JP4263545B2 - Twisted wire strand breakage diagnostic method and diagnostic device - Google Patents

Twisted wire strand breakage diagnostic method and diagnostic device Download PDF

Info

Publication number
JP4263545B2
JP4263545B2 JP2003178420A JP2003178420A JP4263545B2 JP 4263545 B2 JP4263545 B2 JP 4263545B2 JP 2003178420 A JP2003178420 A JP 2003178420A JP 2003178420 A JP2003178420 A JP 2003178420A JP 4263545 B2 JP4263545 B2 JP 4263545B2
Authority
JP
Japan
Prior art keywords
wire
twisted
value
electric wire
diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178420A
Other languages
Japanese (ja)
Other versions
JP2005020813A (en
Inventor
喜一郎 京極
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuriku Electric Power Co
Original Assignee
Hokuriku Electric Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuriku Electric Power Co filed Critical Hokuriku Electric Power Co
Priority to JP2003178420A priority Critical patent/JP4263545B2/en
Publication of JP2005020813A publication Critical patent/JP2005020813A/en
Application granted granted Critical
Publication of JP4263545B2 publication Critical patent/JP4263545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【発明が属する技術分野】
通電状態のヨリ電線周囲の磁界強度を測定し、ヨリ電線内部の素線切れを検出するヨリ電線の素線切れ診断方法及びその装置に関する。
【0002】
【従来の技術】
ヨリ電線は、素線と呼ばれる複数の導線で構成された電線であって、当該ヨリ電線を構成する各素線は、同心円状の複数の層(内層や外層等)を形作ってヨリ合わされており、その表面に絶縁性皮膜が設けられているか否かにより、被覆ヨリ電線又は裸ヨリ電線と呼ばれている(図2参照)。こういったヨリ電線は、応力腐食等により素線切れが発生する。そして、その状況が進展すると複数の素線切れとなり、最終的には断線により停電や公衆災害に繋がる虞もある。
【0003】
対策として、前記応力腐食等に必要な水を浸入させない水密電線への更新工事も行われているが、電線の更新は長期間と多額の工事費を要するので、この様なヨリ電線の素線切れ状態を通電時に診断できれば、未劣化電線の取り替え時期延期によって工事コストの削減を図れるため、その様な診断を可能とする技術の開発が求められている。
【0004】
従来、この様なヨリ電線の素線切れ診断に際しては、電線を挟んで互いに対向する磁気センサ、或いは、例えば特許文献1にある様に、ヨリ電線を中心に置いて円形に配置された磁気センサの測定値の相互偏差の瞬時値をある閾値と比較することにより素線切れを検出するセンサ・ユニットが開発されている。また、センサを電線表面に弾性的に押し付けて、電線の表面に接触させながら測定することにより電線の不規則な撓みを矯正することで、素線切れの検出精度を向上させる方法も紹介されている。
【0005】
【特許文献1】
特開2002−228700号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記従来の方法では、素線切れによる磁界強度の変動が微少であることや、架線された電線には不規則な撓みが生じること、或いは、電線上を移動しながら測定することにより、電線を挟んで互いに対向する磁気センサの測定値の相互偏差の瞬時値では素線切れ以外の要因で生じる磁界変動と素線切れによる磁界変動との識別が困難である場合がある。つまり、素線切れが無い電線を素線切れ有りと診断し、逆に素線切れの有る電線を見落とす可能性が否めないというのが現状である。また、ヨリ電線を中心に置いて多数の磁気センサが円形に配置されたセンサユニットを用いたとしても、診断対象たるヨリ線は、長手方向の位置に応じて各素線の断面上での位置が異なる構造を持ち、また、そのデータ数も多いために、それらのデータを効率よく精査し正確な診断結果を得ることは容易では無いと言う背景から、センサユニット等の装置改良と共に、効率的且つ実用的なヨリ電線の素線切れ診断方法の提供が求められていた。
【0007】
そこで、本発明が解決しようとする課題は、素線切れ固有の磁界強度の分布状態を、他の要因で生じる異常な磁界強度の分布状態とを明確に識別でき、且つ当該素線切れが生じている箇所を正確に把握出来るヨリ電線の素線切れ診断方法及び診断装置の提供を目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決する為になされた本発明によるヨリ電線の素線切れ診断方法は、通電状態にあるヨリ電線を中央に置いてその周囲に複数の磁気センサを等角度間隔で円形に支持するセンサユニットを、前記ヨリ電線の長手方向に当該センサユニットが回転しないように移動させ、当該移動領域中の複数の位置において前記磁界強度の測定処理を行い、前記移動領域中の複数の位置における各磁気センサの測定値から導かれた診断数値の分布状態から素線切れ固有の異常数値分布が存在する領域を検出し、当該異常数値分布が存在する領域内での診断数値の分布状態並びに各診断数値を持つ箇所における前記ヨリ電線の長手方向の位置座標及び当該ヨリ電線周囲の角座標から素線破断箇所を導き出すことを特徴とする。
【0009】
前記診断数値が、前記各測定値を、ヨリ電線の長手方向における素線のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割ったエリア相対比率や、前記各測定値を、各サンプリング位置における複数の磁気センサ各々の前記測定値の平均値で割って得た位置相対比率、或いは、前記各測定値を、前記ヨリ電線の長手方向における素線のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割って得たエリア相対比率を、更に各サンプリング位置における複数の磁気センサ各々の前記エリア相対比率の平均値で割って得たエリア・位置相対比率や、各サンプリング位置における複数の磁気センサ各々の前記測定値の平均値で割って得た位置相対比率を、前記ヨリ電線の長手方向における素線のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全位置相対比率の平均値で割って得た位置・エリア相対比率等の補正値であってもよく、前記異常数値分布が当該ヨリ電線の素線のヨリに沿って分布することを素線切れ有りと判定する為の条件とした判定基準を用いてもよい。
【0010】
また、上記課題を解決する為になされた本発明によるヨリ電線の素線切れ診断装置は、通電状態にあるヨリ電線を中央に置いてその周囲に複数の磁気センサを等角度間隔で円形に支持するセンサユニットを、前記ヨリ電線の長手方向に当該センサユニットが回転しないように移動させ、当該移動領域中の複数の位置において前記磁界強度の測定処理において前記センサユニットによって測定された前記各磁気センサの測定値並びに各測定値を測定した箇所の前記ヨリ電線長手方向の位置座標及び当該ヨリ電線周囲の角座標を採取する入力手段と、前記移動領域中の複数の位置における各磁気センサの測定値から診断数値を導く演算手段と、演算手段によって導かれた診断数値の分布状態から素線切れ固有の異常数値分布が存在する領域を検出し、当該異常数値分布が存在する領域内での診断数値の分布状態並びに各診断数値を持つ箇所における前記ヨリ電線の長手方向の位置座標及び当該ヨリ電線周囲の角座標から素線切れの有無及び位置を診断する判定手段と、を具備することを特徴とする。
【0011】
前記診断数値として、前記各測定値を、ヨリ電線の長手方向における素線のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割ったエリア相対比率を導く演算手段や、前記診断数値として、前記各測定値を、各サンプリング位置における複数の磁気センサ各々の前記測定値の平均値で割った位置相対比率を導く演算手段、或いは、前記診断数値として、各測定値をヨリ電線の長手方向における素線のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割って得たエリア相対比率を、更に、各サンプリング位置における複数の磁気センサ各々の前記エリア相対比率の平均値で割ってエリア・位置相対比率を導く演算手段や、前記診断数値として、前記各測定値を各サンプリング位置における複数の磁気センサ各々の前記測定値の平均値で割って得た位置相対比率を、更に、前記ヨリ電線の長手方向における素線のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全位置相対比率の平均値で割って位置・エリア相対比率を導く演算手段を具備したヨリ電線の素線切れ診断装置であってもよいし、前記異常数値分布が当該ヨリ電線の素線のヨリに沿って分布することを素線切れ有りと判定する為の条件とした判定手段を具備したヨリ電線の素線切れ診断装置であってもよい。
【0012】
【発明の実施の形態】
以下、本発明によるヨリ電線の素線切れ診断方法及び診断装置の実施の形態を図面に基づき説明する。
【0013】
この例は、複数の磁気センサ2を具備したセンサユニット3を、架線された通電状態のヨリ電線1に装着し、前記ヨリ電線1の長手方向に移動しながらヨリ電線1の周囲の磁界強度を連続的に、又は間欠的に測定し(磁界強度測定処理)、前記センサユニット3によって測定された前記各磁気センサ2の測定値並びに各測定値を測定した箇所における前記ヨリ電線1の長手方向の位置座標及び当該ヨリ電線1の周囲の角座標を採取してヨリ電線1を破壊することなく、その被覆8内部で起こる素線切れの有無及び位置を診断するものである。
【0014】
前記センサユニット3は、ホール素子からなる磁気センサ2でヨリ電線1の周囲全体を囲み、その中をヨリ電線1が支障無く通過出来るように、ヨリ電線1の直径より僅かに大きい略円形の空隙9に面して複数個(当該例では12個)の磁気センサ2が等角度間隔(30°ピッチ)で円形に配置し一体的に支持されている。当該センサユニット3は、極めて長いヨリ電線1のいずれの箇所からでもセンサユニット3を装着できる様にするために、複数(当該例では2個)のユニット10が開閉可能に連結された集合ユニットとして構成され、前記空隙9へ診断しようとするヨリ電線1を導入し得る開閉機構11が設けられている。更に、当該センサユニット3には、ヨリ電線1へ装着した後、当該ヨリ電線1の周囲を回転することなく長手方向へ移動させるための構造が適宜与えられる(図1参照)。
【0015】
前記センサユニット3には、前記磁気センサ2の出力を増幅するアンプ、ピークホールド回路、A/D変換器、及び無線モデムからなるインターフェースユニット13が付設され、無線モデムを備えたヨリ電線の素線切れ診断装置(以下、診断装置と記す。)と無線通信できる様にされている(図4参照)。
【0016】
前記磁界強度測定処理に際しては、診断しようとするヨリ電線1に、前記センサユニット3を装着して開閉機構11を閉じた後、当該センサユニット3を前記インターフェースユニット13と共にヨリ電線1の長手方向に移動しながら、当該ヨリ電線1の周囲の磁界強度を連続的に、又は間欠的に診断したい範囲を測定し、前記センサユニット3の移動の単位長毎に各磁気センサ2別の磁界強度測定値(測定値)をサンプリングし、前記位置座標及び角座標が伴った測定データとして前記診断装置へ無線送信する。
【0017】
当該例では、前記センサユニット3を、30〜40cm/secで移動させつつ0.02sec間隔で、前記12個の磁気センサ2でほぼ同時に測定することにより、0.6cm〜0.8cm間隔で磁界強度を測定できる。これによって、素線切れが発生していても容易にそれを診断し難い例、例えば新品のヨリ電線1の様に、素線4間の電気抵抗が小さく導体(素線4)間の電流移動が容易なヨリ電線1の診断を行った場合でも、診断に必要な磁界変動情報たる測定値を、極狭い磁界変動範囲ながらも十分に確保することができる。
【0018】
前記診断装置は、CPUを備えたコンピュータシステムであって、前記センサユニット3によって測定された前記各磁気センサ2の測定値並びに各測定値を測定した箇所における前記ヨリ電線1の長手方向の位置座標及び当該ヨリ電線1の周囲の角座標(前記測定データ)を前記インターフェースユニット13から採取する入力手段5と、前記移動領域中の複数の位置における各磁気センサ2の測定値から診断数値を導く演算手段6と、当該演算手段6によって導かれた診断数値の分布状態から素線切れ固有の異常数値分布が存在する領域を検出し、当該異常数値分布が存在する領域内での診断数値の分布状態並びに各診断数値を採取した箇所における前記ヨリ電線1の長手方向の位置座標及び当該ヨリ電線1の周囲の角座標から素線切れの有無及び当該素線切れの位置を診断する判定手段7とを具備する(図3及び図4参照)。
【0019】
前記入力手段5は、前記センサユニット3から送信されてきた測定値データを受信する無線モデムと、受信した測定値データを保存する為のデータ記録手段14を具備する。
【0020】
前記12個の磁気センサ2には、センサユニット3の移動方向に向かって時計の文字盤における数字の位置関係に合わせたセンサ番号が割り当ててあり、前記の如く12個の磁気センサで同時に測定された測定値は、センサ番号順に前記インターフェースユニット13から送信され、前記診断装置のデータ記録手段14にセンサ番号及びサンプリング位置に対応させた形で保存される(表1参考。尚、表中において、サンプリング位置はサンプリングNo.として示してある。以下同じ。)。
【0021】
【表1】

Figure 0004263545
【0022】
ここで、ヨリ電線1に流れている電流が交流である場合には、その交流電流の変動に比例して磁界強度も変動するため、少なくとも、当該交流電流の周期の半分以上の時間における測定値の絶対値の最大値を測定データとして記録装置15に保存しておくと良い。尚、当該例では、60Hzの交流電流が流れている。
【0023】
前記入力手段5のデータ記録手段14に保存した測定データは、素線切れによる磁界変動の他に、電線の不確定な撓み等の電線形状の不均一、或いは当該ヨリ電線1に流れる電流(実効値。以下、同じ。)の変動により生じる磁界変動の影響を受けたものとなっている(図5参照)。従って、その影響分を補正し素線切れ検出精度の向上を図ることが望ましい。
【0024】
先ず、各磁気センサ2毎の測定データについて、長手方向の各サンプリング位置について、当該位置における測定値(以下、自己測定値と記す。)及び当該位置の前後所定番目(補正の効果を得る為に必要且つ十分なサンプリング数が確保できる番目であって、当該例では、25番目。)までの位置(以下、補正エリアと記す。尚、この例においては約0.5secの時間に相当する。)において得られた測定値の平均(以下、エリア平均値と記す。)を求める。
【0025】
尚、測定開始位置から数えて25番目のサンプリング位置までは、自己測定値のサンプリング位置以前に25個の測定値は存在しないので、測定開始位置から51番目までを前記補正エリアとしてエリア平均値を求めることとし、同様に、測定終了位置から戻ること25番目のサンプリング位置以降についても、自己測定値のサンプリング位置以降に25個の測定値は存在しないので、測定終了位置から戻ること51番目までを前記補正エリアとしてエリア平均値を求めることとする。
【0026】
次に、各サンプリング位置における自己測定値を当該位置におけるエリア平均値で除算し、各自己測定値のエリア平均値に対する相対比率(エリア相対比率)を算出する。この様な自己測定値を各補正エリアの相対比率に変換する補正処理によって、12個の磁気センサ2それぞれの固有の感度差、並びに前記センサユニット3の移動に伴うヨリ電線1と磁気センサ2間の距離の緩やかな変動(図1参照)に起因する感度差が無視できることとなる。尚、当該例では、素線切れの無い場合の値が100となるように、更に100を乗算してエリア相対比率としている(表2参照)。しかしながら、当該エリア相対比率を診断数値とした場合では、依然測定中の電流の増減による磁界強度の位置的相違が素線切れの診断に影響することとなる(図6参照)。
【0027】
【表2】
Figure 0004263545
【0028】
そこで、各サンプリング位置における12個の磁気センサ2各々の前記エリア相対比率についての平均値(以下、エリア・位置平均比率(表2では左上に横平均と記してある。)と記す。)を求め、前記エリア相対比率を前記エリア・位置平均比率で除算し、各サンプリング位置における12個の磁気センサ2によるエリア相対比率のエリア・位置平均比率に対する相対比率(エリア・位置相対比率)を算出する。この様なエリア相対比率を位置・エリア相対比率に変換する補正処理によって、測定中の電流の増減による磁界強度の位置的相違を無視することが出来る(図7及び図8参照)。尚、当該例では、この場合も、素線切れの無い場合の値が100となるように、更に100を乗算してエリア・位置相対比率とし最終的な診断の目安となる診断数値としている(表3及び表4参照)。
【0029】
上記エリア・位置相対比率は、前記診断数値として用い得る数値(補正値)の一例であって、場合によっては、前記測定値そのものを使用しても良いし、前記エリア相対比率といった補正値を用いても良い。その他にも、各サンプリング位置における12個の磁気センサ2各々の前記測定値の平均値(以下、位置平均値と記す。)を求め、前記測定値を前記位置平均値で除算し、各サンプリング位置における12個の磁気センサ2による前記測定値の、前記位置平均値に対する相対比率(位置相対比率)なる補正値を算出して診断数値として利用しても良い。更に、各サンプリング位置の補正エリアにおける各位置相対比率の平均値(以下、位置・エリア平均比率と記す。)を算出し、各サンプリング位置における各位置相対比率を、当該位置・エリア平均比率で除算し、各位置相対比率の位置・エリア平均比率に対する相対比率として得た位置・エリア相対比率なる補正値等を診断数値として用いても良い。
【0030】
【表3】
Figure 0004263545
【表4】
Figure 0004263545
【0031】
上記の如く演算手段6により導かれた診断数値の分布状態から、前記判定手段7により、素線切れ固有の異常数値分布が存在する領域を検出し、当該異常数値分布が存在する領域内での診断数値の分布状態並びに各診断数値を採取した箇所における前記ヨリ電線1の長手方向の位置座標及び当該ヨリ電線1の周囲の角座標から素線切れの有無及び位置を診断する。
【0032】
以下、前記判定手段により、この様にして得られた診断数値を用いて行われる診断の処理フローを図9に基づき説明する。
【0033】
先ず、サンプリング位置毎に最も小さい診断数値(最も小さい磁界強度。以下、最小診断数値と記す。)を示した磁気センサ(以下、MinCHと記す。)を前記12個の磁気センサ2から抽出する(表3及び表4の右端から2列目参照)。即ち、各サンプリング位置において最も素線切れの可能性の高いヨリ電線1の角方向(ヨリ電線の断面中心から外周に向かういずれかの方向)を導くものである。
【0034】
次に、サンプリング位置毎に求めた前記MinCHの示す診断数値が、連続して6カ所以上閾値(当該例においては99.3)以下である領域を抽出する(当該例では前記表4に示した診断数値がそれに相当する)。素線切れが発生していれば、当該ヨリ電線1の長手方向へ切れている素線4に沿って一定の範囲に亘る所定レベルの磁界強度の減少が観られる(表3及び表4の最右列参照)。従って、前記6カ所以上という値はサンプリングの態様に応じて異なり、素線切れの影響が確実に表れる長さ以内であって、診断数値に生じるノイズ値が十分に除去できる値が選択される必要がある。
【0035】
そして、該当する全ての領域について、当該領域に含まれる最小診断数値のうち最も小さい値を示すMinCHの位置する角方向を素線切れが発生している断線推定箇所とし、各領域について当該断線箇所に存在する素線4のヨリ方向及びヨリピッチと、前記断線推定箇所を含む最小診断数値の連続する軌道とが一致する領域を素線切れが存在する領域(以下、断線領域と記す。)として判定する(当該例では表4の網掛け部分が形作る右下がりの斜線に相当する)。そして、磁界減少率の最も大きな位置のMinCHが存在する方向(当該例では表4におけるサンプル104の12CHのセンサ方向)を断線推定箇所として判定し、前記断線領域、或いは断線推定箇所を、前記ヨリ電線1の長手方向の位置座標及び当該ヨリ電線1の周囲の角座標をもって特定し、判定結果として出力する。
【0036】
即ち、ヨリ電線1に素線切れが発生した場合、当該ヨリ電線1の素線切れが生じている角方向の診断数値が他の方向の診断数値と比較して小さくなるので、その部分が連続する軌跡が素線のヨリ方向及びヨリピッチと一致することを確認することにより素線切れ診断の正確さを期すものである。ヨリ電線1は、その種類により、ヨリ方向及びヨリピッチが定まっており、測定するヨリ電線1のヨリ方向及びヨリピッチを前記認定条件に用いる定数の一つとして事前に設定しておく。尚、ここで示す例においては、架橋ポリエチレン絶縁電線:150sq,ヨリ方向:左ヨリ,ヨリピッチ:20cm〜30cmのヨリ電線を用いている。
【0037】
素線切れ以外の原因によっても閾値を超える診断数値が不規則に散発することはあり得るが、その様な数値が前記ヨリ電線のヨリ方向及びヨリピッチと一致して一定領域以上連続することはほとんど無く(例えば、12個の磁気センサ2を用いた場合の確率は1/12^5)、また、実際のフィールド試験等でも素線切れ以外の箇所で素線切れが存在する領域との判定を出力した例も無い。
【0038】
上記の如く、電線形状の不均一により生じる磁界変動等は、前記補正エリアの自己測定値又は前記補正値から前記エリア相対比率を求めることによって解消され、前記センサユニット3に設けられた複数の磁気センサ2それぞれの感度差、並びに、前記センサユニット3の移動に伴うヨリ電線1と磁気センサ2間の距離の変動に起因する感度差は、各サンプリング位置における自己測定値又は前記補正値から前記位置相対比率を求めることによって解消される。
【0039】
そして、これら補正値に基づき、図10に観られる素線切れ固有の磁界変動が一定の電線長手方向の位置的範囲で発生しているか否かを判定することにより、素線切れを検出する。ここで、各磁気センサ2の値の中に、素線切れ固有の磁界変動から外れた特異な値がいくつか含まれていても、前後一定範囲におけるヨリ電線1の長手方向の各位置での他の測定値が素線切れ固有の磁界変動を示していれば、素線切れと判定する。それ以外の場合は、素線切れの無しと判定する。条件によっては、素線切れの疑いあり、又は、判定不能と判定しても良い。
【0040】
前記判定手段7で出力された判定結果は、表示装置やプリンタ等の出力手段16によって画像や書面として出力され、或いは前記記録装置15等に保存される。素線切れが存在する旨の判定結果は、上記の如く当該領域、或いは断線推定箇所における前記ヨリ電線1の長手方向の位置座標及び当該ヨリ電線1の周囲の角座標をもって素線破断箇所を特定し、素線切れが存在しない旨の判定結果は、例えば「素線切れ無し」等、その旨を明確に示す適当な表示がなされることとなる。また、当該判定結果と共に、測定データ毎に測定日時、場所、電線記号等の診断した電線を特定出来るような情報を付加して各種出力手段16や記録装置15へ出力することが望ましい。
【0041】
【発明の効果】
以上の如く、本発明によるヨリ電線の素線切れ診断方法及び診断装置によれば、ヨリ電線の内部の素線切れの有無や状態を通電状態で非破壊診断できるので、ヨリ電線検査のために停電する必要がないことは元より、移動領域中の複数の位置における各磁気センサの測定値から導かれた診断数値の分布状態から素線切れ固有の異常数値分布が存在する領域を検出する手法を採ったことによって、電線形状の不均一(非直線性、局所的曲がり、陥没等)、被覆内での導体の偏芯、被覆の傷、付着物、及び振動等による磁界変動と素線切れによる磁界変動とを明確に識別することができる。
【0042】
また、各測定値から導いた前記エリア相対比率や位置相対比率、或いはエリア・位置相対比率や位置・エリア相対比率等の補正値を診断数値として診断することにより、電線の撓み、変形、被覆内での導体の偏芯等による緩やかな磁界変動をキャンセルできる。また、素線切れ固有の磁界変動(異常数値分布)が電線長手方向の一定範囲で発生しているか、例えば、前記異常数値分布が当該ヨリ電線の素線のヨリに沿って分布することを素線切れ有りと判定する為の条件とした判定をすることにより、電線の局所的変形、陥没、被覆の傷、被覆の付着物、及び振動等による影響を受けた瞬時的な磁界変動のみで素線切れを診断しようとする従来の方法と比較して、素線切れを高精度に検出可能とすると共に、素線切れが無い電線を素線切れと誤診断することも格段に少なくすることができる。
【0043】
以上の様に、診断が容易で、且つ信頼性の高い結果が得られることから、設備安全及び公衆安全が図られると共に、未劣化電線を選別して更新工事の時期を先送りできることで電線の設備保守工事のコスト削減も図ることが可能となる。
【図面の簡単な説明】
【図1】本発明によるヨリ電線の素線切れ診断方法に用いるセンサユニットの一例を示す正面図である。
【図2】本発明によるヨリ電線の素線切れ診断方法に用いるヨリ電線の構造を示す説明図である。
【図3】本発明によるヨリ電線の素線切れ診断装置の構成例を示すブロック図である。
【図4】本発明によるヨリ電線の素線切れ診断方法に用いるセンサユニットとインターフェースユニットの構成例を示すブロック図である。
【図5】素線非破断箇所近傍における測定値の周囲分布を示す説明図である。
【図6】素線非破断箇所近傍におけるエリア相対値の周囲分布を示す説明図である。
【図7】素線非破断箇所近傍における診断数値の周囲分布を示す説明図である。
【図8】素線破断箇所近傍における診断数値の周囲分布を示す説明図である。
【図9】本発明によるヨリ電線の素線切れ診断方法及び診断装置において行われる診断の処理フローの一例を示す説明図である。
【図10】素線破断箇所近傍におけるヨリ電線の長手方向の診断数値のエリア分布の一例を示す説明図である。
【符号の説明】
1 ヨリ電線,2 磁気センサ,3 センサユニット,4 素線,
5 入力手段,6 演算手段,7 判定手段,8 被覆,
9 空隙,10 ユニット,11 開閉機構,
13 インターフェースユニット,14 データ記録手段,
15 記録装置,16 出力手段,[0001]
[Technical field to which the invention belongs]
The present invention relates to a twisted wire breakage diagnosis method and apparatus for measuring the strength of a magnetic field around a twisted wire in an energized state and detecting the breakage of the strand in the twisted wire.
[0002]
[Prior art]
A twisted electric wire is an electric wire composed of a plurality of conductors called strands, and each strand constituting the twisted electric wire is twisted together by forming a plurality of concentric layers (inner layer, outer layer, etc.) Depending on whether an insulating film is provided on the surface, it is called a covered twisted wire or a bare twisted wire (see FIG. 2). Such twisted electric wires are broken due to stress corrosion or the like. And if the situation progresses, a plurality of strands will be cut, and there is a possibility that it will eventually lead to a power failure or a public disaster due to the disconnection.
[0003]
As countermeasures, renewal work for watertight cables that do not allow the entry of water necessary for stress corrosion, etc., has been carried out. However, renewal of cables requires a long period of time and a large amount of work costs. If the disconnection state can be diagnosed at the time of energization, the construction cost can be reduced by postponing the replacement period of the undegraded electric wire. Therefore, the development of a technology that enables such a diagnosis is required.
[0004]
Conventionally, when diagnosing wire breakage of such a twisted electric wire, magnetic sensors opposed to each other with the wire interposed therebetween, or a magnetic sensor arranged in a circle around the twisted electric wire as disclosed in Patent Document 1, for example A sensor unit has been developed that detects the breakage of the wire by comparing the instantaneous value of the mutual deviation of the measured values with a certain threshold value. Also introduced is a method to improve the detection accuracy of the broken wire by correcting the irregular bending of the wire by elastically pressing the sensor against the surface of the wire and making contact with the surface of the wire. Yes.
[0005]
[Patent Document 1]
JP 2002-228700 A
[0006]
[Problems to be solved by the invention]
However, in the conventional method, the fluctuation of the magnetic field intensity due to the broken wire is very small, irregular bending occurs in the wired wire, or by measuring while moving on the wire, The instantaneous value of the mutual deviation of the measured values of the magnetic sensors facing each other across the electric wire may make it difficult to distinguish between the magnetic field fluctuation caused by factors other than the broken wire and the magnetic field fluctuation caused by the broken wire. In other words, the current situation is that there is a possibility of diagnosing an unbroken wire as being unbroken, and conversely overlooking an unbroken wire. Even if a sensor unit in which a number of magnetic sensors are arranged in a circle around the twisted electric wire is used, the twisted wire to be diagnosed is positioned on the cross section of each strand according to the position in the longitudinal direction. Because of the different structure and the large number of data, it is not easy to efficiently scrutinize those data and obtain accurate diagnostic results. In addition, provision of a practical method for diagnosing strand breakage of twisted electric wires has been demanded.
[0007]
Accordingly, the problem to be solved by the present invention is that the distribution state of the magnetic field strength unique to the wire breakage can be clearly distinguished from the abnormal magnetic field strength distribution state caused by other factors, and the wire breakage occurs. An object of the present invention is to provide a method for diagnosing wire breakage of a twisted electric wire and a diagnostic device that can accurately grasp the location of the wire.
[0008]
[Means for Solving the Problems]
The twisted wire breakage diagnosis method according to the present invention made to solve the above problems is a sensor in which a twisted wire in an energized state is placed in the center, and a plurality of magnetic sensors are supported in a circle at equal angular intervals around it. The unit is moved so that the sensor unit does not rotate in the longitudinal direction of the twisted electric wire, the magnetic field strength measurement process is performed at a plurality of positions in the moving region, and each magnetic field at the plurality of positions in the moving region is performed. A region where an abnormal numerical value distribution unique to the wire breakage exists is detected from the distribution state of the diagnostic numerical value derived from the measured value of the sensor, and the distribution state of the diagnostic numerical value and each diagnostic numerical value within the region where the abnormal numerical value distribution exists The broken wire portion is derived from the position coordinate in the longitudinal direction of the twisted electric wire and the angular coordinate around the twisted wire in the place having
[0009]
The diagnostic numerical value is an area relative ratio obtained by dividing each measured value by an average value of all measured values in the region for each region of 1 pitch or more and less than 2 pitch of the twisting pitch of the strand in the longitudinal direction of the twisted electric wire, Position relative ratio obtained by dividing each measured value by the average value of each measured value of each of the plurality of magnetic sensors at each sampling position, or each measured value is the twist pitch of the strand in the longitudinal direction of the twisted electric wire The area relative ratio obtained by dividing the area of 1 pitch or more and less than 2 pitches by the average value of all the measured values in the area is further calculated by the average value of the area relative ratios of the plurality of magnetic sensors at each sampling position. The area / position relative ratio obtained by dividing, or the position relative ratio obtained by dividing by the average value of the measured values of the plurality of magnetic sensors at each sampling position, It may be a correction value such as a position / area relative ratio obtained by dividing by an average value of the relative ratios of all positions in the area for each area of 1 twist or more and less than 2 pitch of the twisting pitch of the strand in the longitudinal direction of A determination criterion may be used in which the abnormal numerical value distribution is distributed along the twist of the strand of the twisted electric wire as a condition for judging that the strand is broken.
[0010]
In addition, the twisted wire breakage diagnosis device according to the present invention, which has been made to solve the above-mentioned problems, places a twisted wire in an energized state in the center and supports a plurality of magnetic sensors in a circle at regular angular intervals. Each of the magnetic sensors measured by the sensor unit in the measurement process of the magnetic field strength at a plurality of positions in the moving region. Measured values of each of the magnetic sensors at a plurality of positions in the moving area, and input means for collecting the position coordinates in the longitudinal direction of the twisted electric wire and the angular coordinates around the twisted electric wire of each measured value Detects the numerical value from the calculation means and the region where the abnormal numerical value distribution unique to the wire breakage exists from the distribution of the diagnostic values derived by the calculation means The distribution state of diagnostic numerical values in the region where the abnormal numerical value distribution exists, the position coordinates in the longitudinal direction of the twisted electric wires in the locations having the respective diagnostic numerical values, and the presence or absence and position of the strands from the angular coordinates around the twisted electric wires And determining means for diagnosing the above.
[0011]
As the diagnostic value, an area relative ratio obtained by dividing each measured value by an average value of all measured values in the region for each region of 1 pitch or more and less than 2 pitches of the twisted wire in the longitudinal direction of the twisted electric wire is derived. As a calculation means, as the diagnostic numerical value, as the diagnostic numerical value, the calculating means for deriving a relative position ratio obtained by dividing each measured value by the average value of the measured values of each of the plurality of magnetic sensors at each sampling position, or as the diagnostic numerical value, The area relative ratio obtained by dividing the measured value by the average value of all the measured values in the region for each region of 1 to 2 pitches of the twisting pitch of the strand in the longitudinal direction of the twisted electric wire is further obtained at each sampling position. An arithmetic means for deriving an area / position relative ratio by dividing by an average value of the area relative ratios of each of a plurality of magnetic sensors, and each measured value as the diagnostic numerical value The position relative ratio obtained by dividing the average value of the measured values of each of the plurality of magnetic sensors at the sampling position is further determined for each region of 1 pitch or more and less than 2 pitches of the twisted wire in the longitudinal direction of the twisted electric wire. It may be a twisted wire breakage diagnosis device provided with a calculation means for deriving the position / area relative ratio by dividing by the average value of the relative ratios of all the positions in the region, A twisted wire breakage diagnosis device may be provided that includes a determination unit that makes it a condition for determining that there is a break in the wire distribution along the twist of the wire.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Embodiments of a twisted wire strand breakage diagnosis method and a diagnosis device according to the present invention will be described below with reference to the drawings.
[0013]
In this example, a sensor unit 3 having a plurality of magnetic sensors 2 is mounted on a twisted electric wire 1 in an energized state, and the magnetic field strength around the twisted electric wire 1 is measured while moving in the longitudinal direction of the twisted electric wire 1. Continuously or intermittently measured (magnetic field strength measurement processing), the measured value of each magnetic sensor 2 measured by the sensor unit 3 and the longitudinal direction of the twisted electric wire 1 at the position where each measured value was measured The position coordinates and the angular coordinates around the twisted electric wire 1 are collected to diagnose the presence and position of the wire breakage occurring inside the sheath 8 without destroying the twisted electric wire 1.
[0014]
The sensor unit 3 surrounds the entire periphery of the twisted electric wire 1 with a magnetic sensor 2 composed of a Hall element, and a substantially circular gap slightly larger than the diameter of the twisted electric wire 1 so that the twisted electric wire 1 can pass therethrough without any trouble. A plurality (12 in this example) of magnetic sensors 2 facing 9 are arranged in a circle at equiangular intervals (30 ° pitch) and are integrally supported. The sensor unit 3 is a collective unit in which a plurality of (two in this example) units 10 are connected so as to be openable and closable so that the sensor unit 3 can be mounted from any part of the extremely long twisted electric wire 1. An opening / closing mechanism 11 configured and capable of introducing the twisted electric wire 1 to be diagnosed into the gap 9 is provided. Further, the sensor unit 3 is appropriately provided with a structure for moving the sensor unit 3 in the longitudinal direction without rotating around the twisted electric wire 1 after being attached to the twisted electric wire 1 (see FIG. 1).
[0015]
The sensor unit 3 is provided with an interface unit 13 composed of an amplifier that amplifies the output of the magnetic sensor 2, a peak hold circuit, an A / D converter, and a wireless modem. It is configured to be able to wirelessly communicate with a cut diagnostic device (hereinafter referred to as a diagnostic device) (see FIG. 4).
[0016]
In the magnetic field intensity measurement process, the sensor unit 3 is attached to the twisted electric wire 1 to be diagnosed and the opening / closing mechanism 11 is closed, and then the sensor unit 3 is moved together with the interface unit 13 in the longitudinal direction of the twisted electric wire 1. While moving, measure the range of magnetic field strength around the twisted electric wire 1 continuously or intermittently, and measure the magnetic field strength for each magnetic sensor 2 for each unit length of movement of the sensor unit 3. (Measurement value) is sampled and wirelessly transmitted to the diagnostic apparatus as measurement data accompanied by the position coordinates and angular coordinates.
[0017]
In this example, the sensor unit 3 is moved at a rate of 30 to 40 cm / sec and measured at the same time with the twelve magnetic sensors 2 at intervals of 0.02 sec, thereby providing a magnetic field at intervals of 0.6 to 0.8 cm. Strength can be measured. As a result, even if a broken wire has occurred, it is difficult to diagnose it easily. For example, like a new twisted electric wire 1, the electric resistance between the wires 4 is small and the current is transferred between the conductors (wires 4). Even when the twisted electric wire 1 is easily diagnosed, it is possible to sufficiently ensure the measured value as magnetic field fluctuation information necessary for the diagnosis, even though the magnetic field fluctuation range is extremely narrow.
[0018]
The diagnostic device is a computer system including a CPU, and the measured values of the magnetic sensors 2 measured by the sensor unit 3 and the position coordinates in the longitudinal direction of the twisted electric wire 1 at the positions where the measured values are measured. And an input means 5 for collecting angular coordinates (the measurement data) around the twisted electric wire 1 from the interface unit 13 and an operation for deriving a diagnostic value from the measured values of the magnetic sensors 2 at a plurality of positions in the moving region. A region where an abnormal numerical value distribution unique to the wire break exists is detected from the distribution state of the diagnostic numerical value derived by the means 6 and the calculating means 6, and the distribution state of the diagnostic numerical value within the region where the abnormal numerical value distribution exists In addition, the wire breakage is determined from the position coordinates in the longitudinal direction of the twisted electric wire 1 and the angular coordinates around the twisted electric wire 1 at the location where each diagnostic numerical value is collected. No and comprises a determining unit 7 for diagnosing the position of the wire breakage (see FIGS. 3 and 4).
[0019]
The input means 5 includes a wireless modem that receives the measurement value data transmitted from the sensor unit 3 and a data recording means 14 for storing the received measurement value data.
[0020]
The twelve magnetic sensors 2 are assigned sensor numbers in accordance with the positional relationship of the numbers on the clock face in the moving direction of the sensor unit 3, and are simultaneously measured by the twelve magnetic sensors as described above. The measured values are transmitted from the interface unit 13 in the order of sensor numbers, and stored in the data recording means 14 of the diagnostic apparatus in a form corresponding to the sensor numbers and sampling positions (see Table 1). The sampling position is indicated as a sampling number (the same applies hereinafter).
[0021]
[Table 1]
Figure 0004263545
[0022]
Here, when the current flowing through the twisted electric wire 1 is an alternating current, the magnetic field strength also varies in proportion to the variation of the alternating current, so at least a measured value at a time that is at least half the period of the alternating current. It is preferable to store the maximum absolute value in the recording device 15 as measurement data. In this example, an alternating current of 60 Hz flows.
[0023]
The measurement data stored in the data recording unit 14 of the input unit 5 includes, in addition to fluctuations in the magnetic field due to wire breakage, non-uniformity in the shape of the wire, such as indefinite bending of the wire, or current flowing through the twisted wire 1 (effective Value (the same applies hereinafter)), and is affected by magnetic field fluctuations (see FIG. 5). Therefore, it is desirable to correct the influence and improve the wire breakage detection accuracy.
[0024]
First, with respect to the measurement data for each magnetic sensor 2, for each sampling position in the longitudinal direction, a measured value at that position (hereinafter referred to as a self-measured value) and a predetermined number before and after the position (to obtain the effect of correction) The position up to the position where the necessary and sufficient number of samplings can be secured (25th in this example) (hereinafter referred to as a correction area. In this example, this corresponds to about 0.5 sec.) The average of the measured values obtained in step (hereinafter referred to as area average value) is obtained.
[0025]
Since there are no 25 measurement values before the sampling position of the self-measurement value up to the 25th sampling position from the measurement start position, the area average value is determined using the correction area as the correction area from the measurement start position to the 51st sampling position. Similarly, since there are no 25 measurement values after the sampling position of the self-measurement value after the 25th sampling position after returning from the measurement end position, the return from the measurement end position is up to the 51st. An area average value is obtained as the correction area.
[0026]
Next, the self-measured value at each sampling position is divided by the area average value at that position to calculate the relative ratio of each self-measured value to the area average value (area relative ratio). By such a correction process that converts the self-measured value into a relative ratio of each correction area, the inherent sensitivity difference of each of the twelve magnetic sensors 2 and between the twisted electric wire 1 and the magnetic sensor 2 accompanying the movement of the sensor unit 3. The sensitivity difference due to the gradual fluctuation of the distance (see FIG. 1) can be ignored. In this example, the area relative ratio is further multiplied by 100 so that the value when there is no wire breakage is 100 (see Table 2). However, when the relative area ratio is a diagnostic value, the positional difference in the magnetic field intensity due to the increase or decrease of the current during measurement still affects the diagnosis of the broken wire (see FIG. 6).
[0027]
[Table 2]
Figure 0004263545
[0028]
Therefore, an average value (hereinafter referred to as an area / position average ratio (referred to as horizontal average in the upper left in Table 2)) of the area relative ratio of each of the twelve magnetic sensors 2 at each sampling position is obtained. Then, the area relative ratio is divided by the area / position average ratio, and the relative ratio (area / position relative ratio) of the area relative ratio by the 12 magnetic sensors 2 at each sampling position to the area / position average ratio is calculated. By such a correction process for converting the area relative ratio into the position / area relative ratio, the positional difference in the magnetic field intensity due to the increase or decrease of the current during measurement can be ignored (see FIGS. 7 and 8). In this example, in this case as well, so that the value when there is no wire breakage is 100, the area / position relative ratio is further multiplied by 100 to obtain a diagnosis numerical value as a final diagnosis standard ( Table 3 and Table 4).
[0029]
The area / position relative ratio is an example of a numerical value (correction value) that can be used as the diagnostic numerical value. In some cases, the measured value itself may be used, or a correction value such as the area relative ratio may be used. May be. In addition, an average value of the measurement values of each of the twelve magnetic sensors 2 at each sampling position (hereinafter referred to as a position average value) is obtained, and the measurement value is divided by the position average value to obtain each sampling position. A correction value that is a relative ratio (position relative ratio) of the measured values obtained by the twelve magnetic sensors 2 to the position average value may be calculated and used as a diagnostic value. Further, an average value of each position relative ratio in the correction area at each sampling position (hereinafter referred to as a position / area average ratio) is calculated, and each position relative ratio at each sampling position is divided by the position / area average ratio. In addition, a correction value that is a position / area relative ratio obtained as a relative ratio of each position relative ratio to the position / area average ratio may be used as a diagnostic value.
[0030]
[Table 3]
Figure 0004263545
[Table 4]
Figure 0004263545
[0031]
From the diagnostic value distribution state derived by the calculation means 6 as described above, the determination means 7 detects a region where there is an abnormal numerical value distribution unique to the wire break, and within the region where the abnormal numerical value distribution exists. The presence / absence and position of the broken wire are diagnosed from the distribution state of the diagnostic numerical values and the position coordinates in the longitudinal direction of the twisted electric wire 1 and the angular coordinates around the twisted electric wire 1 at the location where each diagnostic numerical value is collected.
[0032]
Hereinafter, a diagnosis processing flow performed by the determination means using the diagnostic numerical values obtained in this manner will be described with reference to FIG.
[0033]
First, a magnetic sensor (hereinafter referred to as MinCH) indicating the smallest diagnostic value (smallest magnetic field strength, hereinafter referred to as a minimum diagnostic value) for each sampling position is extracted from the 12 magnetic sensors 2 ( (Refer to the second column from the right end of Tables 3 and 4). That is, it leads the angular direction of the twisted electric wire 1 that is most likely to be broken at each sampling position (any direction from the center of the cross section of the twisted electric wire toward the outer periphery).
[0034]
Next, a region where the diagnostic value indicated by the MinCH obtained for each sampling position is continuously 6 or more and less than or equal to the threshold value (99.3 in this example) is extracted (in this example, as shown in Table 4 above) The diagnostic value corresponds to that). If the wire breakage has occurred, a decrease in the magnetic field strength of a predetermined level over a certain range is observed along the wire 4 cut in the longitudinal direction of the twisted electric wire 1 (the maximum in Tables 3 and 4). (See right column). Therefore, the value of 6 or more positions differs depending on the sampling mode, and it is necessary to select a value within the length that the influence of the wire breakage can surely appear and the noise value generated in the diagnostic value can be sufficiently removed. There is.
[0035]
Then, for all corresponding regions, the angular direction in which MinCH indicating the smallest value among the minimum diagnostic numerical values included in the region is set as the wire break estimated location where the wire breakage occurs, and the wire break location for each region A region in which the twist direction and twist pitch of the wire 4 existing in FIG. 4 and the continuous trajectory of the minimum diagnostic value including the disconnection estimated portion coincide with each other is determined as a region where the wire break exists (hereinafter referred to as a disconnection region). (In this example, this corresponds to the downward slanting line formed by the shaded portion in Table 4). Then, the direction in which the MinCH at the position where the magnetic field reduction rate is greatest (in this example, the 12CH sensor direction of the sample 104 in Table 4) is determined as the disconnection estimation location, and the disconnection region or the disconnection estimation location is determined as the twist A position coordinate in the longitudinal direction of the electric wire 1 and angular coordinates around the twisted electric wire 1 are specified and output as a determination result.
[0036]
That is, when the strand breakage of the twisted electric wire 1 occurs, the diagnostic value in the angular direction where the strand breakage of the twisted electric wire 1 occurs is smaller than the diagnostic value in the other direction. By confirming that the trajectory to be matched matches the twist direction and twist pitch of the strand, the accuracy of the strand break diagnosis is expected. The twisting direction and twisting pitch of the twisting electric wire 1 are determined depending on the type, and the twisting direction and twisting pitch of the twisting cable 1 to be measured is set in advance as one of the constants used for the above-mentioned certification conditions. In the example shown here, a cross-linked polyethylene insulated wire: 150 sq, twist direction: left twist, twist pitch: 20-30 cm.
[0037]
Diagnostic values exceeding the threshold may be irregularly scattered due to causes other than wire breakage, but such numerical values are almost consistent with the twist direction and twist pitch of the twisted electric wire and are continuously over a certain region. No (for example, the probability of using 12 magnetic sensors 2 is 1/12 ^ 5), and in an actual field test or the like, it is determined that there is a region where there is a broken wire other than the broken wire. There is no output example.
[0038]
As described above, magnetic field fluctuations and the like caused by non-uniformity of the wire shape are eliminated by obtaining the area relative ratio from the self-measured value of the correction area or the correction value, and a plurality of magnetic fields provided in the sensor unit 3 The sensitivity difference due to each sensor 2 difference and the fluctuation in the distance between the twisted electric wire 1 and the magnetic sensor 2 due to the movement of the sensor unit 3 is calculated from the self-measured value or the correction value at each sampling position. It is solved by calculating the relative ratio.
[0039]
Then, based on these correction values, it is determined whether or not the variation in the magnetic field unique to the wire break seen in FIG. 10 occurs in a certain positional range in the longitudinal direction of the electric wire, thereby detecting the wire break. Here, even if the values of each magnetic sensor 2 include some unique values that deviate from the variation in the magnetic field inherent to the wire breakage, the values at each position in the longitudinal direction of the twisted electric wire 1 in a certain front and rear range are included. If another measured value indicates a magnetic field variation unique to the broken wire, it is determined that the wire is broken. Otherwise, it is determined that there is no wire break. Depending on the conditions, it may be determined that there is a suspicion of a broken wire or that it cannot be determined.
[0040]
The determination result output by the determination unit 7 is output as an image or a document by the output unit 16 such as a display device or a printer, or is stored in the recording device 15 or the like. As a result of the determination that there is a break in the strand, the location where the strand breaks is specified by the position coordinate in the longitudinal direction of the twisted electric wire 1 and the angular coordinate around the twisted wire 1 in the region or the estimated breakage location as described above. Then, the determination result indicating that there is no wire breakage is displayed appropriately, such as “no wire breakage”. In addition to the determination result, it is desirable to add information that can identify the diagnosed electric wire such as measurement date and time, location, and electric wire symbol to each measurement data, and output the information to the various output means 16 and the recording device 15.
[0041]
【The invention's effect】
As described above, according to the twisted wire breakage diagnosis method and diagnostic device according to the present invention, it is possible to non-destructively diagnose the presence and state of the strand breakage inside the twisted wire in the energized state. A method for detecting areas where there is an abnormal numerical distribution unique to wire breakage from the distribution of diagnostic numerical values derived from the measured values of each magnetic sensor at multiple positions in the moving area, since there is no need for power failure As a result, the variation in magnetic field due to non-uniformity of the wire shape (non-linearity, local bending, depression, etc.), eccentricity of the conductor in the coating, scratches on the coating, deposits, vibrations, etc. It is possible to clearly discriminate magnetic field fluctuations due to.
[0042]
In addition, by diagnosing the area relative ratio, position relative ratio, or area / position relative ratio or position / area relative ratio correction value derived from each measured value as a diagnostic value, It is possible to cancel the gradual magnetic field fluctuation caused by the eccentricity of the conductor at the center. In addition, it is assumed that the magnetic field fluctuation (abnormal numerical distribution) inherent in the wire breakage occurs in a certain range in the longitudinal direction of the wire, for example, that the abnormal numerical distribution is distributed along the twist of the strand of the twisted wire. By making a determination as a condition for determining that there is a break in the wire, only instantaneous magnetic field fluctuations affected by local deformation, depression, coating scratches, coating deposits, vibrations, etc. Compared with the conventional method for diagnosing wire breakage, it is possible to detect wire breakage with high accuracy, and to significantly reduce the mistaken diagnosis of wire breakage as a wire breakage. it can.
[0043]
As described above, diagnosis is easy and reliable results can be obtained, so that facility safety and public safety can be achieved, and undegraded wires can be selected and the time for renewal work can be postponed. Maintenance costs can also be reduced.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a sensor unit used in a strand breakage diagnosis method for twisted electric wires according to the present invention.
FIG. 2 is an explanatory view showing the structure of a twisted electric wire used in the method for diagnosing wire breakage of a twisted electric wire according to the present invention.
FIG. 3 is a block diagram illustrating a configuration example of a twisted wire strand break diagnosis device according to the present invention.
FIG. 4 is a block diagram showing a configuration example of a sensor unit and an interface unit used in the twisted wire strand break diagnosis method according to the present invention.
FIG. 5 is an explanatory diagram showing a surrounding distribution of measured values in the vicinity of a non-breaking portion of a wire.
FIG. 6 is an explanatory diagram showing a surrounding distribution of area relative values in the vicinity of a non-breaking portion of an element wire.
FIG. 7 is an explanatory diagram showing a surrounding distribution of diagnostic numerical values in the vicinity of a non-breaking portion of a wire.
FIG. 8 is an explanatory diagram showing a surrounding distribution of diagnostic numerical values in the vicinity of a broken wire portion.
FIG. 9 is an explanatory diagram showing an example of a diagnosis processing flow performed in the twisted wire strand break diagnosis method and diagnosis apparatus according to the present invention.
FIG. 10 is an explanatory diagram showing an example of an area distribution of diagnostic numerical values in the longitudinal direction of a twisted electric wire in the vicinity of a broken portion of a strand.
[Explanation of symbols]
1 twisted wire, 2 magnetic sensor, 3 sensor unit, 4 wire,
5 input means, 6 computing means, 7 judging means, 8 covering,
9 gap, 10 units, 11 opening / closing mechanism,
13 interface unit, 14 data recording means,
15 recording devices, 16 output means,

Claims (8)

通電状態にあるヨリ電線(1)を中央に置いてその周囲に複数の磁気センサ(2)を等角度間隔で円形に支持するセンサユニット(3)を、前記ヨリ電線(1)の長手方向に当該センサユニット(3)が回転しないように移動させ、当該移動領域中の複数の位置において前記磁界強度の測定処理を行い、前記移動領域中の複数のサンプリング位置における各磁気センサ(2)の測定値から導かれた診断数値の分布状態から素線切れ固有の異常数値分布が存在する領域を検出し、前記異常数値分布が当該ヨリ電線(1)の素線(4)のヨリに沿って分布することを素線切れ有りと判定する為の条件としたヨリ電線の素線切れ診断方法。A sensor unit (3) is placed in the longitudinal direction of the twisted electric wire (1) by placing the twisted electric wire (1) in an energized state in the center and supporting a plurality of magnetic sensors (2) in a circular shape at equiangular intervals around it. The sensor unit (3) is moved so as not to rotate, the magnetic field intensity is measured at a plurality of positions in the moving region, and the magnetic sensors (2) are measured at a plurality of sampling positions in the moving region. A region where there is an abnormal numerical distribution unique to the wire breakage is detected from the distribution state of the diagnostic numerical value derived from the value, and the abnormal numerical distribution is distributed along the twist of the strand (4) of the twisted electric wire (1) A method for diagnosing wire breakage of twisted electric wires as a condition for determining that there is wire breakage . 前記診断数値が、前記各測定値を、前記ヨリ電線(1)の長手方向における素線(4)のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割って得たエリア相対比率である前記請求項1に記載のヨリ電線の素線切れ診断方法。  The diagnostic numerical value is the average value of all the measured values in each region for each region of 1 pitch or more and less than 2 pitches of the twisted wire (4) in the longitudinal direction of the twisted electric wire (1). The twisted wire strand breakage diagnosis method according to claim 1, which is an area relative ratio obtained by dividing. 前記診断数値が、前記各測定値を、各サンプリング位置における複数の磁気センサ(2)各々の前記測定値の平均値で割って得た位置相対比率である前記請求項1に記載のヨリ電線の素線切れ診断方法。  2. The twisted electric wire according to claim 1, wherein the diagnostic numerical value is a relative position ratio obtained by dividing the measured values by an average value of the measured values of the plurality of magnetic sensors (2) at each sampling position. Wire breakage diagnosis method. 前記診断数値が、
前記各測定値を、前記ヨリ電線(1)の長手方向における素線(4)のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割って得たエリア相対比率を、更に各サンプリング位置における複数の磁気センサ(2)各々の前記エリア相対比率の平均値で割って得たエリア・位置相対比率、
又は、
前記各測定値を、各サンプリング位置における複数の磁気センサ(2)各々の前記測定値の平均値で割って得た位置相対比率を、前記ヨリ電線(1)の長手方向における素線(4)のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全位置相対比率の平均値で割って得た位置・エリア相対比率である前記請求項1に記載のヨリ電線の素線切れ診断方法。
The diagnostic value is
Area obtained by dividing each measured value by an average value of all measured values in the region for each region of 1 pitch or more and less than 2 pitches of the twisted wire (4) in the longitudinal direction of the twisted electric wire (1) Area / position relative ratio obtained by further dividing the relative ratio by the average value of the area relative ratio of each of the plurality of magnetic sensors (2) at each sampling position;
Or
The position relative ratio obtained by dividing each measured value by the average value of the measured values of each of the plurality of magnetic sensors (2) at each sampling position is a strand (4) in the longitudinal direction of the twisted electric wire (1). The twisted wire breakage diagnosis of the twisted electric wire according to claim 1, which is a position / area relative ratio obtained by dividing by an average value of the relative ratios of all positions in the area for each area of the twist pitch of 1 to 2 pitches. Method.
通電状態にあるヨリ電線(1)を中央に置いて前記ヨリ電線(1)の長手方向に当該センサユニット(3)が回転しないように移動させて用いるヨリ電線の素線切れ診断装置において、

ヨリ電線(1)が通過する空隙(9)に面して複数個の磁気センサ(2)を等角度間隔で円形に配置し一体的に支持するセンサユニット(3)を備え、
当該移動領域中の複数の位置において前記磁界強度の測定処理において前記センサユニット(3)によって測定された前記各磁気センサ(2)の測定値並びに各測定値を測定した箇所における前記ヨリ電線(1)の長手方向の位置座標及び当該ヨリ電線(1)の周囲の角座標を無線通信により採取する入力手段(5)と、前記移動領域中の複数の位置における各磁気センサの測定値から診断数値を導く演算手段(6)と、当該演算手段(6)によって導かれた診断数値の分布状態から素線切れ固有の異常数値分布が存在する領域を検出し、前記異常数値分布が当該ヨリ電線(1)の素線(4)のヨリに沿って分布することを素線切れ有りと判定する為の条件とした判定手段(7)を具備したヨリ電線の素線切れ診断装置。
In the twisted wire strand breakage diagnosis device used by placing the twisted wire (1) in the energized state in the center and moving the sensor unit (3) so as not to rotate in the longitudinal direction of the twisted wire (1),

A sensor unit (3) that faces the air gap (9) through which the twisted electric wire (1) passes and has a plurality of magnetic sensors (2) arranged circularly at equal angular intervals and integrally supported,
The measured value of each magnetic sensor (2) measured by the sensor unit (3) in the magnetic field strength measurement process at a plurality of positions in the moving region, and the twisted electric wire (1 ) Of the longitudinal position coordinates and the angular coordinates around the twisted electric wire (1) by wireless communication, and the diagnostic numerical value from the measured values of each magnetic sensor at a plurality of positions in the moving area. And a region where an abnormal numerical distribution unique to the wire break exists is detected from the distribution state of the diagnostic numerical values derived by the calculating means (6), and the abnormal numerical distribution is detected by the twisted electric wire ( A twisted wire breakage diagnosis device comprising a judging means (7) which is used as a condition for judging that there is a break in the strands of the wire (4) distributed in 1) .
前記診断数値として、前記各測定値をヨリ電線(1)の長手方向における素線(4)のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割ってエリア相対比率を導く演算手段(6)を具備した前記請求項5に記載のヨリ電線の素線切れ診断装置。  As the diagnostic numerical value, each measured value is divided by an average value of all measured values in the region for each region of 1 pitch or more and less than 2 pitches of the twisted wire (4) in the longitudinal direction of the twisted electric wire (1). The twisted wire breakage diagnosis device according to claim 5, further comprising a calculation means (6) for deriving an area relative ratio. 前記診断数値として、前記各測定値を各サンプリング位置における複数の磁気センサ(2)各々の前記測定値の平均値で割って位置相対比率を導く演算手段(6)を具備した前記請求項5に記載のヨリ電線の素線切れ診断装置。  The said diagnostic value is equipped with the calculation means (6) which divided | segmented each said measured value by the average value of each said measured value of several magnetic sensor (2) in each sampling position, and derived | led-out a position relative ratio. The strand breakage diagnosis device for twisted electric wires as described. 前記診断数値として、各測定値をヨリ電線(1)の長手方向における素線(4)のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全測定値の平均値で割って得たエリア相対比率を、更に、各サンプリング位置における複数の磁気センサ(2)各々の前記エリア相対比率の平均値で割ってエリア・位置相対比率を導く演算手段(6)、
又は、
前記診断数値として、前記各測定値を各サンプリング位置における複数の磁気センサ(2)各々の前記測定値の平均値で割って得た位置相対比率を、更に、前記ヨリ電線(1)の長手方向における素線(4)のヨリピッチの1ピッチ以上2ピッチ未満の領域毎に当該領域内における全位置相対比率の平均値で割って位置・エリア相対比率を導く演算手段(6)、
を具備した前記請求項5に記載のヨリ電線の素線切れ診断装置。
As the diagnostic value, each measured value is obtained by dividing the measured value by the average value of all measured values in the region for each region of 1 to 2 pitches of the twisted wire (4) in the longitudinal direction of the twisted electric wire (1). The area relative ratio is further divided by the average value of the area relative ratio of each of the plurality of magnetic sensors (2) at each sampling position to derive the area / position relative ratio,
Or
The position relative ratio obtained by dividing the measured values by the average value of the measured values of the plurality of magnetic sensors (2) at each sampling position as the diagnostic value, and further in the longitudinal direction of the twisted electric wire (1) A calculation means (6) for deriving a position / area relative ratio by dividing by an average value of all position relative ratios in each area of the twisted pitch (4) of the strand (4)
The twisted wire wire breakage diagnosis device according to claim 5, comprising:
JP2003178420A 2003-06-23 2003-06-23 Twisted wire strand breakage diagnostic method and diagnostic device Expired - Fee Related JP4263545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178420A JP4263545B2 (en) 2003-06-23 2003-06-23 Twisted wire strand breakage diagnostic method and diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178420A JP4263545B2 (en) 2003-06-23 2003-06-23 Twisted wire strand breakage diagnostic method and diagnostic device

Publications (2)

Publication Number Publication Date
JP2005020813A JP2005020813A (en) 2005-01-20
JP4263545B2 true JP4263545B2 (en) 2009-05-13

Family

ID=34180054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178420A Expired - Fee Related JP4263545B2 (en) 2003-06-23 2003-06-23 Twisted wire strand breakage diagnostic method and diagnostic device

Country Status (1)

Country Link
JP (1) JP4263545B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007028965A1 (en) 2007-06-23 2008-12-24 Leoni Bordnetz-Systeme Gmbh Method for checking the current flow through individual wires of a stranded wire and apparatus for carrying out the method
CN116979422B (en) * 2023-09-25 2024-01-19 东北林业大学 Operation and maintenance cleaning device for power equipment

Also Published As

Publication number Publication date
JP2005020813A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US9128019B2 (en) Pipeline condition detecting method and apparatus
JP4295774B2 (en) Wire rope flaw detector
JP2001141683A (en) Method and apparatus for monitoring crack
JP2014211455A (en) Method for determining and evaluating display of eddy current of crack particularly in object to be tested comprising conductive material
JP4869091B2 (en) Insulation abnormality diagnosis system for electrical equipment
JP4857136B2 (en) Abnormally low ground contact point detection method and detection system for buried metal pipeline
CN116046050B (en) Environment monitoring method
CN114783165A (en) Cable channel external damage prevention online monitoring system based on distributed optical fiber vibration sensing
KR100954665B1 (en) System for analyzing partial discharge risk of power equipment and method therefor
JP4263545B2 (en) Twisted wire strand breakage diagnostic method and diagnostic device
JP3534659B2 (en) Tunnel crack detection method and device
CN114074879B (en) Method and device for inspecting steel cable
JPH095175A (en) Stress measuring sensor
JP2008254017A (en) Method and apparatus for diagnosing mold thermocouple in continuous casting facility
US20130341009A1 (en) Detector system of slickline irregularities
KR20120012103A (en) Apparatus for automatically displaying partial discharge localization in GIS
JP3753563B2 (en) Elevator rope life diagnosis device
CN106706028B (en) Method and system for detecting motor state
JP2006071350A (en) Method and apparatus for diagnosing deterioration of insulated covered wire
JP3422873B2 (en) Vibration monitoring device
JPH02293603A (en) Abnormality detector for sliding part
JP4703345B2 (en) Coating film deterioration diagnosis apparatus and coating film deterioration diagnosis method
WO2022186066A1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, blast furnace operation method, blast furnace abnormality determination system, abnormality determination server device, display terminal device, program for abnormality determination server device, and program for display terminal device
RU2244297C1 (en) Method of detection of corrosion on underground pipe lines
CN118409145A (en) Equipment fault early warning method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees