JP4265202B2 - Conductive resin composition, conductive roll and method for producing the same - Google Patents
Conductive resin composition, conductive roll and method for producing the same Download PDFInfo
- Publication number
- JP4265202B2 JP4265202B2 JP2002322396A JP2002322396A JP4265202B2 JP 4265202 B2 JP4265202 B2 JP 4265202B2 JP 2002322396 A JP2002322396 A JP 2002322396A JP 2002322396 A JP2002322396 A JP 2002322396A JP 4265202 B2 JP4265202 B2 JP 4265202B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- resin composition
- particle powder
- conductive resin
- ferrite particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Rolls And Other Rotary Bodies (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、導電性樹脂組成物、導電ロール及びその製造方法に関し、更に詳しくは、特に、電子複写機、プリンターなどに使用される導電ロールに好適な導電性樹脂組成物、該樹脂組成物からなる導電ロール及びその製造方法に関する。
【0002】
【従来の技術】
電子写真複写機やプリンターの帯電方式において 近年、オゾン発生対策として従来の高電圧を必要とするコロトロン又はスコロトンを利用した方式から、低電圧を利用した接触式帯電ローラーや帯電ブラシ、又は非接触式の針状帯電器を用いた方式への転換が進んでいる。このうち導電性帯電ロールは上記した静電気現象を利用した電子写真方式で 感光体や帯電保持部材に電荷を与えるために使用されるロールで、通常、金属製の軸芯の外周部にカーボンブラックや金属粉体を混入せしめて導電性を付与したゴム或いは発泡体を配置することによって得られている。従来の導電ロールはゴムや弾性体或いは発泡体の様に、いわゆるニップ幅を確保するために或る柔らかさを確保しつつ、その樹脂内もしくは表面に導電性物質を分散させて導電性を付与している。しかしながら、内包する導電性物質の導電性が高過ぎ、且つ導電性物質の分散の調整が困難なため導電性の制御が難しく、均一性・安定性に問題があった。
【0003】
これらの問題に対して、導電性を制御し、且つ安定化・均一化するためにフェライトを導電性材料として使用した導電性部材が提案されている。例えば、Mn−Znフェライトの微粉末をポリプロピレン樹脂に分散させた導電性プラスチックベルトがトナー転写ベルトとして提案されている(特許文献1参照)。また、導電性顔料としてCu−Mg−Znフェライトをフッ素樹脂塗料中に分散させてシリコーンゴムローラーの上に浸漬塗布し、厚さ10μmの被覆層を形成させた帯電部材が提案されている(特許文献2参照)。更に、フェライトをシリコーンゴム中に分散させた導電性シリコーンゴムロールが提案されている(特許文献3参照)。
【0004】
【特許文献1】
特開平5−66685号公報
【特許文献2】
特開平8−185013号公報(第6頁、実施例6)
【特許文献3】
特開平9−151323号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献に記載の導電性部材は、いずれもフェライトの含有率が低いために曲げ弾性率が低く、感光体への帯電性付与を安定化させるために剛性を必要とする導電性帯電ロール用途においては未だに不十分であった。また、特許文献2に開示されている帯電部材は、シリコーンゴムローラー上にフェライトを含有する12μmの被覆層を設けるものであり、耐久性・信頼性・加工コスト等に問題がある。
【0006】
【課題を解決するための手段】
本発明者らは、かかる実情に鑑み、上記従来技術の問題点を解決するべく鋭意研究の結果、特定のソフトフェライト粒子粉末の導電性とその安定性に着目し、これを比較的多量に樹脂に配合することにより、適切な導電性と曲げ弾性率を有する導電性樹脂組成物が得られ、該樹脂組成物を用いた導電ロールが感光体表面の帯電電圧を適正なレベルで安定化させるとともに、優れた研削精度を有することを見出し、本発明に到達した。
【0007】
すなわち、本発明の請求項1に係る導電性樹脂組成物は、30〜70体積%のソフトフェライト粒子粉末と70〜30体積%の樹脂とからなり、前記ソフトフェライト粒子粉末はNi−Znフェライト粒子粉末とMn−Znフェライト粒子粉末からなり、Ni−Znフェライト粒子粉末とMn−Znフェライト粒子粉末の重量比が5:95から80:20であり、平均粒子径が、サブシーブサイザー法で1.0〜9.0μmであり、体積固有抵抗が1.0×101 〜5.5×104 Ω・mで、曲げ弾性率が5.0×109 〜8.0×1011Paであることを特徴とする。
【0008】
本発明の請求項2に係る導電性樹脂組成物は、75μmを超えるソフトフェライトの粒子及び又はその凝集物を実質的に含有しないことを特徴とする。
【0009】
本発明の請求項3に係る導電性樹脂組成物は、ソフトフェライト粒子粉末がカップリング剤で表面処理されていることを特徴とする。
【0010】
本発明の請求項4に係る導電性樹脂組成物は、樹脂がポリアミド12樹脂、ポリフェニレンサルファイド樹脂(PPS)から選ばれる樹脂からなることを特徴とする。
【0011】
本発明の請求項5に係る導電性樹脂組成物は、ペレット状であることを特徴とする。
【0012】
本発明の請求項6に係る導電ロールは、導電性樹脂組成物で成形されたことを特徴とする。
【0013】
本発明の請求項7に係る導電ロールは、金属製軸芯の外周に導電性樹脂組成物を配置したことを特徴とする。
【0014】
本発明の請求項8に係る導電ロールの製造方法は、導電性樹脂組成物を射出成形機に供給し、金型のキャビティには金属製軸芯を装着し、軸芯の周囲に導電性樹脂組成物を射出成形することを特徴とする。
【0015】
本発明の請求項9に係る導電ロールの製造方法は、ペレット状の導電性樹脂組成物を用いることを特徴とする。
【0016】
本発明の請求項10に係る導電ロールの製造方法は、粉末状の導電性樹脂組成物を混練機に供給し、混練・溶融した樹脂組成物を射出成形機のシリンダー部に導き、金型のキャビティには金属製軸芯を装着し、該軸芯の周囲に導電性樹脂組成物を射出成形することを特徴とする。
【0017】
【発明の実施の形態】
本発明に係る導電性樹脂組成物は、30〜70体積%のソフトフェライト粒子粉末と70〜30体積%の樹脂とからなり、前記ソフトフェライト粒子粉末はNi−Znフェライト粒子粉末とMn−Znフェライト粒子粉末からなり、Ni−Znフェライト粒子粉末とMn−Znフェライト粒子粉末の重量比が5:95から80:20であり、平均粒子径が、サブシーブサイザー法で1.0〜9.0μmであり、体積固有抵抗が1.0×101 〜5.5×104 Ω・mで、曲げ弾性率が5.0×109 〜8.0×1011Paであることを特徴とする。
【0018】
尚、本発明において、導電性の評価はその逆数である体積固有抵抗によって行う。導電性が低いものは体積固有抵抗が高く、逆に導電性が高いものは体積固有抵抗が低くなる関係にある。
【0019】
本発明に用いられるソフトフェライト粒子粉末は、Ni−Znフェライト粒子粉末、Mn−Znフェライト粒子粉末を組み合わせたものである。これらは、他の金属酸化物に比して、導電性が比較的高く、且つ化学的に安定しているという特徴を有する。
【0020】
Ni−Znフェライト粒子粉末は、主成分のFe2 O3 、NiO、ZnO、それぞれの金属酸化物のモル比が50±11%、19±11%、及び31±11%であって、副成分のCu、Mg、Bi、Si、Ca、B等の金属が酸化物として重量比でそれぞれ0〜6%程度添加されたフェライト粒子粉末であり、通常のNi−Znフェライト粒子粉末の製造方法で製造されることが体積固有抵抗の制御上好ましい。
【0021】
Mn−Znフェライト粒子粉末は、主成分のFe2 O3 、MnO、ZnOそれぞれの金属酸化物のモル比が53±11%、32±11%、及び15±8%であって、副成分のSi、Mg、Ca、Cu、B、Bi等の金属が酸化物として重量比率でそれぞれ0〜2%程度添加されたフェライト粒子粉末であり、通常のMn−Znフェライト粒子粉末の製造方法で製造されることが体積固有抵抗の制御上好ましい。
【0022】
Ni−Znフェライト粒子粉末は、Mn−Znフェライト粒子粉末に比して導電性が低いので、導電性が高いMn−Znフェライト粒子粉末と組み合わせることによって、所望の導電性と曲げ弾性率を有する導電性樹脂組成物を設計することができる。
Ni−Znフェライト粒子粉末とMn−Znフェライト粒子粉末との重量比は、5:95〜80:20である。好ましくは、5:95〜75:25である。Ni−Znフェライト粒子粉末重量の割合が80%を越えると、体積固有抵抗が高くなって帯電性(導電性)が悪化する傾向があるので好ましくない。
【0023】
ソフトフェライト粒子粉末の粒子径は、製造時の該成分組成固有の粒子成長及び焼結の状態と粉砕条件で決まるが、樹脂との混練性を考慮して設計することが好ましい。
このような観点から、ソフトフェライト粒子粉末の平均粒子径は、サブシーブサイザー法で、1.0〜9.0μmであり、好ましくは、1.5〜8.0μmである。
【0024】
ソフトフェライト粒子粉末の平均粒子径が1.0μm未満では 該フェライト粒子粉末の樹脂中への分散が容易ではなく、一方、平均粒子径が9.0μmを超えると巨大な粒子が一部混在するために、該大粒子が存在する部分とその他の部分との導電性が相対的に大きく異なるという分布が発生するので好ましくない。
【0025】
樹脂中への分散性を良好にするためには、分散させるソフトフェライト粒子粉末の粒子径は、数μm以上が好ましい。しかし、成形物の導電性の均一性を確保するためには粒子径は小さいことが好ましい。この相反する現象を解決する1つの手段として、上記したように、導電性が相対的に大きく、成形物への導電性の寄与が大きいMn−Znフェライト粒子は比較的小さく、導電性へ寄与が相対的に小さいNi−Znフェライト粒子は比較的大きく設計するのが好ましい。
【0026】
また、75μmを超える巨大な粒子、あるいは凝集物を実質上除去することが、上述した導電性の均一化に有効である。また、後述する様に、成形体表面を研削する場合、部分的欠損(フェライト粒子粉末の欠落)が小さく且つ少ないことが実用上特に有効である。これらの巨大な粒子、あるいは凝集物は、風力分級機を使用するか、或いは目開きが75μm以下の篩を通すことにより、実用上問題の無い含有量、すなわち、概ね0.3重量%以下に低減することができる。
【0027】
本発明の目的である導電性を満足するために、Ni−Znフェライト粒子粉末やMn−Znフェライト粒子粉末以外に、例えば酸化ケイ素やチタン酸バリウムなどの水分や空気(酸素)に対して安定なフィラーを、適宜少量添加することは何ら差し支えない。
【0028】
導電性の安定、特に水分の影響に対する安定性の確保は、導電ロールにとって重要特性の1つである。本発明で採用するソフトフェライト粒子粉末は、水分・湿気に対して物理化学的に安定であるが、カップリング剤を粒子表面に処理して使用することが好ましい。ソフトフェライト粒子表面をカップリング剤で被覆しておくことによって、フェライト粒子の分散が均一化されるだけでなく、導電ロールの導電性への水分の影響を最小化することができる。
【0029】
カップリング剤は、一般に市販されているシラン系カップリング剤、チタネート系カップリング剤等が有効であるが、特に、日本ユニカー社製 A−1120のようなアミノ基を有するシランカップリング剤が比較的安価で、樹脂との混練性に優れている点で好適である。これらカップリング剤は、ソフトフェライト粒子粉末100重量部に対して、通常0.1〜0.9重量部使用される。カップリング剤の処理量が0.1重量部未満では、上記処理効果が十分でなく、一方、0.9重量部を超えると混練物表面に未吸着分がにじみ出す危険性が高まる。
【0030】
本発明に用いられる樹脂としては、ソフトフェライト粒子粉末との樹脂組成物とした場合に、5.0×109 〜8.0×1011Paの曲げ弾性率を有する成形体を与えるような樹脂が用いられる。このような樹脂としては、例えば、ポリアミド6、ポリアミド12等のポリアミド樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、液晶樹脂、ポリフェニレンサルファイド樹脂(PPS)などが好適であり、これらは単独で又は2種以上組み合わせて用いられる。また、エチレンビニルアセテート樹脂(EVA)やエチレンエチルアクリレート樹脂(EEA)、或いはその他のエラストマーなどの比較的弾性率が低い樹脂であっても、ソフトフェライト粒子粉末との樹脂組成物としての曲げ弾性率が5.0×109 〜8.0×1011Paであれば採用できる。
【0031】
また、対湿度信頼性の観点からは、吸湿性が小さい熱可塑性樹脂、すなわち、ポリアミド12樹脂、ポリフェニレンサルファイド樹脂(PPS)等が特に好適である。また、対湿度信頼性と成形性・生産性の両者の観点からはポリアミド12樹脂が選択され、対湿度信頼性の観点からはポリフェニレンサルファイド樹脂(PPS)が選択される。
【0032】
本発明の導電性樹脂組成物は、30〜70体積%のソフトフェライト粒子粉末及び70〜30体積%の樹脂からなる。ソフトフェライト粒子粉末が70体積%を超えると、混練・成形が難しく、また、30体積%未満では曲げ弾性率が低くなり過ぎ、形状が変形しやすくなるために、後述するように、導電ロールの研削精度が確保できない。好ましくは35体積%以上である。更に、エチレンエチルアクリレート樹脂のように柔らかい樹脂を使う場合には、40体積%以上が好ましい。
【0033】
本発明の導電性樹脂組成物は、更に、加工助剤、安定剤、その他、この種の導電性樹脂組成物に通常用いられる各種の添加剤を含有することができる。加工助剤としては、川研ファインケミカル社製 アマイド−6S等の滑剤が好ましい。加工助剤の好適な添加量は、0.01〜0.3重量%である。加工助剤の量が0.01重量%未満では十分な効果が期待できず、一方、0.3重量%を超えるとロール表面への滑剤の拡散・滲み出しが多くなり、帯電に悪影響を及ぼす場合がある。
【0034】
本発明の導電性樹脂組成物は、通常の方法で混練・造粒して、いわゆるペレットとして得ることができる。具体的には、ソフトフェライト粒子粉末30〜70体積%に樹脂70〜30体積%を添加し、必要に応じ、加工助剤等の添加剤を添加して混練・溶融し、ダイから押し出されるストランドを数ミリの長さにカットすることにより得られる。
【0035】
本発明の導電性樹脂組成物は、特に導電ロールとして好適であり、各種の成形方法により導電ロールとされる。
例えば、ペレット状の導電性樹脂組成物は、通常の射出成形方法で金型キャビティに射出することで導電ロールを成形することができる。該キャビティに予め金属軸芯を装着しておけば、軸芯インサート射出成形法で容易に導電ロールを成形することができる。軸芯は予め、表面をメッキし、更に必要に応じて表面処理してもよい。
【0036】
また、粉末状の導電性樹脂組成物は、混練機に供給し、所定の温度で混練し、溶融した樹脂組成物を溶融した状態で射出成形機のシリンダー部に導き、金型のキャビティには金属製軸芯を装着し、該軸芯の周囲に導電性樹脂組成物を射出成形することにより、導電ロールを成形することができる。本成形方法は、樹脂の溶融状態を連続で保持する時間が長いので、樹脂温度が均一となり、射出成形が安定するので、特性の安定した導電ロールを得ることができる。
【0037】
更に、本成形方法は、ペレットを射出成形機で可塑化・成形する場合に比して、滑剤等の加工助剤を必ずしも同等量必要としないので、該添加剤による、ブリード、汚染、機械強度の低下等を減少させることができる。更にまた、本成形方法は、ペレット化工程を省略することができるので、生産性が高く、生産コストが低減される利点がある。
【0038】
上記の如くして得られる本発明に係る導電ロールは、1.0×101 〜5.5×104 Ω・mの体積固有抵抗を有する。
体積固有抵抗が1.0×101 Ω・m未満では、導電ロールが接触時に感光体や電荷保持体上の電荷がリークすることにより十分な帯電ができず、一方、体積固有抵抗が5.5×104 Ω・mを超えると、感光体や電荷保持体上に帯電不足が生じ、十分に帯電できない。好ましい体積固有抵抗は、1.0×102 〜5.0×104 Ω・mである。
【0039】
導電ロールは、感光体もしくは帯電保持部材に直接帯電させるため、その寸法形状には高い精度が要求される。そのために、必要に応じ、該導電ロールの外周面を研削する必要があるが、ゴムや発泡体の様に剛性が低い導電ロールの場合は、研削寸法精度が低くなる。これに対して、剛性が高い場合、高い寸法精度を確保することができる。導電ロールの軸が金属製であれば、該研削加工寸法精度は更に高めることができる。
【0040】
上記の如くして得られる本発明に係る導電ロールは、5.0×109 〜8.0×1011Paの曲げ弾性率を有する。
曲げ弾性率が5.0×109 Pa未満では、上記したように、導電ロールの研削精度を確保できないだけでなく、導電ロールの押し付け圧により導電ロールの接触面積が増加し、導電ロール及び感光体等の回転トルクが増加する。また、導電ロールがたわみ変形するために導電性が不均一になる。一方、曲げ弾性率が8.0×1011Paを超えると、導電ロールと感光体等の被帯電部材との接触が悪くなり、十分に帯電されない。
【0041】
【実施例】
以下、実施例及び比較例を挙げて本発明を更に詳細に説明するが、これらは本発明を何ら制限するものではない。
尚、以下の記載において、体積固有抵抗、曲げ弾性率、感光体表面の帯電電圧は、それぞれ下記の方法で測定した。
【0042】
体積固有抵抗:
得られたペレットをφ25mmの円柱空間に充填し、240±10℃に加熱後、円柱の高さ方向に圧力を加え、厚さ約10mmの円盤状サンプルを準備し、該試験片の表面を#1000のサンドペーパーで研磨して、スキン層(樹脂リッチ層)を除去した。該表面調整後の試験片を断面積2.419×10-4m2 のステンレス製平面電極で挟み、5Nの加重を掛け、ホイーストンブリッジ法で抵抗を測定した。印加電圧は直流20Vであった。
【0043】
曲げ弾性率:
ASTM−D790に準拠した。
【0044】
感光体表面の帯電電圧:
富士通社製レーザービームプリンター(Model F9682E2)のプリンターに上記導電ロールを挿入し、シャフトに600〜700Vを印加し、感光体上の表面電位を表面電位計で測定した。
【0045】
実施例1〜4
サブシーブサイザー法で平均粒子径6.0μmのNi−Znフェライト粒子粉末(戸田工業社製、商品名BSN−714)と、サブシーブサイザー法で平均粒子径3.2μmのMn−Znフェライト粒子粉末(戸田工業社製、商品名BSF−547)とを所定の重量比率で混合し合計100重量部とし、0.5重量部のアミノ基含有シランカップリング剤(日本ユニカー社製、商品名A−1120)で表面処理した後、滑剤(川研ファインケミカル社製、商品名アマイド−6S)を0.2重量部、ポリアミド6樹脂(宇部興産社製、商品名P1010)粉末を所定の量加えた該混合物を240℃±10にコントロールされたφ25mmの二軸混練機で溶融・混練し、米粒大のペレットからなる導電性樹脂組成物を得た。
【0046】
該ペレットを、通常の射出成形機で、金属製の軸芯(シャフト)を装着した金型の該軸芯の周囲に射出成形(軸芯インサート射出成形)して、導電ロールを得た。
【0047】
実施例5
Ni−Znフェライト粒子粉末及びMn−Znフェライト粒子粉末をそれぞれあらかじめ篩に掛けて、75μmを超える粒子および凝集物を除去し、それらの含有量を0.3重量%以下とし、実施例1〜4と同じ方法でそれぞれを55重量部、45重量部を使用し、フェライト粒子粉末含有率が60体積%になる様にフェライト粒子粉末と樹脂等の混合物を調製後、溶融・混練し、ペレットからなる導電性樹脂組成物を得た。得られたペレットの曲げ弾性率は実施例3の約1.2倍(1.7×1010Pa)になり、軸芯インサート導電ロール表面を研削した際、巨大粒子や凝集物による表面の荒れや小さな欠けなどの欠陥がほとんど認められなかった。感光体表面の帯電電圧は655±15Vで安定していた。
【0048】
実施例6
実施例5と同様にして得たフェライト粒子粉末と樹脂等の混合物からなる導電性樹脂組成物を混練機(TEX30、日本製鋼所製)で溶融・混練し、樹脂組成物が溶融したままの状態で射出成形機(J350EX、日本製鋼所製)のシリンダーに導き、以下通常の軸芯インサート射出成形によって軸芯インサート導電ロールを得た。本方法では、ペレットの状態を経ることなく粉体組成物から直接簡素化された工程で導電ロールを得ることができ、極めて効率的であった。
【0049】
実施例7〜8
Mn−Znフェライト粒子粉末とNi−Znフェライト粒子粉末とを所定の重量部比率で、ソフトフェライト粒子粉末含有率をそれぞれ所定の体積%とし、樹脂としてエチレンエチルアクリレート樹脂(EEA樹脂、三井デュポン製エバフレックス 702)を採用し、滑剤としてサンワックス171P(三洋化成社製商品名)を採用したこと以外は、実施例1〜4と同様の方法で、軸芯インサート導電ロールを得た。
【0050】
実施例9
樹脂としてポリアミド12樹脂(ダイセル社製商品名A1709P)を採用し、粗粒子除去操作を実施せず、フェライト含有率を変更したこと以外は、実施例6と同様の方法で、軸芯インサート導電ロールを得た。
【0051】
実施例10〜11
樹脂として、実施例9で用いたポリアミド樹脂12、ポリフェニレンサルファイド樹脂(PPS樹脂、東レM−3910)をそれぞれ採用し、滑剤として、それぞれアマイド6S又はサンワックス171Pを採用し、実施例5と同様の方法で、軸芯インサート導電ロールを得た。
【0052】
実施例12〜13
Mn−Znフェライト粒子粉末及びNi−Znフェライト粒子粉末の粒子径をそれぞれ変更した以外は実施例1〜4と同様にして、軸芯インサート導電ロールを得た。実施例12の導電ロールはソフトフェライト粒子粉末が比較的大きいため、帯電電圧のバラツキが大きい傾向にある。一方、実施例13はソフトフェライト粒子粉末が比較的小さいため、分散が難しく帯電電圧のバラツキが大きくなる。いずれも導電ロール組成のミクロな均一性の乱れの影響によるものと考えられる。
【0053】
実施例14
Ni−Znフェライト粒子粉末とMn−Znフェライト粒子粉末の重量比を80:20に変更した以外は実施例1〜4と同様にして軸芯インサート導電ロールを得た。得られた導電ロールは体積固有抵抗がやや高くなり、感光体表面の帯電電圧がやや低かった。
【0054】
比較例1〜2
ソフトフェライトの含有率をそれぞれ74体積%、25体積%に変更した他は実施例3と同様にして軸芯インサート導電ロールを得ようとしたが、比較例1はソフトフェライト粒子粉末の含有率が高過ぎるため、粘度が高く樹脂との混練が不可能であった。一方、比較例2はソフトフェライト粒子粉末の含有率が低過ぎるため、曲げ弾性率が低過ぎ、その結果、得られた軸芯インサート導電ロールは研削精度が悪く実用性の乏しいものであった。
【0055】
以上の実施例1〜14と比較例1〜2の結果を表1及び表2にまとめた。
【0056】
【表1】
【0057】
【表2】
【0058】
【発明の効果】
以上のように、本発明の導電性樹脂組成物は、適切な導電性と曲げ弾性率を有し、特に、導電ロールに有用である。本発明の導電性樹脂組成物からなる導電ロールは、安定且つ均一な導電性を有するとともに、導電ロールの研削精度を確保することができる。また、本発明の導電性樹脂組成物によれば、導電ロールを射出成形法によって得ることができ、更に、ペレットを経ないで、粉体状の樹脂組成物から直接導電ロールを射出成形することにより、工程が簡素化された安価な方法で生産することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a conductive resin composition, a conductive roll, and a method for producing the same, and more particularly, a conductive resin composition suitable for a conductive roll used in an electronic copying machine, a printer, and the like, from the resin composition. The present invention relates to a conductive roll and a manufacturing method thereof.
[0002]
[Prior art]
In the charging system of electrophotographic copying machines and printers In recent years, from the conventional system using corotron or scoroton that requires high voltage as a measure against ozone generation, contact type charging roller or charging brush using low voltage, or non-contact type The transition to a system using a needle charger is progressing. Among these, the conductive charging roll is a roll used for applying an electric charge to the photosensitive member and the charge holding member by the above-described electrophotographic method utilizing the electrostatic phenomenon. Usually, carbon black or the like is formed on the outer periphery of the metal shaft core. It is obtained by arranging rubber or foam which is made conductive by mixing metal powder. Conventional conductive rolls, like rubber, elastic bodies, and foams, provide conductivity by dispersing conductive materials in the resin or on the surface while ensuring a certain softness to ensure the so-called nip width. is doing. However, the conductivity of the encapsulating conductive material is too high, and it is difficult to adjust the dispersion of the conductive material, so that it is difficult to control the conductivity, and there is a problem in uniformity and stability.
[0003]
For these problems, a conductive member using ferrite as a conductive material has been proposed in order to control conductivity and to stabilize and equalize it. For example, a conductive plastic belt in which fine powder of Mn—Zn ferrite is dispersed in a polypropylene resin has been proposed as a toner transfer belt (see Patent Document 1). In addition, there has been proposed a charging member in which Cu-Mg-Zn ferrite as a conductive pigment is dispersed in a fluororesin paint and dip-coated on a silicone rubber roller to form a coating layer having a thickness of 10 μm (patent) Reference 2). Furthermore, a conductive silicone rubber roll in which ferrite is dispersed in silicone rubber has been proposed (see Patent Document 3).
[0004]
[Patent Document 1]
JP-A-5-66685 [Patent Document 2]
JP-A-8-185013 (6th page, Example 6)
[Patent Document 3]
JP-A-9-151323 [0005]
[Problems to be solved by the invention]
However, all of the conductive members described in the above-mentioned patent documents have a low flexural modulus due to a low content of ferrite, and a conductive charge that requires rigidity to stabilize the charging of the photosensitive member. It was still insufficient for roll applications. Further, the charging member disclosed in Patent Document 2 is provided with a 12 μm coating layer containing ferrite on a silicone rubber roller, and has problems in durability, reliability, processing cost, and the like.
[0006]
[Means for Solving the Problems]
In view of such circumstances, the present inventors have intensively studied to solve the problems of the prior art, and as a result, paid attention to the conductivity and stability of a specific soft ferrite particle powder. In addition, a conductive resin composition having appropriate electrical conductivity and flexural modulus is obtained, and a conductive roll using the resin composition stabilizes the charging voltage on the surface of the photoreceptor at an appropriate level. The present inventors have found that it has excellent grinding accuracy and have reached the present invention.
[0007]
That is, the conductive resin composition according to claim 1 of the present invention comprises 30 to 70% by volume soft ferrite particle powder and 70 to 30% by volume resin, and the soft ferrite particle powder is Ni-Zn ferrite particles. It consists of powder and Mn-Zn ferrite particle powder, the weight ratio of Ni-Zn ferrite particle powder and Mn-Zn ferrite particle powder is 5:95 to 80:20, and the average particle size is 1. 0 to 9.0 μm, volume resistivity is 1.0 × 10 1 to 5.5 × 10 4 Ω · m, and flexural modulus is 5.0 × 10 9 to 8.0 × 10 11 Pa. It is characterized by that.
[0008]
The conductive resin composition according to claim 2 of the present invention is characterized by containing substantially no soft ferrite particles exceeding 75 μm and / or aggregates thereof.
[0009]
The conductive resin composition according to claim 3 of the present invention is characterized in that the soft ferrite particle powder is surface-treated with a coupling agent.
[0010]
The conductive resin composition according to claim 4 of the present invention is characterized in that the resin is a resin selected from polyamide 12 resin and polyphenylene sulfide resin (PPS).
[0011]
The conductive resin composition according to claim 5 of the present invention is in the form of pellets.
[0012]
The conductive roll which concerns on Claim 6 of this invention was shape | molded with the conductive resin composition, It is characterized by the above-mentioned.
[0013]
The conductive roll which concerns on Claim 7 of this invention has arrange | positioned the conductive resin composition in the outer periphery of metal shaft cores, It is characterized by the above-mentioned.
[0014]
In the method for producing a conductive roll according to claim 8 of the present invention, a conductive resin composition is supplied to an injection molding machine, a metal shaft core is mounted in a mold cavity, and a conductive resin is provided around the shaft core. The composition is injection-molded.
[0015]
The manufacturing method of the electrically conductive roll which concerns on Claim 9 of this invention uses a pellet-shaped conductive resin composition, It is characterized by the above-mentioned.
[0016]
The method for producing a conductive roll according to claim 10 of the present invention supplies a powdered conductive resin composition to a kneader, guides the kneaded and melted resin composition to a cylinder part of an injection molding machine, and A metal shaft core is attached to the cavity, and a conductive resin composition is injection molded around the shaft core.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The conductive resin composition according to the present invention comprises 30 to 70% by volume soft ferrite particle powder and 70 to 30% by volume resin, and the soft ferrite particle powder includes Ni-Zn ferrite particle powder and Mn-Zn ferrite. It consists of particle powder, the weight ratio of Ni-Zn ferrite particle powder and Mn-Zn ferrite particle powder is 5:95 to 80:20, and the average particle diameter is 1.0-9.0 μm by the sub-sieving sizer method. The volume resistivity is 1.0 × 10 1 to 5.5 × 10 4 Ω · m, and the flexural modulus is 5.0 × 10 9 to 8.0 × 10 11 Pa.
[0018]
In the present invention, the electrical conductivity is evaluated by the volume resistivity which is the reciprocal thereof. Those having low electrical conductivity have high volume resistivity, and those having high electrical conductivity have a relationship in which volume resistivity is low.
[0019]
Soft ferrite particles used in the present invention, Ni-Zn ferrite particles is a combination of Mn-Zn ferrite particles. These are characterized by relatively high conductivity and chemical stability compared to other metal oxides.
[0020]
The Ni—Zn ferrite particle powder is composed of Fe 2 O 3 , NiO, and ZnO as main components, and the molar ratios of the respective metal oxides are 50 ± 11%, 19 ± 11%, and 31 ± 11%. A ferrite particle powder to which metals such as Cu, Mg, Bi, Si, Ca, and B are added as oxides in an amount of about 0 to 6% by weight, and is manufactured by a normal method for producing Ni-Zn ferrite particle powder. It is preferable to control the volume resistivity.
[0021]
The Mn—Zn ferrite particle powder has a molar ratio of 53 ± 11%, 32 ± 11%, and 15 ± 8% of the metal oxides of Fe 2 O 3 , MnO, and ZnO as the main components. It is a ferrite particle powder in which metals such as Si, Mg, Ca, Cu, B, Bi and the like are added as oxides in an amount of about 0 to 2% by weight, and is manufactured by a normal method of manufacturing Mn—Zn ferrite particles. It is preferable to control the volume resistivity.
[0022]
Since the Ni-Zn ferrite particle powder has lower conductivity than the Mn-Zn ferrite particle powder, it can be combined with the Mn-Zn ferrite particle powder having high conductivity to have the desired conductivity and the bending elastic modulus. Resin composition can be designed.
The weight ratio of the Ni—Zn ferrite particle powder and the Mn—Zn ferrite particle powder is 5:95 to 80:20 . Preferably, it is 5 : 95-75: 25. If the proportion of the Ni—Zn ferrite particle weight exceeds 80%, the volume resistivity tends to increase and the chargeability (conductivity) tends to deteriorate, such being undesirable.
[0023]
The particle diameter of the soft ferrite particle powder is determined by the particle growth and sintering state specific to the component composition at the time of production and the pulverization conditions, but is preferably designed in consideration of kneadability with the resin.
From this point of view, the average particle diameter of the soft ferrite particles is in sub-sieve sizer method, 1.0~9.0Myuemu der is, preferably, a 1.5~8.0Myuemu.
[0024]
If the average particle size of the soft ferrite particle powder is less than 1.0 μm, it is not easy to disperse the ferrite particle powder in the resin. On the other hand, if the average particle size exceeds 9.0 μm, some of the large particles are mixed. In addition, the distribution in which the conductivity of the portion where the large particles are present and the other portions are relatively different is not preferable.
[0025]
In order to improve the dispersibility in the resin, the particle diameter of the soft ferrite particle powder to be dispersed is preferably several μm or more. However, the particle diameter is preferably small in order to ensure the uniformity of the conductivity of the molded product. As one means for solving these contradictory phenomena, as noted above, the conductivity is relatively large, Mn-Zn ferrite particles conductivity contribution to molding is large comparatively small contribution to the conductive Ni-Zn ferrite particles having a relatively small diameter are preferably designed to be relatively large.
[0026]
Further, it is effective for uniforming the conductivity described above to substantially remove huge particles or aggregates exceeding 75 μm. Further, as will be described later, when grinding the surface of the molded body, it is particularly effective in practice that the partial defect (missing ferrite particle powder) is small and small. These huge particles or agglomerates have a practically no problem content, that is, approximately 0.3% by weight or less by using an air classifier or passing through a sieve having an opening of 75 μm or less. Can be reduced.
[0027]
To satisfy is the object conductive present invention, in addition to N i-Zn ferrite particles and Mn-Zn ferrite particles, for example, stable against moisture and air, such as silicon oxide or barium titanate (oxygen) A small amount of an appropriate filler may be added as appropriate.
[0028]
Ensuring the stability of conductivity, particularly the stability against the influence of moisture, is one of the important characteristics for the conductive roll. The soft ferrite particle powder employed in the present invention is physicochemically stable against moisture and moisture, but is preferably used after treating the particle surface with a coupling agent. By coating the surface of the soft ferrite particles with a coupling agent, not only the dispersion of the ferrite particles is made uniform, but also the influence of moisture on the conductivity of the conductive roll can be minimized.
[0029]
As the coupling agent, commercially available silane coupling agents, titanate coupling agents and the like are effective, but comparison is particularly made with a silane coupling agent having an amino group such as A-1120 manufactured by Nippon Unicar Co., Ltd. It is suitable because it is inexpensive and has excellent kneadability with a resin. These coupling agents are usually used in an amount of 0.1 to 0.9 parts by weight with respect to 100 parts by weight of the soft ferrite particle powder. When the amount of the coupling agent is less than 0.1 parts by weight, the above treatment effect is not sufficient. On the other hand, when the amount exceeds 0.9 parts by weight, the risk of bleeding of unadsorbed components on the surface of the kneaded product increases.
[0030]
The resin used in the present invention is a resin that gives a molded article having a flexural modulus of 5.0 × 10 9 to 8.0 × 10 11 Pa when a resin composition with soft ferrite particles is used. Is used. As such a resin, for example, polyamide resins such as polyamide 6 and polyamide 12, polyolefin resins such as polyethylene and polypropylene, liquid crystal resins, polyphenylene sulfide resins (PPS) and the like are preferable, and these are used alone or in combination of two or more. Used in combination. Also, even if the resin has a relatively low elastic modulus such as ethylene vinyl acetate resin (EVA), ethylene ethyl acrylate resin (EEA), or other elastomers, the bending elastic modulus as a resin composition with soft ferrite particle powder Is 5.0 × 10 9 to 8.0 × 10 11 Pa.
[0031]
From the viewpoint of reliability against humidity, thermoplastic resins having low hygroscopicity, that is, polyamide 12 resin, polyphenylene sulfide resin (PPS), and the like are particularly suitable. Further, polyamide 12 resin is selected from the viewpoints of both humidity reliability and moldability / productivity, and polyphenylene sulfide resin (PPS) is selected from the viewpoint of humidity reliability.
[0032]
The conductive resin composition of the present invention comprises 30 to 70% by volume soft ferrite particle powder and 70 to 30% by volume resin. If the soft ferrite particle powder exceeds 70% by volume, it is difficult to knead and form, and if it is less than 30% by volume, the flexural modulus becomes too low and the shape tends to deform. Grinding accuracy cannot be ensured. Preferably it is 35 volume% or more. Furthermore, when a soft resin such as ethylene ethyl acrylate resin is used, 40% by volume or more is preferable.
[0033]
The conductive resin composition of the present invention can further contain processing aids, stabilizers, and other various additives usually used for this type of conductive resin composition. As the processing aid, a lubricant such as Amide-6S manufactured by Kawaken Fine Chemical Co., Ltd. is preferable. A suitable addition amount of the processing aid is 0.01 to 0.3% by weight. If the amount of the processing aid is less than 0.01% by weight, a sufficient effect cannot be expected. On the other hand, if it exceeds 0.3% by weight, the lubricant diffuses and exudes to the roll surface, which adversely affects charging. There is a case.
[0034]
The conductive resin composition of the present invention can be kneaded and granulated by a usual method to obtain so-called pellets. Specifically, 70-30% by volume of resin is added to 30-70% by volume of soft ferrite particle powder, and if necessary, additives such as processing aids are added, kneaded and melted, and then extruded from a die. Is obtained by cutting to a length of several millimeters.
[0035]
The conductive resin composition of the present invention is particularly suitable as a conductive roll, and is formed into a conductive roll by various molding methods.
For example, a conductive roll can be molded by injecting a pellet-shaped conductive resin composition into a mold cavity by a normal injection molding method. If a metal shaft core is previously attached to the cavity, the conductive roll can be easily formed by a shaft insert injection molding method. The surface of the shaft core may be plated in advance, and surface treatment may be performed as necessary.
[0036]
In addition, the powdered conductive resin composition is supplied to a kneader, kneaded at a predetermined temperature, and the molten resin composition is led to the cylinder part of the injection molding machine in a molten state. A conductive roll can be formed by mounting a metal shaft core and injection molding the conductive resin composition around the shaft core. In this molding method, since the time for continuously maintaining the molten state of the resin is long, the resin temperature becomes uniform and the injection molding becomes stable, so that a conductive roll having stable characteristics can be obtained.
[0037]
Furthermore, this molding method does not necessarily require an equivalent amount of processing aid such as a lubricant as compared with the case of plasticizing and molding pellets with an injection molding machine. Can be reduced. Furthermore, the present molding method has an advantage that the pelletizing step can be omitted, so that the productivity is high and the production cost is reduced.
[0038]
The conductive roll according to the present invention obtained as described above has a volume resistivity of 1.0 × 10 1 to 5.5 × 10 4 Ω · m.
When the volume resistivity is less than 1.0 × 10 1 Ω · m, sufficient charge cannot be obtained due to leakage of charges on the photosensitive member or the charge holding member when the conductive roll is in contact, while the volume resistivity is 5. When it exceeds 5 × 10 4 Ω · m, insufficient charging occurs on the photosensitive member or charge holding member, and sufficient charging cannot be performed. A preferable volume resistivity is 1.0 × 10 2 to 5.0 × 10 4 Ω · m.
[0039]
Since the conductive roll is directly charged to the photosensitive member or the charge holding member, high accuracy is required for its dimensional shape. Therefore, it is necessary to grind the outer peripheral surface of the conductive roll as necessary. However, in the case of a conductive roll having low rigidity such as rubber or foam, the grinding dimensional accuracy is lowered. On the other hand, when the rigidity is high, high dimensional accuracy can be ensured. If the shaft of the conductive roll is made of metal, the grinding dimensional accuracy can be further increased.
[0040]
The conductive roll according to the present invention obtained as described above has a flexural modulus of 5.0 × 10 9 to 8.0 × 10 11 Pa.
When the flexural modulus is less than 5.0 × 10 9 Pa, as described above, not only cannot the grinding accuracy of the conductive roll be ensured, but also the contact area of the conductive roll increases due to the pressing pressure of the conductive roll. The rotational torque of the body etc. increases. Further, since the conductive roll is bent and deformed, the conductivity becomes non-uniform. On the other hand, when the flexural modulus exceeds 8.0 × 10 11 Pa, the contact between the conductive roll and the member to be charged such as the photosensitive member is deteriorated, and is not sufficiently charged.
[0041]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, these do not restrict | limit this invention at all.
In the following description, the volume resistivity, the flexural modulus, and the charging voltage on the photoreceptor surface were measured by the following methods, respectively.
[0042]
Volume resistivity:
The obtained pellet was filled in a cylindrical space of φ25 mm, heated to 240 ± 10 ° C., pressure was applied in the height direction of the cylinder, a disk-shaped sample having a thickness of about 10 mm was prepared, and the surface of the test piece was # The skin layer (resin rich layer) was removed by polishing with 1000 sandpaper. The surface-adjusted test piece was sandwiched between stainless steel flat electrodes having a cross-sectional area of 2.419 × 10 −4 m 2 , a weight of 5N was applied, and the resistance was measured by the Wheatstone bridge method. The applied voltage was DC 20V.
[0043]
Flexural modulus:
Conforms to ASTM-D790.
[0044]
Charged voltage on the photoreceptor surface:
The conductive roll was inserted into a printer of a Fujitsu laser beam printer (Model F9682E2), 600 to 700 V was applied to the shaft, and the surface potential on the photoreceptor was measured with a surface potentiometer.
[0045]
Examples 1 to 4
Ni-Zn ferrite particle powder (trade name BSN-714, manufactured by Toda Kogyo Co., Ltd.) having an average particle size of 6.0 μm by sub-sieve sizer method, and Mn—Zn ferrite particle powder having an average particle size of 3.2 μm by sub-sieve sizer method (Trade name BSF-547 manufactured by Toda Kogyo Co., Ltd.) are mixed at a predetermined weight ratio to make a total of 100 parts by weight, and 0.5 parts by weight of an amino group-containing silane coupling agent (trade name A- manufactured by Nihon Unicar Co., Ltd.). 1120), 0.2 parts by weight of a lubricant (made by Kawaken Fine Chemical Co., Ltd., trade name Amide-6S) and a predetermined amount of polyamide 6 resin (made by Ube Industries, trade name P1010) powder were added. The mixture was melted and kneaded with a twin screw kneader having a diameter of 25 mm controlled at 240 ° C. ± 10 to obtain a conductive resin composition composed of rice-sized pellets.
[0046]
The pellets were injection-molded (shaft core insert injection molding) around the shaft core of a mold equipped with a metal shaft core (shaft) with a normal injection molding machine to obtain a conductive roll.
[0047]
Example 5
Over Ni-Zn ferrite particles and Mn-Zn ferrite particles into pre-screened respectively, to remove particles and agglomerates greater than 75 [mu] m, and their content is 0.3 wt% or less, Examples 1-4 Using the same method as above, 55 parts by weight and 45 parts by weight are used, and after preparing a mixture of ferrite particle powder and resin so that the ferrite particle powder content is 60% by volume, it is melted and kneaded to form a pellet. A conductive resin composition was obtained. The bending elastic modulus of the obtained pellet was about 1.2 times (1.7 × 10 10 Pa) of Example 3 , and when the surface of the shaft core conductive roll was ground, the surface was roughened by giant particles or aggregates. And few defects such as small chips were observed. The charging voltage on the surface of the photoreceptor was stable at 655 ± 15V.
[0048]
Example 6
A conductive resin composition comprising a mixture of ferrite particle powder and resin obtained in the same manner as in Example 5 was melted and kneaded with a kneader (TEX30, manufactured by Nippon Steel Works), and the resin composition was still melted. Then, it was led to a cylinder of an injection molding machine (J350EX, manufactured by Nippon Steel Works), and a shaft core insert conductive roll was obtained by ordinary shaft core insert injection molding. In this method, the conductive roll can be obtained by a simplified process directly from the powder composition without going through the pellet state, which is extremely efficient.
[0049]
Examples 7-8
The Mn—Zn ferrite particle powder and the Ni—Zn ferrite particle powder are in a predetermined weight part ratio, the soft ferrite particle powder content is set to a predetermined volume%, and an ethylene ethyl acrylate resin (EEA resin, Mitsui DuPont EVA) is used as the resin. A shaft insert conductive roll was obtained in the same manner as in Examples 1 to 4 , except that Flex 702) was used and Sunwax 171P (trade name, manufactured by Sanyo Chemical Co., Ltd.) was used as the lubricant.
[0050]
Example 9
A shaft insert conductive roll in the same manner as in Example 6 except that polyamide 12 resin (trade name A1709P, manufactured by Daicel) was used as the resin, the coarse particle removal operation was not performed, and the ferrite content was changed. Got.
[0051]
Examples 10-11
As a resin, examples polyamide resin 12 used in the 9, polyphenylene sulfide resin (PPS resin, Toray M-3910) were adopted respectively, as a lubricant, respectively adopted amide 6S or Sanwax 171P, similar to that of Example 5 By the method, a shaft insert conductive roll was obtained.
[0052]
Examples 12-13
A shaft insert conductive roll was obtained in the same manner as in Examples 1 to 4 , except that the particle diameters of the Mn—Zn ferrite particle powder and the Ni—Zn ferrite particle powder were changed. The conductive roll of Example 12 tends to have a large variation in charging voltage because the soft ferrite particle powder is relatively large. On the other hand, in Example 13, since the soft ferrite particle powder is relatively small, it is difficult to disperse and the variation in charging voltage becomes large. All of these are considered to be due to the influence of disturbance of the microscopic uniformity of the conductive roll composition.
[0053]
Example 14
A shaft insert conductive roll was obtained in the same manner as in Examples 1 to 4 , except that the weight ratio of the Ni—Zn ferrite particle powder and the Mn—Zn ferrite particle powder was changed to 80:20. The obtained conductive roll had a slightly higher volume specific resistance and a slightly lower charging voltage on the surface of the photoreceptor.
[0054]
Comparative Examples 1-2
Except for changing the soft ferrite content to 74% by volume and 25% by volume, respectively, an attempt was made to obtain an axial core insert conductive roll in the same manner as in Example 3 , but in Comparative Example 1, the content of the soft ferrite particle powder was Since it was too high, the viscosity was high and kneading with the resin was impossible. On the other hand, since the content rate of the soft ferrite particle powder was too low in Comparative Example 2, the flexural modulus was too low. As a result, the obtained shaft core insert conductive roll had poor grinding accuracy and poor practicality.
[0055]
The results of Examples 1 to 14 and Comparative Examples 1 and 2 are summarized in Tables 1 and 2.
[0056]
[ Table 1 ]
[0057]
[ Table 2 ]
[0058]
【The invention's effect】
As described above, the conductive resin composition of the present invention has appropriate conductivity and bending elastic modulus, and is particularly useful for conductive rolls. The conductive roll made of the conductive resin composition of the present invention has stable and uniform conductivity and can ensure the grinding accuracy of the conductive roll. Further, according to the conductive resin composition of the present invention, the conductive roll can be obtained by injection molding, and further, the conductive roll can be directly injection molded from the powdery resin composition without passing through the pellet. Thus, it can be produced by an inexpensive method with a simplified process.
Claims (10)
前記ソフトフェライト粒子粉末はNi−Znフェライト粒子粉末とMn−Znフェライト粒子粉末からなり、Ni−Znフェライト粒子粉末とMn−Znフェライト粒子粉末の重量比が5:95から80:20であり、平均粒子径が、サブシーブサイザー法で1.0〜9.0μmであり、
体積固有抵抗が1.0×101 〜5.5×104 Ω・mで、曲げ弾性率が5.0×109 〜8.0×1011Paであることを特徴とする導電性樹脂組成物。30 to 70% by volume soft ferrite particle powder and 70 to 30% by volume resin,
The soft ferrite particle powder is composed of Ni-Zn ferrite particle powder and Mn-Zn ferrite particle powder, and the weight ratio of Ni-Zn ferrite particle powder and Mn-Zn ferrite particle powder is 5:95 to 80:20, and the average The particle size is 1.0 to 9.0 μm by the sub-sieve sizer method,
Conductive resin having a volume resistivity of 1.0 × 10 1 to 5.5 × 10 4 Ω · m and a flexural modulus of 5.0 × 10 9 to 8.0 × 10 11 Pa Composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322396A JP4265202B2 (en) | 2002-11-06 | 2002-11-06 | Conductive resin composition, conductive roll and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002322396A JP4265202B2 (en) | 2002-11-06 | 2002-11-06 | Conductive resin composition, conductive roll and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004155892A JP2004155892A (en) | 2004-06-03 |
JP4265202B2 true JP4265202B2 (en) | 2009-05-20 |
Family
ID=32802592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002322396A Expired - Lifetime JP4265202B2 (en) | 2002-11-06 | 2002-11-06 | Conductive resin composition, conductive roll and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4265202B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140212658A1 (en) * | 2011-09-30 | 2014-07-31 | Fuji Jukogyo Kabushiki Kaisha | Benzoxazine resin composition, and fiber-reinforced composite material |
JP6174179B1 (en) * | 2016-03-14 | 2017-08-02 | 株式会社金陽社 | Semiconductive resin roll |
CN109651815A (en) * | 2018-12-26 | 2019-04-19 | 聚威工程塑料(上海)有限公司 | A kind of PPS composite material and preparation method of high fluidity high metal filling |
-
2002
- 2002-11-06 JP JP2002322396A patent/JP4265202B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004155892A (en) | 2004-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1221437A (en) | Carbon fluoride composition, paint, image forming material, complex material and method of manufacturing thereof | |
JP2006305982A (en) | Method for kneading raw material mixture and kneading device | |
KR20110051851A (en) | Developing roller for electrophotographic image forming apparatus, manufacturing method of the same | |
JP4196780B2 (en) | Process for producing conductive composition for electrophotographic equipment | |
JP4265202B2 (en) | Conductive resin composition, conductive roll and method for producing the same | |
JP3593402B2 (en) | Semi-conductive rubber | |
JP4082222B2 (en) | Conductive composition for electrophotographic equipment member, electrophotographic equipment member using the same, and production method thereof | |
CN105637033B (en) | Conductive elastomer composition and preparation method thereof | |
JP2011138004A (en) | Conductive roller for electrophotography and charging roller using the same | |
JP2013205674A (en) | Conductive roll for electrophotographic apparatus | |
JP2000301624A (en) | Semiconductive seamless belt and production thereof | |
JPH07164571A (en) | Charged roller | |
JP3917011B2 (en) | Conductive roller | |
JP3469170B2 (en) | Rubber composition and conductive roll using the same | |
JP2001047566A (en) | Conductive member | |
JP2003177612A (en) | Semiconductive resin flat belt and method of manufacturing the same | |
JP2000274423A (en) | Semiconductive roller | |
CN102323729A (en) | Powder feed roll of double-layer structure and manufacturing method thereof | |
JP2006071996A (en) | Electrophotographic conductive roller and its manufacturing method | |
JP2001343839A (en) | Semiconductive rubber raw material composition, method for manufacturing semiconductive rubber raw material composition and semiconductive seamless belt | |
JP4153285B2 (en) | Charging roller and manufacturing method thereof | |
JPH04133077A (en) | Semiconductive resin composite material and developing roll for electrophotographic copying machine using it | |
JP2003307921A (en) | Developing roll | |
JP2008033282A (en) | Conductive blade member and manufacturing method thereof | |
JP2004020584A (en) | Charging roller and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090127 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4265202 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120227 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130227 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140227 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |