その目的はマルテンサイト、残留オーステナイトおよび
ベイナイトをフェライトマトリクス中に微細分散させた
金属組織を有し、引張試験における伸びが改善された複
合組織高強度鋼板において、低降伏比を確保しながら穴
拡げ性を改善するため、剪断端面においてフェライトと
マルテンサイトの相境界に鋭いボイドが形成されないよ
うにマルテンサイト近傍を主体にフェライト自体を微細
なTi、Nb、Mo、Vといった元素を含む微細析出物
で強化することにある。高強度にして低降伏比で、引張
試験における伸びが大きいという複合組織強化の特徴が
認められるのは、マルテンサイトおよび残留オーステナ
イトの体積率が6%以上の場合であり、特に残留オース
テナイトの変態誘起塑性による効果をはっきりと認める
には、残留オーステナイトの体積率がマルテンサイトの
体積率を上回ることが好ましい。またベイナイトが共存
することは高強度にして低降伏比で、引張試験における
伸びが大きいという複合組織強化の特徴を発現するうえ
では好ましくはないものの、その体積率がマルテンサイ
トおよび残留オーステナイトの体積率の3倍を超えない
場合には降伏比を著しく増加させることなく、より少な
いC含有量で鋼板の引張強さを高めることができ、本発
明において有用である。またマルテンサイト、残留オー
ステナイトおよびベイナイトの硬質相組織の体積率をα
%、Ti、Nb、Mo、Vの添加量をそれぞれ%Ti、
%Nb、%Mo、%Vとした時に、α≦50000×
((%Ti)/48+(%Nb)/93+(%Mo)/
96+(%V)/51)であると、マルテンサイト近傍
を主体にフェライト自体を微細なTi、Nb、Mo、V
といった元素を含む微細析出物で強化し、剪断端面にお
いてフェライトとマルテンサイトの相境界に鋭いボイド
が形成されるのを抑制し、穴拡げ性が改善される。α/
((%Ti)/48+(%Nb)/93+(%Mo)/
96+(%V)/51)が50000を超えるような場
合にはフェライトの析出強化が不十分となるため、剪断
端面においてフェライトとマルテンサイトの相境界に鋭
いボイドが形成されやすく、穴拡げ性が劣化する。
Next, the reasons for limiting the manufacturing conditions will be described.
Its purpose is to expand the hole while maintaining a low yield ratio in a composite structure high-strength steel sheet that has a metal structure in which martensite, retained austenite and bainite are finely dispersed in a ferrite matrix and has improved elongation in tensile tests. In order to improve the ferrite, the ferrite itself is strengthened with fine precipitates containing elements such as fine Ti, Nb, Mo, and V mainly in the vicinity of martensite so that sharp voids are not formed at the phase boundary between ferrite and martensite at the shear end face. Is to do. High strength, low yield ratio and large elongation in the tensile test are characterized by the strengthening of the composite structure when the volume fraction of martensite and retained austenite is 6% or more. In order to clearly recognize the effect of plasticity, it is preferable that the volume fraction of retained austenite exceeds the volume fraction of martensite. Although the coexistence of bainite is not preferable in terms of exhibiting the characteristics of composite structure strengthening such as high strength, low yield ratio, and high elongation in a tensile test, the volume ratio of martensite and retained austenite is low. When it does not exceed 3 times, the tensile strength of the steel sheet can be increased with a smaller C content without significantly increasing the yield ratio, which is useful in the present invention. Further, the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α
%, Ti, Nb, Mo, and V were added to% Ti,
% ≦ Nb,% Mo,% V, α ≦ 50,000 ×
((% Ti) / 48 + (% Nb) / 93 + (% Mo) /
96 + (% V) / 51), the ferrite itself is finely divided into Ti, Nb, Mo, V, mainly in the vicinity of martensite.
And the formation of sharp voids at the phase boundary between ferrite and martensite at the sheared end face is suppressed, and hole expandability is improved. α /
((% Ti) / 48 + (% Nb) / 93 + (% Mo) /
When 96 + (% V) / 51) exceeds 50,000, precipitation strengthening of ferrite becomes insufficient, so that a sharp void is easily formed at a phase boundary between ferrite and martensite at a shear end face, and hole expandability is increased. to degrade.

【0028】熱間圧延に供するスラブは特に限定するも
のではない。すなわち、連続鋳造スラブや薄スラブキャ
スター等で製造したものであればよい。また鋳造後直ち
に熱間圧延を行う連続鋳造−直送圧延(CC−DR)の
ようなプロセスにも適合する。
The slab to be subjected to hot rolling is not particularly limited. That is, it may be any one manufactured with a continuous cast slab or a thin slab caster. It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.

【0029】熱間圧延では%SiをSi含有量とした
時、仕上出側温度を(900+50×%Si)℃以下と
する必要がある。これはTi、Nb、Mo、Vの炭窒化
物を引き続く冷間圧延後の再結晶温度を異常に上昇させ
ないように析出させるとともに、フェライト、オーステ
ナイトの二相共存温度域で焼鈍した場合には焼鈍温度に
かかわらず、十分に再結晶したフェライトを主体にマル
テンサイトおよび残留オーステナイトを合計で体積率6
%以上含み、かつマルテンサイト、残留オーステナイト
およびベイナイトの硬質相組織の体積率をα%、Ti、
Nb、Mo、Vの添加量をそれぞれ%Ti、%Nb、%
Mo、%Vとした時にはα≦50000×((%Ti)
/48+(%Nb)/93+(%Mo)/96+(%
V)/51)となるようにマルテンサイト近傍のフェラ
イトを主体にTi、Nb、Mo、Vといった元素を含む
微細析出物で強化し、隣接組織間の変形応力差が低減さ
れた金属組織を形成させることを目的とする。仕上出側
温度が(900+50×%Si)℃を超えると、炭窒化
物が微細分散するようになり、引張強さが高くはなるも
のの、フェライト、オーステナイトの二相共存温度域で
焼鈍した場合にも未再結晶のフェライトが残存するた
め、引張試験における伸びが劣化する。熱延後の冷却条
件や巻取温度は特に限定しないが、巻取温度はコイル両
端部での材質ばらつきが大ききなることを避け、またス
ケール厚の増加による酸洗性の劣化を避けるためには7
50℃以下とし、またTi、Nb、Mo、Vの析出が不
十分となり、材質ばらつきが生じるのを避けるために5
00℃以上とすることが望ましい。
In hot rolling, when% Si is the Si content, the finishing temperature must be (900 + 50 ×% Si) ° C. or less. This is because precipitation of carbonitrides of Ti, Nb, Mo, and V is performed so as not to abnormally raise the recrystallization temperature after the subsequent cold rolling, and when annealing is performed in a two-phase coexisting temperature range of ferrite and austenite. Regardless of the temperature, the volume fraction of martensite and retained austenite is 6 based on fully recrystallized ferrite.
%, And the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti,
The addition amounts of Nb, Mo, and V were respectively set to% Ti,% Nb,%
When Mo and% V, α ≦ 50,000 × ((% Ti)
/ 48 + (% Nb) / 93 + (% Mo) / 96 + (%
V) / 51) is strengthened mainly by ferrite near martensite with fine precipitates containing elements such as Ti, Nb, Mo and V to form a metal structure in which the difference in deformation stress between adjacent structures is reduced. The purpose is to let them. If the finishing temperature exceeds (900 + 50 ×% Si) ° C., the carbonitrides become finely dispersed and the tensile strength increases, but when annealing is performed in the two-phase coexisting temperature range of ferrite and austenite. Also, since unrecrystallized ferrite remains, elongation in a tensile test deteriorates. The cooling conditions and coiling temperature after hot rolling are not particularly limited.However, the coiling temperature is set to avoid large variations in material at both ends of the coil and to avoid deterioration in pickling properties due to an increase in scale thickness. Is 7
The temperature is set to 50 ° C. or less. In order to prevent the precipitation of Ti, Nb, Mo, and V from becoming insufficient and causing a variation in the material, 5 ° C.
Desirably, the temperature is not lower than 00 ° C.

【0030】冷間圧延は通常の条件でよく、一連の熱処
理が終了後の金属組織を微細化し、引張試験における伸
びの向上を最大限に得る目的からその圧延率は50%以
上とする。一方、85%を超す圧延率で冷間圧延を行う
ことは多大の冷延負荷が必要となるため現実的ではな
い。
The cold rolling may be performed under ordinary conditions, and the rolling ratio is set to 50% or more for the purpose of refining the metal structure after a series of heat treatments and maximizing the improvement of elongation in a tensile test. On the other hand, performing cold rolling at a rolling ratio exceeding 85% is not practical because a large cold rolling load is required.

【0031】冷間圧延した鋼板はまず700〜900℃
のフェライト、オーステナイトの二相共存温度域で10
秒〜5分焼鈍される。この焼鈍はフェライトとオーステ
ナイトの共存する微細な再結晶組織を形成し、同時にC
やMn等のオーステナイト安定化元素をある程度オース
テナイト中に濃化し、引き続く一連の熱処理に伴う組織
変化に際してオーステナイトを安定化することを目的と
する。この焼鈍温度が700℃未満では再結晶が不十分
であり、引張試験における伸びが劣化する。一方900
℃を超すような温度で焼鈍するとTi、Nb、Mo、V
の炭窒化物が一部溶解し、またオーステナイトの体積率
が必要以上に大きくなるとともに、オーステナイトとフ
ェライトの間でCの分配比が小さくオーステナイトの化
学的安定性が悪くなるために以降の工程が厳しく制約さ
れるため金属組織を意図したものとし、必要な引張強さ
が確保され、低降伏比で、引張試験における伸びと穴拡
げ性の両立が容易ではなくなる。焼鈍時間が10秒未満
では炭化物が十分に固溶せず、焼鈍温度が高くともオー
ステナイトが僅かしか形成されない。5分を超える焼鈍
はエネルギーの無駄となるばかりか連続ラインでの生産
性低下を引き起こす。
First, the cold-rolled steel sheet is 700 to 900 ° C.
Ferrite and austenite in the dual temperature range of 10
Anneal for seconds to 5 minutes. This annealing forms a fine recrystallized structure in which ferrite and austenite coexist, and
An object of the present invention is to concentrate an austenite stabilizing element such as Mn or Mn in austenite to some extent, and to stabilize austenite at the time of a change in structure following a series of heat treatments. If the annealing temperature is lower than 700 ° C., recrystallization is insufficient and elongation in a tensile test is deteriorated. 900
Ti, Nb, Mo, V when annealed at a temperature exceeding
Is partially dissolved, the volume ratio of austenite becomes unnecessarily large, and the distribution ratio of C between austenite and ferrite is small, and the chemical stability of austenite deteriorates. Due to severe restrictions, a metal structure is intended, the necessary tensile strength is secured, and a low yield ratio makes it difficult to achieve both elongation and hole expandability in a tensile test. If the annealing time is less than 10 seconds, the carbide will not sufficiently form a solid solution, and even if the annealing temperature is high, only a small amount of austenite will be formed. Annealing longer than 5 minutes not only wastes energy, but also reduces productivity in a continuous line.

【0032】焼鈍後の鋼板は引き続いて250〜500
℃に冷却されるが、その際、二相共存温度域で形成され
たオーステナイトがパーライトに変態するのを避けるた
め700℃から500℃までの冷却速度を1〜120℃
/秒とする。500℃を超える温度で冷却を停止すると
パーライト変態が急激に始まり、オーステナイトを残存
できないため、低降伏比で穴拡げ性が優れるといった特
徴が得られない。一方、冷却終了温度が250℃未満に
なるとオーステナイトの過半がマルテンサイトに変態す
るため、その後の保持や再加熱によりマルテンサイトが
焼き戻されてセメンタイトが析出し、高強度ではあって
も降伏比は高く、引張試験における伸びも劣化し、穴拡
げ性も良くない。また700℃から500℃までの間の
冷却速度が1℃/秒未満ではパーライトが生成し、降伏
比も高く、引張試験における伸び、穴拡げ性とも劣る。
80℃/秒を超すような冷却速度で冷却すると、冷却途
上でオーステナイトからフェライトへの変態が起こりに
くく、特に焼鈍温度が高い場合には引き続く250〜6
00℃での保持で生成するベイナイトの体積率が大きく
なり、高強度ではあっても降伏比が高く、引張試験にお
ける伸び、穴拡げ性とも劣る。
The annealed steel sheet is subsequently 250 to 500
C., at which time the cooling rate from 700 ° C. to 500 ° C. is set to 1 to 120 ° C. in order to avoid austenite formed in the two-phase coexisting temperature range from being transformed into pearlite.
/ Sec. When cooling is stopped at a temperature exceeding 500 ° C., the pearlite transformation starts rapidly, and austenite cannot remain, so that characteristics such as a low yield ratio and excellent hole expandability cannot be obtained. On the other hand, when the cooling end temperature is lower than 250 ° C., the majority of austenite is transformed into martensite, so that martensite is tempered by subsequent holding or reheating to precipitate cementite, and the yield ratio is high even if the strength is high. High, the elongation in the tensile test deteriorates, and the hole expandability is not good. If the cooling rate between 700 ° C. and 500 ° C. is less than 1 ° C./sec, pearlite is formed, the yield ratio is high, and the elongation and hole expandability in the tensile test are poor.
When the cooling is performed at a cooling rate exceeding 80 ° C./sec, the transformation from austenite to ferrite hardly occurs during the cooling, and particularly when the annealing temperature is high, the transformation is continued at 250 to 6 ° C.
The volume ratio of bainite generated by holding at 00 ° C. becomes large, the yield ratio is high even though the strength is high, and the elongation and hole expandability in the tensile test are poor.

【0033】この後引き続き、本発明では必要に応じて
再加熱した後250〜600℃の範囲の温度域に30秒
〜10分保持してから常温まで冷却するが、その目的は
700℃以上から冷却した際にフェライト中に過飽和な
状態で存在するCをフェライトの粒界および粒内に析出
させ、フェライトの延性を高めることにより、マルテン
サイトおよび残留オーステナイトとの複合組織強化に由
来する引張試験における伸びの向上と降伏比の低下を最
大限に引き出すことにある。保持する温度が600℃を
超えるとCのフェライトへの固溶限が高く、何ら効果が
ないばかりかオーステナイトからはパーライトやベイナ
イトが生成しやすく、降伏比が高く、引張試験における
伸び、穴拡げ性とも良くない。一方250℃未満ではフ
ェライト中に微細な炭化物が析出し、フェライトの延性
が低下するため、マルテンサイトおよびオーステナイト
が合計で体積率6%以上存在し、高強度で低降伏比では
あっても引張試験における伸び、穴拡げ性が良くない。
また保持時間が30秒未満ではCの析出が極めて不十分
で、フェライトの延性が高くないため、加工性が不足す
る。一方10分を超えて保持した場合にはオーステナイ
トの過半がベイナイトに変態し、複合組織強化の効果が
発揮されず、加工性も良くない。
Thereafter, in the present invention, after reheating as required, the temperature is kept in a temperature range of 250 to 600 ° C. for 30 seconds to 10 minutes, and then cooled to room temperature. In a tensile test derived from the strengthening of the composite structure with martensite and retained austenite by increasing the ferrite's ductility by precipitating C present in a supersaturated state in the ferrite at the time of cooling and increasing the ductility of the ferrite. The purpose is to maximize improvement in elongation and decrease in yield ratio. When the holding temperature exceeds 600 ° C., the solid solubility limit of C in ferrite is high, and not only does it have no effect, but pearlite and bainite are easily formed from austenite, the yield ratio is high, and the elongation and hole expandability in a tensile test are high. Is not good either. On the other hand, if the temperature is lower than 250 ° C., fine carbides are precipitated in the ferrite, and the ductility of the ferrite is reduced. Therefore, martensite and austenite are present in a total volume ratio of 6% or more. Is not good in elongation and hole spreadability.
If the holding time is less than 30 seconds, the precipitation of C is extremely insufficient, and the ductility of ferrite is not high, so that the workability is insufficient. On the other hand, when it is held for more than 10 minutes, the majority of austenite is transformed into bainite, the effect of strengthening the composite structure is not exhibited, and the workability is not good.

【0034】この一連の熱処理においては規定した温度
域内であれば保持温度は一定である必要はなく、また冷
却速度が冷却途中に規定した範囲内で変化することも本
発明の趣旨を損なわない。特に250〜600℃の範囲
の温度域での30秒〜10分保持はこの温度の範囲内で
過冷却後再加熱されるものであってもよく、図1に例示
するいずれも可能である。また熱履歴さえ満足されれ
ば、鋼板は連続焼鈍設備やライン内焼鈍方式の連続溶融
亜鉛めっき設備をはじめとしたいかなる設備で熱処理さ
れてもかまわない。熱処理後形状矯正のために調質圧延
を行ったり、また防錆の改善のために電気亜鉛めっきを
施したり、またそのいっそうの改善を図るために金属酸
化物皮膜、有機皮膜などの表面処理を施しても、さらに
上層に鉄めっきを施してプレス成形性の改善を図って
も、伸びフランジ加工を含めたプレス加工性に優れた高
強度鋼板という本発明の特徴は阻害されず、プレス加工
性や防錆の一層の改善につながるため本発明の目的を達
成する上で好ましい。
In this series of heat treatments, the holding temperature does not need to be constant as long as it is within the specified temperature range, and the fact that the cooling rate changes within the specified range during cooling does not impair the gist of the present invention. In particular, holding for 30 seconds to 10 minutes in a temperature range of 250 to 600 ° C. may be reheating after supercooling within this temperature range, and any of those illustrated in FIG. 1 is possible. Further, as long as the heat history is satisfied, the steel sheet may be heat-treated by any equipment such as a continuous annealing equipment or an in-line annealing continuous hot-dip galvanizing equipment. After heat treatment, temper rolling is performed to correct the shape, electro-galvanizing is performed to improve rust prevention, and surface treatment such as metal oxide film and organic film is performed to further improve rust prevention. Even if it is applied, even if the upper layer is further plated with iron to improve the press formability, the feature of the present invention of a high-strength steel sheet excellent in press formability including stretch flange processing is not impaired, It is preferable for achieving the object of the present invention because it leads to further improvement of rust resistance.

【0035】[0035]

【実施例】次に本発明例を実施例にて説明する。Next, examples of the present invention will be described with reference to examples.

【0036】(実施例1)表1に示す組成からなる組成
の鋼を1190℃に加熱し、表2に示す仕上温度で3.
0〜7.5mmの熱間圧延鋼帯とし、540〜670℃
で巻き取った。酸洗後、55〜75%の圧下率の冷間圧
延を施して表2に示す板厚の冷間圧延鋼帯とした後、連
続焼鈍設備を用いて表2に示すような条件の熱処理と伸
び率0.3〜1.5%の調質圧延を行い、冷延鋼板を製
造した。この鋼帯から切り出した試料の金属組織を光学
顕微鏡で観察し、マルテンサイトおよび残留オーステナ
イトを合わせた体積率を求めるとともに、JIS5号試
験片を加工して常温での引張試験を行うことにより、降
伏強さ(YP)、引張強さ(TS)、伸び(El)を求
めた。また150mm×150mmの長方形に鋼板を切
り出し、その中央に直径d0=10mmの穴を約12%
のクリアランスで打ち抜き加工後、そのかえりをダイ側
になるように試験機にセットし、5tonのしわ押え力
で押し拡げ部へ材料が流入しないように拘束のうえ、6
0°円錐ポンチで穴を押し拡げ、穴縁端面にクラックが
板厚貫通した時の穴径dを測定し、穴径の増加率、すな
わちλ=(d−d0)/d0を穴拡げ率として評価した結
果を表2に示す。
Example 1 A steel having the composition shown in Table 1 was heated to 1190 ° C., and at the finishing temperature shown in Table 2,
0-7.5mm hot-rolled steel strip, 540-670 ° C
Rolled up. After pickling, cold rolling is performed at a reduction ratio of 55 to 75% to obtain a cold-rolled steel strip having a thickness shown in Table 2, and then heat treatment is performed using a continuous annealing facility under the conditions shown in Table 2. Temper rolling at an elongation of 0.3 to 1.5% was performed to produce a cold-rolled steel sheet. The metal structure of the sample cut from this steel strip was observed with an optical microscope to determine the volume ratio of martensite and retained austenite, and the JIS No. 5 test piece was processed and subjected to a tensile test at room temperature to yield. The strength (YP), tensile strength (TS) and elongation (El) were determined. Further, a steel plate is cut out into a rectangle of 150 mm × 150 mm, and a hole having a diameter d 0 = 10 mm is formed at the center thereof by about 12%.
After punching with a clearance of 5 mm, set the burr on the tester so that it is on the die side, and restrain with 6 tons of wrinkle holding force so that material does not flow into the expanded portion.
The hole is pushed and expanded with a 0 ° conical punch, and the hole diameter d when a crack penetrates the edge of the hole through the thickness is measured, and the rate of increase of the hole diameter, that is, λ = (dd− 0 ) / d 0 is expanded. Table 2 shows the results evaluated as percentages.

【0037】この表から明らかなように、本発明試料で
ある試料No.2、5、7、10、12、16、22、
27、32、34〜36は590MPa以上の引張強さ
を有しながら、その金属組織にマルテンサイトおよび残
留オーステナイトを合わせて6%以上含み、降伏比が
0.7以下と小さく、引張試験における伸びが大きいこ
とに加えて、マルテンサイト、残留オーステナイトおよ
びベイナイトの硬質相組織の体積率をα%、Ti、N
b、Mo、Vの添加量をそれぞれ%Ti、%Nb、%M
o、%Vとした時にはα≦50000×((%Ti)/
48+(%Nb)/93+(%Mo)/96+(%V)
/51)となり、マルテンサイト近傍を主体にフェライ
ト自体がTi、Nb、Mo、Vといった元素を含む微細
析出物で強化され、隣接組織間の変形応力差が低減され
ているため、穴拡げ性も優れる。これに対し本発明成分
鋼であっても、熱間圧延や冷間圧延後に行う熱処理の条
件が不適切な場合には、試料No.4、8、9、11、
13〜15、17〜21、28〜31のようにマルテン
サイトおよび残留オーステナイトを合わせた体積率が6
%未満であったり、マルテンサイト、残留オーステナイ
トおよびベイナイトの硬質相組織の体積率をα%、T
i、Nb、Mo、Vの添加量をそれぞれ%Ti、%N
b、%Mo、%Vとした時にはαが50000×((%
Ti)/48+(%Nb)/93+(%Mo)/96+
(%V)/51)を超え、高強度ではあっても降伏比が
低いこと、引張試験における伸びが大きいこと、穴拡げ
性が優れることのいずれかが満足されないためにプレス
加工性が改善されず、あるいは低降伏比で引張試験にお
ける伸びが大きく、穴拡げ性が優れていて、プレス加工
性が良くても強度が低い。一方、本発明成分以外の鋼で
は試料No.1、3、6、23、26のように、マルテ
ンサイトおよび残留オーステナイトを合わせた体積率を
6%以上としたり、あるいはマルテンサイト、残留オー
ステナイトおよびベイナイトの硬質相組織の体積率をα
%、Ti、Nb、Mo、Vの添加量をそれぞれ%Ti、
%Nb、%Mo、%Vとした時に、α≦50000×
((%Ti)/48+(%Nb)/93+(%Mo)/
96+(%V)/51)とすることが難しく、また試料
No.23、26、37、38のようにマルテンサイト
および残留オーステナイトを合わせて6%以上含み、マ
ルテンサイト、残留オーステナイトおよびベイナイトの
硬質相組織の体積率をα%、Ti、Nb、Mo、Vの添
加量をそれぞれ%Ti、%Nb、%Mo、%Vとした時
にα≦50000×((%Ti)/48+(%Nb)/
93+(%Mo)/96+(%V)/51)となったと
しても、高強度ではあっても降伏比が低いこと、引張試
験における伸びが大きいこと、穴拡げ性が優れることの
いずれかが満足されないためにプレス加工性が改善され
ず、あるいは低降伏比で引張試験における伸びが大き
く、穴拡げ性が優れていて、プレス加工性が良くても強
度が低い。
As is clear from this table, the sample of the present invention, Sample No. 2, 5, 7, 10, 12, 16, 22,
27, 32, and 34 to 36 have a tensile strength of 590 MPa or more, contain martensite and retained austenite in a total amount of 6% or more in their metal structure, have a small yield ratio of 0.7 or less, and have an elongation in a tensile test. Is large, the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti, N
b, Mo, and V were added at% Ti,% Nb, and% M, respectively.
o,% V, α ≦ 50,000 × ((% Ti) /
48 + (% Nb) / 93 + (% Mo) / 96 + (% V)
/ 51), and the ferrite itself is strengthened by fine precipitates containing elements such as Ti, Nb, Mo and V mainly in the vicinity of martensite, and the difference in deformation stress between adjacent structures is reduced, so that the hole expandability is also improved. Excellent. On the other hand, even in the case of the component steel of the present invention, when the conditions of the heat treatment performed after the hot rolling or the cold rolling are inappropriate, the sample No. 4, 8, 9, 11,
13-15, 17-21, 28-31, the volume ratio of the combined martensite and retained austenite is 6
%, The volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, T
i, Nb, Mo, and V were added in the amounts of% Ti,% N, respectively.
α is 50,000 × ((%
Ti) / 48 + (% Nb) / 93 + (% Mo) / 96 +
(% V) / 51), the press workability is improved because any one of the following is not satisfied: high yield strength, low yield ratio, high elongation in tensile test, and excellent hole expandability. Or low elongation at a low yield ratio, large elongation in a tensile test, excellent hole expandability, and low strength even with good press workability. On the other hand, in steels other than the components of the present invention, sample Nos. 1, 3, 6, 23, 26, the combined volume fraction of martensite and retained austenite is 6% or more, or the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α.
%, Ti, Nb, Mo, and V were added to% Ti,
% ≦ Nb,% Mo,% V, α ≦ 50,000 ×
((% Ti) / 48 + (% Nb) / 93 + (% Mo) /
96 + (% V) / 51), and the sample No. 23, 26, 37, and 38, the content of martensite and retained austenite is 6% or more in total; the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%; When the amounts are% Ti,% Nb,% Mo and% V, respectively, α ≦ 50,000 × ((% Ti) / 48 + (% Nb) /
93 + (% Mo) / 96 + (% V) / 51), either of high strength, low yield ratio, high elongation in tensile test, or excellent hole expandability. The press workability is not improved because it is not satisfied, or the elongation in a tensile test is large at a low yield ratio, the hole expandability is excellent, and the strength is low even if the press workability is good.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】(実施例2)表1に示す組成からなる組成
の鋼を1220℃に加熱し、表3に示す仕上温度で3.
0〜6.0mmの熱間圧延鋼帯とし、580〜680℃
で巻き取った。酸洗後、55〜73%の圧下率の冷間圧
延を施して表3に示す板厚の冷間圧延鋼帯とした後、ラ
イン内焼鈍方式の連続溶融亜鉛めっき設備を用いて表3
に示すような条件の熱処理と伸び率0.8〜1.2%の
調質圧延を行い、溶融亜鉛めっき鋼板(GI)および合
金化溶融亜鉛めっき鋼板(GA)を製造した。この鋼帯
から切り出した試料の金属組織を光学顕微鏡で観察し、
マルテンサイトおよび残留オーステナイトを合わせた体
積率を求めるとともに、JIS5号試験片を加工して常
温での引張試験を行うことにより、降伏強さ(YP)、
引張強さ(TS)、伸び(El)を求めた。また150
mm×150mmの長方形に鋼板を切り出し、その中央
に直径d0=10mmの穴を約12%のクリアランスで
打ち抜き加工後、そのかえりをダイ側になるように試験
機にセットし、5tonのしわ押え力で押し拡げ部へ材
料が流入しないように拘束のうえ、60°円錐ポンチで
穴を押し拡げ、穴縁端面にクラックが板厚貫通した時の
穴径dを測定し、穴径の増加率、すなわちλ=(d−d
0)/d0を穴拡げ率として評価した結果を表3に示す。
Example 2 A steel having the composition shown in Table 1 was heated to 1220 ° C., and at the finishing temperature shown in Table 3,
0-6.0mm hot rolled steel strip, 580-680 ° C
Rolled up. After the pickling, cold rolling was performed at a reduction ratio of 55 to 73% to obtain a cold-rolled steel strip having a thickness shown in Table 3, and then using a continuous hot-dip galvanizing equipment of an in-line annealing method.
Then, heat treatment was performed under the following conditions and temper rolling at an elongation of 0.8 to 1.2% was performed to produce a hot-dip galvanized steel sheet (GI) and an alloyed hot-dip galvanized steel sheet (GA). The metal structure of the sample cut from this steel strip was observed with an optical microscope,
By obtaining the volume ratio of the combined martensite and retained austenite, and processing the JIS No. 5 test piece and performing a tensile test at room temperature, the yield strength (YP),
Tensile strength (TS) and elongation (El) were determined. Also 150
A steel plate is cut out into a rectangle of mm × 150 mm, a hole having a diameter of d 0 = 10 mm is punched out at the center thereof with a clearance of about 12%, and then the burr is set on a testing machine so as to be on the die side. After restricting the material so that it does not flow into the expanded portion by force, expand the hole with a 60 ° conical punch, measure the hole diameter d when the crack penetrates the edge of the hole, and increase the hole diameter. That is, λ = (dd−d
Table 3 shows the results of the evaluation of 0 ) / d 0 as the hole expansion ratio.

【0041】この表から明らかなように、本発明試料で
ある試料No.39、40、43〜45は590MPa
以上の引張強さを有しながら、その金属組織にマルテン
サイトおよび残留オーステナイトを合わせて6%以上含
み、降伏比が0.7以下と小さく、引張試験における伸
びが大きいことに加えて、マルテンサイト、残留オース
テナイトおよびベイナイトの硬質相組織の体積率をα
%、Ti、Nb、Mo、Vの添加量をそれぞれ%Ti、
%Nb、%Mo、%Vとした時にはα≦50000×
((%Ti)/48+(%Nb)/93+(%Mo)/
96+(%V)/51)となり、マルテンサイト近傍を
主体にフェライト自体がTi、Nb、Mo、Vといった
元素を含む微細析出物で強化され、隣接組織間の変形応
力差が低減されているため、穴拡げ性も優れる。これに
対し本発明成分鋼であっても、熱間圧延や冷間圧延後に
行う熱処理の条件が不適切な場合には、試料No.46
のようにマルテンサイトおよび残留オーステナイトを合
わせた体積率が6%未満であったり、マルテンサイト、
残留オーステナイトおよびベイナイトの硬質相組織の体
積率をα%、Ti、Nb、Mo、Vの添加量をそれぞれ
%Ti、%Nb、%Mo、%Vとした時にはαが500
00×((%Ti)/48+(%Nb)/93+(%M
o)/96+(%V)/51)を超え、高強度ではあっ
ても降伏比が低いこと、引張試験における伸びが大きい
こと、穴拡げ性が優れることのいずれかが満足されない
ためにプレス加工性が改善されず、あるいは低降伏比で
引張試験における伸びが大きく、穴拡げ性が優れてい
て、プレス加工性が良くても強度が低い。一方、本発明
成分以外の鋼では試料No.41、42のように、マル
テンサイトおよび残留オーステナイトを合わせた体積率
を6%以上としたり、あるいはマルテンサイト、残留オ
ーステナイトおよびベイナイトの硬質相組織の体積率を
α%、Ti、Nb、Mo、Vの添加量をそれぞれ%T
i、%Nb、%Mo、%Vとした時に、α≦50000
×((%Ti)/48+(%Nb)/93+(%Mo)
/96+(%V)/51)とすることが難しく、また試
料No.47、48のようにマルテンサイトおよび残留
オーステナイトを合わせて6%以上含み、マルテンサイ
ト、残留オーステナイトおよびベイナイトの硬質相組織
の体積率をα%、Ti、Nb、Mo、Vの添加量をそれ
ぞれ%Ti、%Nb、%Mo、%Vとした時にα≦50
000×((%Ti)/48+(%Nb)/93+(%
Mo)/96+(%V)/51)となったとしても、高
強度ではあっても降伏比が低いこと、引張試験における
伸びが大きいこと、穴拡げ性が優れることのいずれかが
満足されないためにプレス加工性が改善されず、あるい
は低降伏比で引張試験における伸びが大きく、穴拡げ性
が優れていて、プレス加工性が良くても強度が低い。
As is clear from this table, the sample of the present invention, Sample No. 39, 40, 43 to 45 are 590 MPa
While having the above tensile strength, its metal structure contains 6% or more of martensite and retained austenite in total, the yield ratio is as small as 0.7 or less, the elongation in the tensile test is large, and the martensite is large. , The volume fraction of the hard phase structure of retained austenite and bainite is α
%, Ti, Nb, Mo, and V were added to% Ti,
Α ≦ 50,000 × when% Nb,% Mo,% V
((% Ti) / 48 + (% Nb) / 93 + (% Mo) /
96 + (% V) / 51), and the ferrite itself is strengthened by fine precipitates containing elements such as Ti, Nb, Mo and V mainly in the vicinity of martensite, and the difference in deformation stress between adjacent structures is reduced. Also, the hole expandability is excellent. On the other hand, even in the case of the component steel of the present invention, when the conditions of the heat treatment performed after the hot rolling or the cold rolling are inappropriate, the sample No. 46
The combined volume ratio of martensite and retained austenite is less than 6%, or martensite,
When the volume fraction of the hard phase structure of retained austenite and bainite is α%, and the added amounts of Ti, Nb, Mo and V are% Ti,% Nb,% Mo and% V, α is 500
00 × ((% Ti) / 48 + (% Nb) / 93 + (% M
o) / 96 + (% V) / 51), and although high strength, any one of low yield ratio, high elongation in tensile test, and excellent hole expandability is not satisfied. No improvement in workability, or a low yield ratio, large elongation in a tensile test, excellent hole expandability, and low strength even with good press workability. On the other hand, in steels other than the components of the present invention, sample Nos. As in 41 and 42, the volume ratio of the combined martensite and retained austenite is 6% or more, or the volume ratio of the hard phase structure of martensite, retained austenite and bainite is α%, Ti, Nb, Mo, V % T
When i,% Nb,% Mo, and% V, α ≦ 50,000
× ((% Ti) / 48 + (% Nb) / 93 + (% Mo)
/ 96 + (% V) / 51), and the sample No. 47 and 48, the total content of martensite and retained austenite is 6% or more, the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, and the added amount of Ti, Nb, Mo and V is%. Α ≦ 50 when Ti,% Nb,% Mo,% V
000 × ((% Ti) / 48 + (% Nb) / 93 + (%
Mo) / 96 + (% V) / 51), either of high strength, low yield ratio, high elongation in tensile test, or excellent hole expandability are not satisfied. The press workability is not improved, or the elongation in a tensile test is large at a low yield ratio, the hole expandability is excellent, and the strength is low even if the press workability is good.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】以上詳述したように、本発明によればマ
ルテンサイト、残留オーステナイトおよびベイナイトが
フェライトマトリクス中に微細分散した低降伏比高強度
鋼板において、引張試験における伸びだけではなく、穴
拡げ性も改善される。すなわち引張強さ590〜880
MPaの高強度鋼板を伸びフランジ加工性の厳しい部材
にもプレス加工により適用することを可能とし、自動
車、家庭電気製品、建築等の分野でそれぞれが持つべき
機能を向上させながら軽量化を図ることができるため産
業上極めて大きな効果を有する。
As described in detail above, according to the present invention, in a low-yield-ratio high-strength steel sheet in which martensite, retained austenite and bainite are finely dispersed in a ferrite matrix, not only elongation in a tensile test but also hole expansion is obtained. The performance is also improved. That is, the tensile strength is 590 to 880.
It is possible to apply high-strength steel sheets of MPa to parts that are difficult to stretch and flange by press working, and to reduce the weight while improving the functions that each should have in the fields of automobiles, home appliances, construction, etc. Has an extremely great effect on industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における熱処理条件のいくつかを例示し
た図である。
FIG. 1 is a diagram illustrating some heat treatment conditions in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村里 映信 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 (72)発明者 伊丹 淳 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 Fターム(参考) 4K037 EA01 EA02 EA05 EA06 EA15 EA16 EA17 EA18 EA19 EA23 EA25 EA27 EA28 EA31 EA32 EB05 EB09 EB12 FA02 FC04 FC05 FH01 FJ05 FJ06 FK02 FK03 FK08 FL01 FL02 GA05 JA06  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Eishin Murasa 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works (72) Inventor Jun Itami 1 Kimitsu, Kimitsu City Nippon Steel Corporation F-term in Tsu Works (reference) 4K037 EA01 EA02 EA05 EA06 EA15 EA16 EA17 EA18 EA19 EA23 EA25 EA27 EA28 EA31 EA32 EB05 EB09 EB12 FA02 FC04 FC05 FH01 FJ05 FJ06 FK02 FK03 FK08 FL01 FL05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.04〜0.14%、
Si:0.4〜2.2%、Mn:1.2〜2.4%、
P:0.02%以下、S:0.01%以下、Al:0.
002〜0.5%、Ti:0.005〜0.1%、N:
0.006%以下を含有し、さらに%S、%Tiをそれ
ぞれS、Ti含有量とした時に(%Ti)/(%S)≧
5を満足し、残部Feおよび不可避的不純物からなるこ
とを特徴とする穴拡げ性に優れた低降伏比高強度冷延鋼
板。
1. A mass% of C: 0.04 to 0.14%,
Si: 0.4 to 2.2%, Mn: 1.2 to 2.4%,
P: 0.02% or less, S: 0.01% or less, Al: 0.
002-0.5%, Ti: 0.005-0.1%, N:
0.006% or less, and when% S and% Ti are S and Ti content, respectively, (% Ti) / (% S) ≧
5. A low-yield-ratio high-strength cold-rolled steel sheet which satisfies No. 5 and comprises the balance of Fe and inevitable impurities and has excellent hole expandability.
【請求項2】 質量%で、C:0.04〜0.14%、
Si:0.4〜2.2%、Mn:1.2〜2.4%、
P:0.02%以下、S:0.01%以下、Al:0.
002〜0.5%、Ti:0.005〜0.1%、N:
0.006%以下とさらにNb、Mo、Vの1種以上を
合計で0.005〜0.1%含有し、さらに%S、%T
iをそれぞれS、Ti含有量とした時に(%Ti)/
(%S)≧5を満足し、残部Feおよび不可避的不純物
からなることを特徴とする穴拡げ性に優れた低降伏比高
強度冷延鋼板。
2. C: 0.04 to 0.14% by mass%,
Si: 0.4 to 2.2%, Mn: 1.2 to 2.4%,
P: 0.02% or less, S: 0.01% or less, Al: 0.
002-0.5%, Ti: 0.005-0.1%, N:
0.006% or less, and further contains at least one of Nb, Mo, and V in an amount of 0.005 to 0.1%, and further contains% S and% T.
When i is S and Ti content respectively, (% Ti) /
A low-yield-ratio high-strength cold-rolled steel sheet which satisfies (% S) ≧ 5 and is composed of a balance of Fe and inevitable impurities, and is excellent in hole expandability.
【請求項3】 質量%で、B:0.0010〜0.00
3%を含有する請求項1または請求項2に記載の穴拡げ
性に優れた低降伏比高強度冷延鋼板。
3. B: 0.0010 to 0.00% by mass
The low-yield-ratio high-strength cold-rolled steel sheet according to claim 1 or 2, which contains 3%.
【請求項4】 請求項1、請求項2または請求項3に記
載の穴拡げ性に優れた低降伏比高強度めっき鋼板。
4. The low-yield-ratio high-strength plated steel sheet according to claim 1, 2 or 3, which is excellent in hole expandability.
【請求項5】 請求項1、請求項2または請求項3に記
載の化学成分からなり、その金属組織におけるマルテン
サイトおよび残留オーステナイトの体積率が合計で6%
以上で、かつマルテンサイト、残留オーステナイトおよ
びベイナイトの硬質相組織の体積率をα%、Ti、N
b、Mo、Vの添加量をそれぞれ%Ti、%Nb、%M
o、%Vとした時に、α≦50000×((%Ti)/
48+(%Nb)/93+(%Mo)/96+(%V)
/51)であることを特徴とする穴拡げ性に優れた低降
伏比高強度冷延鋼板。
5. The chemical composition according to claim 1, 2 or 3, wherein the volume fraction of martensite and retained austenite in the metal structure is 6% in total.
As described above, the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti, N
b, Mo, and V were added at% Ti,% Nb, and% M, respectively.
o,% V, α ≦ 50,000 × ((% Ti) /
48 + (% Nb) / 93 + (% Mo) / 96 + (% V)
/ 51) A low-yield-ratio high-strength cold-rolled steel sheet having excellent hole expandability, characterized in that:
【請求項6】 請求項1、請求項2または請求項3に記
載の化学成分からなり、その金属組織におけるマルテン
サイトおよび残留オーステナイトの体積率が合計で6%
以上で、かつマルテンサイト、残留オーステナイトおよ
びベイナイトの硬質相組織の体積率をα%、Ti、N
b、Mo、Vの添加量をそれぞれ%Ti、%Nb、%M
o、%Vとした時に、α≦50000×((%Ti)/
48+(%Nb)/93+(%Mo)/96+(%V)
/51)であることを特徴とする穴拡げ性に優れた低降
伏比高強度めっき鋼板。
6. The chemical composition according to claim 1, 2 or 3, wherein the volume fraction of martensite and retained austenite in the metal structure is 6% in total.
As described above, the volume fraction of the hard phase structure of martensite, retained austenite and bainite is α%, Ti, N
b, Mo, and V were added at% Ti,% Nb, and% M, respectively.
o,% V, α ≦ 50,000 × ((% Ti) /
48 + (% Nb) / 93 + (% Mo) / 96 + (% V)
/ 51) A low yield ratio and high strength plated steel sheet having excellent hole expandability, characterized in that:
【請求項7】 請求項1、請求項2または請求項3に記
載の化学成分からなる組成のスラブに%SiをSi含有
量とした時、仕上出側温度を(900+50×%Si)
℃以下とする熱間圧延を行い、50〜85%の冷間圧延
を施した冷延板を700〜900℃のフェライト、オー
ステナイトの二相共存温度域で10秒〜5分焼鈍し、7
00℃から500℃までの間の平均冷却速度を1〜12
0℃/秒として250〜500℃に冷却し、必要に応じ
て再加熱した後250〜600℃の範囲の温度域に30
秒〜10分保持してから常温まで冷却することを特徴と
する、その金属組織におけるマルテンサイトおよび残留
オーステナイトの体積率が合計で6%以上で、かつマル
テンサイト、残留オーステナイトおよびベイナイトの硬
質相組織の体積率をα%、Ti、Nb、Mo、Vの添加
量をそれぞれ%Ti、%Nb、%Mo、%Vとした時
に、α≦50000×((%Ti)/48+(%Nb)
/93+(%Mo)/96+(%V)/51)であるこ
とを特徴とする穴拡げ性に優れた低降伏比高強度冷延鋼
板の製造方法。
7. When the slab having the chemical composition according to claim 1, 2, or 3 has% Si as the Si content, the finishing temperature is (900 + 50 ×% Si).
7 ° C. or lower, and a cold-rolled sheet subjected to 50-85% cold rolling is annealed at 700-900 ° C. in a two-phase coexisting temperature range of ferrite and austenite for 10 seconds to 5 minutes.
The average cooling rate between 00 ° C and 500 ° C is 1-12.
After cooling to 250 to 500 ° C. at 0 ° C./sec and reheating if necessary,
A metal alloy having a total volume fraction of martensite and retained austenite of 6% or more, and a hard phase structure of martensite, retained austenite and bainite, characterized by being cooled to room temperature after holding for 10 to 10 minutes. Α ≦ 50000 × ((% Ti) / 48 + (% Nb), when the volume ratio of α is% and the added amounts of Ti, Nb, Mo and V are% Ti,% Nb,% Mo and% V, respectively.
/ 93 + (% Mo) / 96 + (% V) / 51), which is a method for producing a low-yield-ratio high-strength cold-rolled steel sheet having excellent hole expandability.
【請求項8】 請求項1、請求項2または請求項3に記
載の化学成分からなる組成のスラブに%SiをSi含有
量とした時、仕上出側温度を(900+50×%Si)
℃以下とする熱間圧延を行い、50〜85%の冷間圧延
を施した冷延板を700〜900℃のフェライト、オー
ステナイトの二相共存温度域で10秒〜5分焼鈍し、7
00℃から500℃までの間の平均冷却速度を1〜12
0℃/秒として250〜500℃に冷却し、必要に応じ
て再加熱した後250〜600℃の範囲の温度域に30
秒〜10分保持してから常温まで冷却することを特徴と
する、その金属組織におけるマルテンサイトおよび残留
オーステナイトの体積率が合計で6%以上で、かつマル
テンサイト、残留オーステナイトおよびベイナイトの硬
質相組織の体積率をα%、Ti、Nb、Mo、Vの添加
量をそれぞれ%Ti、%Nb、%Mo、%Vとした時
に、α≦50000×((%Ti)/48+(%Nb)
/93+(%Mo)/96+(%V)/51)であるこ
とを特徴とする穴拡げ性に優れた低降伏比高強度めっき
鋼板の製造方法。
8. When the slab having the chemical composition according to claim 1, 2, or 3 has% Si as the Si content, the finishing temperature is (900 + 50 ×% Si).
7 ° C. or lower, and a cold-rolled sheet subjected to 50-85% cold rolling is annealed at 700-900 ° C. in a two-phase coexisting temperature range of ferrite and austenite for 10 seconds to 5 minutes.
The average cooling rate between 00 ° C and 500 ° C is 1-12.
After cooling to 250 to 500 ° C. at 0 ° C./sec and reheating if necessary,
A metal alloy having a total volume fraction of martensite and retained austenite of 6% or more, and a hard phase structure of martensite, retained austenite and bainite, characterized by being cooled to room temperature after holding for 10 to 10 minutes. Α ≦ 50000 × ((% Ti) / 48 + (% Nb), when the volume ratio of α is% and the added amounts of Ti, Nb, Mo and V are% Ti,% Nb,% Mo and% V, respectively.
/ 93 + (% Mo) / 96 + (% V) / 51), which is a method for producing a low-yield-ratio high-strength plated steel sheet having excellent hole expandability.
JP2000267311A 2000-09-04 2000-09-04 Low yield ratio high strength cold-rolled steel sheet and plated steel sheet excellent in hole expansibility and method for producing the same Expired - Fee Related JP4358418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000267311A JP4358418B2 (en) 2000-09-04 2000-09-04 Low yield ratio high strength cold-rolled steel sheet and plated steel sheet excellent in hole expansibility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267311A JP4358418B2 (en) 2000-09-04 2000-09-04 Low yield ratio high strength cold-rolled steel sheet and plated steel sheet excellent in hole expansibility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002069574A true JP2002069574A (en) 2002-03-08
JP4358418B2 JP4358418B2 (en) 2009-11-04

Family

ID=18754257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267311A Expired - Fee Related JP4358418B2 (en) 2000-09-04 2000-09-04 Low yield ratio high strength cold-rolled steel sheet and plated steel sheet excellent in hole expansibility and method for producing the same

Country Status (1)

Country Link
JP (1) JP4358418B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169679A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Steel sheet for hot forming having excellent joining strength in spot weld zone and hot formability, and hot formed article
JP2007231369A (en) * 2006-03-01 2007-09-13 Nippon Steel Corp High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
WO2009096115A1 (en) 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
WO2010061972A1 (en) 2008-11-28 2010-06-03 Jfeスチール株式会社 High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
WO2010103936A1 (en) 2009-03-10 2010-09-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
WO2010150919A1 (en) * 2009-06-26 2010-12-29 Jfeスチール株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
WO2011129452A1 (en) 2010-04-16 2011-10-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and impact resistance, and process for producing same
KR101115790B1 (en) 2009-04-07 2012-03-09 주식회사 포스코 Cold rolled steel sheet having excellent spot welding property and delayed fracture resistance and method for manufacturing the same
CN104520460A (en) * 2012-08-06 2015-04-15 新日铁住金株式会社 Cold-rolled steel sheet, method for producing same, and hot-stamp-molded article
CN107923007A (en) * 2015-08-21 2018-04-17 新日铁住金株式会社 Steel plate
CN113584393A (en) * 2021-08-05 2021-11-02 马钢(合肥)板材有限责任公司 Tensile strength 780MPa grade dual-phase steel and production method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110117755B (en) * 2019-05-21 2020-11-03 安徽工业大学 Preparation method of 980 MPa-grade cold-rolled medium manganese steel with low yield ratio

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630188B2 (en) * 2005-12-19 2011-02-09 株式会社神戸製鋼所 Steel sheet for hot forming and hot-formed product excellent in joint strength and hot formability of spot welds
JP2007169679A (en) * 2005-12-19 2007-07-05 Kobe Steel Ltd Steel sheet for hot forming having excellent joining strength in spot weld zone and hot formability, and hot formed article
JP2007231369A (en) * 2006-03-01 2007-09-13 Nippon Steel Corp High-strength cold rolled steel, high-strength hot dip galvanized steel sheet and high-strength galvannealed steel sheet having excellent formability and weldability, method for producing high-strength cold rolled steel sheet, method for producing high-strength hot dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP4542515B2 (en) * 2006-03-01 2010-09-15 新日本製鐵株式会社 High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet
WO2009096115A1 (en) 2008-01-31 2009-08-06 Jfe Steel Corporation High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
US8815026B2 (en) 2008-01-31 2014-08-26 Jfe Steel Corporation High strength galvanized steel sheet excellent in formability
WO2010061972A1 (en) 2008-11-28 2010-06-03 Jfeスチール株式会社 High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
WO2010103936A1 (en) 2009-03-10 2010-09-16 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
KR101115790B1 (en) 2009-04-07 2012-03-09 주식회사 포스코 Cold rolled steel sheet having excellent spot welding property and delayed fracture resistance and method for manufacturing the same
AU2010263547B2 (en) * 2009-06-26 2013-12-05 Jfe Steel Corporation High-strength galvanised steel sheet and method for manufacturing the same
US9255318B2 (en) 2009-06-26 2016-02-09 Jfe Steel Corporation High-steel galvanized steel sheet and method for manufacturing the same
WO2010150919A1 (en) * 2009-06-26 2010-12-29 Jfeスチール株式会社 High-strength molten zinc-plated steel sheet and process for production thereof
JP2011026699A (en) * 2009-06-26 2011-02-10 Jfe Steel Corp High-strength molten zinc-plated steel sheet and process for producing the same
AU2010263547B8 (en) * 2009-06-26 2013-12-19 Jfe Steel Corporation High-strength galvanised steel sheet and method for manufacturing the same
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
WO2011129452A1 (en) 2010-04-16 2011-10-20 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and impact resistance, and process for producing same
US9617630B2 (en) 2010-04-16 2017-04-11 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method for manufacturing the same
US9982318B2 (en) 2010-04-16 2018-05-29 Jfe Steel Corporation High-strength galvanized steel sheet having excellent formability and crashworthiness and method of manufacturing the same
CN104520460A (en) * 2012-08-06 2015-04-15 新日铁住金株式会社 Cold-rolled steel sheet, method for producing same, and hot-stamp-molded article
CN104520460B (en) * 2012-08-06 2016-08-24 新日铁住金株式会社 Cold-rolled steel sheet, its manufacture method and heat stamping and shaping body
US10072324B2 (en) 2012-08-06 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and method for manufacturing same, and hot-stamp formed body
CN107923007A (en) * 2015-08-21 2018-04-17 新日铁住金株式会社 Steel plate
CN107923007B (en) * 2015-08-21 2020-05-05 日本制铁株式会社 Steel plate
CN113584393A (en) * 2021-08-05 2021-11-02 马钢(合肥)板材有限责任公司 Tensile strength 780MPa grade dual-phase steel and production method thereof

Also Published As

Publication number Publication date
JP4358418B2 (en) 2009-11-04

Similar Documents

Publication Publication Date Title
JP4288201B2 (en) Manufacturing method of automotive member having excellent hydrogen embrittlement resistance
US7794552B2 (en) Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
US6537394B1 (en) Method for producing hot-dip galvanized steel sheet having high strength and also being excellent in formability and galvanizing property
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
KR20070061859A (en) High strength thin steel plate excellent in elongation and bore expanding characteristics and method for production thereof
EP3720981B1 (en) Cold rolled and annealed steel sheet and method of manufacturing the same
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
EP3556896A1 (en) High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
CA3006405A1 (en) High strength hot dip galvanised steel strip
JP2020522619A (en) Low cost, high formability, 1180 MPa class cold rolled annealed two-phase steel sheet and method for producing the same
JP2003064444A (en) High strength steel sheet with excellent deep drawability, and manufacturing method therefor
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
EP3561121B1 (en) Cold-rolled steel sheet having excellent bendability and hole expandability and method for manufacturing same
JP4358418B2 (en) Low yield ratio high strength cold-rolled steel sheet and plated steel sheet excellent in hole expansibility and method for producing the same
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP2002080931A (en) High strength cold rolled steel sheet and high strength plated steel sheet having excellent workability and spot weldability and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
WO2020151856A1 (en) A high strength high ductility complex phase cold rolled steel strip or sheet
EP3390040B2 (en) High strength hot dip galvanised steel strip
JP5338257B2 (en) High yield ratio ultra high strength steel sheet with excellent ductility and method for producing the same
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JP3037767B2 (en) Low yield ratio high strength hot-dip galvanized steel sheet and method for producing the same
EP3884074A1 (en) Cold rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4358418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees