JP4261927B2 - Solid electrolyte fuel cell and fuel cell - Google Patents

Solid electrolyte fuel cell and fuel cell Download PDF

Info

Publication number
JP4261927B2
JP4261927B2 JP2003020873A JP2003020873A JP4261927B2 JP 4261927 B2 JP4261927 B2 JP 4261927B2 JP 2003020873 A JP2003020873 A JP 2003020873A JP 2003020873 A JP2003020873 A JP 2003020873A JP 4261927 B2 JP4261927 B2 JP 4261927B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
solid electrolyte
gas
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020873A
Other languages
Japanese (ja)
Other versions
JP2004234969A (en
Inventor
紀彰 浜田
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003020873A priority Critical patent/JP4261927B2/en
Publication of JP2004234969A publication Critical patent/JP2004234969A/en
Application granted granted Critical
Publication of JP4261927B2 publication Critical patent/JP4261927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質燃料電池セル及び燃料電池に関し、特に、固体電解質燃料電池セルの信頼性が向上し、起動を迅速に行うことができる固体電解質燃料電池セル及び燃料電池に関するものである。
【0002】
【従来技術】
近年、次世代エネルギーとして、燃料電池セルのスタックを収納容器内に収容した燃料電池が種々提案されている。
【0003】
固体電解質燃料電池は、複数の固体電解質燃料電池セルからなるセルスタックを収納容器内に収容して構成されており、固体電解質を用いた燃料電池は作動温度が600〜1000℃と高いため、この温度まで固体電解質燃料電池セルを加熱する必要がある。
【0004】
従来、円筒型の固体電解質燃料電池セルが知られているが、この円筒型の固体電解質燃料電池セルでは、その端部に非発電部が形成されているため、燃料電池セルが長くなるほど非発電部の割合が小さくなり、発電量が増大することや発電効率が高くなることなどから、固体電解質燃料電池セルの長さは長い方がよいとされており、文献等では500mmを越える燃料電池セルや1000mm程度の固体電解質燃料電池セルが紹介されている。
【0005】
このような長尺の円筒型固体電解質燃料電池セルを用いた燃料電池においては、発電に関与しない余剰燃料(空気及び水素)を燃焼させる燃焼空間を設け、この燃焼空間内の燃焼ガスにより、燃料電池セルに導入される導入ガスを加熱するとともに、燃焼熱により燃料電池セルを加熱し、熱効率を高めることが行なわれている。
【0006】
また、この手法では固体電解質燃料電池セル自体が熱伝導体となり、燃焼空間で発生する燃焼熱を、固体電解質燃料電池セルの排出口側端部から他端部に熱伝導させ、固体電解質燃料電池セル全体が加熱されている(特許文献1参照)。
【0007】
【特許文献1】
特開平4−237963号公報
【0008】
【発明が解決しようとする課題】
しかしながら、このような燃料電池では、実際に発電するまでの起動時間を短くしようとすると、余剰燃料の燃焼熱により燃料電池セルの一端から急激に加熱する必要があるが、この場合には、固体電解質燃料電池セル内部での温度差が大きくなり、固体電解質燃料電池セルが破壊しやすくなるという問題があった。逆に、破壊を防止しようとすると、徐々に昇温する必要があるが、この場合には、起動時間が非常に長くなり、加熱を開始してから燃料電池が発電を開始するまでに長時間を要するという問題があった。
【0009】
特に、頻繁に起動停止を行うような運転の形態では、発電時間に対して、起動時間の割合が自ずと増えるため、発電が行えない昇温時間が長くなり、これにより格段に発電効率を低下させることになる。
【0010】
本発明は、固体電解質燃料電池セルの加熱による破壊を防止し、起動時間を大幅に短縮できる固体電解質燃料電池セル及び燃料電池を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の固体電解質燃料電池セルは、一方側が供給口とされ、他方側が排出口とされたガス流路が長手方向に形成されるとともに、前記排出口の近傍が燃焼部として機能する柱状の固体電解質燃料電池セルであって、前記排出口側の端面の角部および前記排出口の角部のうち少なくとも一方、C0.05mm以上の C 面またはR0.05mm以上の R 面の形状に面取りされていることを特徴とする。
【0012】
このような固体電解質燃料電池セルでは、固体電解質燃料電池セルの排出口の近傍で燃料ガスと酸素含有ガスとを混合させ、燃焼させることで、燃焼熱を発生させることができる。
【0013】
この燃焼熱を、固体電解質燃料電池セル自身を熱伝導体として、固体電解質燃料電池セルの排出口側の端面と逆の端面にまで伝導する場合、固体電解質燃料電池セルの排出口側の端面が最初に加熱されるため、固体電解質燃料電池セルの排出口側の端面とその他の部分とでは温度差が生じ、固体電解質燃料電池セルの排出口側の端面に熱応力が発生する。この熱応力が大きすぎる場合には、固体電解質燃料電池セルの排出口側の端面の角部にクラックが発生し、固体電解質燃料電池セルが破壊される。そのため、一般には固体電解質燃料電池セルが破壊されないよう徐々に加熱されている。しかしながら、このような手法では起動時間が長くなるという問題がある。
【0014】
本発明の固体電解質燃料電池セルでは、加熱に伴う熱応力が特に集中する燃料電池セルの排出口側の端面の角部および排出口の角部のうち少なくとも一方、C0.05mm以上の C 面またはR0.05mm以上の R 面の形状に面取りされていることで、排出口側の端面の角部および排出口の角部のうち少なくとも一方への熱応力集中を緩和することができ、急速な加熱が可能となるため、固体電解質燃料電池セルの破壊の防止と起動時間の短縮とを同時に達成できる。さらに、面取りされた形状が、C0.05mm以上のC面またはR0.05mm以上のR面であることから、固体電解質形燃料電池セルの破壊を確実に防止することができる。
【0021】
また、本発明の燃料電池は、上記した固体電解質燃料電池セルを収納容器内に複数収容してなることを特徴とする。このような燃料電池では固体電解質燃料電池セルの急速な加熱による破壊を防止できるとともに、起動時間を格段に短縮することができる。
【0022】
【発明の実施の形態】
図1は、本発明の燃料電池の一形態を示すもので、符号31は断熱構造を有する収納容器を示している。この収納容器31の内部には、複数の固体電解質燃料電池セル(以下、燃料電池セルと略す場合がある。)33が集合したセルスタック35と、セルスタック35の上方に形成された燃焼空間37と、この燃焼空間37を挿通する酸素含有ガス供給管39と、燃焼空間37の上方に設けられた熱交換部41とが設けられている。
【0023】
収納容器31は、耐熱性金属からなる枠体31aと、この枠体31aの内面に設けられた断熱材31bとから構成されている。セルスタック35の下方には、燃料ガスを燃料電池セル33に供給するための燃料ガスタンク45が設けられ、この燃料ガスタンク45には、外部から燃料ガスを燃料ガスタンク45に供給するための燃料ガス供給管51が接続されている。
【0024】
燃料ガスタンク45には、燃料電池セル33の下端部に取り付けられた取付治具53が螺着しており、これにより、燃料電池セル33が燃料ガスタンク45にそれぞれ立設している。即ち、取付治具53は、燃料電池セル33の端部に取り付けられたセル端部側取付治具53aと、両端部がセル端部側取付治具53a及び燃料ガスタンク45にそれぞれ螺着する連結部材53bとから構成されており、連結部材53bの両端部には向きが逆のねじ部が形成され、連結部材53bを一方側に回転させると、両端部がセル端部側取付治具53a及び燃料ガスタンク45にそれぞれ螺着するように形成されている。
【0025】
セル端部側取付治具53a、連結部材53bには、燃料ガスタンク45と燃料電池セル33のガス流路に連通するように貫通孔が形成されている。
【0026】
また、燃焼空間37を挿通する酸素含有ガス供給管39は、その先端部が燃料電池セル33間に位置している。この酸素含有ガス供給管39から供給される酸素含有ガスは、燃料ガスタンク45側に向けて噴出した後、熱交換部41側に流れることになる。従って、発電で用いられなかった余剰の酸素含有ガスは、燃料電池セル33間を通って燃料電池セル33の上方に流れ、発電で用いられなかった余剰の燃料ガスは、燃料電池セル33のガス流路を通って燃料電池セル33の上方から吹き出し、燃料電池セル33の上端近傍、即ち、燃料電池セル33の排出口側の端面近傍において、燃料ガスと酸素含有ガスが反応して燃焼するように構成されている。
【0027】
熱交換部41は、熱交換器41aと、燃焼空間37を介してセルスタック35に対向して設けられた酸素含有ガス収容室41bとから構成されている。
【0028】
熱交換器41aは、例えば、プレートフィン型構造とされている。燃焼ガスは、一点鎖線で示したように熱交換器41aの下部側面から導入され、熱交換器41aの上方へ排出され、一方、酸素含有ガスは、図1に破線で示したように熱交換器41aの上部側面から導入され、熱交換器41aの下方へ導かれ、酸素含有ガス収容室41b内に導入される。
【0029】
酸素含有ガス収容室41bは、熱交換器41aのセルスタック35側端面に設けられており、熱交換器41aを通過した酸素含有ガスが一旦収容されるようになっている。また、酸素含有ガス収容室41bには、複数の酸素含有ガス供給管39の一端が開口し、連通している。
【0030】
また、酸素含有ガス収容室41bの側面と断熱材31bとの間、即ち酸素含有ガス収容室41bの周囲は、燃焼空間37中の燃焼ガスを熱交換器41aに導入する燃焼ガス導入口71とされている。この燃焼ガス導入口71を介して燃焼ガスが熱交換器41aへ導出される。
【0031】
収納容器31内のセルスタック35は、図2に示すように、燃料電池セル33を3列に整列して構成されており、隣設した2列の最外部の燃料電池セル33の電極同士が導電部材81で接続され、これにより3列に整列した複数の燃料電池セル33が電気的に直列に接続している。なお、図1では4列として記載している。
【0032】
燃料電池セル33は、図2に示すように断面が扁平状で、全体的に見て楕円柱状であり、
その内部には複数のガス流路83が形成されている。このような形状の燃料電池セル33では、燃料電池セル33の断面形状が扁平状になることにより、燃料電池セル33の1本当たりの発電面積を増加させることができる。
【0033】
この燃料電池セル33は、断面が扁平状で、全体的に見て楕円柱状の多孔質な支持体33aの外面に、多孔質な燃料側電極33b、緻密質な固体電解質33c、多孔質な導電性セラミックスからなる酸素側電極33dを順次積層し、酸素側電極33dと反対側の支持体33aの外面にインターコネクタ33eを形成して構成されている。
【0034】
即ち、燃料電池セル33は、断面形状が、幅方向両端に設けられた弧状部mと、これらの弧状部を連結する一対の平坦部nとから構成されており、一対の平坦部nは平坦であり、ほぼ平行に形成されている。これらの一対の平坦部nのうち一方には、インターコネクタ33eが形成され、他方の平坦部nには、燃料側電極33b、固体電解質33c、酸素側電極33dが形成されて構成されている。
【0035】
この弧状部m−m間の距離と、平坦部n−n間の距離の比が大きくなるほど、弧状部mに発生する応力は大きくなり、また、弧状部mの曲率が大きくなるほど弧状部mに発生する応力は大きくなる傾向にある。すなわち、狭面積側の側部が弧状になっている場合には、曲率の大きい燃料電池セル33の狭面積側の側部に熱応力が集中しやすく、急速な加熱により、特に燃料電池セル33の破壊が起きやすい。この扁平柱状の燃料電池セル33の排出口側の端面の角部や排出口側の排出口の角部を面取りすることで、燃料電池セル33の破壊を防止することができる。
【0036】
一方で、燃料電池セル33あたりの発電量を増大させるためには、弧状部m−m間の距離と、平坦部n−n間の距離の比は大きくなる方が望ましい。これらの理由から、弧状部m−m間の距離は10mm〜80mmの範囲が望ましく、さらに、15mm〜40mmの範囲が望ましい。また、平坦部n−n間の距離は2mm〜10mmの範囲とすることが望ましく、さらに、3mm〜5mmの範囲が望ましい。
【0037】
一方の燃料電池セル33と他方の燃料電池セル33との間には集電部材85が介在され、一方の燃料電池セル33の燃料側電極33bは、支持体33aに設けられたインターコネクタ33e、集電部材85を介して他方の燃料電池セル33の酸素側電極33dに電気的に接続されている。
【0038】
図3に本発明の燃料電池セル33の縦断面図を示す。この燃料電池セル33に形成されたガス流路83の下部が供給口であり、ガス流路83の上部が排出口である。このガス流路83に燃料ガスを流通させ、燃料電池セル33の外側に酸素含有ガスを流通させ、発電を行う。このとき、余剰ガスは燃料電池セル33の排出口の近傍で燃焼し、燃料電池セル33を加熱する。
【0039】
そして、燃料電池セル33は、図3(a)に示すように、燃料電池セル33の排出口側の端面の角部AにはC面が形成されている。なお、図3(b)に示すように、燃料電池セル33の排出口側の端面の角部AにR面を形成してもよい。いずれの燃料電池セル33も、余剰ガスの燃焼により、燃料電池セル33が急速に加熱されても、最も熱応力が高くなる排出口側の端面の角部Aに面取りを施しているため、燃料電池セル33の排出口側の端面の角部Aからの破壊が発生せず、急速な起動が可能となる。
【0040】
なお、発生する応力を、より減少させる点から、R面を形成する方が、より好ましい。また、発生する応力が、より大きい弧状部mに形成された排出口側の端面の角部AのみをR面とし、その他の部分をC面としてもよい。あるいは、弧状部mに形成された排出口側の端面の角部AのみにC面あるいはR面を形成してもよい。
【0041】
図4に本発明の燃料電池セル33の他の形態の縦断面図を示す。図4(a)は、燃料電池セル33の排出口側の端面の角部Aと、排出口の角部BにC面を形成したもので、図4(b)は、燃料電池セル33の排出口側の端面の角部Aと、排出口の角部BにR面を形成したものである。いずれの燃料電池セル33も、余剰ガスの燃焼により、燃料電池セル33が急速に加熱されても、熱応力が高くなる排出口の角部Bに面取りを施しているため、燃料電池セル33の排出口側の角部Bからの破壊が発生せず、急速な起動が可能となる。
【0042】
排出口側の角部Bに面取りを施す場合も、応力を減少させるという面では、R面を形成する方が望ましい。
【0043】
なお、これらの面取りは成形体に施しても、焼結体に施してもよいが、切削性や余分な残留応力を発生させないという点から、成形体、あるいは仮焼体に施す方が望ましい。また、作業性という点では強度の高い焼結体に施す方が望ましい。
【0044】
なお、これらの面取りはリューターや、サンドペーパー、あるいは治具や、平面研削機などを用いて施されるが、その手法は特に限定するものではない。
【0045】
以上、説明した本発明の燃料電池セル33では、熱応力により破壊が発生しやすい扁平状の燃料電池セル33を急速に加熱した場合でも燃料電池セル33の排出口側の端面からの破壊が防止され、燃料電池の急速な起動が可能となる。
【0046】
なお、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、上記形態では、図2に示したような扁平状で複数のガス流路83を有する燃料電池セル33を用いて説明したが、燃料電池セル33はガス流路83が一つであっても良く、燃料電池セル33の形状は特に限定されるものではない。
【0047】
以上のように構成された燃料電池では、外部からの酸素含有ガス(例えば空気)を、酸素含有ガス管73を介して熱交換器41aに導入し、酸素含有ガス収容室41bに導入し、酸素含有ガス供給管39を介して燃料電池セル33間に噴出させるとともに、燃料ガス(例えば水素)を燃料ガス供給管51を介して燃料電池セル33のガス流路に供給し発電させる。
【0048】
発電に用いられなかった余剰の燃料ガスは、燃料電池セル33のガス流路の上端から燃焼空間37内に噴出し、発電に用いれらなかった余剰の酸素含有ガスは燃焼空間37内に流れ、余剰の燃料ガスと余剰の酸素含有ガスを反応させて燃焼させ、燃焼ガスを発生させ、この燃焼ガスが燃焼ガス導入口71を介して熱交換器41aに導出され、熱交換器41aの上端から排出される。
【0049】
また、発電に寄与しなかった余剰の燃料ガスと酸素含有ガスが燃焼空間37内に導入され、この燃焼空間37中で反応して燃焼し、この燃焼ガス及び外部の酸素含有ガスを熱交換器41aに導入し、この熱交換器41aで燃焼ガスと酸素含有ガスとの間で熱交換させ、起動時に酸素含有ガスを予熱することができ、また、酸素含有ガス供給管39が燃焼空間37を挿通することにより、燃焼ガスにより酸素含有ガス供給管39内の酸素含有ガスをさらに加熱することができるため、加熱した酸素含有ガスにより燃料電池セル33を間接的に加熱して実質的に発電するまでの起動時間を短縮できる。
【0050】
さらに、セルスタック35の上部に燃焼空間37、酸素含有ガス収容室41b、熱交換器41aが隣接して形成されているため、燃焼空間37で燃焼した高温の燃焼ガスを、配管等を用いることなく熱交換器41aに直接導入でき、簡単な構造で酸素含有ガスの予熱効率を大きくできる。
【0051】
また、収納容器31内で、燃焼ガスと酸素含有ガスとを熱交換できるため、酸素含有ガスの予熱を行うためのバーナーを収納容器31内に別途設ける必要がなく、小型にでき、しかも燃焼ガスを有効利用できる。
【0052】
さらに、熱交換器41aに酸素含有ガス収容室41bを設けたので、熱交換器41aと酸素含有ガス供給管39との接続を酸素含有ガス収容室41bを介して行うことができ、熱交換器41aからの酸素含有ガスを発電空間75内に確実に供給できる。
【0053】
また、本発明で形成した燃料電池セル33の端面への面取りは、熱応力や、その他の応力による破壊を防止できるため、例えば供給口側の端面の角部や、供給口側の端面のガス流路83の角部に施してもよい。
【0054】
また、さらに、上記例では、燃料電池セル33を直列に接続した例について説明したが、並列に接続してもよいことは勿論である。
【0055】
また、燃料側電極33bを内側電極としたが、酸素側電極33dを内側電極としても良い。
【0056】
さらに、一つの燃料ガスタンク45を用いて燃料電池セル33に燃料ガスを供給する場合について説明したが、本発明では、燃料電池セル33列毎に燃料ガスタンク45を設け、これらの間に、燃料電池セル33を直接加熱するバーナを設けることもできる。この場合には、起動時にバーナにより燃料電池セル33を直接加熱し、さらに起動を迅速に行うことができる。
【0057】
【実施例】
先ず、NiO粉末とY23粉末とを混合し、この混合物に、ポアー剤と、PVAからなる有機バインダーと、水からなる溶媒とを加え、混合した支持体材料を押出成形して、内部にガス流路83を有する扁平状の支持体成形体を作製し、これを乾燥した。
【0058】
この支持体成形体を用いて、焼成後に長さが180mmとなるように支持体成形体を加工し、乾燥後、1000℃で仮焼した。
【0059】
次に、NiO粉末、8YSZ粉末(Y23を8モル含有するZrO2)を、NiOの金属Ni換算量とY23粉末との比が体積比で48:52となるように混合し、アクリル系バインダーとトルエンを加えて、燃料側電極材料スラリーを作製し、仮焼した支持体成形体表面に厚さが20μmになるよう印刷し、燃料側電極成形体を形成した。
【0060】
また、8YSZ粉末(Y23を8モル含有するZrO2)にアクリル系バインダーとトルエンを加えて得たスラリーからドクターブレード法にて厚み40〜60μmの固体電解質シート状成形体を作製した。
【0061】
次に、支持体成形体の仮焼体上に燃料側電極成形体を形成した表面に、上記固体電解質シート状成形体を、その両端間が平坦部で所定間隔をおいて離間するように巻き付け、乾燥し、1050℃で仮焼した。
【0062】
この後、LaCrO3系材料と、アクリル樹脂からなる有機バインダーと、トルエンからなる溶媒とを混合したインターコネクタ材料を用いてインターコネクタシート状成形体を作製し、先に作製した仮焼体の、露出した支持体成形体の仮焼体の平坦部外面に積層し、支持体成形体、燃料側電極成形体、固体電解質シート状成形体の仮焼体に、インターコネクタシート状成形体を積層した。次に、この積層体を脱バインダ処理し、大気中にて1500℃で同時焼成した。
【0063】
次に、La0.6Sr0.4Co0.2Fe0.83粉末と、ノルマルパラフィンからなる溶媒とから、酸素側電極スラリーを作製し、このスラリーを仮焼した固体電解質シート状成形体の表面に吹き付け、酸素側電極成形体を形成し、また、上記スラリーを焼成したインターコネクタ33eの外面に塗布し、1150℃で焼き付け、酸素側電極33dを形成するとともに、インターコネクタ33eの外面にP型半導体(図示せず)を形成し、図2に示すような本発明の燃料電池セル33を作製した。
【0064】
なお、支持体33aの長径(m−m間距離)は26mm、短径は3.5mm(n−n間距離)、燃料側電極33bと酸素側電極33dの間に形成された固体電解質33cの厚みは40μm、酸素側電極33dの厚みは50μm、燃料側電極33bの厚みは10μm、インターコネクタ33eの厚みは50μm、P型半導体の厚みは50μmであった。また、それぞれの燃料電池セル33の両端部にはそれぞれ15mmの非発電部を形成した。
【0065】
これらの燃料電池セル33の排出口側となる端部の角部Aと排出口の角部Bに、C面、R面を施した。なお、C面、R面の形成は成形体の状態で行っても、焼結体の状態で行ってもよい。
【0066】
これらの燃料電池セル33をそれぞれ10試料用いて、起動試験を行った。燃料電池セル33のガス流路83に燃料ガスを流し、燃料電池セル33の排出口の近傍で燃料ガスを燃焼させ、燃料電池セル33の中央部の温度が850℃となるまで40℃/分の昇温速度で加熱し、850℃で1時間保持した後、冷却し、それぞれの燃料電池セル33について破壊やクラックの有無を確認した。
【0067】
表1に燃料電池セル33の各部のC面、R面の有無と、燃料電池セル33の破壊、クラックの発生の有無を示す。
【0068】
【表1】

Figure 0004261927
【0069】
表1から燃料電池セル33の排出口側の端面の角部A、排出口の角部BにC面、R面を施していない本発明の範囲外の試料No.1は10試料のうち、2つにクラックが発生した。
【0070】
一方、燃料電池セル33の排出口側の端面の角部Aと排出口の角部Bのいずれかに、C0.05mm以上のC面あるいは、R0.05mm以上のR面を施した本発明の試料No.2〜13はいずれも、燃料電池セル33の破壊もクラックの発生もなかった。
【0071】
【発明の効果】
本発明の固体電解質燃料電池セルでは、固体電解質燃料電池セルの燃料ガス排出口の近傍にガスの燃焼部を設けた燃料電池セルの排出口側の角部および排出口の角部のうち少なくとも一方、C0.05mm以上のC面またはR0.05mm以上のR面の形状に面取りされていることで、急速な加熱による固体電解質燃料電池セルの破壊を防止できるとともに、起動時間を格段に短縮することができる。
【図面の簡単な説明】
【図1】本発明の燃料電池を示す縦断面図である。
【図2】図1のセルスタックを示す横断面図である。
【図3】本発明の燃料電池セルを示す縦断面図である。
【図4】本発明の燃料電池セルの他の形態を示す縦断面図である。
【符号の説明】
31・・・収納容器
33・・・固体電解質燃料電池セル
83・・・ガス流路
A・・・排出口側の端面の角部
B・・・排出口の角部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolyte fuel cell and a fuel cell, in particular, to improve the reliability of the solid electrolyte fuel cell, to a solid electrolyte fuel cell and a fuel cell which can be performed rapidly started .
[0002]
[Prior art]
In recent years, various fuel cells in which a stack of fuel cells is accommodated in a storage container have been proposed as next-generation energy.
[0003]
Solid electrolyte fuel cell is constituted by accommodating the cell stack consisting of a plurality of solid electrolyte fuel cells in the storage container, the fuel cell operating temperature using a solid electrolyte 600 to 1000 ° C. and higher order , it is necessary to heat the solid electrolyte fuel cell up to this temperature.
[0004]
Conventionally, a cylindrical solid electrolyte fuel cell is known, in this cylindrical solid electrolyte fuel cell, since the non-power-generating portion is formed at an end thereof, the more the fuel cell is prolonged It reduced the proportion of non-power-generating unit, and the like that the power generation amount is increased that and power efficiency increases, the length of the solid electrolyte fuel cell is longer is good, exceeding 500mm in literature fuel cells and 1000mm about solid electrolyte fuel cells have been introduced.
[0005]
In such a long fuel cell using a cylindrical solid electrolyte fuel cell of the combustion space for burning excess fuel which is not involved in power generation (air and hydrogen) provided by the combustion gas in the combustion space, In addition to heating the gas introduced into the fuel cell, the fuel cell is heated by combustion heat to increase the thermal efficiency.
[0006]
Further, the solid electrolyte fuel cell itself in this approach is the thermal conductor, the combustion heat generated in the combustion space, is conducted to the other end from the outlet side end portion of the solid electrolyte fuel cells, solid electrolyte The entire fuel cell is heated (see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-4-237963
[Problems to be solved by the invention]
However, in such a fuel cell, in order to shorten the start-up time until the actual power generation, it is necessary to rapidly heat from one end of the fuel cell by the combustion heat of the surplus fuel. temperature difference inside electrolyte fuel cell is increased, the solid electrolyte fuel cell has a problem that tends to break. Conversely, in order to prevent destruction, it is necessary to gradually raise the temperature, but in this case, the startup time becomes very long, and it takes a long time from the start of heating until the fuel cell starts power generation. There was a problem of requiring.
[0009]
In particular, in the operation mode in which the start and stop are frequently performed, the ratio of the start time naturally increases with respect to the power generation time, so the temperature rise time during which power generation cannot be performed becomes longer, thereby significantly reducing the power generation efficiency. It will be.
[0010]
The present invention is to prevent damage due to heating of the solid electrolyte fuel cell, and to provide a substantially solid electrolyte fuel cell and a fuel cell which can reduce the startup time.
[0011]
[Means for Solving the Problems]
Solid electrolyte fuel cell of the present invention, one side is the supply port, with the other gas passage, which is a discharge port is formed in the longitudinal direction, the columnar vicinity of the outlet serves as a combustion unit a solid electrolyte fuel cell, at least one of the corners of the corner portion and the outlet end surface of the outlet side, the shape of the C-plane or R0.05mm more R plane above C0.05mm It is characterized by chamfering.
[0012]
In such solid electrolyte fuel cell, in the vicinity of the outlet of the solid electrolyte fuel cell is mixed with the fuel gas and the oxygen-containing gas, by burning, can generate combustion heat.
[0013]
The combustion heat, the solid electrolyte fuel cell itself as a thermal conductor, when conducted to the end face opposite the end face of the outlet side of the solid electrolyte fuel cell, the outlet side of the solid electrolyte fuel cell for the end face is first heated, the temperature difference occurs at the end face and other parts of the outlet side of the solid electrolyte fuel cell, thermal stress is generated in the end face of the outlet side of the solid electrolyte fuel cell To do. If this thermal stress is too large, cracks occur in the corners of the end surface of the outlet side of the solid electrolyte fuel cells, solid oxide fuel cell is destroyed. Therefore, generally the solid electrolyte fuel cells is gradually heated so as not to be destroyed. However, such a method has a problem that the startup time becomes long.
[0014]
The solid electrolyte fuel cell of the present invention, at least one of the corners of the corner portions and outlet end face of the outlet side of the fuel cell thermal stress due to heating is concentrated particularly, C0.05Mm more C By chamfering the shape of the surface or the R surface of R0.05 mm or more, it is possible to alleviate the concentration of thermal stress on at least one of the corner portion of the end surface on the discharge port side and the corner portion of the discharge port. since Do heating is possible, the prevention and start time of the destruction of the solid electrolyte fuel cell shortening and at the same time can be achieved. Furthermore, since the chamfered shape is a C surface of C 0.05 mm or more or an R surface of R 0.05 mm or more, the solid oxide fuel cell can be reliably prevented from being destroyed.
[0021]
The fuel cell of the present invention is characterized by comprising a plurality accommodating the solid electrolyte fuel cell in the storage container. Together in such a fuel cell can be prevented from being destroyed due to rapid heating of the solid electrolyte fuel cell, it is possible to remarkably shorten the startup time.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a fuel cell according to the present invention. Reference numeral 31 denotes a storage container having a heat insulating structure. Inside the container 31, a plurality of solid electrolyte fuel cells (hereinafter sometimes referred to as a fuel cell.) 33 and the cell stack 35 which is set is, combustion space formed above the cell stack 35 37, an oxygen-containing gas supply pipe 39 inserted through the combustion space 37, and a heat exchanging portion 41 provided above the combustion space 37 are provided.
[0023]
The storage container 31 includes a frame body 31a made of a heat-resistant metal and a heat insulating material 31b provided on the inner surface of the frame body 31a. A fuel gas tank 45 for supplying fuel gas to the fuel cell 33 is provided below the cell stack 35, and a fuel gas supply for supplying fuel gas to the fuel gas tank 45 from the outside is provided in the fuel gas tank 45. A tube 51 is connected.
[0024]
An attachment jig 53 attached to the lower end portion of the fuel battery cell 33 is screwed into the fuel gas tank 45, whereby the fuel battery cell 33 is erected on the fuel gas tank 45, respectively. That is, the attachment jig 53 is connected to the cell end side attachment jig 53a attached to the end of the fuel cell 33 and the both ends screwed to the cell end side attachment jig 53a and the fuel gas tank 45, respectively. The screw 53 is formed in opposite ends at both ends of the connecting member 53b. When the connecting member 53b is rotated to one side, both ends are attached to the cell end side mounting jig 53a and The fuel gas tank 45 is formed so as to be screwed thereto.
[0025]
A through hole is formed in the cell end side mounting jig 53a and the connecting member 53b so as to communicate with the gas flow path of the fuel gas tank 45 and the fuel cell 33.
[0026]
In addition, the oxygen-containing gas supply pipe 39 inserted through the combustion space 37 is positioned between the fuel cells 33 at the tip. The oxygen-containing gas supplied from the oxygen-containing gas supply pipe 39 is ejected toward the fuel gas tank 45 and then flows toward the heat exchange unit 41. Accordingly, surplus oxygen-containing gas that has not been used in power generation flows between the fuel cells 33 and flows above the fuel cell 33, and surplus fuel gas that has not been used in power generation is the gas in the fuel cell 33. The fuel gas is blown out from above the fuel cell 33 through the flow path so that the fuel gas and the oxygen-containing gas react and burn in the vicinity of the upper end of the fuel cell 33, that is, in the vicinity of the end surface on the discharge port side of the fuel cell 33. It is configured.
[0027]
The heat exchange unit 41 includes a heat exchanger 41 a and an oxygen-containing gas storage chamber 41 b provided to face the cell stack 35 through the combustion space 37.
[0028]
The heat exchanger 41a has, for example, a plate fin type structure. The combustion gas is introduced from the lower side surface of the heat exchanger 41a as indicated by the alternate long and short dash line, and is discharged to the upper side of the heat exchanger 41a, while the oxygen-containing gas exchanges heat as indicated by the broken line in FIG. It is introduced from the upper side surface of the vessel 41a, led to the lower side of the heat exchanger 41a, and introduced into the oxygen-containing gas storage chamber 41b.
[0029]
The oxygen-containing gas storage chamber 41b is provided on the end face of the heat exchanger 41a on the cell stack 35 side, and the oxygen-containing gas that has passed through the heat exchanger 41a is temporarily stored therein. One end of a plurality of oxygen-containing gas supply pipes 39 is opened and communicated with the oxygen-containing gas storage chamber 41b.
[0030]
Further, between the side surface of the oxygen-containing gas storage chamber 41b and the heat insulating material 31b, that is, around the oxygen-containing gas storage chamber 41b, is a combustion gas inlet 71 for introducing the combustion gas in the combustion space 37 into the heat exchanger 41a. Has been. The combustion gas is led out to the heat exchanger 41a through the combustion gas inlet 71.
[0031]
As shown in FIG. 2, the cell stack 35 in the storage container 31 is configured by arranging the fuel cells 33 in three rows, and the electrodes of the two outermost fuel cells 33 arranged adjacent to each other are connected to each other. A plurality of fuel cells 33 connected by the conductive member 81 and arranged in three rows are thereby electrically connected in series. In FIG. 1, four columns are shown.
[0032]
The fuel battery cell 33 has a flat cross section as shown in FIG.
A plurality of gas flow paths 83 are formed inside. In the fuel cell 33 having such a shape, the power generation area per fuel cell 33 can be increased by making the cross-sectional shape of the fuel cell 33 flat.
[0033]
The fuel cell 33 has a flat cross section, and an outer surface of a porous support 33a having an elliptical cylinder shape as a whole, a porous fuel side electrode 33b, a dense solid electrolyte 33c, and a porous conductive body. The oxygen-side electrode 33d made of conductive ceramic is sequentially laminated, and an interconnector 33e is formed on the outer surface of the support 33a opposite to the oxygen-side electrode 33d.
[0034]
That is, the fuel cell 33 has a cross-sectional shape including arc-shaped portions m provided at both ends in the width direction, and a pair of flat portions n connecting these arc-shaped portions, and the pair of flat portions n is flat. And are formed substantially in parallel. An interconnector 33e is formed on one of the pair of flat portions n, and a fuel side electrode 33b, a solid electrolyte 33c, and an oxygen side electrode 33d are formed on the other flat portion n.
[0035]
As the ratio of the distance between the arcuate parts m-m and the distance between the flat parts nn increases, the stress generated in the arcuate part m increases, and as the curvature of the arcuate part m increases , the arcuate part m increases. There is a tendency for the stress generated in to increase. That is, when the side portion on the narrow area side has an arcuate shape, thermal stress tends to concentrate on the side portion on the narrow area side of the fuel cell 33 having a large curvature. It ’s easy to destroy. By chamfering the corner of the end surface on the discharge port side of the flat columnar fuel cell 33 and the corner of the discharge port on the discharge port side, the fuel cell 33 can be prevented from being broken.
[0036]
On the other hand, in order to increase the amount of power generation per fuel cell 33, it is desirable that the ratio of the distance between the arc-shaped parts mm and the distance between the flat parts nn be large. For these reasons, the distance between the arcuate parts mm is preferably in the range of 10 mm to 80 mm, and more preferably in the range of 15 mm to 40 mm. The distance between the flat portions nn is preferably in the range of 2 mm to 10 mm, and more preferably in the range of 3 mm to 5 mm.
[0037]
A current collecting member 85 is interposed between one fuel battery cell 33 and the other fuel battery cell 33, and a fuel side electrode 33b of one fuel battery cell 33 is connected to an interconnector 33e provided on the support 33a, It is electrically connected to the oxygen side electrode 33 d of the other fuel battery cell 33 via the current collecting member 85.
[0038]
FIG. 3 shows a longitudinal sectional view of the fuel battery cell 33 of the present invention. The lower part of the gas flow path 83 formed in the fuel cell 33 is a supply port, and the upper part of the gas flow path 83 is a discharge port. The fuel gas is circulated through the gas flow path 83 and the oxygen-containing gas is circulated outside the fuel battery cell 33 to generate power. At this time, the surplus gas burns in the vicinity of the outlet of the fuel cell 33 and heats the fuel cell 33.
[0039]
As shown in FIG. 3A, the fuel battery cell 33 has a C-plane formed at the corner A of the end face on the discharge port side of the fuel battery cell 33. In addition, as shown in FIG.3 (b), you may form R surface in the corner | angular part A of the end surface by the side of the discharge port of the fuel cell 33. FIG. Any fuel battery cell 33 is chamfered at the corner A of the end face on the outlet side where the thermal stress is highest even when the fuel battery cell 33 is rapidly heated by combustion of surplus gas. The battery cell 33 does not break from the corner A on the end face on the discharge port side, and can be rapidly started.
[0040]
In addition, it is more preferable to form the R plane from the viewpoint of further reducing the generated stress. Further, only the corner A of the end surface on the discharge port side formed in the arc-shaped portion m where the generated stress is larger may be the R plane, and the other portion may be the C plane. Or you may form a C surface or R surface only in the corner | angular part A of the end surface by the side of the discharge port formed in the arc-shaped part m.
[0041]
FIG. 4 shows a longitudinal sectional view of another embodiment of the fuel battery cell 33 of the present invention. FIG. 4A is a view in which a corner surface A on the end surface on the discharge port side of the fuel cell 33 and a C surface are formed on the corner portion B of the discharge port, and FIG. An R surface is formed at the corner A of the end face on the discharge port side and the corner B of the discharge port. Any fuel battery cell 33 is chamfered at the corner B of the outlet where the thermal stress increases even if the fuel battery cell 33 is rapidly heated by combustion of excess gas. The breakage from the corner B on the discharge port side does not occur, and rapid activation becomes possible.
[0042]
Even when chamfering the corner B on the discharge port side, it is desirable to form an R surface in terms of reducing stress.
[0043]
These chamfers may be applied to the molded body or the sintered body, but are preferably applied to the molded body or the calcined body from the viewpoint of avoiding machinability and excessive residual stress. In terms of workability, it is desirable to apply to a sintered body with high strength.
[0044]
The chamfering is performed using a router, sandpaper, a jig, a surface grinder, or the like, but the method is not particularly limited.
[0045]
As described above, in the fuel battery cell 33 of the present invention described above, even when the flat fuel battery cell 33 that is likely to break down due to thermal stress is rapidly heated, the breakage from the end face of the fuel battery cell 33 on the outlet side is prevented. Thus, rapid start-up of the fuel cell becomes possible.
[0046]
In addition, this invention is not limited to the said form, A various change is possible in the range which does not change the summary of invention. For example, in the above embodiment, the flat fuel cell 33 having a plurality of gas flow paths 83 as shown in FIG. 2 has been described. However, the fuel battery cell 33 has one gas flow path 83. The shape of the fuel cell 33 is not particularly limited.
[0047]
In the fuel cell configured as described above, an oxygen-containing gas (for example, air) from the outside is introduced into the heat exchanger 41a through the oxygen-containing gas pipe 73, and is introduced into the oxygen-containing gas storage chamber 41b. The fuel gas (for example, hydrogen) is ejected between the fuel cells 33 via the contained gas supply pipe 39 and the fuel gas (for example, hydrogen) is supplied to the gas flow path of the fuel cell 33 via the fuel gas supply pipe 51 to generate power.
[0048]
Excess fuel gas that has not been used for power generation is ejected into the combustion space 37 from the upper end of the gas flow path of the fuel cell 33, and excess oxygen-containing gas that has not been used for power generation flows into the combustion space 37, Excess fuel gas and excess oxygen-containing gas are reacted and burned to generate combustion gas. This combustion gas is led out to the heat exchanger 41a via the combustion gas inlet 71, and from the upper end of the heat exchanger 41a. Discharged.
[0049]
In addition, surplus fuel gas and oxygen-containing gas that did not contribute to power generation are introduced into the combustion space 37 and reacted and burned in the combustion space 37, and the combustion gas and external oxygen-containing gas are converted into a heat exchanger. The heat exchanger 41a allows heat exchange between the combustion gas and the oxygen-containing gas so that the oxygen-containing gas can be preheated at the time of start-up. By inserting, the oxygen-containing gas in the oxygen-containing gas supply pipe 39 can be further heated by the combustion gas. Therefore, the fuel cell 33 is indirectly heated by the heated oxygen-containing gas to substantially generate power. Can shorten the startup time.
[0050]
Further, since the combustion space 37, the oxygen-containing gas storage chamber 41b, and the heat exchanger 41a are formed adjacent to each other at the upper part of the cell stack 35, the high-temperature combustion gas burned in the combustion space 37 is used by piping or the like. And can be directly introduced into the heat exchanger 41a, and the preheating efficiency of the oxygen-containing gas can be increased with a simple structure.
[0051]
In addition, since the combustion gas and the oxygen-containing gas can be heat-exchanged in the storage container 31, there is no need to separately provide a burner for preheating the oxygen-containing gas in the storage container 31, and the combustion gas can be reduced in size. Can be used effectively.
[0052]
Further, since the oxygen-containing gas storage chamber 41b is provided in the heat exchanger 41a, the heat exchanger 41a and the oxygen-containing gas supply pipe 39 can be connected via the oxygen-containing gas storage chamber 41b. The oxygen-containing gas from 41a can be reliably supplied into the power generation space 75.
[0053]
Further, the chamfering on the end face of the fuel cell 33 formed in the present invention can prevent breakage due to thermal stress or other stress. For example, the corner of the end face on the supply port side or the gas on the end face on the supply port side You may give to the corner | angular part of the flow path 83. FIG.
[0054]
Furthermore, in the above example, the example in which the fuel cells 33 are connected in series has been described, but it is needless to say that they may be connected in parallel.
[0055]
Further, although the fuel side electrode 33b is an inner electrode, the oxygen side electrode 33d may be an inner electrode.
[0056]
Further, the case where the fuel gas is supplied to the fuel cell 33 using the single fuel gas tank 45 has been described. In the present invention, the fuel gas tank 45 is provided for each of the 33 rows of the fuel cells, and the fuel cell is provided between them. A burner for directly heating the cell 33 can also be provided. In this case, the fuel cell 33 can be directly heated by the burner at the start-up, and the start-up can be performed quickly.
[0057]
【Example】
First, NiO powder and Y 2 O 3 powder are mixed, and to this mixture, a pore agent, an organic binder made of PVA, and a solvent made of water are added, and the mixed support material is extruded, A flat support molded body having a gas flow path 83 was prepared and dried.
[0058]
Using this support molded body, the support molded body was processed so as to have a length of 180 mm after firing, dried, and calcined at 1000 ° C.
[0059]
Next, NiO powder and 8YSZ powder (ZrO 2 containing 8 moles of Y 2 O 3 ) were mixed so that the ratio of the NiO metal Ni equivalent amount to the Y 2 O 3 powder was 48:52 by volume ratio. Then, an acrylic binder and toluene were added to prepare a fuel-side electrode material slurry, which was printed on the surface of the calcined support body to a thickness of 20 μm to form a fuel-side electrode body.
[0060]
Moreover, a solid electrolyte sheet-like molded body having a thickness of 40 to 60 μm was prepared by a doctor blade method from a slurry obtained by adding an acrylic binder and toluene to 8YSZ powder (ZrO 2 containing 8 mol of Y 2 O 3 ).
[0061]
Next, the solid electrolyte sheet-shaped molded body is wound around the surface of the calcined body of the support molded body on which the fuel-side electrode molded body is formed so that both ends thereof are spaced apart at a predetermined interval by flat portions. , Dried and calcined at 1050 ° C.
[0062]
Thereafter, an interconnector sheet-like molded body is prepared using an interconnector material in which a LaCrO 3 system material, an organic binder composed of an acrylic resin, and a solvent composed of toluene are mixed. The exposed support molded body was laminated on the outer surface of the flat portion of the calcined body, and the interconnector sheet-shaped molded body was laminated on the calcined body of the support molded body, the fuel-side electrode molded body, and the solid electrolyte sheet-shaped molded body. . Next, this laminate was subjected to binder removal treatment and co-fired at 1500 ° C. in the air.
[0063]
Next, an oxygen-side electrode slurry was prepared from La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder and a solvent composed of normal paraffin, and this slurry was sprayed onto the surface of a calcined solid electrolyte sheet-like molded body. A side electrode molded body is formed, and the slurry is applied to the outer surface of the fired interconnector 33e and baked at 1150 ° C. to form an oxygen side electrode 33d. A P-type semiconductor (not shown) is formed on the outer surface of the interconnector 33e. The fuel cell 33 of the present invention as shown in FIG. 2 was produced.
[0064]
The support 33a has a major axis (distance between mm) of 26 mm, a minor axis of 3.5 mm (distance between nn), and a solid electrolyte 33c formed between the fuel side electrode 33b and the oxygen side electrode 33d. The thickness was 40 μm, the oxygen side electrode 33d was 50 μm, the fuel side electrode 33b was 10 μm, the interconnector 33e was 50 μm, and the P-type semiconductor was 50 μm. Further, 15 mm non-power generation portions were formed at both ends of each fuel cell 33.
[0065]
The C surface and the R surface were applied to the corner A of the end on the discharge port side of these fuel cells 33 and the corner B of the discharge port. In addition, formation of C surface and R surface may be performed in the state of a molded object, or may be performed in the state of a sintered body.
[0066]
A start-up test was performed using 10 samples of each of these fuel cells 33. The fuel gas is caused to flow through the gas flow path 83 of the fuel battery cell 33, and the fuel gas is combusted in the vicinity of the discharge port of the fuel battery cell 33. After heating at 850 ° C. and holding at 850 ° C. for 1 hour, the fuel cell 33 was cooled and checked for the presence or absence of breakage or cracks.
[0067]
Table 1 shows the presence / absence of the C surface and the R surface of each part of the fuel cell 33 and the presence / absence of the destruction and cracking of the fuel cell 33.
[0068]
[Table 1]
Figure 0004261927
[0069]
From Table 1, the sample Nos. Out of the scope of the present invention in which the corner A on the end surface on the discharge port side of the fuel cell 33 and the corner B of the discharge port are not provided with the C surface or the R surface. For 1, cracks occurred in 2 out of 10 samples.
[0070]
On the other hand, according to the present invention, the C surface of C0.05 mm or more or the R surface of R0.05 mm or more is applied to either the corner A on the end surface on the discharge port side of the fuel cell 33 or the corner B of the discharge port. Sample No. In all of Nos. 2 to 13, the fuel cell 33 was not broken or cracked.
[0071]
【The invention's effect】
In the solid electrolyte fuel cell of the present invention, among the corners of the corner portions and outlet of the outlet side of the fuel cell in which a combustion of the gas in the vicinity of the fuel gas outlet of the solid electrolyte fuel cell at least one of, at Rukoto are chamfered in the shape of a C-plane or R0.05mm more R plane described above C0.05Mm, it is possible to prevent destruction of the solid electrolyte fuel cell due to rapid heating, greatly startup time Can be shortened.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a fuel cell of the present invention.
2 is a cross-sectional view showing the cell stack of FIG. 1. FIG.
FIG. 3 is a longitudinal sectional view showing a fuel battery cell of the present invention.
FIG. 4 is a longitudinal sectional view showing another embodiment of the fuel battery cell of the present invention.
[Explanation of symbols]
31 ... accommodating container 33 ... solid electrolyte fuel cell 83 ... gas channel A corner of the end surface of the ... outlet side B ... outlet corners

Claims (2)

一方側が供給口とされ、他方側が排出口とされたガス流路が長手方向に形成されるとともに、前記排出口の近傍が燃焼部として機能する柱状の固体電解質燃料電池セルであって、前記排出口側の端面の角部および前記排出口の角部のうち少なくとも一方、C0.05mm以上の C 面またはR0.05mm以上の R 面の形状に面取りされていることを特徴とする固体電解質燃料電池セル。One side is a feed port, with the other gas passage, which is a discharge port is formed in the longitudinal direction, the vicinity of the discharge port is a columnar solid electrolyte fuel cell that functions as a combustion unit, wherein A solid electrolyte characterized in that at least one of the corner portion of the end surface on the discharge port side and the corner portion of the discharge port is chamfered in the shape of a C surface of C0.05 mm or more or an R surface of R0.05 mm or more. fuel cell. 収納容器内に請求項1に記載の固体電解質燃料電池セルを複数収納してなることを特徴とする燃料電池。Fuel cell characterized by comprising a plurality accommodating a solid electrolyte fuel cell according to claim 1 in the storage container.
JP2003020873A 2003-01-29 2003-01-29 Solid electrolyte fuel cell and fuel cell Expired - Fee Related JP4261927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020873A JP4261927B2 (en) 2003-01-29 2003-01-29 Solid electrolyte fuel cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020873A JP4261927B2 (en) 2003-01-29 2003-01-29 Solid electrolyte fuel cell and fuel cell

Publications (2)

Publication Number Publication Date
JP2004234969A JP2004234969A (en) 2004-08-19
JP4261927B2 true JP4261927B2 (en) 2009-05-13

Family

ID=32950387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020873A Expired - Fee Related JP4261927B2 (en) 2003-01-29 2003-01-29 Solid electrolyte fuel cell and fuel cell

Country Status (1)

Country Link
JP (1) JP4261927B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544975B2 (en) * 2004-07-21 2010-09-15 京セラ株式会社 Fuel cell and fuel cell
WO2006051830A1 (en) 2004-11-09 2006-05-18 Dai Nippon Printing Co., Ltd. Cogeneration system using fuel cell
JP4748971B2 (en) * 2004-11-15 2011-08-17 京セラ株式会社 Fuel cell and fuel cell
JP4767532B2 (en) * 2004-12-16 2011-09-07 東京瓦斯株式会社 Horizontally striped solid oxide fuel cell
CA2623302A1 (en) 2005-09-20 2007-03-29 Kyocera Corporation Fuel cell and method for manufacturing the same
JP4883968B2 (en) * 2005-09-27 2012-02-22 京セラ株式会社 Fuel cell manufacturing method
US20070160886A1 (en) * 2006-01-06 2007-07-12 Siemens Power Generation, Inc. Seamless solid oxide fuel cell
CN102197526B (en) * 2008-10-29 2014-05-07 京瓷株式会社 Fuel battery cell, fuel battery module, fuel battery device and method for manufacturing fuel battery cell
JP5444022B2 (en) * 2010-01-28 2014-03-19 京セラ株式会社 Horizontally-striped solid oxide fuel cell stack and fuel cell
JP2013149506A (en) * 2012-01-20 2013-08-01 Tdk Corp Laminated solid oxide fuel cell
JP5455270B1 (en) * 2012-11-30 2014-03-26 日本碍子株式会社 Fuel cell
JP2014179245A (en) * 2013-03-14 2014-09-25 Kyocera Corp Electrochemical cell stack device and electrochemical apparatus
JP6622635B2 (en) * 2016-03-24 2019-12-18 京セラ株式会社 Solid oxide fuel cell, fuel cell module, and fuel cell device
JP6282324B1 (en) * 2016-09-05 2018-02-21 日本碍子株式会社 Fuel cell
JP6547052B1 (en) * 2018-07-12 2019-07-17 日本碍子株式会社 Cell stack device
US10727524B2 (en) 2018-07-12 2020-07-28 Ngk Insulators, Ltd. Cell stack device

Also Published As

Publication number Publication date
JP2004234969A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4261927B2 (en) Solid electrolyte fuel cell and fuel cell
JP4072049B2 (en) Fuel cell and fuel cell
JP4578114B2 (en) Fuel cell
JP4986930B2 (en) Fuel cell and operation method thereof
JP2003132933A (en) Fuel cell
JP4325924B2 (en) Fuel cell
JP5319460B2 (en) Cell stack device, fuel cell module and fuel cell device
JP2003282132A (en) Fuel cell
JP3796182B2 (en) Fuel cell
JP2004335163A (en) Solid oxide type fuel cell and its operation method
JP4758074B2 (en) Fuel cell assembly and fuel cell
JP2010245049A (en) Fuel cell assembly
JP2004281094A (en) Cell stack and fuel cell
JP2011134542A (en) Cell stack device, fuel cell module, and fuel cell device
JP2005158527A (en) Fuel cell assembly
JP2004335164A (en) Preheating method at start-up of operation of solid electrolyte fuel cell
JP4313558B2 (en) Fuel cell and operation method thereof
JP4986376B2 (en) Fuel cell assembly
JP4814497B2 (en) Fuel cell
JP4776606B2 (en) Fuel cell
JP2007066583A (en) Fuel battery cell, cell stack, and fuel battery
JP4418196B2 (en) Fuel cell module
JP2005100818A (en) Fuel cell
JP3585363B2 (en) Solid oxide fuel cell
JP2017033653A (en) Solid oxide type fuel battery stack, solid oxide type fuel battery module and solid oxide type fuel battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees