JP4265025B2 - Hermetic electric compressor - Google Patents

Hermetic electric compressor Download PDF

Info

Publication number
JP4265025B2
JP4265025B2 JP09858099A JP9858099A JP4265025B2 JP 4265025 B2 JP4265025 B2 JP 4265025B2 JP 09858099 A JP09858099 A JP 09858099A JP 9858099 A JP9858099 A JP 9858099A JP 4265025 B2 JP4265025 B2 JP 4265025B2
Authority
JP
Japan
Prior art keywords
passage
rotating shaft
cylindrical
divider
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09858099A
Other languages
Japanese (ja)
Other versions
JP2000291551A (en
Inventor
貴規 石田
雅隆 小田
泰彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09858099A priority Critical patent/JP4265025B2/en
Publication of JP2000291551A publication Critical patent/JP2000291551A/en
Application granted granted Critical
Publication of JP4265025B2 publication Critical patent/JP4265025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍・冷蔵装置に使用されるコンプレッサに関し、更に詳しくは、コンプレッサ内の回転摺動部にケーシング内に貯溜したオイルを回転軸を利用して供給する給油・潤滑システムに関する。本発明は多量のオイルを比較的小径の回転軸で効率良く、汲み上げることのできるコンプレッサを如何に作るかということに関連するものである。
【0002】
【従来の技術】
コンプレッサの潤滑オイルのポンプシステムは、これまでに多くの構成が提案されているが、省エネルギー化に対し、回転軸の軸径を小さく設定し、摺動ロスを低減すると、オイルを汲み上げるための遠心力が低下するため、オイルの必要な揚程、並びに油量が低下する問題が発生する。この問題は、低入力を得るために低粘度のオイルを採用するときは、回転摺動部の発熱、及びオイル自体の冷却の観点から一層問題となる。
【0003】
以下、従来の技術を説明する。
【0004】
従来、かかる冷媒圧縮機の構成として、図8に示す特公昭62−44108号公報がある。以下、図8を参照しながら、説明する。圧縮機本体aは密閉容器b内に収納されており、フレームcを中核に、下部に電動機d、上部に圧縮機後部eを配置している。fは回転軸でありフレームcの軸受部g内に貫挿され、外径部は電動機dの回転子hに固着される一方、圧縮機構部eとは偏芯軸iを介してピストンjのスライダーkと係合し、周知の圧縮動作を行う。
【0005】
回転軸の内部には、その下端より比較的小径の傾斜した傾斜孔1が軸受部gの下端近傍まで延びており、横孔mにより回転軸fの外周に開口している。回転軸fの軸受部g内に位置する部分には、スパイラル溝nが形成され、その下端は横孔mと連通し、上端は、偏芯軸iに設けた縦孔oの下端がスラスト軸受摺動面pに開口し、かつ同時に横孔qに交わるように、換言すれば、回転軸表面に孔の一部が直接開口する構成を呈している。
【0006】
また、他の従来例として、図9に示すように特公平1−47632号公報には、回転軸rと同芯の比較的大径の円筒孔sが形成され、円筒孔の上端近傍に軸受部内に位置する螺旋溝tに横孔uで連通し、回転軸の下方にはコーン形状のポンプ部材vが固定してあるポンプシステムが開示されている。
【0007】
さらにまた、他の従来例として、図10に示すように実公昭51−19204号公報には、回転軸の下端にコーン形状のポンプ部材wを配置し、このポンプ部材を挿入するボアxの上端周縁より小径の傾斜孔yを連接し、軸受部内に位置する螺旋溝(図示せず)に前記傾斜孔yを連続的に接続したものが示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、第1の従来例においては、給油ポンプの油量の観点から見ると、下端から直接斜め上方に延びた傾斜孔1内のオイルは、オイル溜めの油面よりわずかに上方の位置において、直ちに傾斜孔1内面の外周側のみにオイルが遠心力により、偏きされるため、オイルの上昇力の点では良好であるが、油量の点から劣勢である。
【0009】
また、第2の先行例においては、遠心ポンプの揚程を上げるためには、円筒孔sの直径を増加する必要があり、必然的に回転軸rの径が大きくなり、回転摺動損失が増加するので、低摺動損失の回転軸、即ち、より小径の回転軸を採用する上では不利となる。
【0010】
更にまた、第3の先行例においては、円筒コーン状のポンプ部材wと小径の傾斜孔yを組み合わせたものであるが、ポンプ部材wから傾斜孔yにオイルが流れ込む時、傾斜孔の開口する範囲が円筒孔の中心より片側のみに存在するため、円筒ポンプ能力を十分に傾斜孔に伝達することにならず、油量面で十分とはいえないものであった。
【0011】
本発明は従来の問題点をなくすために、省エネルギーのために低損失の比較的小径の軸で、かつ低粘度のオイルを採用しても、十分な揚程、並びに油量を得られ、また作業性が良く、組立バラツキの出にくいポンプシステムを得ることを目的としている。
【0012】
【課題を解決するための手段】
本発明は、密閉容器内に、圧縮機構部を備えたブロックと、このブロックの下部に配置した電動モータと、前記ブロックの軸受に回転自在に設けた比較的小径の回転軸を有し、この回転軸の軸受上方にはシリンダ内のピストンを動作さすコンロッドが係合する偏芯軸を備えており、前記回転軸より小径の給油ポンプが前記回転軸の下端に形成した円筒ボア内に支持されている。この円筒ボアの上端には中心を含むように下端が開口し、上端が前記軸受の下方に達するように、下方から上方へかけて外側に傾斜した傾斜通路と前記回転軸の軸芯に平行な円筒通路が前記円筒ボアの軸方向の同じ範囲に存在し、かつ前記傾斜通路と前記円筒通路が一つの通路を形成し、更に、前記軸受内面に位置する前記回転軸の外周面にはスパイラル溝が形成され、このスパイラル溝の上端は偏芯軸に設けた偏芯通路直接、あるいは上部横通路にて連結し、かつ、前記円筒ボア内に連接する給油ポンプを備えてなるものである。
【0013】
また、給油ポンプ内にはディバイダーが挿入係止され、給油ポンプが挿入嵌合する円筒ボアの上端と前記ディバイダーの端間にディバイダーの存在しない空間を設けたものである。
【0014】
また、ディバイダーは上下対称形状をなし、端部の略中央に略半月状の切欠を有する。また、長手方向のやはり中央付近の幅をわずかに大きくなし圧入部を形成し、給油ポンプ内に圧入固定してなるものである。
【0015】
また、円筒ボアの直径と傾斜通路の直径の比を1:0.6〜0.8に設定してなるものである。
【0016】
かかる構成において、給油ポンプ及び円筒ボア内のオイルは遠心力により周知の放物線状の自由表面をなし、オイルは円筒ボア全周に及んでいる。円筒ボアの上端から上方にかけて、傾斜通路と円筒通路の併用通路の断面積は徐々に、かつ連続的に大きくなる。即ち、前記併用通路の断面積の形状としては、円筒ボアの上端と併用通路の接合部は円形状であるが、それより上方にかけて、円形状の一端に連続的に断面積が増加する曲面からなる溝形状が付与されることになる。そして、円筒ボアの上端から前記併用通路にかけて、オイルは傾斜通路軸芯から見て、回転軸の外表面に近い外周側に流れ込む。このとき同時に円筒ポンプ内のオイルにおいて、反傾斜側、即ち、軸芯に平行な円筒外周面のオイルは、回転による遠心力により、前記溝形状部分に流入する。
【0017】
また、ディバイダーの上方に空間を形成することにより、ディバイダーの挿入角度と傾斜通路の相対的な角度依存性が緩和される。
【0018】
また、ディバイダーの両端部に設けた略半月状の切欠により、ディバイダーの特に下端が給油ポンプ入口孔の中心とずれても、前記給油ポンプ入口孔の分割された2個の流入口の開口比が変わることがない。
【0019】
また、長手方向の中央付近の幅を大きくすることにより、ディバイダーの挿入圧力方向がなく、かつディバイダーの湾曲が極めて少なく組立ができる。
【0020】
また、円筒ボアの直径と傾斜通路の直径の比を1:0.6〜0.8にすることにより、傾斜通路によるオイルの上方への持ち上げ能力を最大限に発揮させることができる。
【0021】
【発明の実施の形態】
以下本発明の一実施の形態を示す図面を参照しながら説明する。
【0022】
1は上下密閉容器2内に電動モータ3と圧縮機構4をブロック5にて一体化したコンプレッサユニット6を収納した密閉型電動圧縮機である。7はブロック5の軸受部8に枢止した回転軸で比較的小径(例えば直径16〜18mm程度)であり、上端の偏芯軸9にはコンロッド10の大端部が連結され、小端部にはピストンピン11によりシリンダ12内で摺動するピストン13が連結してある。14は吸入孔,吸入バルブ,吐出孔,吐出バルブ(いずれも図示せず)を備えたバルブプレート、15は内部に吸入室,吐出室(いずれも図示せず)を区分けしたシリンダヘッドで、16は吸入マフラーである。
【0023】
17は回転軸7の下端に設けた回転軸7より小径(例えば8〜14mm程度)の円筒ボア18に圧入した給油ポンプである。19は円筒ボア18の上端より斜めに、かつ上方に延びた傾斜通路であり、その直径は円筒ボア18よりやや小径(例えば5〜12mm程度)で、その内径内に円筒ボア18の中心を含むように、かつ外周面の下端の一部が円筒ボア18に内接するが如く近接して位置している。31は円筒ボア18の上端より、上方に延びた前記円筒ボア18の軸芯に平行な円筒通路であり、その直径は円筒ボアよりもやや小径(例えば円筒ボア肉厚分を差し引いた径、8〜14mm程度)で、外周面の下端が円筒ボア18に内接するが如く位置している。
【0024】
さらに、その傾斜通路と円筒通路の併用通路の上端は軸受8下方に達するように、かつ回転軸7の外周面に接近するように配列してある。20はスパイラル溝であり、下部横孔21にて傾斜通路19と円筒通路31の併用通路と連通する。スパイラル溝20の上端は偏芯軸9内の偏芯通路23に上部横孔24にて連通してある。
【0025】
26は給油ポンプ17内に圧入固定した薄板からなるディバイダーで、上下端には略半月状の切欠27を有し、上下の方向性がなくなるように上下対称に形成してある。28は略中間位置をわずかに幅広に形成した圧入部である。また29は給油ポンプ17の底部中央に設けた入口孔である。
【0026】
次に、図4,図5を参照しながら油の挙動について説明する。
【0027】
回転軸7の回転により、給油ポンプ17内にはオイル30の上昇が、その内周壁全域にわたって形成される。そして、傾斜通路19には、A部のオイルが直接流入すると共に、円筒道路31外周面側のB部のオイルは、円筒通路の壁面を上方へ吸い上げられ、回転軸の回転により図中矢印で示すような流れCを作りだし、傾斜通路の19の外周壁側流れDへ合流する。即ち、本発明品は、従来のものに比べ、給油ポンプ17内の全域から傾斜通路19と円筒通路31からなる併用通路への流れを作り出す作用をなす。
【0028】
また、図7は本発明者らが行った同一の直径をもつ回転軸を利用して、従来と本発明品の回転軸の回転数と給油量の相関を計測して得たデータである。図8に示す従来例1と、図9に示す従来例2と本発明品では、いずれも本発明品が優れている。
【0029】
ここで、本発明品は、円筒ボアの直径と傾斜通路の比を1:0.6〜0.8としている。円筒ボアの直径を1としたときの傾斜通路の直径比が0.6よりも小さい場合、傾斜通路の直径が円筒ボアの中心を含まず、十分なオイル持ち上げ能力を発揮することができない。
【0030】
従って、図10のモデルは傾斜通路の下端が一片寄りにしか開口していないため、給油ポンプ内周の一部のオイルしか傾斜通路に導かれず、本発明品より特性が劣化するものと思われる。
【0031】
一方、直径比が0.8よりも大きい場合、傾斜通路の上端面と回転軸外表面からなる肉厚が極端に小さくなり、生産加工の際、食い破れが生じ、量産性が悪化する。この量産性の悪化を防止するために、傾斜通路の傾き角度をより小さくすると、傾斜通路のもつオイル持ち上げ能力を十分に発揮することができなくなる。
【0032】
【発明の効果】
本発明は上記した構成により、比較的小径の回転軸を利用しても、給油ポンプのもつ給油能力を傾斜通路と円筒通路の併用通路に少ない損失で導くことが可能で、高効率の圧縮機を得ることができる。
【0033】
また、ディバイダーの上方にディバイダーの存在しない空間を設けることにより、ディバイダーの挿入角度と傾斜通路の相対角度の影響を除去し、組立作業性を向上できる。
【0034】
また、ディバイダーの略半月状の切欠及び圧入部によりディバイダーと給油ポンプの入口孔の不均等分割による給油量のバラツキが防止でき、作業性の向上、ひいては安価な圧縮機の提供が可能となる。
【0035】
また、円筒ボアの直径と傾斜通路の比を1:0.6〜0.8に設定することにより、傾斜通路と円筒通路の併用通路によるオイル持ち上げ能力を最大限に発揮させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す密閉型電動圧縮機の断面図
【図2】同実施の形態の要部拡大断面図
【図3】図2のIII−III線における断面図
【図4】同実施の形態の動作状況を示す図2相当の断面図
【図5】同実施の形態の動作状況を示す模式的斜視図
【図6】同実施の形態のディバイダーの斜視図
【図7】同実施の形態及び従来例の回転数と油量を示す特性図
【図8】従来例1を示す断面図
【図9】従来例2を示す断面図
【図10】従来例3を示す断面図
【符号の説明】
2 密閉容器
3 電動モータ
4 圧縮機構部
5 ブロック
7 回転軸
9 偏芯軸
10 コンロッド
12 シリンダ
13 ピストン
17 給油ポンプ
18 円筒ボア
19 傾斜通路
20 スパイラル溝
31 円筒通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compressor used in a refrigeration / refrigeration apparatus, and more particularly to an oil supply / lubrication system that supplies oil stored in a casing to a rotating sliding portion in the compressor using a rotating shaft. The present invention relates to how to make a compressor capable of pumping a large amount of oil efficiently with a relatively small rotating shaft.
[0002]
[Prior art]
Many configurations of compressor lubrication oil pump systems have been proposed so far, but in order to save energy, if the shaft diameter of the rotating shaft is set small and sliding loss is reduced, the centrifugal system for pumping up the oil is used. Since the force is reduced, there arises a problem that the required head of oil and the amount of oil are reduced. This problem becomes even more problematic from the viewpoint of heat generation of the rotating sliding portion and cooling of the oil itself when low viscosity oil is employed to obtain a low input.
[0003]
Hereinafter, conventional techniques will be described.
[0004]
Conventionally, as a configuration of such a refrigerant compressor, there is JP-B-62-44108 shown in FIG. Hereinafter, a description will be given with reference to FIG. The compressor main body a is housed in a sealed container b, and a frame c is a core, an electric motor d is disposed in the lower part, and a compressor rear part e is disposed in the upper part. f is a rotation shaft, which is inserted into the bearing portion g of the frame c, and the outer diameter portion is fixed to the rotor h of the electric motor d, while the compression mechanism portion e is connected to the piston j via the eccentric shaft i. It engages with the slider k and performs a known compression operation.
[0005]
Inside the rotating shaft, an inclined hole 1 having a relatively small diameter is extended from the lower end thereof to the vicinity of the lower end of the bearing portion g, and is opened to the outer periphery of the rotating shaft f by a horizontal hole m. A spiral groove n is formed in a portion of the rotary shaft f positioned in the bearing portion g, the lower end thereof communicates with the horizontal hole m, and the upper end is a lower end of the vertical hole o provided in the eccentric shaft i. In other words, it has a configuration in which a part of the hole is directly opened on the surface of the rotating shaft so as to open to the sliding surface p and simultaneously cross the horizontal hole q.
[0006]
As another conventional example, as shown in FIG. 9, Japanese Patent Publication No. 1-47632 discloses a relatively large-diameter cylindrical hole s that is concentric with the rotation axis r, and a bearing near the upper end of the cylindrical hole. A pump system is disclosed in which a lateral groove u communicates with a spiral groove t positioned in the section, and a cone-shaped pump member v is fixed below the rotating shaft.
[0007]
Furthermore, as another conventional example, as shown in FIG. 10, Japanese Utility Model Publication No. 51-19204 discloses a cone-shaped pump member w disposed at the lower end of a rotating shaft, and an upper end of a bore x into which the pump member is inserted. In the figure, an inclined hole y having a smaller diameter than the peripheral edge is connected, and the inclined hole y is continuously connected to a spiral groove (not shown) located in the bearing portion.
[0008]
[Problems to be solved by the invention]
However, in the first conventional example, from the viewpoint of the oil amount of the oil pump, the oil in the inclined hole 1 extending obliquely upward directly from the lower end is slightly above the oil surface of the oil reservoir. Immediately, the oil is biased only by the centrifugal force on the outer peripheral side of the inner surface of the inclined hole 1, so that it is good in terms of oil rising force but inferior in terms of oil amount.
[0009]
Further, in the second preceding example, in order to raise the head of the centrifugal pump, it is necessary to increase the diameter of the cylindrical hole s, which inevitably increases the diameter of the rotation shaft r and increases the rotational sliding loss. This is disadvantageous in adopting a rotating shaft with a low sliding loss, that is, a rotating shaft with a smaller diameter.
[0010]
Furthermore, in the third preceding example, a cylindrical cone-shaped pump member w and a small-diameter inclined hole y are combined. When oil flows from the pump member w into the inclined hole y, the inclined hole opens. Since the range exists only on one side from the center of the cylindrical hole, the cylinder pumping capacity is not sufficiently transmitted to the inclined hole, and the oil amount is not sufficient.
[0011]
In order to eliminate the problems of the prior art, the present invention can obtain a sufficient lift and oil amount even if a low-loss oil with a relatively small diameter and low viscosity is used for energy saving, The purpose is to obtain a pump system with good performance and less variation in assembly.
[0012]
[Means for Solving the Problems]
The present invention has a block provided with a compression mechanism in an airtight container, an electric motor arranged at the lower part of the block, and a relatively small-diameter rotating shaft provided rotatably on a bearing of the block. An eccentric shaft with which a connecting rod that operates a piston in the cylinder engages is provided above the bearing of the rotating shaft, and an oil pump having a smaller diameter than the rotating shaft is supported in a cylindrical bore formed at the lower end of the rotating shaft. ing. The upper end of the cylindrical bore has an opening at the lower end so as to include the center, and the upper end of the cylindrical bore is parallel to the axis of the rotating shaft and the inclined path inclined outward from the lower side to the lower side of the bearing. A cylindrical passage is present in the same axial range of the cylindrical bore, the inclined passage and the cylindrical passage form one passage, and a spiral groove is formed on the outer peripheral surface of the rotating shaft located on the inner surface of the bearing. The upper end of the spiral groove is connected to an eccentric passage provided in the eccentric shaft directly or via an upper lateral passage, and is provided with an oil supply pump connected to the inside of the cylindrical bore.
[0013]
Further, in the oil supply pump divider is inserted and locked, is provided with a non-existent space divider between upper ends of the upper end and the divider cylinder bore lubrication pump is inserted fitted.
[0014]
Further, the divider has a vertically symmetrical shape and has a substantially half-moon-shaped notch in the approximate center of the end. Further, the width in the longitudinal direction is also slightly increased in the vicinity of the center, and a press-fitting portion is formed and press-fitted and fixed in the oil pump.
[0015]
Further, the ratio between the diameter of the cylindrical bore and the diameter of the inclined passage is set to 1: 0.6 to 0.8.
[0016]
In such a configuration, the oil in the oil supply pump and the cylindrical bore forms a well-known parabolic free surface by centrifugal force, and the oil reaches the entire circumference of the cylindrical bore. From the upper end of the cylindrical bore to the upper side, the cross-sectional area of the combined passage of the inclined passage and the cylindrical passage gradually and continuously increases. That is, as the shape of the cross-sectional area of the combined passage, the upper end of the cylindrical bore and the joint portion of the combined passage are circular, but from above the curved surface, the cross-sectional area continuously increases to one end of the circular shape. The groove shape to be formed is given. From the upper end of the cylindrical bore to the combined passage, the oil flows into the outer peripheral side near the outer surface of the rotating shaft as seen from the inclined passage axis. At the same time, in the oil in the cylindrical pump, the oil on the anti-inclined side, that is, on the outer peripheral surface of the cylinder parallel to the shaft core flows into the groove-shaped portion by centrifugal force due to rotation.
[0017]
Further, by forming a space above the divider, the relative angle dependency of the divider insertion angle and the inclined passage is alleviated.
[0018]
Further, due to the substantially half-moon-shaped cutouts provided at both ends of the divider, even if the lower end of the divider is shifted from the center of the oil pump inlet hole, the opening ratio of the divided two inlets of the oil pump inlet hole is increased. There is no change.
[0019]
Further, by increasing the width in the vicinity of the center in the longitudinal direction, there is no divider insertion pressure direction, and the divider can be assembled with very little bending.
[0020]
In addition, by setting the ratio of the diameter of the cylindrical bore and the diameter of the inclined passage to 1: 0.6 to 0.8, it is possible to maximize the oil lifting ability by the inclined passage.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
A description will be given below with reference to the drawings illustrating an embodiment of the present invention.
[0022]
Reference numeral 1 denotes a hermetic electric compressor in which a compressor unit 6 in which an electric motor 3 and a compression mechanism 4 are integrated in a block 5 is housed in an upper and lower hermetic container 2. Reference numeral 7 denotes a rotating shaft pivotally fixed to the bearing portion 8 of the block 5, which has a relatively small diameter (for example, a diameter of about 16 to 18 mm). The large end portion of the connecting rod 10 is connected to the eccentric shaft 9 at the upper end, and the small end portion A piston 13 that slides in the cylinder 12 is connected to the piston pin 11. 14 is a valve plate having a suction hole, a suction valve, a discharge hole, and a discharge valve (all not shown), 15 is a cylinder head in which a suction chamber and a discharge chamber (none are shown) are divided. Is an inhalation muffler.
[0023]
An oil supply pump 17 is press-fitted into a cylindrical bore 18 having a smaller diameter (for example, about 8 to 14 mm) than the rotary shaft 7 provided at the lower end of the rotary shaft 7. Reference numeral 19 denotes an inclined passage that extends obliquely and upward from the upper end of the cylindrical bore 18 and has a diameter slightly smaller than that of the cylindrical bore 18 (for example, about 5 to 12 mm), and includes the center of the cylindrical bore 18 within the inner diameter thereof. In this way, a part of the lower end of the outer peripheral surface is located close to the cylindrical bore 18 so as to be inscribed. Reference numeral 31 denotes a cylindrical passage extending upward from the upper end of the cylindrical bore 18 and parallel to the axial center of the cylindrical bore 18, and its diameter is slightly smaller than the cylindrical bore (for example, a diameter obtained by subtracting the thickness of the cylindrical bore, 8 ˜14 mm), and the lower end of the outer peripheral surface is positioned so as to be inscribed in the cylindrical bore 18.
[0024]
Further, the upper end of the combined passage of the inclined passage and the cylindrical passage is arranged so as to reach the lower side of the bearing 8 and approach the outer peripheral surface of the rotary shaft 7. A spiral groove 20 communicates with the combined passage of the inclined passage 19 and the cylindrical passage 31 through the lower lateral hole 21. The upper end of the spiral groove 20 are communicated with the upper transverse hole 24 in the eccentric passage 23 in eccentric shaft 9.
[0025]
26 is a divider made of a thin plate that is press-fitted and fixed in the oil pump 17. The upper and lower ends have a substantially half-moon-shaped cutout 27, which is formed vertically symmetrical so that the vertical direction is lost. Reference numeral 28 denotes a press-fit portion in which a substantially intermediate position is formed slightly wider. Reference numeral 29 denotes an inlet hole provided at the bottom center of the oil supply pump 17.
[0026]
Next, the behavior of oil will be described with reference to FIGS.
[0027]
As the rotary shaft 7 rotates, the oil 30 rises in the oil pump 17 over the entire inner peripheral wall. The oil in part A directly flows into the inclined passage 19, and the oil in part B on the outer peripheral surface side of the cylindrical road 31 is sucked upward on the wall surface of the cylindrical passage 31, and is indicated by an arrow in FIG. A flow C as shown is created and merged into the outer peripheral wall side flow D of the inclined passage 19. That is, the product of the present invention acts to create a flow from the entire area of the oil supply pump 17 to the combined passage composed of the inclined passage 19 and the cylindrical passage 31 as compared with the conventional one.
[0028]
FIG. 7 shows data obtained by measuring the correlation between the rotational speed of the conventional rotary shaft and the oil supply amount of the product of the present invention using the rotary shaft having the same diameter, which was performed by the present inventors. In the conventional example 1 shown in FIG. 8, the conventional example 2 shown in FIG. 9 and the product of the present invention, the product of the present invention is superior.
[0029]
Here, in the product of the present invention, the ratio of the diameter of the cylindrical bore to the inclined passage is set to 1: 0.6 to 0.8. When the diameter ratio of the inclined passage when the diameter of the cylindrical bore is 1 is smaller than 0.6, the diameter of the inclined passage does not include the center of the cylindrical bore, and sufficient oil lifting ability cannot be exhibited.
[0030]
Therefore, in the model of FIG. 10, since the lower end of the inclined passage opens only to one side, only a part of the oil in the inner periphery of the oil pump is guided to the inclined passage, and the characteristics are considered to be deteriorated compared to the product of the present invention. .
[0031]
On the other hand, when the diameter ratio is larger than 0.8, the wall thickness composed of the upper end surface of the inclined passage and the outer surface of the rotating shaft becomes extremely small, and bite breakage occurs during production processing, which deteriorates mass productivity. If the inclination angle of the inclined passage is made smaller in order to prevent the deterioration of mass productivity, the oil lifting ability of the inclined passage cannot be fully exhibited.
[0032]
【The invention's effect】
With the above-described configuration, the present invention can guide the oil supply capability of the oil supply pump to the combined passage of the inclined passage and the cylindrical passage with little loss even if a relatively small-diameter rotating shaft is used, and is a highly efficient compressor. Can be obtained.
[0033]
Further, by providing a space where no divider exists above the divider, the influence of the insertion angle of the divider and the relative angle of the inclined passage can be removed, and the assembly workability can be improved.
[0034]
In addition, the approximately half-moon-shaped notch and the press-fitting portion of the divider can prevent variation in the amount of oil supply due to the uneven division of the inlet hole of the divider and the oil supply pump, thereby improving workability and thus providing an inexpensive compressor.
[0035]
Further, by setting the ratio of the diameter of the cylindrical bore and the inclined passage to 1: 0.6 to 0.8, the oil lifting ability by the combined passage of the inclined passage and the cylindrical passage can be maximized.
[Brief description of the drawings]
1 is a cross-sectional view of a hermetic electric compressor according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of a main part of the embodiment. FIG. 3 is a cross-sectional view taken along line III-III in FIG. 4 is a cross-sectional view corresponding to FIG. 2 showing the operation status of the embodiment. FIG. 5 is a schematic perspective view showing the operation status of the embodiment. FIG. 6 is a perspective view of the divider of the embodiment. 7 is a characteristic diagram showing the rotational speed and oil amount of the embodiment and the conventional example. FIG. 8 is a cross-sectional view showing the conventional example 1. FIG. 9 is a cross-sectional view showing the conventional example 2. FIG. Sectional view [Explanation of symbols]
2 Sealed container 3 Electric motor 4 Compression mechanism section 5 Block 7 Rotating shaft 9 Eccentric shaft 10 Connecting rod 12 Cylinder 13 Piston 17 Oil pump 18 Cylindrical bore 19 Inclined passage 20 Spiral groove 31 Cylindrical passage

Claims (4)

密閉容器内に、圧縮機構部を備えたブロックと、このブロックの下部に配置した電動モータと、前記ブロックの軸受に回転自在に設けた比較的小径の回転軸を有し、この回転軸の軸受上方にはシリンダ内のピストンを動作さすコンロッドが係合する偏芯軸を備えており、前記回転軸より小径の給油ポンプが前記回転軸の下端に形成した円筒ボア内に支持され、この円筒ボアの上端には中心を含むように下端が開口し、上端が前記軸受の下方に達するように、下方から上方へかけて外側に傾斜した傾斜通路と前記回転軸の軸芯に平行な円筒通路が前記円筒ボアの軸方向の同じ範囲に存在し、かつ前記傾斜通路と前記円筒通路が一つの通路を形成し、更に、前記軸受内面に位置する前記回転軸の外周面にはスパイラル溝が形成され、このスパイラル溝の下端は前記傾斜通路と交差する下部横孔路で連通し、スパイラル溝の上端は偏芯軸に設けた偏芯通路直接、あるいは上部横通路にて連結してなる密閉型電動圧縮機。A sealed container has a block having a compression mechanism, an electric motor disposed at the lower portion of the block, and a relatively small-diameter rotating shaft rotatably provided on the bearing of the block. An eccentric shaft with which a connecting rod that operates a piston in the cylinder engages is provided above, and an oil supply pump having a smaller diameter than the rotating shaft is supported in a cylindrical bore formed at the lower end of the rotating shaft. The upper end of the shaft has an opening at the lower end so as to include the center, and an inclined passage inclined outward from the lower side to the upper side so that the upper end reaches the lower side of the bearing, and a cylindrical passage parallel to the axis of the rotating shaft. The inclined passage and the cylindrical passage form one passage in the same axial range of the cylindrical bore, and a spiral groove is formed on the outer peripheral surface of the rotating shaft located on the inner surface of the bearing. This spira The lower end of the grooves communicates with the lower transverse bore path that intersects the inclined path, the upper end of the spiral groove formed by connecting directly at, or the upper horizontal passage eccentric passage provided in the eccentric shaft hermetic electric compressor . 密閉容器内に、圧縮機構部を備えたブロックと、このブロックの下部に配置した電動モータと、前記ブロックの軸受に回転自在に設けた比較的小径の回転軸を有し、この回転軸の上方にはシリンダ内のピストンを動作さすコンロッドが係合する偏芯軸を備えており、前記回転軸より小径の給油ポンプが前記回転軸の下端に形成した円筒ボア内に支持され、この円筒ボアの上端に下端が開口し、上端が前記軸受の下方に達するように、下方から上方へかけて外側に傾斜した傾斜通路と前記回転軸の軸芯に平行な円筒通路が前記円筒ボアの軸方向の同じ範囲に存在し、かつ前記傾斜通路と前記円筒通路が一つの通路を形成し、更に、前記軸受内面に位置する前記回転軸の外周面にはスパイラル溝が形成され、このスパイラル溝の下端は前記傾斜通路と交差する下部横孔路で連通し、スパイラル溝の上端は偏芯軸に設けた偏芯通路直接、あるいは上部横通路にて連結し、前記給油ポンプ内にはディバイダーが挿入係止され、前記円筒ボアの上端と前記ディバイダーの端間にディバイダーの存在しない空間を設けた密閉型電動圧縮機。A sealed container has a block having a compression mechanism, an electric motor disposed at the lower portion of the block, and a relatively small-diameter rotating shaft rotatably provided on a bearing of the block, above the rotating shaft. Has an eccentric shaft that engages with a connecting rod that operates a piston in the cylinder, and an oil pump having a diameter smaller than that of the rotating shaft is supported in a cylindrical bore formed at the lower end of the rotating shaft. An inclined passage that is inclined outward from below to above and a cylindrical passage that is parallel to the axis of the rotating shaft so that the lower end opens at the upper end and reaches the lower side of the bearing, and an axial direction of the cylindrical bore. In addition, the inclined passage and the cylindrical passage form one passage, and a spiral groove is formed on the outer peripheral surface of the rotating shaft located on the inner surface of the bearing, and the lower end of the spiral groove is Slant Communicating with the lower transverse bore path intersecting the upper end of the spiral groove is connected by direct or upper eyelet on the eccentric passage provided in eccentric shaft, divider is inserted and locked in the said oil supply pump, hermetic electric compressor provided with spaces without the divider between the upper end of the upper end and the divider of the cylindrical bore. 前記ディバイダーは上下対称形状をなし、端部の略中央に略半月状の切欠を有し、また長手方向のやはり中央付近の幅を端部に比べわずかに大きくなし圧入部を形成し、給油ポンプ内に圧入してなる請求項2記載の密閉型電動圧縮機。  The divider has a vertically symmetrical shape, has a substantially half-moon-shaped notch in the approximate center of the end, and has a slightly larger width in the vicinity of the center in the longitudinal direction than the end, forming a press-fit portion, and an oil pump The hermetic electric compressor according to claim 2, wherein the hermetic electric compressor is press-fitted into the inside. 密閉容器内に、圧縮機構部を備えたブロックと、このブロックの下部に配置した電動モータと、前記ブロックの軸受に回転自在に設けた比較的小径の回転軸を有し、この回転軸の上方にはシリンダ内のピストンを動作さすコンロッドが係合する偏芯軸を備えており、前記回転軸より小径の給油ポンプが前記回転軸の下端に形成した円筒ボア内に支持され、この円筒ボアの上端に下端が開口し、上端が前記軸受の下方に達するように、下方から上方へかけて外側に傾斜した傾斜通路と前記回転軸の軸芯に平行な円筒通路が前記円筒ボアの軸方向の同じ範囲に存在し、かつ前記傾斜通路と前記円筒通路が一つの通路を形成し、更に、前記軸受内面に位置する前記回転軸の外周面にはスパイラル溝が形成され、このスパイラル溝の下端は前記傾斜通路と交差する下部横孔路で連通し、スパイラル溝の上端は偏芯軸に設けた偏芯通路直接、あるいは上部横通路にて連結し、前記給油ポンプ内にはディバイダーが挿入係止され、前記円筒ボアの上端と前記ディバイダーの下端間にディバイダーの存在しない空間を設け、前記ディバイダーは上下対称形状をなし、端部の略中央に略半月状の切欠を有し、また長手方向のやはり中央付近の幅を端部に比べわずかに大きくなし圧入部を形成し、給油ポンプ内に圧入固定してなるとともに、前記円筒ボアの直径と傾斜通路の直径の比を1:0.6〜0.8に設定した密閉型電動圧縮機。A sealed container has a block having a compression mechanism, an electric motor disposed at the lower portion of the block, and a relatively small-diameter rotating shaft rotatably provided on a bearing of the block, above the rotating shaft. Has an eccentric shaft that engages with a connecting rod that operates a piston in the cylinder, and an oil pump having a diameter smaller than that of the rotating shaft is supported in a cylindrical bore formed at the lower end of the rotating shaft. An inclined passage that is inclined outward from below to above and a cylindrical passage that is parallel to the axis of the rotating shaft so that the lower end opens at the upper end and reaches the lower side of the bearing, and an axial direction of the cylindrical bore. In addition, the inclined passage and the cylindrical passage form one passage, and a spiral groove is formed on the outer peripheral surface of the rotating shaft located on the inner surface of the bearing, and the lower end of the spiral groove is Slant Communicating with the lower transverse bore path intersecting the upper end of the spiral groove is connected by direct or upper eyelet on the eccentric passage provided in eccentric shaft, divider is inserted and locked in the said oil supply pump, A space where no divider is present is provided between the upper end of the cylindrical bore and the lower end of the divider, the divider has a vertically symmetrical shape, has a substantially half-moon-like notch at the center of the end, and is also the center in the longitudinal direction. The width of the vicinity is slightly larger than the end, and a press-fitting portion is formed and press-fitted and fixed in the oil pump, and the ratio of the diameter of the cylindrical bore to the diameter of the inclined passage is 1: 0.6-0. A hermetic electric compressor set to 8.
JP09858099A 1999-04-06 1999-04-06 Hermetic electric compressor Expired - Fee Related JP4265025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09858099A JP4265025B2 (en) 1999-04-06 1999-04-06 Hermetic electric compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09858099A JP4265025B2 (en) 1999-04-06 1999-04-06 Hermetic electric compressor

Publications (2)

Publication Number Publication Date
JP2000291551A JP2000291551A (en) 2000-10-17
JP4265025B2 true JP4265025B2 (en) 2009-05-20

Family

ID=14223606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09858099A Expired - Fee Related JP4265025B2 (en) 1999-04-06 1999-04-06 Hermetic electric compressor

Country Status (1)

Country Link
JP (1) JP4265025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900650A (en) * 2011-07-29 2013-01-30 惠而浦股份公司 Oil pumping system, shaft for same and hermetic compressor comprising oil pumping system and/or shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759862B2 (en) * 2001-07-16 2011-08-31 パナソニック株式会社 Hermetic electric compressor
CN101646870B (en) 2008-02-07 2011-12-21 松下电器产业株式会社 Hermetic compressor and method of manufacturing the same
KR102422698B1 (en) * 2020-11-06 2022-07-20 엘지전자 주식회사 Hermetic compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102900650A (en) * 2011-07-29 2013-01-30 惠而浦股份公司 Oil pumping system, shaft for same and hermetic compressor comprising oil pumping system and/or shaft

Also Published As

Publication number Publication date
JP2000291551A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
JP4605290B2 (en) Hermetic compressor
JP2003028065A (en) Hermetically closed electric compressor
JPH08200254A (en) Scroll compressor
JP2616094B2 (en) Scroll compressor
JP2000087856A (en) Closed type electrically driven compressor
JP4265025B2 (en) Hermetic electric compressor
JP2000145637A (en) Sealed electric compressor
US20050196291A1 (en) Piston compressor
US11668308B2 (en) Compressor having sliding portion provided with oil retainer
JP4103822B2 (en) Piston compressor
JP3982697B2 (en) Compressor
KR20010111643A (en) Structure for supporting swash plate to maximum slant degree in compressor
JPS61106992A (en) Rotary compressor
US6212995B1 (en) Variable-displacement inclined plate compressor
JP2004092648A (en) Compressor
JP3230741B2 (en) Compressor
JP2002147346A (en) Pulsation reducing structure of swash plate type compressor
JP5703752B2 (en) Compressor
KR101181108B1 (en) Variable Capacity Compressor
JP2019218879A (en) Suction valve structure for reciprocating compressor, and reciprocating compressor
US20230383747A1 (en) Scroll compressor
JP2001193647A (en) Reciprocating compressor
JP4974970B2 (en) Sealed electric compressor and refrigerator-freezer
KR101261136B1 (en) compressor
JPH06137291A (en) Rolling piston type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees