JP4266452B2 - Manufacturing method of seismic isolation laminated rubber device - Google Patents

Manufacturing method of seismic isolation laminated rubber device Download PDF

Info

Publication number
JP4266452B2
JP4266452B2 JP25275999A JP25275999A JP4266452B2 JP 4266452 B2 JP4266452 B2 JP 4266452B2 JP 25275999 A JP25275999 A JP 25275999A JP 25275999 A JP25275999 A JP 25275999A JP 4266452 B2 JP4266452 B2 JP 4266452B2
Authority
JP
Japan
Prior art keywords
lead plug
insertion hole
laminate
lead
plug insertion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25275999A
Other languages
Japanese (ja)
Other versions
JP2001074096A (en
Inventor
徳民 馮
剛史 三山
建中 楊
彦龍 許
崢▲ろん▼ 李
福霖 周
文光 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP25275999A priority Critical patent/JP4266452B2/en
Publication of JP2001074096A publication Critical patent/JP2001074096A/en
Application granted granted Critical
Publication of JP4266452B2 publication Critical patent/JP4266452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は免震用積層ゴム装置の製造方法に関する。
【0002】
【従来の技術】
薄いゴム板と薄い鋼板が交互に積み重ねて形成された積層体と、この積層体の中心の鉛プラグ挿入孔に装着された鉛プラグとからなる免震用積層ゴム装置は各種の免震装置に使用されている。
このような免震用積層ゴム装置では、「鉛を挿入する時に重要な点は、鉛プラグが孔にぴったりと合って、鋼板に密着すると共に、ゴム層の中にやや食い込む必要がある」とされている「例えば、Skinner,R.I.,W.H.Robinson and G.H.McVerry,An Introduction to Seismic Isolation,John Wiley& Son Ltd, England,1993,pp97(邦訳:川島一彦,北川良和「免震設計入門」、鹿島出版社、1996年、p78)。
一方、従来の免震用積層ゴム装置の製造方法では、ゴム板と鋼板からなる積層体を先に製作し、積層体が冷却されてから鉛プラグを鉛プラグ挿入孔に挿入していた。
【0003】
【発明が解決しようとする課題】
そのため、従来の製造方法では、鉛プラグを積層体の鉛プラグ挿入孔に挿入する際に、鉛プラグの外周部が鉛プラグ挿入孔の内周部にぴったりと合って、鉛プラグの外周部が鋼板の内周部に密着すると共に、鉛プラグの外周部がゴム層の中にやや食い込んだ状態とするには、熟練を要し、歩止まりを向上できない不具合があった。
本発明は前記事情に鑑み案出されたものであって、本発明の目的は、鉛プラグの外周部が鉛プラグ挿入孔の内周部にぴったりと合って、鉛プラグの外周部が鋼板の内周部に密着すると共に、鉛プラグの外周部がゴム層の中にやや食い込んだ状態の免震用積層ゴム装置を簡単に製造できる免震用積層ゴム装置の製造方法を提供することにある。
【0004】
【課題を解決するための手段】
前記目的を達成するため本発明は、円形孔を有する複数の薄いゴム板と、円形孔を有する複数の薄い鋼板とが交互に積み重ねられ、その上下に円形孔を有する鋼製の取り付け板が配置されて高温高圧下で加硫接着され、複数のゴム板の円形孔と複数の鋼板の円形孔と、上下の取り付け板の円形孔とにより上下に貫通した鉛プラグ挿入孔が形成された積層体と、前記積層体の鉛プラグ挿入孔に装着された円柱状の鉛プラグとを備える免震用積層ゴム装置を製造する方法であって、まず、前記鉛プラグを、前記積層体が常温となった際の、前記積層体の上下の取り付け板に取着した蓋板により上下が閉塞された前記鉛プラグ挿入孔の容積と等しいか、あるいはそれより僅かに大きい体積の円柱状に予め形成しておく。そして、前記加硫接着後で加硫接着時の熱により前記積層体が熱膨張している間に、前記鉛プラグを前記鉛プラグ挿入孔に圧入する。次に、前記鉛プラグ挿入孔の上下を、前記積層体の上下の取り付け板に取着した蓋板により閉塞し、前記積層体の温度の低下による前記積層体の高さの減少に伴い前記蓋板から前記鉛プラグの上下端軸方向の圧縮応力作用することにより、前記鉛プラグが拡径して、前記鉛プラグの外周部が前記ゴム板の内周部に食い込んだ状態となるようにした。
また、本発明は、円形孔を有する複数の薄いゴム板と、円形孔を有する複数の薄い鋼板とが交互に積み重ねられ、その上下に円形孔を有する鋼製の取り付け板が配置されて高温高圧下で加硫接着され、複数のゴム板の円形孔と複数の鋼板の円形孔と、上下の取り付け板の円形孔とにより上下に貫通した鉛プラグ挿入孔が形成された積層体と、前記積層体の鉛プラグ挿入孔に装着された円柱状の鉛プラグとを備える免震用積層ゴム装置を製造する方法であって、前記加硫接着後で加硫接着時の熱により前記積層体が熱膨張している間に、前記積層体の下側の取り付け板に蓋板を取着して前記鉛プラグ挿入孔の下部を閉塞すると共に、前記鉛プラグ挿入孔に溶融状態の鉛を流し込んで充填し凝固させて鉛プラグを形成し、かつ、前記積層体の上側の取り付け板に蓋板を取着して前記鉛プラグ挿入孔の上部を閉塞する。そして、前記積層体の温度の低下による前記積層体の高さの減少に伴い前記蓋板から前記鉛プラグの上下端軸方向の圧縮応力作用することにより、前記鉛プラグが拡径して、前記鉛プラグの外周部が前記ゴム板の内周部に食い込んだ状態となるようにした。
【0005】
本発明によれば、加硫接着時の熱により積層体が熱膨張している間に、鉛プラグを鉛プラグ挿入孔に挿入、あるいは、加硫接着時の熱により積層体が熱膨張している間に、鉛プラグ挿入孔に溶融状態の鉛を流し込み充填し凝固させて鉛プラグを形成しそして、積層体の温度低下による積層体の高さの減少に伴い、鉛プラグ挿入孔の上下を閉塞している蓋板から鉛プラグの上下端に軸方向の圧縮応力が作用することにより、プラグが拡径して、鉛プラグの外周部がゴム板の内周部に食い込んだ状態となるようにしたので、積層体が常温になった際に、鉛プラグの外周部が鉛プラグ挿入孔の内周部にぴったりと合って、鉛プラグの外周部が鋼板の内周部に密着すると共に、鉛プラグの外周部がゴム層の中にやや食い込んだ状態となり、そのため、鉛プラグを、その機能が十分に発揮される状態で積層体に装備することが、非常に容易になる。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面にしたがって説明する。
図1は本実施の形態に係る方法により製造される免震用積層ゴム装置の断面正面図を示す。
免震用積層ゴム装置12は、積層体14と鉛プラグ16から構成されている。前記積層体14は、加硫されていない未加硫のゴムからなる複数の薄い環板状のゴム板18と、前記ゴム板18と内径および外径が等しい複数の薄い環板状の鋼板20とが積み重ねられ、高温高圧のもとで加硫接着により接合されることで構成されている。
各ゴム板18と鋼板20はそれぞれ中心に円形孔1802、2002を有しており、免震用積層ゴム装置12の中心部には複数のゴム板18と鋼板20の各円形孔1802、2002により鉛プラグ挿入孔22が免震用積層ゴム装置12の中心軸に沿って上下に貫通して形成されている。
【0007】
本実施の形態では、積層体14は、その上下に配置された鋼製の環板状の取り付け板24を含んで構成され、これら上下の取り付け板24は、前記加硫接着時に上下に位置するゴム板18に接合されている。
前記上下の取り付け板24もそれぞれ中心に円形孔2402を有しており、この円形孔2402の内径は鋼板20の円形孔2002と等しい寸法で形成されている。
したがって、本実施の形態では、鉛プラグ挿入孔22はこれら上下の取り付け板24の円形孔2402を含んで構成され、各取り付け板24の円形孔2402の周囲には環状の凹部26が形成されている。
前記鉛プラグ16は円柱状を呈し、鉛プラグ16は前記鉛プラグ挿入孔22に挿入されている。
前記凹部26に蓋板28が取着され、鉛プラグ挿入孔22および鉛プラグ16の上下部が蓋板28により閉塞されている。
上記の構成からなる免震用積層ゴム装置12は以下の方法により製造される。
【0008】
実施例1
鉛プラグ16を、前記積層体14が常温(設置する地域、場所、季候によって異なるが例えば、20°Cから30°Cの範囲である)となった際の、鉛プラグ挿入孔22の容積よりも僅かに大きい体積に予め形成しておく。
厳密には、鉛プラグ16を、前記積層体14が常温となった際の、複数の鋼板20の円形孔2002の内周部と上下の取り付け板24の円形孔2402の内周部とを接続する想像線で形成される円柱体の容積(即ち、積層体の上下の取り付け板に取着した蓋板により上下が閉塞された鉛プラグ挿入孔22の容積)と等しいか、あるいはそれより若干大きい体積に予め形成しておく。
【0009】
この場合、鉛プラグ16の外径は、常温となった際の鋼板20の円形孔2002および上下の取り付け板24の円形孔2402の内径と等しいか僅かに小さい寸法で形成しておく。
また、鉛プラグ16の高さは、常温となった際の鉛プラグ挿入孔22の高さよりも僅かに大きい寸法で形成しておく。
【0010】
そして、ゴム板18、鋼板20、上下の取り付け板24の加硫接着後で加硫接着時の熱により積層体14が熱膨張している間に、前記体積を有する鉛プラグ16を鉛プラグ挿入孔22に圧入する。
次に、取り付け板24の凹部26に蓋板28を取着し、鉛プラグ挿入孔22および鉛プラグ16の上下部を蓋板28によって閉塞する。
【0011】
一般に、ゴム板18、鋼板20、上下の取り付け板24の加硫接着は150°C程度で行なわれるので、積層体14の温度は150°Cから時間の経過に伴って徐々に下がっていき、この温度の下降に伴い積層体14が熱膨張した状態から徐々に収縮していき、積層体14の高さが減少していく。
そして、積層体14の高さの減少に伴い、鉛プラグ挿入孔22の高さも減少するので、前記蓋板28から鉛プラグ16の上下端軸方向の圧縮応力が作用し、鉛プラグ16が拡径されていくことになる。
したがって、鉛プラグ16の外周部が積層体14の鉛プラグ挿入孔22の内周部にぴったりと合い、鉛プラグ16の外周部が鋼板20および上下の取り付け板24の内周部に密着すると共に、鉛プラグ16の外周部がゴム板18の内周部にやや食い込んだ状態となった免震用積層ゴム装置12が、熟練を要することなく簡単に得られることは無論のこと、鉛プラグ16の圧入もより簡単に行なえるようになる。
【0012】
この場合、鉛プラグ16の高さを、常温となった際の鉛プラグ挿入孔22の高さより大きい寸法で形成しておくと、鉛プラグ16の外径を、常温に戻った際の鋼板20の円形孔2002および上下の取り付け板24の円形孔2402の内径より小さい寸法で円柱状に形成しておいても、加硫接着後の積層体14の温度の低下による積層体14の高さの減少に伴い前記蓋板28から鉛プラグ16の上下端に軸方向の圧縮応力が作用するので、鉛プラグ16の外周部が積層体14の鉛プラグ挿入孔22の内周部にぴったりと合い、鉛プラグ16の外周部が鋼板20および上下の取り付け板24の内周部に密着すると共に、鉛プラグ16の外周部がゴム板18の内周部にやや食い込んだ状態となった免震用積層ゴム装置12が得られる。
すなわち、鉛プラグ16の高さを、常温となった際の鉛プラグ挿入孔22の高さより大きい寸法で形成し、鉛プラグ16の外径を、常温に戻った際の鋼板20の円形孔2002および上下の取り付け板24の円形孔2402の内径より小さい寸法で形成しておけば、鉛プラグ16の圧入がより簡単に行なえるようになる。
【0013】
実施例2
ゴム板18、鋼板20、上下の取り付け板24の加硫接着後で加硫接着時の熱により積層体14が熱膨張している間に、下側の取り付け板24の凹部26に蓋板28が取着される。
次に、溶融状態の鉛が鉛プラグ挿入孔22に流し込まれて充填される。充填された鉛は凝固して鉛プラグ16を形成する。
次に、上側の取り付け板24の凹部26に蓋板28が取着され、鉛プラグ挿入孔22の上部が蓋板28により閉塞される。これらの作業は、全て加硫接着時の熱により積層体14が熱膨張している間に行われる。
一般に、ゴム板18、鋼板20、上下の取り付け板24の加硫接着は150°C程度で行なわれるので、積層体14の温度は150°Cから時間の経過に伴って徐々に下がっていき、この温度の下降に伴い積層体14が熱膨張した状態から徐々に収縮していき、積層体14の高さや鉛プラグ挿入孔22の容積も減少していく
【0014】
一方、鉛プラグ16を構成する鉛の熱膨張率は、鋼板20や上下の取り付け板24を構成する鋼材の熱膨張率よりも大きいものの、ゴム板18を構成するゴムの熱膨張率は、これら鉛の熱膨張率と鋼材の熱膨張率に比べ極めて大きい。
したがって、温度低下による積層体14の高さの減少に伴い、前記蓋板28から鉛プラグ16の上下端に軸方向の圧縮応力が作用することにより、この鉛プラグ16が拡径されていく。
したがって、温度低下による鉛の収縮量は鋼材の収縮量に比べて大きいものの、鉛プラグ16の外径が拡径されていくことから、常温に下がった際には、鉛プラグ16の外周部が積層体14の鉛プラグ挿入孔22の内周部にぴったりと合い、鉛プラグ16の外周部が鋼板20および上下の取り付け板24の内周部に密着した状態となる。
【0015】
また、ゴムの熱膨張率は鉛の熱膨張率に比べ極めて大きく、したがって、ゴム板18の収縮量は鉛の収縮量に比べて極めて大きく、鉛プラグ16の外周部がゴム板18の内周部にやや食い込んだ状態となる。
したがって、鉛プラグ16の外周部が積層体14の鉛プラグ挿入孔22の内周部にぴったりと合い、鉛プラグ16が鉛プラグ挿入孔22の内周部にやや食い込んだ状態となった免震用積層ゴム装置12が、熟練を要することなく簡単に得られることになる。
【0016】
なお、本発明において積層体14の形状は、平面視した場合、円形のものに限定されず、矩形や多角形など任意である。
また、鉛プラグ挿入孔22の数も1つに限らず、2つ以上合ってもよく、その場合には、本発明方法により各鉛プラグ挿入孔22にそれぞれ鉛プラグ16が装着されることになる。
また、本発明において、鉛プラグ16の外径と鉛プラグ挿入孔22の内径が上下にわたって均一寸法である場合について説明したが、鉛プラグ16の外径と鉛プラグ挿入孔22の内径はそれぞれ上下において異なっていてもよく、したがって、この場合には、鉛プラグ16の外周面および鉛プラグ挿入孔22の内周面は円錐面状に形成されることになる。
また、本発明において、鉛プラグ挿入孔22に挿入する前の鉛プラグ16の断面形状は真円のみに限定されず、楕円なども含む。したがって、本発明において円柱状の鉛プラグとは、その断面が真円のものに限定されない。
【0017】
【発明の効果】
以上の説明で明らかなように本発明は、免震用積層ゴム装置を製造する方法であって、鉛プラグを、積層体が常温となった際の鉛プラグ挿入孔の容積よりも大きい体積の円柱状に予め形成しておき、加硫接着後で加硫接着時の熱により積層体が熱膨張している間に、鉛プラグを鉛プラグ挿入孔に圧入し、鉛プラグ挿入孔の上下を蓋板により閉塞し、積層体の温度の低下による積層体の高さの減少に伴い蓋板から鉛プラグの上下端に軸方向の圧縮応力が作用することにより、鉛プラグが拡径して、鉛プラグの外周部が前記ゴム板の内周部に食い込んだ状態となるようにした。
また、本発明は、加硫接着後で加硫接着時の熱により積層体が熱膨張している間に、積層体の下部に蓋板を取着して鉛プラグ挿入孔に溶融状態の鉛を流し込み、凝固させて鉛プラグを形成した後、蓋板により鉛プラグ挿入孔の上部を閉塞し、積層体の温度の低下による積層体の高さの減少に伴い蓋板から鉛プラグの上下端に軸方向の圧縮応力が作用することにより、鉛プラグが拡径して、鉛プラグの外周部が前記ゴム板の内周部に食い込んだ状態となるようにした。
そのため、本発明によれば、鉛プラグの外周部が鉛プラグ挿入孔の内周部にぴったりと合って、鉛プラグの外周部が鋼板の内周部に密着すると共に、鉛プラグの外周部がゴム層の中にやや食い込んだ状態の免震用積層ゴム装置を、熟練を要することなく簡単に製造できる。
【図面の簡単な説明】
【図1】本実施の形態に係る方法により製造される免震用積層ゴム装置の断面正面図である。
【符号の説明】
12 免震用積層ゴム装置
14 積層体
16 鉛プラグ
18 ゴム板
20 鋼板
22 鉛プラグ挿入孔
24 取り付け板
28 蓋板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a seismic isolation laminated rubber device.
[0002]
[Prior art]
Laminated rubber devices for seismic isolation, consisting of a laminate formed by alternately stacking thin rubber plates and thin steel plates, and a lead plug installed in the lead plug insertion hole at the center of this laminate, are used in various seismic isolation devices. in use.
In such a seismic isolation laminated rubber device, “The important point when inserting lead is that the lead plug must fit exactly in the hole and adhere to the steel sheet, and it is necessary to bite into the rubber layer.” “For example, Skinner, RI, WH Robinson and GH McVery, An Introduction to Seismic Isolation, John Wiley & Son Ltd, North Island, 1993, pp. "Introduction to seismic isolation design", Kashima Publishing Co., 1996, p. 78).
On the other hand, in the conventional method of manufacturing a laminated rubber device for seismic isolation, a laminated body composed of a rubber plate and a steel plate is manufactured first, and the lead plug is inserted into the lead plug insertion hole after the laminated body is cooled.
[0003]
[Problems to be solved by the invention]
Therefore, in the conventional manufacturing method, when the lead plug is inserted into the lead plug insertion hole of the laminated body, the outer periphery of the lead plug is exactly aligned with the inner periphery of the lead plug insertion hole, and the outer periphery of the lead plug is In order to be in close contact with the inner peripheral part of the steel plate and to make the outer peripheral part of the lead plug slightly bite into the rubber layer, there is a problem that skill is required and the yield cannot be improved.
The present invention has been devised in view of the above circumstances. The object of the present invention is to make the outer periphery of the lead plug exactly fit the inner periphery of the lead plug insertion hole, and the outer periphery of the lead plug is made of a steel plate. To provide a method of manufacturing a seismic isolation laminated rubber device that can easily manufacture a seismic isolation laminated rubber device in which the outer periphery of a lead plug slightly bites into a rubber layer while being in close contact with the inner periphery. .
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a plurality of thin rubber plates having circular holes and a plurality of thin steel plates having circular holes, which are alternately stacked , and steel mounting plates having circular holes are disposed above and below the thin rubber plates. is bonded by vulcanization at elevated temperature and pressure is a circular hole of the plurality of rubber plates, laminated with circular holes of a plurality of steel plates, lead plug insertion hole by the circular hole penetrating vertically the upper and lower mounting plate is formed And a laminated rubber device for seismic isolation comprising a cylindrical lead plug mounted in a lead plug insertion hole of the laminate, wherein the lead plug and the laminate are at room temperature. In this case , it is formed in advance in a cylindrical shape having a volume equal to or slightly larger than the volume of the lead plug insertion hole whose top and bottom are closed by the cover plates attached to the top and bottom mounting plates of the laminate. Keep it. Then, the laminate by heat during vulcanization after the vulcanization is while thermal expansion, press-fitting the lead plug on the lead plug insertion hole. Next, the upper and lower of the lead plug insertion hole, the closed by a cover plate which is attached to the upper and lower mounting plate of the stack, with the decrease of the height of the stack due to the decrease in the temperature of the laminate, the by compressive stress in the axial direction is applied to the upper and lower ends of the lead plug from the cover plate, and the lead plug is expanded, the outer peripheral portion of the lead plug in a state that bite into the inner peripheral portion of the rubber plate I did it.
Further, the present invention provides a high-temperature and high-pressure system in which a plurality of thin rubber plates having circular holes and a plurality of thin steel plates having circular holes are alternately stacked , and steel mounting plates having circular holes are arranged above and below them. A laminated body in which lead plug insertion holes are formed which are vulcanized and bonded to each other and formed vertically by a circular hole of a plurality of rubber plates, a circular hole of a plurality of steel plates, and a circular hole of upper and lower mounting plates ; a method of manufacturing a seismic isolation laminate rubber device and a cylindrical lead plug mounted on the lead plug insertion hole of the laminate, the laminate by heat during vulcanization after the vulcanization is while the thermal expansion, with and attaching the lid plate to the underside of the mounting plate of the laminate to close the lower portion of the lead plug insertion hole, by pouring lead molten state to the lead plug insertion hole filled solidifying to form a lead plug, and on the laminate And attaching a lid plate to the mounting plate for closing an upper portion of the lead plug insertion hole. Along with the decrease in height of the stack due to the decrease in the temperature of the laminate, the compressive stress in the axial direction is applied to the upper and lower ends of the lead plug from the cover plate, the lead plug is expanded Thus, the outer peripheral portion of the lead plug is bitten into the inner peripheral portion of the rubber plate .
[0005]
According to the present invention, while the laminate by heat during vulcanization is thermally expanded, insert the lead plug lead plug insertion hole, or laminate is thermally expanded by heat during vulcanization During this process, molten lead is poured into the lead plug insertion hole, solidified and solidified to form a lead plug , and with the decrease in the height of the laminate due to the temperature drop of the laminate , by compressive stress in the axial direction acts on the upper and lower ends of the lead plug from the cover plate closes the upper and lower, with lead plug is expanded, the outer peripheral portion of the lead plug bites into the inner peripheral portion of the rubber plate state Therefore , when the laminate is at room temperature, the outer periphery of the lead plug fits exactly with the inner periphery of the lead plug insertion hole, and the outer periphery of the lead plug closely contacts the inner periphery of the steel plate. while, Ri outer peripheral portion of the lead plug Do slightly ending past state in the rubber layer, the Because the lead plug, that the feature is equipped in the stacked body in a state of being sufficiently exhibited, Ru very easier.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a sectional front view of a seismic isolation laminated rubber device manufactured by the method according to the present embodiment.
The seismic isolation laminated rubber device 12 includes a laminated body 14 and a lead plug 16. The laminated body 14 includes a plurality of thin annular plate-like rubber plates 18 made of unvulcanized rubber and a plurality of thin annular plate-like steel plates 20 having the same inner diameter and outer diameter as the rubber plate 18. Are stacked and joined by vulcanization adhesion under high temperature and pressure.
Each rubber plate 18 and steel plate 20 have circular holes 1802 and 2002 at the center, respectively, and a plurality of rubber plates 18 and steel plates 20 have circular holes 1802 and 2002 at the center of the seismic isolation laminated rubber device 12. A lead plug insertion hole 22 is formed so as to penetrate vertically along the central axis of the seismic isolation laminated rubber device 12.
[0007]
In the present embodiment, the laminated body 14 is configured to include steel annular plate-like mounting plates 24 arranged above and below, and these upper and lower mounting plates 24 are positioned above and below during the vulcanization bonding. It is joined to the rubber plate 18.
Each of the upper and lower mounting plates 24 also has a circular hole 2402 at the center, and the inner diameter of the circular hole 2402 is formed to be equal to the circular hole 2002 of the steel plate 20.
Therefore, in the present embodiment, the lead plug insertion hole 22 is configured to include the circular holes 2402 of the upper and lower mounting plates 24, and an annular recess 26 is formed around the circular holes 2402 of each mounting plate 24. Yes.
The lead plug 16 has a cylindrical shape, and the lead plug 16 is inserted into the lead plug insertion hole 22.
A lid plate 28 is attached to the recess 26, and the upper and lower portions of the lead plug insertion hole 22 and the lead plug 16 are closed by the lid plate 28.
The seismic isolation laminated rubber device 12 having the above-described configuration is manufactured by the following method.
[0008]
Example 1
From the volume of the lead plug insertion hole 22 when the laminated body 14 is at a normal temperature (for example, a range of 20 ° C. to 30 ° C., depending on the area, place, and season of installation). Is previously formed in a slightly larger volume.
Strictly speaking, the lead plug 16 is connected to the inner peripheral portion of the circular hole 2002 of the plurality of steel plates 20 and the inner peripheral portion of the circular hole 2402 of the upper and lower mounting plates 24 when the laminate 14 is at room temperature. Equal to or slightly larger than the volume of the cylindrical body formed by the imaginary line (that is, the volume of the lead plug insertion hole 22 whose top and bottom are closed by the cover plates attached to the top and bottom mounting plates of the laminate) Pre-form to volume.
[0009]
In this case, the outer diameter of the lead plug 16 is formed so as to be equal to or slightly smaller than the inner diameters of the circular hole 2002 of the steel plate 20 and the circular holes 2402 of the upper and lower mounting plates 24 at normal temperature.
Further, the height of the lead plug 16 is set to be slightly larger than the height of the lead plug insertion hole 22 at the normal temperature.
[0010]
Then, the lead plug 16 having the above volume is inserted into the lead plug 16 while the laminate 14 is thermally expanded by heat at the time of vulcanization adhesion after the vulcanization adhesion of the rubber plate 18, the steel plate 20, and the upper and lower mounting plates 24. Press fit into the hole 22.
Next, the cover plate 28 is attached to the recess 26 of the mounting plate 24, and the upper and lower portions of the lead plug insertion hole 22 and the lead plug 16 are closed by the cover plate 28.
[0011]
In general, since the vulcanization adhesion of the rubber plate 18, the steel plate 20, and the upper and lower mounting plates 24 is performed at about 150 ° C., the temperature of the laminated body 14 gradually decreases from 150 ° C. over time, As the temperature decreases, the laminate 14 gradually contracts from the thermally expanded state, and the height of the laminate 14 decreases.
As the height of the laminated body 14 decreases, the height of the lead plug insertion hole 22 also decreases. Therefore, axial compressive stress acts on the upper and lower ends of the lead plug 16 from the lid plate 28, and the lead plug 16 The diameter will be expanded.
Therefore, the outer peripheral portion of the lead plug 16 fits snugly with the inner peripheral portion of the lead plug insertion hole 22 of the laminate 14, and the outer peripheral portion of the lead plug 16 closely contacts the inner peripheral portion of the steel plate 20 and the upper and lower mounting plates 24. Of course, the seismic isolation laminated rubber device 12 in which the outer peripheral portion of the lead plug 16 slightly bites into the inner peripheral portion of the rubber plate 18 can be easily obtained without requiring skill. The press-fitting of can be done more easily.
[0012]
In this case, the height of the lead plug 16, if previously formed at high Saya Ri large dimensions lead plug insertion hole 22 at the time of a normal temperature, the steel plate when the outer diameter and returned to room temperature lead plug 16 be previously formed in a cylindrical shape with a small size Ri by the inner diameter of the circular hole 2402 of the circular hole 2002 and the upper and lower mounting plate 24 of the 20, the laminate 14 due to a decrease in the temperature of the stack 14 after vulcanization As the height decreases, the compressive stress in the axial direction acts on the upper and lower ends of the lead plug 16 from the lid plate 28, so that the outer peripheral portion of the lead plug 16 is exactly the inner peripheral portion of the lead plug insertion hole 22 of the laminate 14. The outer peripheral portion of the lead plug 16 is in close contact with the inner peripheral portion of the steel plate 20 and the upper and lower mounting plates 24, and the outer peripheral portion of the lead plug 16 is slightly bitten into the inner peripheral portion of the rubber plate 18. The seismic laminated rubber device 12 is obtained.
That is, the height of the lead plug 16, formed in a high Saya Ri large dimensions lead plug insertion hole 22 at the time of a normal temperature, the circular hole of the steel sheet 20 when the outer diameter of the lead plug 16, and returned to room temperature by forming a small size Ri by the inner diameter of the circular hole 2402 of 2002 and the upper and lower mounting plate 24, press-fitting of the lead plug 16 is more easily performed so.
[0013]
Example 2
While the laminated body 14 is thermally expanded by heat at the time of vulcanization adhesion after vulcanization adhesion of the rubber plate 18, the steel plate 20, and the upper and lower attachment plates 24, the lid plate 28 is placed in the recess 26 of the lower attachment plate 24. Is attached.
Next, molten lead is poured into the lead plug insertion hole 22 and filled. The filled lead is solidified to form a lead plug 16.
Next, the lid plate 28 is attached to the recess 26 of the upper mounting plate 24, and the upper portion of the lead plug insertion hole 22 is closed by the lid plate 28. All of these operations are performed while the laminate 14 is thermally expanded by the heat during vulcanization bonding.
In general, since the vulcanization adhesion of the rubber plate 18, the steel plate 20, and the upper and lower mounting plates 24 is performed at about 150 ° C., the temperature of the laminated body 14 gradually decreases from 150 ° C. over time, As the temperature decreases, the laminate 14 gradually contracts from the thermally expanded state, and the height of the laminate 14 and the volume of the lead plug insertion hole 22 also decrease .
[0014]
On the other hand, although the thermal expansion coefficient of lead constituting the lead plug 16 is larger than that of the steel material constituting the steel plate 20 and the upper and lower mounting plates 24, the thermal expansion coefficient of rubber constituting the rubber plate 18 is It is extremely large compared to the thermal expansion coefficient of lead and that of steel.
Therefore, have accompanied the reduction in the height of the stack 14 due to the temperature drop, the compressive stress in the axial direction is applied to the upper and lower ends of the front Kifutaban 28 lead plug 16, the lead plug 16 is expanded Go.
Therefore, although the lead shrinkage due to the temperature drop is larger than the shrinkage of the steel material, the outer diameter of the lead plug 16 is expanded. The laminate 14 fits snugly into the inner periphery of the lead plug insertion hole 22, and the outer periphery of the lead plug 16 is in close contact with the inner periphery of the steel plate 20 and the upper and lower mounting plates 24.
[0015]
Further, the thermal expansion coefficient of rubber is extremely large compared to the thermal expansion coefficient of lead. Therefore, the contraction amount of the rubber plate 18 is extremely large compared to the contraction amount of lead, and the outer peripheral portion of the lead plug 16 is the inner periphery of the rubber plate 18. It will be in a state of slightly biting into the department.
Accordingly, the seismic isolation in which the outer peripheral portion of the lead plug 16 fits snugly with the inner peripheral portion of the lead plug insertion hole 22 of the laminate 14 and the lead plug 16 slightly bites into the inner peripheral portion of the lead plug insertion hole 22. The laminated rubber device 12 can be easily obtained without requiring skill.
[0016]
In the present invention, the shape of the laminated body 14 is not limited to a circular shape when viewed in plan, and is arbitrary such as a rectangle or a polygon.
Further, the number of lead plug insertion holes 22 is not limited to one, and two or more lead plug insertion holes 22 may be combined. In that case, the lead plugs 16 are respectively attached to the lead plug insertion holes 22 by the method of the present invention. Become.
In the present invention, the case where the outer diameter of the lead plug 16 and the inner diameter of the lead plug insertion hole 22 are uniform in the vertical direction has been described. However, the outer diameter of the lead plug 16 and the inner diameter of the lead plug insertion hole 22 are respectively Therefore, in this case, the outer peripheral surface of the lead plug 16 and the inner peripheral surface of the lead plug insertion hole 22 are formed in a conical shape.
In the present invention, the cross-sectional shape of the lead plug 16 before being inserted into the lead plug insertion hole 22 is not limited to a perfect circle, but includes an ellipse. Therefore, in the present invention, the cylindrical lead plug is not limited to one having a perfect cross section.
[0017]
【The invention's effect】
As apparent from the above description, the present invention is a method of manufacturing a seismic isolation laminated rubber device, wherein the lead plug has a volume larger than the volume of the lead plug insertion hole when the laminated body is at room temperature. It is pre-formed in a cylindrical shape, and the lead plug is press-fitted into the lead plug insertion hole while the laminated body is thermally expanded by heat at the time of vulcanization adhesion after vulcanization adhesion, and the top and bottom of the lead plug insertion hole are Closed by the cover plate, with the decrease in the height of the laminate due to a decrease in the temperature of the laminate, the compressive stress in the axial direction acts on the upper and lower ends of the lead plug from the cover plate . It was made for the outer peripheral part of the lead plug to have bitten into the inner peripheral part of the rubber plate .
In addition, the present invention provides a method in which a lid plate is attached to the lower part of the laminated body and the molten lead is inserted into the lead plug insertion hole while the laminated body is thermally expanded by heat at the time of vulcanizing adhesion after vulcanization adhesion. After the lead plug is formed by solidification, the upper part of the lead plug insertion hole is closed by the lid plate, and the upper and lower ends of the lead plug from the lid plate as the laminate height decreases due to the temperature drop of the laminate. When the axial compressive stress acts on the lead plug, the lead plug is expanded in diameter, and the outer peripheral portion of the lead plug is bitten into the inner peripheral portion of the rubber plate .
Therefore, according to the present invention, the outer peripheral portion of the lead plug is closely aligned with the inner peripheral portion of the lead plug insertion hole, the outer peripheral portion of the lead plug is in close contact with the inner peripheral portion of the steel plate, and the outer peripheral portion of the lead plug is It is possible to easily manufacture a seismic isolation laminated rubber device slightly biting into the rubber layer without requiring skill.
[Brief description of the drawings]
FIG. 1 is a sectional front view of a seismic isolation laminated rubber device manufactured by a method according to the present embodiment.
[Explanation of symbols]
12 Laminated rubber device for seismic isolation 14 Laminated body 16 Lead plug 18 Rubber plate 20 Steel plate 22 Lead plug insertion hole 24 Mounting plate 28 Cover plate

Claims (6)

円形孔を有する複数の薄いゴム板と、円形孔を有する複数の薄い鋼板とが交互に積み重ねられ、その上下に円形孔を有する鋼製の取り付け板が配置されて高温高圧下で加硫接着され、複数のゴム板の円形孔と複数の鋼板の円形孔と、上下の取り付け板の円形孔とにより上下に貫通した鉛プラグ挿入孔が形成された積層体と、
前記積層体の鉛プラグ挿入孔に装着された円柱状の鉛プラグとを備える免震用積層ゴム装置を製造する方法であって、
前記鉛プラグを、前記積層体が常温となった際の、前記積層体の上下の取り付け板に取着した蓋板により上下が閉塞された前記鉛プラグ挿入孔の容積と等しいか、あるいはそれより僅かに大きい体積の円柱状に予め形成しておき、
前記加硫接着後で加硫接着時の熱により前記積層体が熱膨張している間に、前記鉛プラグを前記鉛プラグ挿入孔に圧入し、
前記鉛プラグ挿入孔の上下を、前記積層体の上下の取り付け板に取着した蓋板により閉塞し、
前記積層体の温度の低下による前記積層体の高さの減少に伴い前記蓋板から前記鉛プラグの上下端軸方向の圧縮応力作用することにより、前記鉛プラグが拡径して、前記鉛プラグの外周部が前記ゴム板の内周部に食い込んだ状態となるようにした、
ことを特徴とする免震用積層ゴム装置の製造方法。
A plurality of thin rubber plates having circular holes and a plurality of thin steel plates having circular holes are alternately stacked , and steel mounting plates having circular holes are arranged on the upper and lower sides thereof and vulcanized and bonded under high temperature and high pressure. A laminated body in which a lead plug insertion hole penetrating vertically is formed by a circular hole of a plurality of rubber plates, a circular hole of a plurality of steel plates, and a circular hole of upper and lower mounting plates ;
A method for producing a seismic isolation laminated rubber device comprising a cylindrical lead plug mounted in a lead plug insertion hole of the laminate,
The lead plug, said when the laminate becomes normal temperature, the up or down by a cover plate which is attached to the upper and lower mounting plate of the stack is equal to the volume of the lead plug insertion hole which is closed, or than Pre-formed into a slightly larger volume cylinder,
Wherein while the laminate by heat during vulcanization after vulcanization is thermally expanded, it pressed the lead plug on the lead plug insertion hole,
The top and bottom of the lead plug insertion hole are closed by lid plates attached to the top and bottom mounting plates of the laminate,
With the reduction of the height of the stack due to the decrease in the temperature of the laminate, the compressive stress in the axial direction is applied to the upper and lower ends of the lead plug from the cover plate, the lead plug is expanded in diameter, The outer peripheral portion of the lead plug was bitten into the inner peripheral portion of the rubber plate ,
A method of manufacturing a seismic isolation laminated rubber device.
前記鉛プラグ挿入孔に挿入する前の鉛プラグの外径は、常温となった際の鋼板の円形孔の内径に等しい寸法か、あるいは、常温となった際の鋼板の円形孔の内径よりも僅かに小さい寸法で形成されていることを特徴とする請求項1記載の免震用積層ゴム装置の製造方法。  The outer diameter of the lead plug before being inserted into the lead plug insertion hole is equal to the inner diameter of the circular hole of the steel plate at normal temperature or the inner diameter of the circular hole of the steel plate at normal temperature. 2. The method for manufacturing a seismic isolation laminated rubber device according to claim 1, wherein the method is formed with a slightly smaller dimension. 前記鉛プラグ挿入孔に挿入する前の鉛プラグの高さは、常温となった積層体の鉛プラグ挿入孔の高さよりも僅かに大きい寸法で形成されていることを特徴とする請求項1または2記載の免震用積層ゴム装置の製造方法。  The height of the lead plug before being inserted into the lead plug insertion hole is formed to have a dimension slightly larger than the height of the lead plug insertion hole of the laminate at room temperature. The manufacturing method of the laminated rubber apparatus for seismic isolation of 2. 円形孔を有する複数の薄いゴム板と、円形孔を有する複数の薄い鋼板とが交互に積み重ねられ、その上下に円形孔を有する鋼製の取り付け板が配置されて高温高圧下で加硫接着され、複数のゴム板の円形孔と複数の鋼板の円形孔と、上下の取り付け板の円形孔とにより上下に貫通した鉛プラグ挿入孔が形成された積層体と、
前記積層体の鉛プラグ挿入孔に装着された円柱状の鉛プラグとを備える免震用積層ゴム装置を製造する方法であって、
前記加硫接着後で加硫接着時の熱により前記積層体が熱膨張している間に、前記積層体の下側の取り付け板に蓋板を取着して前記鉛プラグ挿入孔の下部を閉塞すると共に、前記鉛プラグ挿入孔に溶融状態の鉛を流し込んで充填し凝固させて鉛プラグを形成し、かつ、前記積層体の上側の取り付け板に蓋板を取着して前記鉛プラグ挿入孔の上部を閉塞し、
前記積層体の温度の低下による前記積層体の高さの減少に伴い前記蓋板から前記鉛プラグの上下端軸方向の圧縮応力作用することにより、前記鉛プラグが拡径して、前記鉛プラグの外周部が前記ゴム板の内周部に食い込んだ状態となるようにした、
ことを特徴とする免震用積層ゴム装置の製造方法。
A plurality of thin rubber plates having circular holes and a plurality of thin steel plates having circular holes are alternately stacked , and steel mounting plates having circular holes are arranged on the upper and lower sides thereof and vulcanized and bonded under high temperature and high pressure. A laminated body in which a lead plug insertion hole penetrating vertically is formed by a circular hole of a plurality of rubber plates, a circular hole of a plurality of steel plates, and a circular hole of upper and lower mounting plates ;
A method for producing a seismic isolation laminated rubber device comprising a cylindrical lead plug mounted in a lead plug insertion hole of the laminate,
Wherein while the laminate by heat during vulcanization after vulcanization is thermally expanded, the lower portion of the lead plug insertion hole by attaching a lid plate on the lower side of the mounting plate of the laminate with closing, the lead plug insertion hole filled by pouring lead in a molten state is solidified to form a lead plug, and the lead plug to attach the cover plate to the mounting plate of the upper side of the laminate Block the top of the insertion hole,
With the reduction of the height of the stack due to the decrease in the temperature of the laminate, the compressive stress in the axial direction is applied to the upper and lower ends of the lead plug from the cover plate, the lead plug is expanded in diameter, The outer peripheral portion of the lead plug was bitten into the inner peripheral portion of the rubber plate ,
A method of manufacturing a seismic isolation laminated rubber device.
前記鉛プラグ挿入孔は積層体の中心軸に沿って設けられていることを特徴とする請求項1乃至4の何れか1項記載の免震用積層ゴム装置の製造方法。The method for manufacturing a seismic isolation laminated rubber device according to any one of claims 1 to 4, wherein the lead plug insertion hole is provided along a central axis of the laminated body. 前記鉛プラグ挿入孔は複数設けられていることを特徴とする請求項1乃至4の何れか1項記載の免震用積層ゴム装置の製造方法。The method of manufacturing a laminated rubber device for seismic isolation according to any one of claims 1 to 4, wherein a plurality of the lead plug insertion holes are provided.
JP25275999A 1999-09-07 1999-09-07 Manufacturing method of seismic isolation laminated rubber device Expired - Lifetime JP4266452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25275999A JP4266452B2 (en) 1999-09-07 1999-09-07 Manufacturing method of seismic isolation laminated rubber device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25275999A JP4266452B2 (en) 1999-09-07 1999-09-07 Manufacturing method of seismic isolation laminated rubber device

Publications (2)

Publication Number Publication Date
JP2001074096A JP2001074096A (en) 2001-03-23
JP4266452B2 true JP4266452B2 (en) 2009-05-20

Family

ID=17241906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25275999A Expired - Lifetime JP4266452B2 (en) 1999-09-07 1999-09-07 Manufacturing method of seismic isolation laminated rubber device

Country Status (1)

Country Link
JP (1) JP4266452B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891078B2 (en) * 2012-03-14 2016-03-22 株式会社ブリヂストン Manufacturing method of seismic isolation device
JP2017194098A (en) * 2016-04-19 2017-10-26 オイレス工業株式会社 Seismic isolator
JP2018013172A (en) * 2016-07-20 2018-01-25 オイレス工業株式会社 Base isolation support device
JP6821494B2 (en) * 2017-04-20 2021-01-27 オイレス工業株式会社 Seismic isolation support device
JP2019127994A (en) * 2018-01-24 2019-08-01 オイレス工業株式会社 Aseismic base isolation support device
JP7427578B2 (en) 2020-12-10 2024-02-05 株式会社ブリヂストン Seismic isolation device

Also Published As

Publication number Publication date
JP2001074096A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
JP4266452B2 (en) Manufacturing method of seismic isolation laminated rubber device
CN103025499B (en) Method for manufacturing insulating tube using bag
US6223421B1 (en) Method of manufacturing a transformer coil with a disposable mandrel and mold
WO2002002302A3 (en) Process for forming a multilayer, multidensity composite insulator
US20030224248A1 (en) Cold formed battery terminal
JP2804451B2 (en) Compression molding dies for composite insulator production
JP4524862B2 (en) Manufacturing method of laminated rubber bearing body with lead strut and structure supported by seismic isolation with laminated rubber bearing body with lead strut manufactured by this manufacturing method
JPH0227484B2 (en)
JP2973329B2 (en) Manufacturing method of laminated rubber body
CN104309048B (en) A kind of method of use thin film fabrication insulated piping
JPH04128541U (en) laminated rubber
JPS5945506B2 (en) Golf ball molding method
JP2000110878A (en) Manufacture of laminated rubber support body
US1695458A (en) Insulator
JPS5830699Y2 (en) rubber stamp stand
JPH10209357A (en) Heat sink and its manufacture
JPH04344241A (en) Manufacturing device for laminated rubber member
JPH11190392A (en) Manufacture of laminated rubber supporting body
JPS6035231Y2 (en) Feedthrough capacitor
CN213424795U (en) Magnetic device for avoiding cracking of magnetic core
JPS62207615A (en) Mold for resin sealing
JPS6233409A (en) Ignition coil for internal combustion engine
JP3707069B2 (en) Method for sintering powder compact
JP3089086U (en) Deco-bump type semiconductor packaging equipment
JP2519675Y2 (en) Cap used for insert molding of bolts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Ref document number: 4266452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term