JP4265614B2 - Secondary power receiving circuit for contactless power supply equipment - Google Patents

Secondary power receiving circuit for contactless power supply equipment Download PDF

Info

Publication number
JP4265614B2
JP4265614B2 JP2006075772A JP2006075772A JP4265614B2 JP 4265614 B2 JP4265614 B2 JP 4265614B2 JP 2006075772 A JP2006075772 A JP 2006075772A JP 2006075772 A JP2006075772 A JP 2006075772A JP 4265614 B2 JP4265614 B2 JP 4265614B2
Authority
JP
Japan
Prior art keywords
circuit
resonance
voltage
series
rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006075772A
Other languages
Japanese (ja)
Other versions
JP2007252151A (en
Inventor
修三 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Original Assignee
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd filed Critical Daifuku Co Ltd
Priority to JP2006075772A priority Critical patent/JP4265614B2/en
Publication of JP2007252151A publication Critical patent/JP2007252151A/en
Application granted granted Critical
Publication of JP4265614B2 publication Critical patent/JP4265614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、無接触給電設備の2次側受電回路、特にその保護回路に関するものである。   The present invention relates to a secondary power receiving circuit of a contactless power supply facility, and more particularly to a protection circuit thereof.

従来の保護回路を備えた無接触給電設備の2次側受電回路の一例が、特許文献1に開示されている。
この特許文献1においては、無接触給電設備の2次側受電回路は、高周波電流を流す1次側誘導線路に対向して設けられたピックアップコイルと、このピックアップコイルに接続されてピックアップコイルとともに誘導線路の周波数に共振する共振回路を形成するコンデンサと、このコンデンサに接続された整流回路と、整流回路の出力端と負荷に接続され、出力電圧を基準電圧に制御し、負荷に供給する定電圧制御回路から構成されている。
An example of a secondary power receiving circuit of a contactless power supply facility provided with a conventional protection circuit is disclosed in Patent Document 1.
In this patent document 1, the secondary power receiving circuit of the contactless power supply equipment is inducted with a pickup coil provided opposite to the primary induction line through which a high-frequency current flows, and the pickup coil connected to the pickup coil. A capacitor that forms a resonance circuit that resonates with the frequency of the line, a rectifier circuit connected to the capacitor, an output terminal of the rectifier circuit and a load, a constant voltage that is controlled to a reference voltage and supplied to the load It consists of a control circuit.

そして、この2次側受電回路の保護回路は、前記ピックアップコイルとコンデンサからなる共振回路の両端部に、先端をオープンとした感熱線を接続し、前記定電圧制御回路と負荷との間にサーキットプロテクタを介装し、このサーキットプロテクタの引き外しコイルとサージアブソーバの直列回路を負荷の両端に接続し、さらに感熱線にニクロム線を巻き、ニクロム線の両端をサーキットプロテクタの補助接点を介して定電圧制御回路の出力端に接続して構成されている。前記感熱線は、例えば、非磁性体のリン青銅丸線からなる一対の導線上にそれぞれ、熱に鋭敏なサーモプラスチックからなる絶縁体を被覆し、これら絶縁体を被覆した一対の導線を撚りあわせ、その上にテープとシースを被覆して構成されており、周囲温度が一定温度に達すると、絶縁体が軟化するとともに、撚りあわされた一対の導線がスプリングアクションを起こして短絡するようにされている。   The protection circuit for the secondary power receiving circuit includes a heat sensitive wire having open ends at both ends of the resonance circuit including the pickup coil and the capacitor, and a circuit between the constant voltage control circuit and the load. Install a protector, connect the circuit protector's trip coil and surge absorber in series at both ends of the load, wind a nichrome wire around the heat sensitive wire, and fix both ends of the nichrome wire through the auxiliary contacts of the circuit protector. It is connected to the output terminal of the voltage control circuit. For example, the heat-sensitive wire is formed by coating a pair of conductors made of a non-magnetic phosphor bronze round wire with an insulator made of heat-sensitive thermoplastic, and twisting the pair of conductors coated with these insulators. It is constructed by covering the tape and sheath on it, and when the ambient temperature reaches a certain temperature, the insulator softens and the twisted pair of conductors cause a spring action to cause a short circuit ing.

この保護回路の構成により、共振回路または整流回路または定電圧制御回路に異常が発生して異常電圧が発生したとき、サージアブソーバに許容最大電圧以上の電圧が印加され、電流が流れて、負荷へ異常電圧が印加されることが防止され、同時にサーキットプロテクタの引き外しコイルに電流が流れてサーキットプロテクタが動作し、給電側(共振回路側)と負荷間が遮断され、よって確実に負荷への給電が遮断され、負荷の電圧は0となり、異常電圧が負荷へ印加されることが防止される。またこのとき、サーキットプロテクタの補助接点がオンとなり、ニクロム線へ通電され、よってニクロム線が発熱し、この発熱により感熱線が加熱され、例えば温度90℃に達すると、絶縁体が軟化するとともに、撚りあわされた一対の導線がスプリングアクションを起こして短絡し、ピックアップコイルの両端が短絡される。よって、定電圧制御回路と負荷への給電が遮断され、異常電圧がこれら回路へ印加されることが防止される。
特開平11−341713号公報
With this protection circuit configuration, when an abnormality occurs in the resonant circuit, rectifier circuit, or constant voltage control circuit and an abnormal voltage occurs, a voltage that exceeds the maximum allowable voltage is applied to the surge absorber, current flows, and the load An abnormal voltage is prevented from being applied, and at the same time, a current flows through the tripping coil of the circuit protector to operate the circuit protector, and the power supply side (resonance circuit side) is disconnected from the load, thus reliably supplying power to the load. Is cut off, the load voltage becomes zero, and an abnormal voltage is prevented from being applied to the load. At this time, the auxiliary contact of the circuit protector is turned on, and the nichrome wire is energized, and thus the nichrome wire generates heat, and the heat sensitive wire is heated by this heat generation. A pair of twisted conductors cause a spring action to short-circuit, and both ends of the pickup coil are short-circuited. Therefore, the power supply to the constant voltage control circuit and the load is cut off, and an abnormal voltage is prevented from being applied to these circuits.
JP-A-11-341713

しかし、従来の無接触給電設備の2次側受電回路の保護回路では、万一、共振回路等に異常が発生して異常電圧が発生すると、感熱線が加熱され、絶縁体が軟化することから、有機ガスの発生により特有の匂いが発生するという問題があり、また復旧には、異常が発生した共振回路等の他に感熱線も取り換える必要があることから、復旧までに時間がかかるという問題があった。   However, in the protection circuit for the secondary power receiving circuit of the conventional contactless power supply equipment, if an abnormal voltage occurs due to an abnormality in the resonance circuit, the heat sensitive wire is heated and the insulator is softened. In addition, there is a problem that a specific odor is generated due to the generation of organic gas, and since it is necessary to replace the heat sensitive line in addition to the resonance circuit etc. where abnormality occurred, it takes time to recover was there.

また無接触給電設備の2次側受電回路の保護回路として、勿論ピックアップコイルの両端を短絡するのではなく、ピックアップコイルと直列に回路を遮断する配線用遮断器を設ける方法が考えられる。しかし、特許文献1では無接触給電設備の2次側受電回路は並列共振回路により形成されているため、並列共振回路部分に配線用遮断器を設けた場合、該遮断器には負荷に流れる電流に比較して大きな共振電流が流れることから、大型で高価な配線用遮断器が必要とされ、よって配線用遮断器が用いられることは少なかった。   Also, as a protection circuit for the secondary power receiving circuit of the non-contact power feeding equipment, it is of course possible to provide a circuit breaker for wiring that interrupts the circuit in series with the pickup coil, instead of short-circuiting both ends of the pickup coil. However, in Patent Document 1, since the secondary power receiving circuit of the contactless power supply facility is formed by a parallel resonant circuit, when a circuit breaker for wiring is provided in the parallel resonant circuit portion, the current flowing through the load is supplied to the circuit breaker. Therefore, a large and expensive circuit breaker is required, and therefore a circuit breaker is rarely used.

また特許文献1では2次側受電回路を並列共振回路により形成しているが、直列共振回路により形成することも可能である。このように、無接触給電設備の2次側受電回路を直列共振回路で構成して該共振回路を整流して負荷に接続した場合には、負荷に流れる電流と直列共振回路に流れる電流が同一となるため、直列共振回路部分に配線用遮断器を設けたとしても該配線用遮断器に必要な電流容量は小さくても良い。しかし、やはり定電圧制御回路に異常電圧が発生した場合には直列共振回路に大きな電流が流れているので、これを遮断する配線用遮断器の開閉接点には高い耐電圧(di/dt)が必要とされ、大型で高価な配線用遮断器を選定しなければいけないという問題があった。また並列共振回路に代えて「複数」の直列共振回路により形成し、これら直列共振回路を切換回路を介して直列に接続し、切換回路により複数の直列共振回路を直列状態または並列状態として負荷に印加される電圧を調整するとき、複数の直列共振回路が何らかの異常により直列接続のままとなり、高電圧が連続して定電圧制御回路等に印加されると、定電圧制御回路の素子等の部品が破損する恐れがあるので、これを防止する為に直列共振回路部分に配線用遮断器を設けた場合にも、同様の問題があった。   In Patent Document 1, the secondary power reception circuit is formed by a parallel resonance circuit, but can also be formed by a series resonance circuit. In this way, when the secondary power receiving circuit of the contactless power supply facility is configured with a series resonance circuit and the resonance circuit is rectified and connected to the load, the current flowing through the load and the current flowing through the series resonance circuit are the same. Therefore, even if a circuit breaker for wiring is provided in the series resonance circuit portion, the current capacity required for the circuit breaker for wiring may be small. However, if an abnormal voltage is generated in the constant voltage control circuit, a large current flows through the series resonant circuit. Therefore, a high withstand voltage (di / dt) is applied to the switching contact of the circuit breaker that interrupts this. There was a problem that it was necessary to select a large and expensive circuit breaker. Instead of the parallel resonant circuit, a plurality of series resonant circuits are formed, and these series resonant circuits are connected in series via the switching circuit, and the switching circuit sets the multiple series resonant circuits in a series state or a parallel state to the load. When adjusting the applied voltage, if a plurality of series resonant circuits remain connected in series due to some abnormality and a high voltage is continuously applied to the constant voltage control circuit, etc., components such as elements of the constant voltage control circuit In order to prevent this, there is a similar problem when a circuit breaker for wiring is provided in the series resonance circuit portion.

そこで、本発明は、直列共振回路により形成した無接触給電設備の2次側受電回路において、共振回路等に異常が発生したとき、回路を保護でき、復旧までの時間を短縮可能な安価な無接触給電設備の2次側受電回路を提供することを目的としたものである。   Therefore, the present invention provides an inexpensive non-contact power receiving circuit formed by a series resonance circuit that can protect the circuit when an abnormality occurs in the resonance circuit or the like and can shorten the time to recovery. An object of the present invention is to provide a secondary power receiving circuit of a contact power supply facility.

前述した目的を達成するために、本発明のうち請求項1に記載の発明は、高周波電流を流す1次側誘導線路に対向して前記誘導線路より起電力が誘起されるピックアップコイルを複数設け、前記各ピックアップコイルにそれぞれ直列に共振コンデンサを接続して前記誘導線路の周波数に共振する共振回路を形成し、さらにこれら共振回路を直列に接続し、前記各共振回路にそれぞれ共振回路により発生する電圧を整流する整流回路を設け、これら整流回路を並列に接続して、消費電力が変動する負荷へ給電し、前記各共振回路間を接続状態または開放状態とする切換手段を設け、前記切換手段を制御して前記各共振回路間を接続状態または開放状態とすることにより、前記負荷に印加される出力電圧を制御する電圧制御手段を設け、所定電圧が印加されると電流を流す素子と、前記素子により流れた電流が所定の電流値となると動作しこの電流を遮断する配線用遮断器とを直列に接続し、この直列回路を前記並列に接続された整流回路の出力端間に接続し、前記切換手段と直列に、前記配線用遮断器が電流を遮断したときに開放状態となる配線用遮断器の出力接点を接続し、配線用遮断器が電流を遮断した時に前記各共振回路間を開放状態とすることを特徴とするものである。   In order to achieve the above-described object, the invention described in claim 1 of the present invention is provided with a plurality of pickup coils that are opposed to the primary side induction line through which a high-frequency current flows and in which an electromotive force is induced from the induction line. A resonance capacitor is connected to each pickup coil in series to form a resonance circuit that resonates at the frequency of the induction line. Further, these resonance circuits are connected in series, and each resonance circuit is generated by the resonance circuit. A rectifying circuit for rectifying the voltage is provided, switching means for connecting the rectifying circuits in parallel, supplying power to a load whose power consumption fluctuates, and connecting or opening the resonance circuits is provided. Voltage control means for controlling the output voltage applied to the load by providing a connection state or an open state between the resonance circuits by providing a predetermined voltage. When applied, an element that conducts current and a circuit breaker that operates when the current flowing through the element reaches a predetermined current value and interrupts the current are connected in series, and the series circuit is connected in parallel. Connected between the output terminals of the rectifier circuit, connected in series with the switching means, and connected to the output contact of the circuit breaker that is opened when the circuit breaker for the wiring breaks the current. When the current is cut off, the resonance circuits are opened.

上記構成によれば、各共振回路または切換手段または各整流回路に異常が発生し、素子に所定電圧以上の異常電圧が印加されると、素子に電流が流れ、その電流により配線用遮断器が動作すると、配線用遮断器により素子に流れる電流が遮断され、素子が破壊されることが阻止され、同時にその出力接点により共振回路間が開放状態とされ、各共振回路は切離されて、各整流回路は並列に接続された状態となり、電圧制御手段および負荷へ印加される電圧は低下して、電圧制御手段および負荷へ異常電圧が印加されることが防止される。   According to the above configuration, when an abnormality occurs in each resonance circuit or switching means or each rectifier circuit and an abnormal voltage higher than a predetermined voltage is applied to the element, a current flows through the element, and the circuit breaker for wiring is caused by the current. When operating, the circuit breaker interrupts the current flowing through the element and prevents the element from being destroyed, and at the same time, the output contact between the resonance circuits is opened, and each resonance circuit is disconnected. The rectifier circuits are connected in parallel, the voltage applied to the voltage control means and the load is reduced, and an abnormal voltage is prevented from being applied to the voltage control means and the load.

また請求項2に記載の発明は、請求項1に記載の発明であって、前記切換手段は、一次側巻線が、前記各共振回路の間に直列に接続されているトランスと、前記トランスの二次側巻線に接続されている整流器と、前記整流器の両出力端間に接続されているスイッチング手段とを備え、前記電圧制御手段は、前記スイッチング手段を開放状態と接続状態することにより、前記負荷に印加される出力電圧を制御し、前記配線用遮断器の出力接点は、前記トランスの二次側巻線と前記整流器との間に直列に接続されていることを特徴とするものである。   The invention according to claim 2 is the invention according to claim 1, wherein the switching means includes a transformer in which a primary winding is connected in series between the resonance circuits, and the transformer. A rectifier connected to the secondary winding of the rectifier and switching means connected between the output terminals of the rectifier, the voltage control means by connecting the switching means to the open state The output voltage applied to the load is controlled, and the output contact of the circuit breaker for wiring is connected in series between the secondary winding of the transformer and the rectifier It is.

上記構成によれば、各共振回路または切換手段または各整流回路に異常が発生し、素子に所定電圧以上の異常電圧が印加されると、素子に電流が流れ、その電流により配線用遮断器が動作すると、配線用遮断器により素子に流れる電流が遮断され、素子が破壊されることが阻止され、同時にその出力接点によりトランスの2次側が開放状態とされ、各共振回路は全て切離されて、各整流回路は並列に接続された状態となり、電圧制御手段および負荷へ印加される電圧が低下して、電圧制御手段および負荷へ異常電圧が印加されることが防止される。このように、配線用遮断器の出力接点をトランスの二次側巻線に直列に接続することにより、1つの出力接点により、複数の共振回路は全て切離される。   According to the above configuration, when an abnormality occurs in each resonance circuit or switching means or each rectifier circuit and an abnormal voltage higher than a predetermined voltage is applied to the element, a current flows through the element, and the circuit breaker for wiring is caused by the current. When operating, the circuit breaker interrupts the current flowing through the element and prevents the element from being destroyed. At the same time, the secondary side of the transformer is opened by the output contact, and each resonance circuit is disconnected. The rectifier circuits are connected in parallel, the voltage applied to the voltage control means and the load is reduced, and the abnormal voltage is prevented from being applied to the voltage control means and the load. Thus, by connecting the output contact of the circuit breaker in series with the secondary winding of the transformer, all of the plurality of resonance circuits are disconnected by one output contact.

また請求項3に記載の発明は、請求項1または請求項2に記載の発明であって、前記素子はツェナ・ダイオードで形成され、前記配線用遮断器は前記ツェナ・ダイオードに流れる電流を制限することを特徴とするものである。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the element is formed of a Zener diode, and the circuit breaker for wiring limits a current flowing through the Zener diode. It is characterized by doing.

上記構成によれば、ツェナ・ダイオードに電流が流れはじめ、所定の電流値となると配線用遮断器は動作することにより、ツェナ・ダイオードに流れる電流値が制限され、ツェナ・ダイオードが保護される。   According to the above configuration, the current starts to flow through the Zener diode, and when the current value reaches a predetermined current value, the circuit breaker operates to limit the current value flowing through the Zener diode, thereby protecting the Zener diode.

本発明の無接触給電設備の2次側受電回路は、各共振回路または切換手段または各整流回路に異常が発生したとき、配線用遮断器の出力接点により共振回路間が開放状態とされ、各共振回路は切離されて、整流回路と整流回路は並列に接続された状態となることにより、電圧制御手段および負荷へ印加される電圧を低下することができ、電圧制御手段および負荷へ異常電圧が印加されることを防止することができ、回路を保護することができる、という効果を有している。   When the secondary side power receiving circuit of the contactless power supply facility of the present invention has an abnormality in each resonance circuit or switching means or each rectifier circuit, the resonance circuit is opened by the output contact of the circuit breaker for wiring. The resonant circuit is disconnected, and the rectifier circuit and the rectifier circuit are connected in parallel, so that the voltage applied to the voltage control means and the load can be reduced, and an abnormal voltage is applied to the voltage control means and the load. Can be prevented from being applied, and the circuit can be protected.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の実施の形態における無接触給電設備の2次側受電回路の回路構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram of a secondary power receiving circuit of a contactless power supply facility according to an embodiment of the present invention.

図1に示すように、無接触給電設備の2次側受電回路は、例えば10kHzほどの高周波電流Iを流す1次側誘導線路1に対向して誘導線路1より起電力が誘起される第1ピックアップコイル2A,第2ピックアップコイル2Bを設け、これら第1ピックアップコイル2A,第2ピックアップコイル2Bに誘起される起電力を、消費電力が変動する負荷10へ供給する回路である。   As shown in FIG. 1, the secondary power receiving circuit of the contactless power supply facility is a first in which an electromotive force is induced from the induction line 1 facing the primary side induction line 1 that flows a high-frequency current I of about 10 kHz, for example. A pickup coil 2A and a second pickup coil 2B are provided, and an electromotive force induced in the first pickup coil 2A and the second pickup coil 2B is supplied to a load 10 whose power consumption varies.

この2次側受電回路は、各ピックアップコイル2A,2Bにそれぞれ直列に接続され誘導線路1の周波数に共振する(直列)共振回路4A,4Bを形成する第1コンデンサ(共振コンデンサ)3A,第2コンデンサ(共振コンデンサ)3Bと、各共振回路4A,4Bの間に直列に接続され、各共振回路4A,4B間を接続状態または開放状態とする切換回路(切換手段の一例)5と、共振回路4A,4Bにそれぞれ並列に接続され、共振回路4A,4Bにより発生する電圧を整流する整流回路6A,6Bと、整流回路6A,6Bの出力側と並列に接続され、負荷10に接続されている電圧コンデンサ(出力コンデンサ)8と、切換回路5を制御することにより負荷10に印加される出力電圧VDCを制御する、すなわち出力電圧VDCを検出し、この出力電圧VDCが所定電圧以下で、切換回路5により各共振回路4A,4B間を接続状態とし、所定電圧を超えると切換回路5により各共振回路4A,4B間を開放状態とする電圧制御器(電圧制御手段の一例)11から構成されている。 This secondary side power receiving circuit is connected in series to each of the pickup coils 2A and 2B, respectively, and forms a first capacitor (resonance capacitor) 3A and a second capacitor that form resonance circuits 4A and 4B that resonate at the frequency of the induction line 1 (series). A switching circuit (an example of switching means) 5 that is connected in series between the capacitor (resonance capacitor) 3B and each of the resonance circuits 4A and 4B and that connects or disconnects the resonance circuits 4A and 4B, and a resonance circuit 4A and 4B are connected in parallel to each other, rectifying circuits 6A and 6B for rectifying voltages generated by the resonance circuits 4A and 4B, and connected in parallel to the output side of the rectifying circuits 6A and 6B, and connected to the load 10. biopsies voltage capacitor (output capacitor) 8, to control the output voltage V DC applied to the load 10 by controlling the switching circuit 5, that is, the output voltage V DC And, the output voltage V DC is a predetermined voltage or lower, the resonance circuit 4A by the switching circuit 5, between 4B and a connected state, to the resonant circuit 4A, between 4B and opened by the switching circuit 5 exceeds the predetermined voltage A voltage controller (an example of voltage control means) 11 is configured.

前記切換回路5は、一次側巻線が、各共振回路4A,4Bの間に直列に接続されているトランス21と、トランス21の二次側巻線の両端に入力端が接続されている整流器22と、この整流器22の両出力端間にコレクタおよびエミッタが接続されている出力調整用トランジスタ(スイッチング手段の一例)23と、整流器22のプラス側出力端と出力調整用トランジスタ23のコレクタとの接続点にアノードが接続され、負荷10の一端にカソードが接続されているダイオード24から構成されている。なお、電圧制御器11は、出力電圧VDCを検出し、この出力電圧VDCが所定電圧以下のとき出力調整用トランジスタ23をオン(接続状態)とし、所定電圧を超えると出力調整用トランジスタ23をオフ(開放状態)とする。 The switching circuit 5 includes a transformer 21 in which a primary side winding is connected in series between the resonance circuits 4A and 4B, and a rectifier in which input ends are connected to both ends of the secondary side winding of the transformer 21. 22, an output adjustment transistor (an example of a switching means) 23 in which a collector and an emitter are connected between both output terminals of the rectifier 22, and a plus-side output terminal of the rectifier 22 and a collector of the output adjustment transistor 23. It is composed of a diode 24 having an anode connected to the connection point and a cathode connected to one end of the load 10. The voltage controller 11 detects the output voltage V DC, the output voltage V DC is the output adjusting transistor 23 when more than the predetermined voltage is set to ON (connected state), the output adjusting transistor 23 exceeds a predetermined voltage Is off (open state).

そして、上記2次側受電回路の保護回路を、所定電圧が印加されると電流を流す素子であるツェナ・ダイオード31と、ツェナ・ダイオード31に流れる電流が予め設定された所定の電流値となるとこの電流を自動遮断する配線用遮断器32とを直列に接続し、この直列回路を整流回路6A,6Bの出力側と並列に接続し、共振回路4Aと切換回路5(トランス21の一次側巻線)と間に直列に、配線用遮断器32の出力接点33を接続して構成している。前記ツェナ・ダイオード31のカソードは整流回路6A,6Bの出力のプラス側に、アノードは、図2に示すように、配線用遮断器32の電源側端子34に接続され、配線用遮断器32の負荷側端子35が整流回路6A,6Bの出力のマイナス側に接続されている。また配線用遮断器32の出力接点33は、配線用遮断器32の補助接続端子36に接続されており、補助接続端子36を介して共振回路4Aと切換回路5との間に直列に接続されている。また前記出力接点33は常時は接続状態であり、配線用遮断器32が所定の電流により自動遮断したときに開放状態となる。   Then, the protection circuit for the secondary power receiving circuit is configured such that the Zener diode 31 that is an element through which a current flows when a predetermined voltage is applied, and the current flowing through the Zener diode 31 has a preset predetermined current value. A circuit breaker 32 for automatically interrupting this current is connected in series, this series circuit is connected in parallel with the output side of the rectifier circuits 6A and 6B, and the resonance circuit 4A and the switching circuit 5 (the primary side winding of the transformer 21). The output contact 33 of the circuit breaker 32 is connected in series with the line). The cathode of the Zener diode 31 is connected to the positive side of the output of the rectifier circuits 6A and 6B, and the anode is connected to the power supply side terminal 34 of the circuit breaker 32 as shown in FIG. The load side terminal 35 is connected to the minus side of the outputs of the rectifier circuits 6A and 6B. The output contact 33 of the wiring breaker 32 is connected to the auxiliary connection terminal 36 of the wiring breaker 32, and is connected in series between the resonance circuit 4 </ b> A and the switching circuit 5 via the auxiliary connection terminal 36. ing. The output contact 33 is always in a connected state, and is opened when the wiring breaker 32 is automatically cut off by a predetermined current.

前記ツェナ・ダイオード31の降伏電圧は、電圧コンデンサ8と負荷10と電圧制御器11の各最大許容電圧のうち、最も低い最大許容電圧に合わせて設定し、また配線用遮断器32が動作する所定の電流値は、ツェナ・ダイオード31に流れる電流を制限して保護できる(破壊を防止できる)電流値に設定している。   The breakdown voltage of the Zener diode 31 is set in accordance with the lowest maximum allowable voltage among the maximum allowable voltages of the voltage capacitor 8, the load 10 and the voltage controller 11, and the predetermined circuit breaker 32 operates. The current value is set to a current value that can be protected by limiting the current flowing through the Zener diode 31 (that can prevent destruction).

以下に、上記2次側受電回路の構成における作用を説明する。
例えば10kHzほどの高周波電流Iが誘導線路1に供給されると、この誘導線路1に発生する磁束により、ピックアップコイル2A,2Bにそれぞれ誘導起電力が発生し、ピックアップコイル2A,2Bに発生した誘導起電力は所定の電圧として整流回路6A,6Bで整流される。
Below, the effect | action in the structure of the said secondary side power receiving circuit is demonstrated.
For example, when a high frequency current I of about 10 kHz is supplied to the induction line 1, an induced electromotive force is generated in the pickup coils 2 </ b> A and 2 </ b> B by the magnetic flux generated in the induction line 1, and the induction generated in the pickup coils 2 </ b> A and 2 </ b> B. The electromotive force is rectified as a predetermined voltage by the rectifier circuits 6A and 6B.

負荷10が通常負荷状態で所定の消費電力を消費しているとき、出力電圧VDCは所定電圧以下であり、電圧制御器11により出力調整用トランジスタ23はオンされ、共振回路4A,4Bは直列に接続されており、整流回路6A,6Bの出力電圧を加算した電圧が負荷10へ印加される(整流回路6A,6Bの出力電圧を加算した電圧は電圧コンデンサ8を充電し、負荷10へ供給される)。 When the load 10 consumes predetermined power consumption in the normal load state, the output voltage VDC is equal to or lower than the predetermined voltage, the output regulator transistor 23 is turned on by the voltage controller 11, and the resonance circuits 4A and 4B are connected in series. The voltage obtained by adding the output voltages of the rectifier circuits 6A and 6B is applied to the load 10 (the voltage obtained by adding the output voltages of the rectifier circuits 6A and 6B charges the voltage capacitor 8 and is supplied to the load 10) )

ここで、負荷10が減少し、出力電圧VDCが上昇した場合、電圧制御器11は、この上昇した出力電圧VDCが所定電圧を超えたと判断すると、出力調整用トランジスタ23をオフにする。このように、負荷10が軽負荷状態のとき、出力調整用トランジスタ23はオフされると、共振回路4A,4B間は切離されて、整流回路6Aと整流回路6Bは並列に接続された状態となり、負荷10へ印加される電圧は略2分の1に低下する。すると、出力電圧VDCは低下し、出力電圧VDCは所定電圧に維持される。 Here, when the load 10 decreases and the output voltage V DC increases, the voltage controller 11 turns off the output adjustment transistor 23 when determining that the increased output voltage V DC exceeds a predetermined voltage. Thus, when the load 10 is in a light load state, when the output adjustment transistor 23 is turned off, the resonance circuits 4A and 4B are disconnected, and the rectifier circuit 6A and the rectifier circuit 6B are connected in parallel. Thus, the voltage applied to the load 10 is reduced to about a half. Then, the output voltage V DC decreases, and the output voltage V DC is maintained at a predetermined voltage.

また共振回路4A,4Bまたは整流回路6A,6Bのいずれか一方あるいは両方、あるいは切換回路5に異常が発生し、ツェナ・ダイオード31の両端にツェナ・ダイオード31の降伏電圧を越える異常電圧が印加されると、ツェナ・ダイオード31に電流が一機に流れ、その電流が配線用遮断器32に設定された所定電流以上となると、配線用遮断器32がツェナ・ダイオード31に流れる電流を自動遮断し、ツェナ・ダイオード31が破壊されることを阻止し、同時にその出力接点33により共振回路4Aと切換回路5(トランス21の一次側巻線)との間が開放状態とされ、共振回路4A,4B間は切離されて、整流回路6Aと整流回路6Bは並列に接続された状態となり、電圧制御器11、電圧コンデンサ8および負荷10へ印加される電圧が低下して、電圧制御器11、電圧コンデンサ8および負荷10へ異常電圧が印加されることが防止される。   Also, an abnormality occurs in one or both of the resonance circuits 4A and 4B or the rectifier circuits 6A and 6B, or the switching circuit 5, and an abnormal voltage exceeding the breakdown voltage of the Zener diode 31 is applied to both ends of the Zener diode 31. Then, a current flows through the Zener diode 31 and when the current exceeds a predetermined current set in the circuit breaker 32, the circuit breaker 32 automatically shuts off the current flowing through the Zener diode 31. The zener diode 31 is prevented from being destroyed, and at the same time, the output contact 33 opens the resonance circuit 4A and the switching circuit 5 (primary winding of the transformer 21), and the resonance circuits 4A and 4B. The rectifier circuit 6A and the rectifier circuit 6B are connected in parallel and are applied to the voltage controller 11, the voltage capacitor 8 and the load 10. That voltage drops, the voltage controller 11, an abnormal voltage to a voltage capacitors 8 and the load 10 is prevented from being applied.

またこのとき、共振回路4A,4B間に流れている大きな電流は配線用遮断器32によって瞬時に遮断されるのではなく、引き続き共振回路4A,4Bそれぞれに接続された整流回路6A,6Bを介して電圧コンデンサ(出力コンデンサ)32に流れるため、配線用遮断器32の出力接点33に高電圧(di/dt)が発生することはない。この配線用遮断器32の出力接点33が開放時のみに電圧コンデンサ(出力コンデンサ)32に流れ込む共振回路の電流は、極めて短時間の小さなエネルギーであるので、電圧コンデンサ(出力コンデンサ)32の電圧がさらに異常上昇することは無い。   At this time, the large current flowing between the resonance circuits 4A and 4B is not instantaneously interrupted by the wiring circuit breaker 32, but continues via the rectifier circuits 6A and 6B connected to the resonance circuits 4A and 4B, respectively. Therefore, a high voltage (di / dt) is not generated at the output contact 33 of the circuit breaker 32 for wiring. Since the resonance circuit current that flows into the voltage capacitor (output capacitor) 32 only when the output contact 33 of the circuit breaker 32 is open is a very short amount of energy, the voltage of the voltage capacitor (output capacitor) 32 is Furthermore, there is no abnormal rise.

以上のように本実施の形態によれば、共振回路4A,4B等に異常電圧が発生したときに電圧制御器11、電圧コンデンサ8および負荷10へ異常電圧が印加されることを防止することができ、電圧制御器11を形成する素子および電圧コンデンサ8が破損などの恐れを回避することができ、負荷10に損傷を与える恐れを回避することができ、回路を保護することができる。また、2次側受電回路の異常が内部で処理されるため、誘導線路1へ影響を与えることなく、他の正常な2次側回路は動作を続行することができる。   As described above, according to the present embodiment, it is possible to prevent an abnormal voltage from being applied to the voltage controller 11, the voltage capacitor 8, and the load 10 when an abnormal voltage is generated in the resonance circuits 4A, 4B and the like. In addition, it is possible to avoid the possibility that the elements forming the voltage controller 11 and the voltage capacitor 8 are broken, to avoid the possibility of damaging the load 10, and to protect the circuit. Further, since the abnormality of the secondary side power receiving circuit is processed internally, other normal secondary side circuits can continue the operation without affecting the induction line 1.

またツェナ・ダイオード31に流れる電流が所定の電流値となると、配線用遮断器32がツェナ・ダイオード31に流れる電流を自動遮断することにより、ツェナ・ダイオード31が破損する恐れを防止することができ、また配線用遮断器32を使用することにより、自動遮断の後の復旧を容易にすることができ、復旧までの時間を短縮することができる。また配線用遮断器32の出力接点33(開閉接点)には高い耐電圧(di/dt)が要求されないことから、配線用遮断器32に安価な市販の配線用遮断器を使用でき、異常保護回路を安価に形成することができる。   Further, when the current flowing through the Zener diode 31 reaches a predetermined current value, the wiring breaker 32 automatically cuts off the current flowing through the Zener diode 31, thereby preventing the Zener diode 31 from being damaged. Moreover, by using the circuit breaker 32 for wiring, the recovery after the automatic disconnection can be facilitated, and the time until the recovery can be shortened. In addition, since a high withstand voltage (di / dt) is not required for the output contact 33 (switch contact) of the circuit breaker 32 for wiring, an inexpensive commercially available circuit breaker can be used for the circuit breaker 32, and abnormality protection is provided. A circuit can be formed at low cost.

なお、本実施の形態では、共振回路4Aと切換回路5(トランス21の一次側巻線)と間に直列に、配線用遮断器32の出力接点33を接続しているが、図3に示すように、出力接点33をトランス21の二次側巻線と整流器22の入力側との間に直列に接続してもよい。このとき、図3に示すように、共振回路4A,4Bに、さらに第3ピックアップコイル2Cと第3コンデンサ(共振コンデンサ)3Cから形成される共振回路4Cを増設して直列に接続し、トランス21の1次巻線が各共振回路4の間(共振回路4Aと共振回路4Bの間、および共振回路4Bと共振回路4Cの間)に絶縁された状態で接続された構成の2次側受電回路であるときに有効である。すなわち、1つの配線用遮断器32の出力接点33が開放状態となると、共振回路4A,4B間および共振回路4B,4C間が開放状態となるため、各共振回路4A,4B,4Cが分離され、すなわち共振回路4が全て分離されることにより、共振回路4の数が増しても、1つの配線用遮断器32の出力接点33で対応することができる。   In the present embodiment, the output contact 33 of the circuit breaker 32 for wiring is connected in series between the resonance circuit 4A and the switching circuit 5 (primary winding of the transformer 21). As described above, the output contact 33 may be connected in series between the secondary winding of the transformer 21 and the input side of the rectifier 22. At this time, as shown in FIG. 3, a resonance circuit 4C formed of a third pickup coil 2C and a third capacitor (resonance capacitor) 3C is further added to the resonance circuits 4A and 4B and connected in series, and the transformer 21 Are connected in a state of being insulated between the resonance circuits 4 (between the resonance circuit 4A and the resonance circuit 4B and between the resonance circuit 4B and the resonance circuit 4C). It is effective when That is, when the output contact 33 of one circuit breaker 32 is opened, the resonance circuits 4A, 4B and the resonance circuits 4B, 4C are opened, so that the resonance circuits 4A, 4B, 4C are separated. That is, since all the resonance circuits 4 are separated, even if the number of the resonance circuits 4 increases, the output contact 33 of one wiring breaker 32 can cope with it.

また、本実施の形態では、所定電圧が印加されると電流を流す素子としてツェナ・ダイオードを使用しているが、ツェナ・ダイオードに限る必要はなく、出力コンデンサ8へ印加される電圧が許容最大電圧以上となると動作し、配線用遮断器32を動作させる素子であればよい。   In the present embodiment, a Zener diode is used as an element for passing a current when a predetermined voltage is applied. However, the Zener diode is not limited to the Zener diode, and the voltage applied to the output capacitor 8 is the maximum allowable voltage. Any element that operates when the voltage exceeds the voltage and operates the circuit breaker 32 for wiring may be used.

本発明の実施の形態における無接触給電設備の2次側受電回路である。It is a secondary side power receiving circuit of the non-contact electric power supply equipment in embodiment of this invention. 同無接触給電設備の2次側受電回路に使用する配線用遮断器の図であり、(a)は正面図、(b)は右側面図である。It is a figure of the circuit breaker for wiring used for the secondary side power receiving circuit of the non-contact electric power supply equipment, (a) is a front view, (b) is a right view. 本発明の他の実施の形態における無接触給電設備の2次側受電回路である。It is a secondary side power receiving circuit of the non-contact electric power supply installation in other embodiment of this invention.

符号の説明Explanation of symbols

1 誘導線路
2A,2B,2C ピックアップコイル
3A,3B,3C コンデンサ(共振コンデンサ)
4A,4B,4C 共振回路
5 切換回路
6A,6B,6C 整流回路
8 電圧コンデンサ(出力コンデンサ)
10 負荷
11 電圧制御器(電圧制御手段)
21 トランス
22 整流器
23 出力調整用トランジスタ(スイッチング手段)
31 ツェナ・ダイオード
32 配線用遮断器
33 配線用遮断器の出力接点
1 Induction line 2A, 2B, 2C Pickup coil 3A, 3B, 3C Capacitor (resonance capacitor)
4A, 4B, 4C Resonant circuit 5 Switching circuit 6A, 6B, 6C Rectifier circuit 8 Voltage capacitor (output capacitor)
10 Load 11 Voltage controller (voltage control means)
21 Transformer 22 Rectifier 23 Output adjustment transistor (switching means)
31 Zener diode 32 Circuit breaker for wiring 33 Output contact of circuit breaker for wiring

Claims (3)

高周波電流を流す1次側誘導線路に対向して前記誘導線路より起電力が誘起されるピックアップコイルを複数設け、
前記各ピックアップコイルにそれぞれ直列に共振コンデンサを接続して前記誘導線路の周波数に共振する共振回路を形成し、さらにこれら共振回路を直列に接続し、前記各共振回路にそれぞれ共振回路により発生する電圧を整流する整流回路を設け、これら整流回路を並列に接続して、消費電力が変動する負荷へ給電し、
前記各共振回路間を接続状態または開放状態とする切換手段を設け、
前記切換手段を制御して前記各共振回路間を接続状態または開放状態とすることにより、前記負荷に印加される出力電圧を制御する電圧制御手段を設け、
所定電圧が印加されると電流を流す素子と、前記素子により流れた電流が所定の電流値となると動作しこの電流を遮断する配線用遮断器とを直列に接続し、この直列回路を前記並列に接続された整流回路の出力端間に接続し、
前記切換手段と直列に、前記配線用遮断器が電流を遮断したときに開放状態となる配線用遮断器の出力接点を接続し、配線用遮断器が電流を遮断した時に前記各共振回路間を開放状態とすること
を特徴とする無接触給電設備の2次側受電回路。
A plurality of pickup coils that are opposed to the primary side induction line through which high-frequency current flows and in which an electromotive force is induced from the induction line,
A resonance capacitor is connected in series to each pickup coil to form a resonance circuit that resonates at the frequency of the induction line. Further, these resonance circuits are connected in series, and voltages generated by the resonance circuits in the resonance circuits, respectively. A rectifier circuit is provided to rectify the current, and these rectifier circuits are connected in parallel to supply power to a load whose power consumption fluctuates.
Provided a switching means for connecting or opening each of the resonance circuits,
By providing the voltage control means for controlling the output voltage applied to the load by controlling the switching means to connect or open the resonance circuits,
An element that conducts current when a predetermined voltage is applied and a circuit breaker that operates when the current flowing through the element reaches a predetermined current value and interrupts the current are connected in series, and the series circuit is connected to the parallel circuit. Connected between the output terminals of the rectifier circuit connected to
In series with the switching means, an output contact of a circuit breaker that is opened when the circuit breaker interrupts the current is connected, and the resonance circuit is connected between the circuit breakers when the circuit breaker interrupts the current. A secondary-side power receiving circuit of a non-contact power feeding facility, characterized by being in an open state.
前記切換手段は、
一次側巻線が、前記各共振回路の間に直列に接続されているトランスと、
前記トランスの二次側巻線に接続されている整流器と、
前記整流器の両出力端間に接続されているスイッチング手段と
を備え、
前記電圧制御手段は、前記スイッチング手段を開放状態と接続状態することにより、前記負荷に印加される出力電圧を制御し、
前記配線用遮断器の出力接点は、前記トランスの二次側巻線と前記整流器との間に直列に接続されていること
を特徴とする請求項1に記載の無接触給電設備の2次側受電回路。
The switching means is
A transformer in which a primary winding is connected in series between the resonance circuits;
A rectifier connected to the secondary winding of the transformer;
Switching means connected between both output ends of the rectifier,
The voltage control means controls the output voltage applied to the load by connecting the switching means to an open state,
2. The secondary side of the contactless power supply equipment according to claim 1, wherein an output contact of the circuit breaker for wiring is connected in series between a secondary winding of the transformer and the rectifier. Power receiving circuit.
前記素子はツェナ・ダイオードで形成され、前記配線用遮断器は前記ツェナ・ダイオードに流れる電流を制限すること
を特徴とする請求項1または請求項2に記載の無接触給電設備の2次側受電回路。
3. The secondary side power receiving of the contactless power supply equipment according to claim 1, wherein the element is formed of a Zener diode, and the circuit breaker for wiring limits a current flowing through the Zener diode. circuit.
JP2006075772A 2006-03-20 2006-03-20 Secondary power receiving circuit for contactless power supply equipment Expired - Fee Related JP4265614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006075772A JP4265614B2 (en) 2006-03-20 2006-03-20 Secondary power receiving circuit for contactless power supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006075772A JP4265614B2 (en) 2006-03-20 2006-03-20 Secondary power receiving circuit for contactless power supply equipment

Publications (2)

Publication Number Publication Date
JP2007252151A JP2007252151A (en) 2007-09-27
JP4265614B2 true JP4265614B2 (en) 2009-05-20

Family

ID=38595866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006075772A Expired - Fee Related JP4265614B2 (en) 2006-03-20 2006-03-20 Secondary power receiving circuit for contactless power supply equipment

Country Status (1)

Country Link
JP (1) JP4265614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072102B2 (en) 2006-07-14 2011-12-06 Ansaldo Energia S.P.A. Stator of a turbo generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393580B1 (en) * 2012-07-09 2014-05-09 부경대학교 산학협력단 Wireless Power Transfer System Insensitive to Relative Positions between Transmission-side Coil and Collector-side Coil
JP7205169B2 (en) * 2018-11-01 2023-01-17 オムロン株式会社 Contactless power supply
CN112993943B (en) * 2021-03-25 2023-05-26 深圳市同昌汇能科技发展有限公司 Drive protection circuit of vacuum circuit breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072102B2 (en) 2006-07-14 2011-12-06 Ansaldo Energia S.P.A. Stator of a turbo generator

Also Published As

Publication number Publication date
JP2007252151A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
US9947496B2 (en) Circuit breaker with hybrid switch
US8259428B2 (en) Input protection circuit
JP2004088857A (en) Input overvoltage protection circuit and electric equipment comprising the same
US8068324B2 (en) Circuit and method for protecting energy-storage device
JP5998905B2 (en) Wireless power receiving apparatus and wireless power transmission apparatus using the same
EP2051359B1 (en) Power supply circuit and earth leakage circuit breaker using the same
JP2000201433A (en) Power distributing device
JP2008228538A (en) Switching power supply unit
JP4265614B2 (en) Secondary power receiving circuit for contactless power supply equipment
KR20130130277A (en) Protection circuit for wireless power transfer apparatus
US6961226B2 (en) Method and system for providing power to circuit breakers
US11289895B2 (en) Multi-stage protection device for the overcurrent- and overvoltage-protected transfer of electrical energy
JP3506006B2 (en) Secondary side power receiving circuit of non-contact power supply equipment
AU2018417096A1 (en) Air conditioner
JP5188853B2 (en) SPD separation device
JP2008295254A (en) Lightning arrester
JP2006304557A (en) Protection circuit and power supply device
JP5295635B2 (en) Surge protection device
US6307758B1 (en) Transformer secondary disconnect
US20170054285A1 (en) Protection apparatus for an electrical load, voltage converter comprising a protection apparatus, and method for protecting an electrical load
CN112602243B (en) Multi-stage protection device for overcurrent and overvoltage protection type power transmission
CN101499653A (en) Method for protecting electrical appliance by over-current side path
US6816393B2 (en) Switching power supply
JP5456615B2 (en) Semiconductor cutoff circuit
CN215646148U (en) Back-up protector of surge protector and surge protection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees