JP4267672B2 - Burner and reformer with burner - Google Patents

Burner and reformer with burner Download PDF

Info

Publication number
JP4267672B2
JP4267672B2 JP2007201900A JP2007201900A JP4267672B2 JP 4267672 B2 JP4267672 B2 JP 4267672B2 JP 2007201900 A JP2007201900 A JP 2007201900A JP 2007201900 A JP2007201900 A JP 2007201900A JP 4267672 B2 JP4267672 B2 JP 4267672B2
Authority
JP
Japan
Prior art keywords
fuel
burner
air
combustion
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007201900A
Other languages
Japanese (ja)
Other versions
JP2008020183A (en
Inventor
康弘 新井
和夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2007201900A priority Critical patent/JP4267672B2/en
Publication of JP2008020183A publication Critical patent/JP2008020183A/en
Application granted granted Critical
Publication of JP4267672B2 publication Critical patent/JP4267672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、バーナで拡散燃焼を行わせる際、空気と燃料との混合を促進させ、完全燃焼させるに好適なバーナおよびバーナを備えた改質器に関する。   The present invention relates to a burner suitable for facilitating mixing of air and fuel and performing complete combustion when performing diffusion combustion in a burner, and a reformer including the burner.

最近の燃料電池、例えば固体高分子形燃料電池は、形状をコンパクトにすることができ、電気出力が高出力密度であり、さらに燃料電池システムを簡素化させて運転を容易にしているので、家庭住宅用電源システムとして将来有望視されている。   Recent fuel cells, such as polymer electrolyte fuel cells, can be compact in shape, have high output power density, and simplify the fuel cell system to facilitate operation. It is considered promising as a residential power supply system in the future.

また、この種のものは、家庭住宅用電源システムの利用のみならず、電力発生後に出る排熱を利用する空調システムやコージェネレーションへの適用も検討され、既に提案されている。   In addition to the use of a home residential power supply system, this type of device is also being studied and proposed for use in air conditioning systems and cogeneration systems that use exhaust heat generated after power generation.

ところで、燃料電池には電解質の分類によって分けると多くの種類があるが、例えば固体高分子形燃料電池は、電気エネルギの発生とともに約100℃以下の排熱を生じさせている。これは、電池効率が100%にならない限り、つまり電池本体温度が周囲温度のままで発電運転が可能にならない限り、温度の高い電池温度から周囲温度への放熱分が熱として発生することを示している。   By the way, there are many types of fuel cells according to the classification of electrolytes. For example, solid polymer fuel cells generate exhaust heat of about 100 ° C. or less together with the generation of electric energy. This means that heat is generated as heat from the high battery temperature to the ambient temperature unless the battery efficiency reaches 100%, that is, unless the battery body temperature remains at the ambient temperature and power generation operation becomes possible. ing.

一方、燃料を水素に改質させるための燃料処理システムにおいても、通常、改質器等の改質反応の加熱に燃焼器を使うため、燃焼排ガスや燃料処理装置等から排熱が生じる。これらの排熱は、給湯やお風呂等の温水利用に適しており、熱回収が多ければ、電気と熱とを組み合わせて総合効率を80%近くまで向上させることが可能である。   On the other hand, in a fuel processing system for reforming fuel to hydrogen, since a combustor is usually used for heating a reforming reaction of a reformer or the like, exhaust heat is generated from combustion exhaust gas, a fuel processing device, or the like. These exhaust heats are suitable for hot water use such as hot water supply and bath, and if there is much heat recovery, it is possible to improve the overall efficiency to nearly 80% by combining electricity and heat.

また、コージェネレーションシステムは、従来の系統電力利用に較べて、エネルギ効率が高く、省エネルギで地球環境に優しく、より経済的な運転を行うことが実現できるため、ユーザとしてはメリットが大きい。   In addition, the cogeneration system is more energy efficient than the conventional grid power use because it is more energy efficient, energy saving, friendly to the global environment, and can be operated more economically.

上述の排熱を有効に活用する燃料電池システムでは、燃料が、例えばメタンを主体とした都市ガスや、例えばプロパンを主体としたLPGの場合、これらの燃料を水素に改質させるための改質器が必要であり、改質器には改質触媒を活性化するために加熱する燃焼装置が必要となる。   In the fuel cell system that effectively uses the exhaust heat described above, when the fuel is, for example, city gas mainly composed of methane or LPG mainly composed of propane, reforming for reforming these fuels to hydrogen. Is required, and the reformer requires a combustion device that heats to activate the reforming catalyst.

その際、燃焼装置には、バーナが必要とされる。   In that case, a burner is required for the combustion apparatus.

従来のバーナ36は、図8および図9に示すように、中央に、例えば円孔状の燃料噴出口37を、その外側の同心状位置に、例えば環状口に形成した空気噴出口38をそれぞれ備える、1個の燃料噴出口37と、1個の空気噴出口38とで拡散燃焼を行う、いわゆる単孔型式であった。   As shown in FIGS. 8 and 9, the conventional burner 36 has, for example, a circular fuel injection port 37 in the center and an air injection port 38 formed in an annular port, for example, in a concentric position outside the center. It was a so-called single hole type in which diffusion combustion is performed by one fuel jet 37 and one air jet 38 provided.

しかし、この単孔型式のものは、燃料Fの外側周囲のみに空気が流れるため、燃料Fと空気とを良好に混合させることが難しく、また、燃焼速度の違うメタンガス燃料やプロパンガス燃料と水素燃料とを同一バーナで完全燃焼させることが難しく、起動用バーナとメインバーナとに分ける必要があった。すなわち、都市ガス、あるいはLPG燃料を対象とした発電運転前の起動運転用バーナとメインバーナとを別々に設置し、発電運転に移行すると水素リッチガスを燃料として別のメインバーナで改質触媒24を加熱させる必要があった。   However, in this single hole type, since air flows only around the outside of the fuel F, it is difficult to mix the fuel F and air well, and methane gas fuel or propane gas fuel with different combustion speeds and hydrogen It was difficult to completely burn the fuel with the same burner, and it was necessary to divide it into a start burner and a main burner. That is, a start-up burner and a main burner before power generation operation targeting city gas or LPG fuel are installed separately, and when the operation shifts to power generation operation, the reforming catalyst 24 is replaced by another main burner using hydrogen rich gas as fuel. It was necessary to heat.

また、従来のバーナには、発電運転前の起動用に使用する場合と、発電用に使用する場合との2種類に分けて使用する場合と、両方の機能を持った1種類のみで運転する場合とがある。   In addition, the conventional burner is operated with only one type having both functions, when used for starting before power generation operation and when used for power generation. There are cases.

前者の運転の場合、2種類のバーナを切り換える理由は、その燃料の主体が起動時、都市ガスまたはプロパンであり、発電時、水素であり、燃焼速度が異なるため、1種類のバーナで安定した火炎を確保することが難しいことに基づく。   In the case of the former operation, the reason for switching between the two types of burners is that the main fuel is city gas or propane at start-up, hydrogen is generated at the time of power generation, and the combustion speed is different. Based on the difficulty of securing a flame.

起動時と発電時とで切り換える2種類のバーナの場合、水素燃料を用いて発電運転するとき、構造が簡易な噴出口1個の、いわゆる単孔バーナを使用していた。また、最近では、例えば、特開平10−162850号公報に見られるように、燃料の外側を空気で混合する拡散バーナが提案されている。
特開平10−162850号公報
In the case of two types of burners that are switched between startup and power generation, when a power generation operation is performed using hydrogen fuel, a so-called single-hole burner having a single jet outlet with a simple structure has been used. Recently, for example, as seen in Japanese Patent Application Laid-Open No. 10-162850, a diffusion burner for mixing the outside of the fuel with air has been proposed.
Japanese Patent Laid-Open No. 10-162850

従来から長く使用されている単孔型式のバーナや特開平10−162850号公報に開示されている拡散バーナには、幾つかの問題が含まれており、その一つに燃焼効率が必ずしも高くない点にあった。   The single-hole type burner that has been used for a long time and the diffusion burner disclosed in Japanese Patent Laid-Open No. 10-162850 have several problems, one of which is not necessarily high in combustion efficiency. Was in the point.

すなわち、発電用として用いるバーナは、水素を主体とした燃料に水蒸気が含まれているため、空気との混合が悪くなっている。このため、不完全燃焼によるCOや水素等の未燃ガス成分が多くなっている。   That is, the burner used for power generation has poor mixing with air because the fuel mainly containing hydrogen contains water vapor. For this reason, unburned gas components, such as CO and hydrogen, by incomplete combustion increase.

また、未燃ガス成分が多くなってくると、改質器内に組み込まれている燃焼装置の燃焼効率が悪くなり、しかも未燃ガス低減化のために排ガス浄化装置等を設けなければならず、運転コストの増加は無論、その運転操作やメンテナンスにも多くの労力を必要とする等、不具合、不都合があった。   In addition, when the amount of unburned gas components increases, the combustion efficiency of the combustion device incorporated in the reformer deteriorates, and an exhaust gas purification device or the like must be provided to reduce unburned gas. Needless to say, the increase in operation cost has a problem and inconvenience, such as requiring a lot of labor for its operation and maintenance.

本発明は、このような事情に基づいてなされたものであり、バーナの燃焼効率をより一層増加させ、かつ燃焼速度の異なる燃料を用いても共用のバーナで安定した拡散燃焼を確保することができるバーナおよびバーナを備えた改質器を提供することを目的とする。   The present invention has been made based on such circumstances, and can further increase the combustion efficiency of the burner and ensure stable diffusion combustion with a common burner even when fuels having different combustion rates are used. An object of the present invention is to provide a burner and a reformer equipped with the burner.

また、本発明の他の目的は、発電前の起動用に使用する場合と、発電用に使用する場合のバーナを共通化させ、共通のバーナで起動運転や発電運転に対応させることができるバーナおよびバーナを備えた改質器を提供することができる。   Another object of the present invention is to use a common burner when used for starting before power generation and when used for power generation, and can use a common burner for start-up operation and power generation operation. And a reformer with a burner can be provided.

さらに、本発明の別の目的は、水素を主体とした燃料に水蒸気が含まれていても燃料と空気とをより一層効果的に混合促進させて発電効率をより向上させるバーナおよびバーナを備えた改質器を提供することにある。   Furthermore, another object of the present invention is provided with a burner and a burner that further improve the power generation efficiency by promoting the mixing of fuel and air more effectively even when water vapor is contained in the fuel mainly composed of hydrogen. It is to provide a reformer.

本発明に係るバーナは、上述した課題を解決するために、バーナ本体に燃料を噴出させる燃料噴出口と、この燃料噴出口の内周側および外周側で空気を噴出させる空気噴出口とをそれぞれ備え、起動時および運転時に燃焼速度の異なる燃料を前記燃料噴出口から噴出させて拡散燃焼させ、バーナ本体を共用させて対応させる構成としたものである。   In order to solve the above-described problems, the burner according to the present invention includes a fuel jet for ejecting fuel to the burner body, and an air jet for ejecting air on the inner and outer peripheral sides of the fuel jet, respectively. In addition, fuels having different combustion speeds at the time of start-up and operation are jetted from the fuel outlets to be diffused and combusted, and the burner main body is used in common.

また、本発明に係るバーナを備えた改質器は、上述した課題を解決するために、水素製造装置の燃焼部にバーナを設け、このバーナに燃料を噴出させる燃料噴出口と、この燃料噴出口の内周側および外周側で空気を噴出させる空気噴出口とをそれぞれ備え、起動運転時に、前記燃料噴出口から噴出させる燃料に予め空気を加えた予混合燃料を噴射させる一方、前記予混合燃料の内周側および外周側から空気を噴出させて拡散燃焼させ、発電運転時には、前記燃料噴出口から水素リッチ燃料ガスを噴出させる一方、前記空気噴出口から空気をそれぞれ噴出させて拡散燃焼させ、共用させたバーナで起動運転用と発電運転用を兼ねるように設定したものである。   Further, in order to solve the above-described problems, a reformer provided with a burner according to the present invention is provided with a burner in a combustion section of a hydrogen production apparatus, and a fuel injection port for injecting fuel into the burner, and the fuel injection port. An air jet for ejecting air on the inner peripheral side and the outer peripheral side of the outlet, respectively, and in the start-up operation, the premixed fuel in which air is added in advance to the fuel jetted from the fuel jet port is injected, Air is ejected from the inner and outer peripheral sides of the fuel and diffused and burned. During power generation operation, hydrogen-rich fuel gas is jetted from the fuel jet and air is jetted from the air outlet and diffused and burned. The common burner is set to be used for both start-up operation and power generation operation.

本発明に係るバーナおよびバーナを備えた改質器は、発電前の起動用に使用する場合と発電用に使用する場合のバーナを共通化させ、共用させたバーナで起動運転と発電運転に対応させることができ、バーナの燃焼効率をより一層増加させ、かつ安定した拡散燃焼を確保することができる。   The burner and the reformer equipped with the burner according to the present invention share a burner when used for starting before power generation and when used for power generation, and support the start-up operation and power generation operation with the shared burner. It is possible to further increase the combustion efficiency of the burner and to ensure stable diffusion combustion.

以下、本発明に係るバーナおよびバーナを備えた改質器の実施形態を図面および図面に付した符号を引用して説明する。   Embodiments of a burner and a reformer equipped with the burner according to the present invention will be described below with reference to the drawings and reference numerals attached to the drawings.

図1は、本発明に係る改質器を備えた燃料電池システムを示す概略系統図である。   FIG. 1 is a schematic system diagram showing a fuel cell system including a reformer according to the present invention.

この燃料電池システム21は、燃料電池本体2に、例示として固体高分子形燃料電池を適用した場合について説明する。   In this fuel cell system 21, a case where a solid polymer fuel cell is applied to the fuel cell body 2 as an example will be described.

この燃料電池システム21は、大別して燃料処理系(FPS;Furl Processing System)1と電池本体(CSA;Cell Stack Assembly)2とを備えて構成されている。   The fuel cell system 21 is roughly configured to include a fuel processing system (FPS) 1 and a battery main body (CSA; Cell Stack Assembly) 2.

燃料処理系1は、燃料Fの流れに沿って順に、燃料部3、脱硫器4、水素製造装置としての改質器6、COシフト反応器7、CO選択酸化器8等を備える。また、燃料処理系1は、改質器6に一体として組み込まれた燃焼部5aおよび水蒸気発生部5bを有し、燃料電池システム21は、さらに、水蒸気分離器9、改質用水タンク10、改質用水ポンプ11、排熱熱交換器12、排熱供給水ポンプ13等を備えている。   The fuel processing system 1 includes a fuel unit 3, a desulfurizer 4, a reformer 6 as a hydrogen production device, a CO shift reactor 7, a CO selective oxidizer 8, and the like in order along the flow of the fuel F. The fuel processing system 1 has a combustion section 5a and a steam generation section 5b integrated into the reformer 6, and the fuel cell system 21 further includes a steam separator 9, a reforming water tank 10, an improved A quality water pump 11, a waste heat exchanger 12, a waste heat supply water pump 13 and the like are provided.

なお、燃料部3から脱硫器4に供給される燃料Fは、炭化水素系燃料、例えば都市ガス、プロパン、あるいはガス化した灯油等が適宜、選択して用いられる。   The fuel F supplied from the fuel unit 3 to the desulfurizer 4 is appropriately selected from hydrocarbon-based fuels such as city gas, propane, or gasified kerosene.

一方、電池本体2は、アノード14、カソード15、水冷却部16、電池冷却水ポンプ17等を備えている。   On the other hand, the battery body 2 includes an anode 14, a cathode 15, a water cooling unit 16, a battery cooling water pump 17, and the like.

また、燃料処理系1および電池本体2に共通な構成部品には、空気ブロア18、凝縮熱交換器19等が設けられている。   Further, components common to the fuel processing system 1 and the battery body 2 are provided with an air blower 18, a condensation heat exchanger 19, and the like.

このような構成を備える固体高分子形燃料電池の発電原理を簡単に説明する。   The principle of power generation of the polymer electrolyte fuel cell having such a configuration will be briefly described.

プロパンまたは都市ガス等の燃料Fのうち、例えばプロパンを選択する場合、プロパンから水素ガスへの改質は、燃料処理系1で行われる。   For example, when propane is selected from the fuel F such as propane or city gas, reforming from propane to hydrogen gas is performed in the fuel processing system 1.

まず、プロパンを選択する燃料Fは、脱硫器4を通る際、容器内に収容されている、例えば活性炭やゼオライト吸着により硫黄分が取り除かれ、水蒸気分離器9から分離される水蒸気と合流して改質器6に供給される。   First, when the fuel F for selecting propane passes through the desulfurizer 4, the sulfur content is removed by, for example, activated carbon or zeolite adsorption, and is combined with the water vapor separated from the water vapor separator 9. It is supplied to the reformer 6.

この水蒸気分離器9は、改質用水タンク10から改質用水ポンプ11および水供給系11aを介して供給される水を水蒸気発生部5bで加熱させ、水蒸気にして改質器6に供給し、ここで燃料Fに合流させるようになっている。なお、水蒸気分離器9は、水蒸気から分離するドレン水を水回収系11bを介して改質用水タンク10に回収させている。   The steam separator 9 heats water supplied from the reforming water tank 10 through the reforming water pump 11 and the water supply system 11a by the steam generating unit 5b, and supplies the steam to the reformer 6 as steam. Here, the fuel F is joined. In addition, the water vapor separator 9 collects the drain water separated from the water vapor in the reforming water tank 10 through the water recovery system 11b.

一方、改質器6では、供給される燃料(プロパン)Fと水蒸気とで改質触媒(図2の符号21参照)により水蒸気改質反応が行われ、水素ガスのほかにCOやCO等も生成される。その際、水蒸気改質は吸熱反応となる。このため、改質器6は、水蒸気発生部5bとともに熱源を確保する燃焼部5aを1つの容器の内に組み込んでいる。 On the other hand, in the reformer 6, a steam reforming reaction is performed by the reforming catalyst (see reference numeral 21 in FIG. 2) with the supplied fuel (propane) F and steam, and in addition to hydrogen gas, CO, CO 2, etc. Is also generated. At that time, the steam reforming becomes an endothermic reaction. For this reason, the reformer 6 incorporates the combustion part 5a which ensures a heat source with the water vapor generation part 5b in one container.

ところで、固体高分子形燃料電池は、アノード14に供給される燃料ガスの改質CO濃度が高いと、電池本体2の一部を構成する電解質膜および触媒層等からなる膜電極接合体(MEA;Membrane Electrode Assembly、以下MEAと記す)(図示せず)が被毒し、活性力が低下し、電池性能を著しく低下させる等の悪影響が出る。このため、COは事前にCOに酸化させる必要がある。 By the way, in the polymer electrolyte fuel cell, when the reformed CO concentration of the fuel gas supplied to the anode 14 is high, a membrane electrode assembly (MEA) composed of an electrolyte membrane, a catalyst layer and the like constituting a part of the battery body 2 is used. ; Membrane Electrode Assembly (hereinafter referred to as MEA) (not shown) is poisoned, resulting in an adverse effect such as a decrease in activity and a marked decrease in battery performance. For this reason, CO must be oxidized to CO 2 in advance.

燃料処理系1は、改質器6の下流側にCOシフト反応器7とCO選択酸化器8を備えるとともに、CO選択酸化器8に空気ブロア18からの空気を供給し、改質器6で生成される改質ガスのうち、COがCOシフト反応器7およびCO選択酸化器8を流れる間に各触媒(図示せず)の触媒反応により酸化促進させるようにしている。   The fuel processing system 1 includes a CO shift reactor 7 and a CO selective oxidizer 8 on the downstream side of the reformer 6, and supplies air from the air blower 18 to the CO selective oxidizer 8. Of the generated reformed gas, while CO flows through the CO shift reactor 7 and the CO selective oxidizer 8, the oxidation is promoted by the catalytic reaction of each catalyst (not shown).

また、図示しないが、改質器6、CO選択酸化器8の触媒反応温度は、それぞれ異なり、改質器6の数百度からCO選択酸化器8の百数十度と、改質ガスの上流と下流の温度差が大きいため、実際には下流側温度を下げるための水熱交換器が必要となり、例えば、COシフト反応器7とCO選択酸化器8との間に水熱交換器を設ける構成にしてもよい。   Although not shown, the catalytic reaction temperatures of the reformer 6 and the CO selective oxidizer 8 are different from each other, from several hundred degrees of the reformer 6 to hundreds of degrees of the CO selective oxidizer 8, and upstream of the reformed gas. In fact, a water heat exchanger for lowering the temperature on the downstream side is necessary, for example, a water heat exchanger is provided between the CO shift reactor 7 and the CO selective oxidizer 8. It may be configured.

また、例えば、燃料Fのプロパンを改質させる場合、COからCOへの酸化反応を省略し、全体をスルーする水蒸気改質は、以下の(1)式による。
[化1]
+6HO → 3COへ+10H ……(1)
For example, when reforming the propane of the fuel F, the steam reforming that omits the oxidation reaction from CO to CO 2 and passes through the whole is based on the following equation (1).
[Chemical 1]
C 3 H 8 + 6H 2 O → to 3CO 2 + 10H 2 (1)

また、CO選択酸化器8を通過する改質ガスは、主として水素、炭酸ガス、水蒸気等の成分からなる。これらのガスが電池本体2のアノード14に供給されると、水素ガスは膜電極接合体MEAの触媒層(図示せず)を経てプロトンH+が電解質膜(図示せず)を流れ、空気ブロア18からカソード15に流れる空気中の酸素および電子と結び付いて水を生成する。   The reformed gas that passes through the CO selective oxidizer 8 is mainly composed of components such as hydrogen, carbon dioxide, and water vapor. When these gases are supplied to the anode 14 of the battery body 2, the proton gas H + flows through the electrolyte membrane (not shown) through the catalyst layer (not shown) of the membrane electrode assembly MEA, and the air blower 18. Is combined with oxygen and electrons in the air flowing from the cathode to the cathode 15 to generate water.

したがって、アノード14はマイナス(−)極、カソード15はプラス(+)極になり、電位を持って直流電力を発電する。この電位間に電気負荷を存在させると、電源としての機能を持たせることができる。   Therefore, the anode 14 has a negative (−) pole and the cathode 15 has a positive (+) pole, and generates DC power with a potential. When an electric load is present between these potentials, a function as a power source can be provided.

他方、発電に寄与しないまま残ったアノード14の出口から出るガスは、未燃ガス系20を介して燃焼部5aおよび水蒸気発生部5b等の加熱用燃料ガスとして使用される。   On the other hand, the gas that exits from the outlet of the anode 14 that does not contribute to power generation is used as a heating fuel gas for the combustion section 5a, the steam generation section 5b, and the like via the unburned gas system 20.

また、カソード15の出口から出る水蒸気は、水蒸気発生部5bからの燃焼ガスと合流し、さらに凝縮熱交換器19で水分を回収させた後、その水分を改質用水タンク10に供給し、燃料電池システム21での水自立を図っている。   Further, the water vapor coming out from the outlet of the cathode 15 merges with the combustion gas from the water vapor generating section 5b, and after the water is recovered by the condensation heat exchanger 19, the water is supplied to the reforming water tank 10 to produce fuel. Water independence in the battery system 21 is intended.

電池本体2の膜電極接合体MEAにおける触媒での反応温度は、通常、百度以下が適当であるから、電池本体2の温度がそれ以下になるように、電池冷却水ポンプ17で冷却水を循環させ、排熱熱交換器12で放熱させ、電池本体2の入口側冷却水温度が一定になるように電気制御部(図示せず)で制御している。   Since the reaction temperature at the catalyst in the membrane electrode assembly MEA of the battery body 2 is normally less than a hundred degrees, the cooling water is circulated by the battery cooling water pump 17 so that the temperature of the battery body 2 is lower than that. Then, the heat is dissipated by the exhaust heat exchanger 12 and is controlled by an electric control unit (not shown) so that the inlet side cooling water temperature of the battery body 2 is constant.

また、電池本体2の水冷却部16から排熱熱交換器12に供給された高温水または高温の不凍液等の媒体は、ここで、加熱源として用いられ、排熱供給水ポンプ13からの水と熱交換し、その水を加温させる。加温した水は、例えば温水器等に供給され、給湯やお風呂の温水として使われる。   The medium such as high-temperature water or high-temperature antifreeze supplied from the water cooling unit 16 of the battery body 2 to the exhaust heat exchanger 12 is used as a heating source here, and the water from the exhaust heat supply water pump 13 is used. Heat the water and warm the water. The heated water is supplied to, for example, a water heater or the like and used as hot water or hot water for a bath.

なお、固体高分子形燃料電池システムの簡素化のために、排熱熱交換器12を使わずに、排熱供給水ポンプ13に代って、燃料処理系1の電池冷却水ポンプ17から直接、温水器等に供給してもよい。   In order to simplify the polymer electrolyte fuel cell system, the exhaust heat supply water pump 13 is used instead of the exhaust heat exchanger 12, and the battery cooling water pump 17 of the fuel processing system 1 is used directly. It may be supplied to a water heater or the like.

図2および図3は、改質器6に一体として組み込まれた燃焼部5aと水蒸気発生部5bとを示す本発明に係る燃料電池システム21の概念図である。   2 and 3 are conceptual diagrams of the fuel cell system 21 according to the present invention, showing the combustion section 5a and the steam generation section 5b integrated into the reformer 6. As shown in FIG.

なお、図2は、燃料電池システム21の一部分を示す改質器6の概略縦断面図であり、図3は、図2のA−A矢視方向から切断したバーナ23の切断断面図である。   2 is a schematic longitudinal sectional view of the reformer 6 showing a part of the fuel cell system 21, and FIG. 3 is a cut sectional view of the burner 23 cut from the direction of arrows AA in FIG. .

図2に示す燃料電池システム21は、水素製造装置(燃焼装置)を構成する改質器6のうち、燃焼部5aと水蒸気発生部5bとを1つの容器22に収容して一体構成させたものである。   A fuel cell system 21 shown in FIG. 2 includes a reformer 6 constituting a hydrogen production apparatus (combustion apparatus) in which a combustion unit 5a and a steam generation unit 5b are housed in a single container 22 and are integrally configured. It is.

燃焼部5aは、容器22の、例えば頭部側にバーナ23を備えるとともに、容器22内の壁面側に改質触媒24で覆われた燃焼室25を形成している。   The combustion unit 5 a includes a burner 23 on the head side of the container 22, for example, and forms a combustion chamber 25 covered with a reforming catalyst 24 on the wall surface side in the container 22.

また、燃料電池システム21の燃焼装置は、燃料処理系1の水素製造装置6から生成された水素を主体とする燃料に空気を化学反応させて発電を行う電池本体2を備えたものである。前記水素製造装置6の燃焼部5aに設けたバーナ23は、燃料を噴出させる燃料噴出口31と、この燃料噴出口31の内径側(内周側)および外径側(外周側)のそれぞれに設けられ、空気を噴出させる空気噴出口30,32とを備えるとともに、燃料噴出口31および空気噴出口30,32のそれぞれから噴出させる燃料および空気を重力方向に向って燃焼室25を臨むように噴出させる構成にしたものである。   The combustion apparatus of the fuel cell system 21 includes a battery body 2 that generates electricity by chemically reacting air with a fuel mainly composed of hydrogen generated from the hydrogen production apparatus 6 of the fuel processing system 1. A burner 23 provided in the combustion section 5a of the hydrogen production apparatus 6 is provided on each of a fuel jet 31 for jetting fuel, and an inner diameter side (inner circumference side) and an outer diameter side (outer circumference side) of the fuel jet outlet 31. And provided with air jets 30 and 32 for jetting air, and facing the combustion chamber 25 with fuel and air jetted from the fuel jet 31 and the air jets 30 and 32 in the direction of gravity. It is the structure which makes it eject.

また、燃料電池システム21の水素製造装置6に設けた燃焼部5aは、発電前の起動運転から発電運転に移行する際、都市ガスおよびLPGのうち、いずれか一方の燃料に予め空気を加えた予混合燃料から水素を主体とする燃料の燃焼ガス生成に自動的に切り換え得るバーナ23を備えたものである。   In addition, when the combustion unit 5a provided in the hydrogen production device 6 of the fuel cell system 21 shifts from the start operation before power generation to the power generation operation, air is previously added to one of the fuels of city gas and LPG. A burner 23 that can automatically switch from premixed fuel to combustion gas generation of fuel mainly composed of hydrogen is provided.

また、この容器22は、燃焼室25の下流側に、例えばガラスウール等の断熱部材26で区画する区画室27を形成し、この区画室27内に断熱部材28で包囲し、伝熱管29aを群として配置する水蒸気発生部5bを備えている。   In addition, the container 22 is formed with a compartment 27 that is partitioned by a heat insulating member 26 such as glass wool on the downstream side of the combustion chamber 25. The container 22 is surrounded by a heat insulating member 28 in the compartment 27, and a heat transfer tube 29a is provided. A water vapor generating part 5b arranged as a group is provided.

さらにまた、この容器22は、その外側にジャケット型式にして伝熱管29bを群として配置する水蒸気発生部5bを備えている。   Furthermore, the container 22 is provided with a water vapor generating part 5b on the outer side thereof, which is a jacket type and arranges the heat transfer tubes 29b as a group.

一方、この容器22の、例えば頭部側に設けたバーナ23は、中央に、例えば円孔の第1空気噴出口30と、その外側の同心状位置で、かつバーナ軸方向CLに対し半径方向(横断方向)に向けて斜めの傾斜角αに形成させた、例えば円孔の複数の燃料噴出口31と、さらに外側の同心状位置に、例えば環状孔に形成する第2空気噴出口32とを備えている。この場合、第1空気噴出口30と第2空気噴出口32とは、開口面積が同一で、空気噴出流速も同一となるように設計されている。   On the other hand, the burner 23 provided, for example, on the head side of the container 22 is, for example, a first air outlet 30 having a circular hole and a concentric position on the outer side, and in a radial direction with respect to the burner axial direction CL. A plurality of fuel injection ports 31 that are, for example, circular holes formed at an oblique inclination angle α toward the (transverse direction), and a second air injection port 32 that is formed, for example, in an annular hole at an outer concentric position. It has. In this case, the first air jet 30 and the second air jet 32 are designed to have the same opening area and the same air jet flow velocity.

このような構成を備えた燃料電池システムにおいて、次に、バーナ23から燃焼室25に噴出する燃料および空気に基づく燃焼ガス生成のメカニズムを説明する。   Next, in the fuel cell system having such a configuration, a mechanism for generating combustion gas based on fuel and air ejected from the burner 23 to the combustion chamber 25 will be described.

まず、燃料電池システム21は、発電前の起動運転時、図1の脱硫器4の入口側に設けたプロセス燃料弁33を「閉」にし、燃焼部5aの入口側に設けた起動用燃料弁34を「開」にし、空気ブロア18の出口側に設けた起動用空気弁35を「開」にし、燃料部3から起動用燃料弁34を介して送給される燃料、例えばプロパンに空気ブロア18からの空気を加えて予混合し、その予混合した燃料ガスを燃焼部5aに供給するとともに、空気ブロア18から燃焼用空気が燃焼部5aに供給される。   First, during the start-up operation before power generation, the fuel cell system 21 “closes” the process fuel valve 33 provided on the inlet side of the desulfurizer 4 in FIG. 1, and the start-up fuel valve provided on the inlet side of the combustion unit 5a. 34 is "open", the start-up air valve 35 provided on the outlet side of the air blower 18 is "open", and the air blower is supplied to the fuel supplied from the fuel section 3 via the start-up fuel valve 34, for example, propane. Air from 18 is added and premixed, and the premixed fuel gas is supplied to the combustion section 5a, and combustion air is supplied from the air blower 18 to the combustion section 5a.

燃焼部5aに供給された予混合の燃料ガスおよび燃焼用空気のそれぞれは、図2および図3に示すように、バーナ23の燃料噴出口31、第1および第2空気噴出口30,32を介して燃焼室25に噴出され、ここで着火装置(図示せず)により点火され、火炎が形成される。   As shown in FIGS. 2 and 3, the premixed fuel gas and combustion air supplied to the combustion unit 5 a are respectively connected to the fuel outlet 31, the first and second air outlets 30 and 32 of the burner 23. And is then ignited by an ignition device (not shown) to form a flame.

この火炎は、燃焼室25内で拡散燃焼し、改質触媒24を効果的に加熱し、燃料を改質させるに必要な触媒温度まで上昇させ改質触媒24を活性化状態にさせる。   The flame diffuses and burns in the combustion chamber 25, effectively heats the reforming catalyst 24, and raises the catalyst temperature necessary for reforming the fuel to activate the reforming catalyst 24.

さらに、区画室27に回り込んだ燃焼ガスは、水蒸気発生部5bの伝熱管29a,29aを加熱させ、管内の水を蒸発させ、蒸気にする。   Further, the combustion gas that has entered the compartment 27 heats the heat transfer tubes 29a and 29a of the water vapor generating section 5b, evaporates the water in the tubes, and turns it into steam.

燃焼室25の入口25aで、図1で示した脱硫器4からの燃料Fと、水蒸気分離器9からの水蒸気との混合ガスが供給され、その混合ガスの温度が上昇し、やがて燃焼部5aの容器22内における改質触媒24や燃焼室25の出口25bに接続するCOシフト反応器7、CO選択酸化器8、水蒸気分離器9等の各熱機器が改質ガスを燃料電池本体2のアノード14に供給するに必要な温度になると、燃料電池システム21は、起動用燃料弁34が「開」のまま、プロセス燃料弁33を「開」にし、燃料Fの改質を開始させる。そして、アノード14に供給されるプロセスガスが水素リッチで、CO濃度が低くなると、発電運転が開始される。   At the inlet 25a of the combustion chamber 25, a mixed gas of the fuel F from the desulfurizer 4 and the water vapor from the water vapor separator 9 shown in FIG. 1 is supplied, the temperature of the mixed gas rises, and eventually the combustion section 5a The thermal equipment such as the CO shift reactor 7, the CO selective oxidizer 8, and the water vapor separator 9 connected to the reforming catalyst 24 and the outlet 25 b of the combustion chamber 25 in the vessel 22 of the vessel 22 supplies the reformed gas to the fuel cell body 2. When the temperature required for supplying the anode 14 is reached, the fuel cell system 21 starts the reforming of the fuel F by opening the process fuel valve 33 while keeping the starting fuel valve 34 “open”. Then, when the process gas supplied to the anode 14 is rich in hydrogen and the CO concentration becomes low, the power generation operation is started.

発電運転時、未反応のまま残った燃料ガスは、オフガスとしてアノード14の出口から未燃ガス系20を介して改質器6の燃焼部5aに戻される。燃焼部5aに戻されたオフガス燃料と、燃料部3を介して起動用燃料弁34からの原燃料とが合流して燃え、直ぐに燃焼部5aの燃焼室25の負荷を増加させ、温度が上昇すると、起動用燃料弁34および起動用空気弁35は閉じる。そして、燃焼部5aの燃焼室25は、未燃ガス系20からのオフガス燃料のみで運転され、発電運転時に移行する。   During the power generation operation, the unreacted fuel gas is returned to the combustion section 5a of the reformer 6 through the unburned gas system 20 from the outlet of the anode 14 as an off gas. The off-gas fuel returned to the combustion section 5a and the raw fuel from the starting fuel valve 34 are joined through the fuel section 3 and burnt, immediately increasing the load on the combustion chamber 25 of the combustion section 5a and increasing the temperature. Then, the starting fuel valve 34 and the starting air valve 35 are closed. And the combustion chamber 25 of the combustion part 5a is drive | operated only with the offgas fuel from the unburned gas system 20, and transfers at the time of an electric power generation driving | operation.

発電運転時における燃焼部5aの燃焼室25には、バーナ23の燃料噴出口31から水蒸気、炭酸ガス、メタンガスを含んだ水素リッチガスが噴出され、それと同時に拡散燃焼に必要な燃焼用空気が第1空気噴出口30および第2空気噴出口32を介して噴出される。各噴出口31,30,32で噴出した水素リッチガスと空気とは、混合して燃焼ガスを生成し、燃焼室25の重力方向(下流側)に向って拡散燃焼する。   During the power generation operation, a hydrogen rich gas containing water vapor, carbon dioxide gas, and methane gas is ejected from the fuel outlet 31 of the burner 23 into the combustion chamber 25 of the combustion section 5a, and at the same time, combustion air necessary for diffusion combustion is the first. The air is blown out through the air outlet 30 and the second air outlet 32. The hydrogen-rich gas and air ejected from each of the ejection ports 31, 30, and 32 are mixed to generate a combustion gas, and diffusely burn in the direction of gravity (downstream side) of the combustion chamber 25.

このように、燃料Fに空気を混合させ、燃焼室25で拡散燃焼させるバーナ23に、中央に、例えば円孔状の単一口で形成した第1空気噴出口30、その外側の同心状位置に、例えば複数の円孔状に形成した燃料噴出口31、さらにその外側の同心状位置に、例えば環状口に形成した第2空気噴出口32を設けたバーナ23である。   In this way, the air is mixed with the fuel F, and the burner 23 that diffuses and burns in the combustion chamber 25 is centered, for example, at the first air outlet 30 formed with a single hole in the shape of a circular hole, at the outer concentric position. For example, the burner 23 is provided with a plurality of fuel injection ports 31 formed in a circular hole shape, and a second air injection port 32 formed in, for example, an annular port at a concentric position on the outer side.

本実施形態に係るバーナ23は、バーナ本体23aの中央に、例えば円孔状の単一口に形成した第1空気噴出口30を、その外周側の同心状位置で、かつバーナ軸方向CLに対し半径方向内方に向けて斜めの傾斜角αに形成させた、例えば複数の円孔状の燃料噴出口31を、さらにその外周側の同心状位置にも、例えば環状孔に形成した第2空気噴出口32をそれぞれ備え、燃料Fが中心部に集まるようにするとともに、燃料Fの周りを内側の空気と外側の空気が流れ、あたかも燃料が空気でサンドイッチ(サンドイッチ式バーナ)の状態にさせたので火炎の細分化が充分に奏される。これは、いわば小さい単孔を複数個配置したバーナと同一の効果を奏し、空気と燃料の混合が良好で、たとえ水蒸気を含んでいても燃焼反応が充分促進され、火炎の長さを短くすることができる。   The burner 23 according to the present embodiment has a first air outlet 30 formed, for example, in a single hole in the center of the burner body 23a, at a concentric position on the outer peripheral side, and with respect to the burner axial direction CL. For example, a plurality of circular hole-shaped fuel injection ports 31 formed at an oblique inclination angle α inward in the radial direction, and the second air formed at, for example, an annular hole at a concentric position on the outer peripheral side. Each of the nozzles 32 is provided so that the fuel F gathers in the center, and the inner air and the outer air flow around the fuel F, as if the fuel was sandwiched with the air (sandwich burner). Therefore, the subdivision of the flame is sufficiently achieved. This has the same effect as a burner with a plurality of small single holes, so that the mixture of air and fuel is good, the combustion reaction is sufficiently accelerated even if it contains water vapor, and the length of the flame is shortened. be able to.

実際、本実施形態に係るバーナ23の火炎長さは、従来の単孔型式のバーナ36の火炎長さに較べ半分以下になっていることが実験で確認された。   In fact, it has been confirmed through experiments that the flame length of the burner 23 according to the present embodiment is less than half the flame length of the conventional single hole type burner 36.

火炎の長さが、従来に較べて短いと、拡散燃焼の反応をより早く完結させることを示している。その上、短い火炎の分だけ火炎領域の平均燃焼温度は高くなり、燃焼室25の改質触媒24への熱の伝わりは損失が著しく小さく非常に効果的である。   When the flame length is shorter than the conventional one, it indicates that the diffusion combustion reaction is completed more quickly. In addition, the average combustion temperature in the flame region is increased by the amount of the short flame, and the transfer of heat to the reforming catalyst 24 in the combustion chamber 25 is extremely effective with very little loss.

また、本実施形態に係る燃焼部5aは、燃焼室25の壁面側に改質触媒24を配置させるとともに、図1で示した脱硫器4からの燃料Fと水蒸気分離器9からの水蒸気とを混合させたプロセス燃料ガスを重力方向に向って流し、かつバーナ23からの燃焼ガスとを対向流形式にして流すので、外部への放熱損失を少なくさせて改質触媒24への熱の伝わりをより一層効果的に行うことができる。   In addition, the combustion unit 5a according to the present embodiment arranges the reforming catalyst 24 on the wall surface side of the combustion chamber 25, and the fuel F from the desulfurizer 4 and the steam from the steam separator 9 shown in FIG. Since the mixed process fuel gas flows in the direction of gravity and the combustion gas from the burner 23 flows in a counterflow manner, heat dissipation to the reforming catalyst 24 is reduced by reducing heat dissipation loss to the outside. This can be done even more effectively.

また、本実施形態に係る燃焼部5aは、中央に、例えば円孔状の第1空気噴出口30と、その外側の同心状位置に、例えば円孔状の複数個の燃料噴出口31と、さらに外側の同心状位置に、例えば複数個の円孔および環状孔のうち、いずれか一方に形成する第2空気噴出口32とを有するバーナ23を備え、都市ガスあるいはLPG等の燃料Fと水素リッチガスとの燃焼速度の大きく異なる場合であっても、充分に対処できるようにしているので、従来のように、燃料の種数によって起動運転用と発電運転用との複数本のバーナを用意することもなく燃焼室25を簡素化させて空気と燃料とを良好に混合させることができ、拡散燃焼をより一層促進させて改質触媒24をより早く活性化させることができる。   Further, the combustion section 5a according to the present embodiment has, for example, a circular hole-shaped first air outlet 30 at the center, and a plurality of circular hole-shaped fuel outlets 31, for example, at concentric positions on the outer side. Further, a burner 23 having, for example, a second air outlet 32 formed in one of a plurality of circular holes and annular holes is provided at a concentric position on the outer side, and fuel F such as city gas or LPG and hydrogen Even if the combustion speed of the rich gas differs greatly, it is possible to cope with it sufficiently, so as before, prepare multiple burners for start-up operation and power generation operation according to the number of fuel types. In addition, the combustion chamber 25 can be simplified and air and fuel can be mixed well, the diffusion combustion can be further promoted, and the reforming catalyst 24 can be activated earlier.

また、燃焼速度の異なる燃料を使用すると、発電運転前の起動運転時の拡散燃焼の際、火炎が伸び過ぎて燃焼が不安定になることがあるが、この場合、燃料噴出口31から噴出する燃料に予め空気を加えた予混合にし、不足の空気分を第1空気噴出口30および第2空気噴出口32から噴出すれば安定した火炎を確保することができる。   In addition, when fuels having different combustion speeds are used, the flame may extend excessively during the diffusion combustion during the start-up operation before the power generation operation, and the combustion may become unstable. In this case, the fuel is ejected from the fuel outlet 31. A stable flame can be secured if premixing is performed by adding air to the fuel in advance, and insufficient air is ejected from the first air outlet 30 and the second air outlet 32.

なお、本実施形態に係る燃焼部5aは、バーナ23のバーナ本体23aに形成する燃料噴出口31を第1空気噴出口30の外側の同心状位置に6個設けているが、この例に限らず、例えば図6および図7に示すように、第1空気噴出口30の外側の同心状位置に形成する燃料噴出口31を環状孔にしてもよい。また、例えば、図8および図9に示すように、第1空気噴出口30を環状孔にしてもよい。   In addition, although the combustion part 5a which concerns on this embodiment provides the six fuel jet ports 31 formed in the burner main body 23a of the burner 23 in the concentric position of the outer side of the 1st air jet port 30, it is not restricted to this example. Instead, for example, as shown in FIGS. 6 and 7, the fuel injection port 31 formed at a concentric position outside the first air injection port 30 may be an annular hole. Further, for example, as shown in FIGS. 8 and 9, the first air outlet 30 may be an annular hole.

本発明に係るバーナおよびバーナを備えた改質器は、燃焼部に設けたバーナに、燃料を噴出させる燃料噴出口と、この燃料噴出口の内径側および外径側のそれぞれに空気噴出口を形成し、燃焼速度の異なる燃料を使用しても共通のバーナで対処でき、発電運転前の起動運転時と発電運転時と区別なく拡散燃焼の安定した火炎を確保することができ、燃料と空気とのより一層の混合促進に基づき完全燃焼させて発電効率をより一層向上させることができる。   A burner and a reformer equipped with a burner according to the present invention include a fuel outlet for ejecting fuel to a burner provided in a combustion section, and an air outlet on each of an inner diameter side and an outer diameter side of the fuel outlet. Even if fuels with different combustion rates are formed, they can be dealt with by a common burner, and a stable flame of diffusion combustion can be ensured regardless of the start-up operation before the power generation operation and the power generation operation. Based on the further promotion of mixing, complete combustion can be performed to further improve power generation efficiency.

燃料電池システムの実施形態を示す概略系統図。1 is a schematic system diagram showing an embodiment of a fuel cell system. 本発明の第1実施形態を示すもので、燃料電池システムの一部を示す改質器の概略縦断面図。The schematic longitudinal cross-sectional view of the reformer which shows 1st Embodiment of this invention and shows a part of fuel cell system. 図2のA−A矢視方向から切断したバーナの切断断面図。FIG. 3 is a cross-sectional view of the burner cut from the direction of arrows AA in FIG. 2. 燃料電池システムの改質器に備えられる燃焼装置に適用するバーナの第2実施形態を示す概略平面図。The schematic plan view which shows 2nd Embodiment of the burner applied to the combustion apparatus with which the reformer of a fuel cell system is equipped. 図4のC−C矢視方向から切断したバーナの切断断面図。態を示す概略系統図。Sectional drawing of the burner cut | disconnected from the CC arrow direction of FIG. The schematic system diagram which shows a state. 燃料電池システムのうち、燃焼装置に適用するバーナの第3実施形態を示す概略平面図。The schematic top view which shows 3rd Embodiment of the burner applied to a combustion apparatus among fuel cell systems. 図6のD−D矢視方向から切断したバーナの切断断面図。Sectional drawing of the burner cut | disconnected from the DD arrow direction of FIG. 従来のバーナを示す概略平面図。The schematic plan view which shows the conventional burner. 図8のB−B矢視方向から切断したバーナの切断断面図。態を示す概略系統図。FIG. 9 is a cross-sectional view of the burner cut from the direction of arrows BB in FIG. 8. The schematic system diagram which shows a state.

符号の説明Explanation of symbols

1 燃料処理系
2 電池本体
3 燃料部
4 脱硫器
5a 燃焼部
5b 水蒸気発生部
6 改質器(燃焼装置)
7 COシフト反応器
8 CO選択酸化器
9 水蒸気分離器
10 改質用水タンク
11 改質用水ポンプ
11a 水供給系
11b 水回収系
12 排熱熱交換器
13 排熱供給水ポンプ
14 アノード
15 カソード
16 水冷却部
17 電池冷却水ポンプ
18 空気ブロア
19 凝縮熱交換器
20 未燃ガス系
21 燃料電池システム
22 容器
23 バーナ
23a バーナ本体
24 改質触媒
25 燃焼室
25a 入口
25b 出口
26 断熱部材
27 区画室
28 断熱部材
29a,29b 伝熱管
30 第1空気噴出口
31 燃料噴出口
32 第2空気噴出口
33 プロセス燃料弁
34 起動用燃料弁
35 起動用空気弁
36 バーナ
37 燃料噴出口
38 空気噴出口
DESCRIPTION OF SYMBOLS 1 Fuel processing system 2 Battery main body 3 Fuel part 4 Desulfurizer 5a Combustion part 5b Water vapor generation part 6 Reformer (combustion device)
7 CO shift reactor 8 CO selective oxidizer 9 Steam separator 10 Reforming water tank 11 Reforming water pump 11a Water supply system 11b Water recovery system 12 Waste heat exchanger 13 Waste heat supply water pump 14 Anode 15 Cathode 16 Water Cooling unit 17 Battery cooling water pump 18 Air blower 19 Condensing heat exchanger 20 Unburned gas system 21 Fuel cell system 22 Container 23 Burner 23a Burner body 24 Reforming catalyst 25 Combustion chamber 25a Inlet 25b Outlet 26 Insulating member 27 Compartment chamber 28 Insulating Members 29a, 29b Heat transfer tube 30 First air outlet 31 Fuel outlet 32 Second air outlet 33 Process fuel valve 34 Startup fuel valve 35 Startup air valve 36 Burner 37 Fuel outlet 38 Air outlet

Claims (5)

バーナ本体に燃料を噴出させる燃料噴出口と、この燃料噴出口の内周側および外周側で空気を噴出させる空気噴出口とをそれぞれ備え、起動時および運転時に燃焼速度の異なる燃料を前記燃料噴出口から噴出させて拡散燃焼させ、バーナ本体を共用させて対応させる構成としたことを特徴とするバーナ。 A fuel jet for ejecting fuel to the burner body, and an air jet for ejecting air on the inner and outer peripheral sides of the fuel jet, respectively, are provided with fuel having different combustion speeds during startup and operation. A burner characterized by having a structure in which a burner main body is shared by being ejected from an outlet and subjected to diffusion combustion. 前記燃料噴出口は周方向に沿って設けられた複数の噴出孔あるいは環状孔で形成され、前記燃料噴出口の内周側に設けられる空気噴出口は、中央に単一円孔状あるいは環状孔の第1空気噴射口とし、前記燃料噴射口の外周側の空気噴出口は、複数の噴出孔あるいは環状孔の第2空気噴出口とした請求項1記載のバーナ。 The fuel jet is formed by a plurality of jet holes or annular holes provided along the circumferential direction, and the air jet provided on the inner peripheral side of the fuel jet is a single circular hole or an annular hole at the center. 2. The burner according to claim 1, wherein the first air injection port and the air injection port on the outer peripheral side of the fuel injection port are a plurality of injection holes or a second air injection port having an annular hole. 中央の前記第1空気噴出口と、その外側の同心状位置で、バーナ軸方向に対し、斜めに形成された複数の燃料噴射口とを有する請求項2記載のバーナ。 3. The burner according to claim 2, comprising the first air outlet at the center and a plurality of fuel injection ports formed concentrically with respect to the burner axial direction at the outer concentric position. 水素製造装置の燃焼部にバーナを設け、
このバーナに燃料を噴出させる燃料噴出口と、この燃料噴出口の内周側および外周側で空気を噴出させる空気噴出口とをそれぞれ備え、
起動運転時に、前記燃料噴出口から噴出させる燃料に予め空気を加えた予混合燃料を噴射させる一方、前記予混合燃料の内周側および外周側から空気を噴出させて拡散燃焼させ、
発電運転時には、前記燃料噴出口から水素リッチ燃料ガスを噴出させる一方、前記空気噴出口から空気をそれぞれ噴出させて拡散燃焼させ、共用させたバーナで起動運転用と発電運転用を兼ねるように設定したことを特徴とするバーナを備えた改質器。
A burner is installed in the combustion section of the hydrogen production device,
A fuel outlet for injecting fuel into the burner, and an air outlet for injecting air on the inner and outer peripheral sides of the fuel outlet,
During start-up operation, premixed fuel in which air is added in advance to the fuel ejected from the fuel ejection port is injected, while air is ejected from the inner peripheral side and the outer peripheral side of the premixed fuel to perform diffusion combustion,
During power generation operation, hydrogen-rich fuel gas is ejected from the fuel ejection port, while air is ejected from the air ejection port and diffused and burned, and a common burner is used for both startup operation and power generation operation. A reformer equipped with a burner characterized by the above.
前記バーナは水素製造装置の容器の頭部に設けられ、上記バーナの燃料噴出口および空気噴出口を、前記容器の頭部内に改質触媒で覆われた燃焼室に臨ませ、前記燃料噴出口および空気噴出口からそれぞれ噴出させる燃料および空気を重力方向に向って噴出させる構成とした請求項4記載のバーナを備えた改質器。 The burner is provided at the head of the container of the hydrogen production apparatus, and the fuel outlet and the air outlet of the burner face the combustion chamber covered with the reforming catalyst in the head of the container, and the fuel injection The reformer provided with the burner according to claim 4, wherein fuel and air ejected from the outlet and the air ejection port are ejected in the direction of gravity.
JP2007201900A 2007-08-02 2007-08-02 Burner and reformer with burner Expired - Lifetime JP4267672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201900A JP4267672B2 (en) 2007-08-02 2007-08-02 Burner and reformer with burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201900A JP4267672B2 (en) 2007-08-02 2007-08-02 Burner and reformer with burner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002159845A Division JP4128803B2 (en) 2002-05-31 2002-05-31 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2008020183A JP2008020183A (en) 2008-01-31
JP4267672B2 true JP4267672B2 (en) 2009-05-27

Family

ID=39076247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201900A Expired - Lifetime JP4267672B2 (en) 2007-08-02 2007-08-02 Burner and reformer with burner

Country Status (1)

Country Link
JP (1) JP4267672B2 (en)

Also Published As

Publication number Publication date
JP2008020183A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US8658323B2 (en) Solid oxide fuel cell generation system
EP2810329B1 (en) Fuel cell module
JP6072111B2 (en) Fuel cell module
JP5376384B2 (en) Combustion reformer applied to fuel cell power generation system
JP6814970B2 (en) High temperature operation type fuel cell system
JP2003226507A (en) Staged lean combustion for rapid start of fuel processor
KR20090010402A (en) Fuel reformer burner of fuel cell system
KR20090079517A (en) Fuel Cell and Control Method Thereof
JP4614515B2 (en) Fuel cell reformer
JP4128803B2 (en) Fuel cell system
KR100774574B1 (en) Solid oxide fuel cell power generation system for apu and startup method thereof
JP4267672B2 (en) Burner and reformer with burner
JP5810006B2 (en) Fuel processing system and combustion apparatus for fuel cell
CN113540503B (en) Tubular SOFC self-heating system and working method
JP2004286281A (en) Catalytic combustion burner and fuel cell system
JP7139900B2 (en) fuel cell system
JP4904879B2 (en) Vaporization burner for fuel processor
JP4945901B2 (en) Operation method of fuel cell power generation system
JP3966831B2 (en) Heating burner for reformer
JP5646000B2 (en) Fuel cell system
JP2004119214A (en) Fuel cell system
JP2006310291A (en) Fuel cell system
JP2003317778A (en) Exhaust gas combustor of fuel cell, and fuel cell power generation system
JP2012219008A (en) Thermal treatment system
JP3765933B2 (en) Fuel reformer and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Ref document number: 4267672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term