JP4261289B2 - Silicon production equipment - Google Patents

Silicon production equipment Download PDF

Info

Publication number
JP4261289B2
JP4261289B2 JP2003298642A JP2003298642A JP4261289B2 JP 4261289 B2 JP4261289 B2 JP 4261289B2 JP 2003298642 A JP2003298642 A JP 2003298642A JP 2003298642 A JP2003298642 A JP 2003298642A JP 4261289 B2 JP4261289 B2 JP 4261289B2
Authority
JP
Japan
Prior art keywords
reaction tube
silicon
reaction
heating coil
frequency heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003298642A
Other languages
Japanese (ja)
Other versions
JP2005067939A (en
Inventor
島 淳一郎 中
田 開 行 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2003298642A priority Critical patent/JP4261289B2/en
Publication of JP2005067939A publication Critical patent/JP2005067939A/en
Application granted granted Critical
Publication of JP4261289B2 publication Critical patent/JP4261289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、多結晶シリコンを製造するためのシリコン製造装置に関する。さらに詳しくは、本発明は、高周波加熱コイルで加熱された反応管へ原料ガスを供給して、反応管の内面にシリコンを析出させ、反応管の下端部を含む少なくとも一部をシリコンの融点以上に加熱した状態で、析出したシリコンを反応管の下方に設けた回収部へ落下させて回収するシリコンの製造装置に関する。   The present invention relates to a silicon manufacturing apparatus for manufacturing polycrystalline silicon. More specifically, the present invention supplies a raw material gas to a reaction tube heated by a high-frequency heating coil to deposit silicon on the inner surface of the reaction tube, and at least a part including the lower end of the reaction tube exceeds the melting point of silicon. The present invention relates to a silicon manufacturing apparatus that drops and recovers deposited silicon in a recovery section provided below a reaction tube in a heated state.

従来より、半導体、太陽光発電用電池などの原料として使用されるシリコンを製造するための種々の方法が知られており、これらのうちで、幾つかの方法は既に工業的に実施されている。   Conventionally, various methods for producing silicon used as a raw material for semiconductors, photovoltaic power generation batteries and the like are known, and some of these methods have already been industrially implemented. .

例えば、その一つはジーメンス法と呼ばれる方法であり、この方法では、通電によりシリコンの析出温度に加熱したシリコン棒をベルジャーの内部に配置し、このシリコン棒にトリクロロシラン(SiHCl3)やモノシラン(SiH4)を、水素等の還元性ガスとともに接触させてシリコンを析出させる。 For example, one of them is a method called the Siemens method. In this method, a silicon rod heated to the deposition temperature of silicon by energization is placed inside a bell jar, and trichlorosilane (SiHCl 3 ) or monosilane ( SiH 4 ) is brought into contact with a reducing gas such as hydrogen to deposit silicon.

この方法では高純度なシリコンが得られ、最も一般的な方法として工業的に実施されているが、バッチ式でシリコンの析出を行うため、種となるシリコン棒の設置、シリコン棒の通電加熱、析出、冷却、取り出し、ベルジャーの洗浄などの一連の工程を、バッチごとに繰り返す必要があり、煩雑な操作を要する。   In this method, high-purity silicon is obtained, and it is industrially implemented as the most general method. However, in order to deposit silicon in a batch system, installation of a silicon rod as a seed, current heating of the silicon rod, It is necessary to repeat a series of steps such as precipitation, cooling, taking out, and cleaning of a bell jar for each batch, which requires complicated operations.

一方、連続的に多結晶シリコンを製造可能な方法として、図5に示した装置による方法が提案されている(例えば特許文献1〜4を参照)。このシリコン製造装置100は、密閉容器111内に、クロロシラン類と水素とを管内部へ供給して反応させる反応管102と、反応管102の外周に設置した高周波加熱コイル103とを備えている。   On the other hand, as a method capable of continuously producing polycrystalline silicon, a method using the apparatus shown in FIG. 5 has been proposed (see, for example, Patent Documents 1 to 4). The silicon manufacturing apparatus 100 includes a reaction tube 102 that reacts by supplying chlorosilanes and hydrogen to the inside of the tube and a high-frequency heating coil 103 installed on the outer periphery of the reaction tube 102 in a sealed container 111.

反応管102は、グラファイトなどの炭素材料を基材として形成され、その外周の高周波加熱コイル103からの高周波による電磁誘導で加熱される。高周波加熱コイル103による加熱で反応管102の内面はシリコンの融点(概ね1410〜1430℃)以上の温度か、あるいはこれ未満のシリコンが析出可能な温度に加熱される。   The reaction tube 102 is formed using a carbon material such as graphite as a base material, and is heated by high frequency electromagnetic induction from the high frequency heating coil 103 on the outer periphery thereof. Heating by the high frequency heating coil 103 heats the inner surface of the reaction tube 102 to a temperature equal to or higher than the melting point of silicon (approximately 1410 to 1430 ° C.) or a temperature at which less silicon can be deposited.

そして、この加熱された反応管102の内面へ、ガス供給管106のガス供給口104から供給された、例えばモノクロロシラン(SiH3Cl)、ジクロロシラン(SiH2Cl2)、トリクロロシラン(SiHCl3)、テトラクロロシラン(SiCl4)などのク
ロロシラン類を接触させてシリコンを析出させる。
For example, monochlorosilane (SiH 3 Cl), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ) supplied from the gas supply port 104 of the gas supply pipe 106 to the inner surface of the heated reaction tube 102. ), And chlorosilanes such as tetrachlorosilane (SiCl 4 ) are contacted to deposit silicon.

反応管102の内面をシリコンの融点以上の温度にしてシリコン析出を行う場合(第1の方法)では、溶融状態で析出したシリコン融液を、反応管102の下端部の開口から連続的に落下させて、落下方向に設置されたシリコン回収部105で回収する。   When silicon deposition is performed with the inner surface of the reaction tube 102 at a temperature equal to or higher than the melting point of silicon (first method), the silicon melt deposited in a molten state is continuously dropped from the opening at the lower end of the reaction tube 102. Then, the silicon is recovered by the silicon recovery unit 105 installed in the dropping direction.

また、反応管102の内面をシリコンが析出可能な融点未満の温度にしてシリコン析出を行う場合(第2の方法)では、反応管102の内面に一度シリコンを固体として析出させた後、この内面をシリコンの融点以上に加熱して、析出物の一部または全部を溶融させて落下させ、落下方向に設置されたシリコン回収部105で回収する。   In the case where silicon deposition is performed by setting the inner surface of the reaction tube 102 to a temperature lower than the melting point at which silicon can be deposited (second method), after silicon is once deposited as a solid on the inner surface of the reaction tube 102, Is heated above the melting point of silicon, and a part or all of the precipitate is melted and dropped, and is recovered by the silicon recovery part 105 installed in the dropping direction.

なお、反応装置100内における、例えば反応管102とガス供給管106との間隙1
07などの、シリコンの析出を防止する必要がある領域には水素等のシールガスを供給して満たしている。また、反応管102での反応後の排ガスは、密閉容器111に設けられたガス排出管108から外部へ排出される。
特開2002−29726号公報 特願2002−176653号公報 特願2002−300805号公報 特願2003−503551号公報
Note that, for example, a gap 1 between the reaction tube 102 and the gas supply tube 106 in the reaction apparatus 100.
A region where it is necessary to prevent silicon deposition, such as 07, is filled with a sealing gas such as hydrogen. Further, the exhaust gas after the reaction in the reaction tube 102 is discharged to the outside from a gas discharge tube 108 provided in the sealed container 111.
JP 2002-29726 A Japanese Patent Application No. 2002-176653 Japanese Patent Application No. 2002-300805 Japanese Patent Application No. 2003-503551

この従来の製造装置100では、図6、7に示したように、1つの反応管102を設置してその外周に高周波加熱コイル103を巻回した構成としている。そして、反応管102の内部にクロロシラン類と水素とを供給して、この反応管102の内面にシリコンを析出させている。このシリコンを析出させる反応管102の内面の表面積は、生産性の向上の観点からすれば大きくすることが望ましい。   In this conventional manufacturing apparatus 100, as shown in FIGS. 6 and 7, one reaction tube 102 is installed, and a high-frequency heating coil 103 is wound around the outer periphery thereof. Then, chlorosilanes and hydrogen are supplied into the reaction tube 102 to deposit silicon on the inner surface of the reaction tube 102. It is desirable to increase the surface area of the inner surface of the reaction tube 102 for depositing silicon from the viewpoint of improving productivity.

しかし、反応管102のサイズを大きくすることによりその内面の表面積を広げようとしても、表面積の増加に伴う反応管102のサイズの増加が大きいために、これによる弊害が生じてしまう。   However, even if an attempt is made to increase the surface area of the inner surface by increasing the size of the reaction tube 102, the increase in the size of the reaction tube 102 accompanying the increase in the surface area causes a problem.

一方、シリコンの析出を効率よく行う方法として、従来のように製造装置に1つの反応管を設置するのではなく、複数の反応管を並設して、各反応管の内面でシリコンを析出させることで、シリコンの析出のための表面積を大きくすることが考えられる。   On the other hand, as a method for efficiently depositing silicon, instead of installing a single reaction tube in the manufacturing apparatus as in the prior art, a plurality of reaction tubes are arranged in parallel to deposit silicon on the inner surface of each reaction tube. Thus, it is conceivable to increase the surface area for silicon deposition.

しかしながら、反応管ごとにその外周へ高周波加熱コイルを巻回設置して、各反応管にそれぞれ巻回された各高周波加熱コイルによって加熱を行う構成とすると、これらが占める空間が大きく、これに伴い装置サイズも大きくなる。   However, when a high-frequency heating coil is wound around each reaction tube and heated by each high-frequency heating coil wound around each reaction tube, the space occupied by these is large. The device size also increases.

本発明は、上記した従来技術の問題点を解決するために為されたものであり、その目的は、シリコンを効率よく製造可能であり、且つ装置サイズがコンパクトなシリコン製造装置を提供することにある。   The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a silicon manufacturing apparatus capable of efficiently manufacturing silicon and having a compact apparatus size. is there.

本発明のシリコン製造装置は、炭素材料を基材とする反応管と、
前記反応管を加熱する高周波加熱コイルとを備え、クロロシラン類と水素とを前記反応管の内部へ供給して反応させ、管内面にシリコンを析出させる多結晶シリコンの製造装置であって、
前記反応管は複数本の反応管を並設して構成され、且つ、前記高周波加熱コイルは前記複数本の反応管によって形成される反応管部の外周に、各反応管と間隙をあけて巻回して設けられたことを特徴とする。
The silicon production apparatus of the present invention includes a reaction tube based on a carbon material,
A high-frequency heating coil for heating the reaction tube, supplying chlorosilanes and hydrogen to the inside of the reaction tube to cause reaction, and depositing silicon on the inner surface of the tube,
The reaction tube is composed of a plurality of reaction tubes arranged side by side, and the high-frequency heating coil is wound around each reaction tube with a gap around the outer periphery of a reaction tube portion formed by the plurality of reaction tubes. It is provided by turning.

本発明によれば、複数の反応管を、その全体を囲うように巻回した一つの高周波加熱コイルで加熱することとしたので、シリコンを効率よく製造可能であるとともに、装置サイズがコンパクトなシリコン製造装置を提供することができる。   According to the present invention, since a plurality of reaction tubes are heated by one high-frequency heating coil wound so as to surround the entire reaction tube, silicon can be efficiently manufactured and the size of the apparatus can be reduced. A manufacturing apparatus can be provided.

以下、図面を参照しながら本発明を詳細に説明する。図1は、本発明のシリコン製造装置の一実施例における反応管と高周波加熱コイルとの配置関係を示した上面図、図2は、図1の正面図である。なお、前述した従来のシリコン製造装置の構成と対応する部分は符
号100を省略して示し、その詳細な説明を省略する。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a top view showing the positional relationship between a reaction tube and a high-frequency heating coil in one embodiment of the silicon production apparatus of the present invention, and FIG. 2 is a front view of FIG. Note that portions corresponding to the configuration of the above-described conventional silicon manufacturing apparatus are shown with the reference numeral 100 omitted, and detailed description thereof is omitted.

図1、2に示したように、本実施例では、反応管2、2・・・を水平方向へ一列に配置して、この一列に並ぶ反応管2、2・・・からなる反応管部2a(一点鎖線内)の外周に沿って高周波加熱コイル3を巻回している。   As shown in FIGS. 1 and 2, in this embodiment, reaction tubes 2, 2... Are arranged in a row in the horizontal direction, and the reaction tube portion made up of the reaction tubes 2, 2. The high frequency heating coil 3 is wound along the outer periphery of 2a (inside the alternate long and short dash line).

これらの反応管2、2・・・は、高周波加熱コイル3からの高周波により電磁誘導で加熱される。このように、複数本の反応管2、2・・・が、これらの加熱を行う高周波加熱コイル3を共有するように構成されている。反応ガスは、反応管2の上部側開口21から管内部へ供給され、各反応管2、2・・・の内壁にシリコンを析出させる。反応ガスの供給方法としては、単一のガス供給源から複数のガス供給路により各反応管2、2・・・へ反応ガスを分配してもよく、また、各反応管2、2・・・ごとにガス供給源を別途設けて、それぞれのガス供給源から対応する反応管2へ反応ガスを供給するようにしてもよい。   These reaction tubes 2, 2... Are heated by electromagnetic induction by the high frequency from the high frequency heating coil 3. In this way, the plurality of reaction tubes 2, 2... Are configured to share the high-frequency heating coil 3 that performs the heating. The reaction gas is supplied from the upper side opening 21 of the reaction tube 2 into the tube, and silicon is deposited on the inner walls of the reaction tubes 2, 2. As a method of supplying the reaction gas, the reaction gas may be distributed from the single gas supply source to the reaction tubes 2, 2... By a plurality of gas supply paths, and the reaction tubes 2, 2,. A separate gas supply source may be provided for each, and the reaction gas may be supplied from each gas supply source to the corresponding reaction tube 2.

図3、4は、本発明のシリコン製造装置の他の実施例における反応管と高周波加熱コイルとの配置関係を示した上面図である。図1の実施例では反応管2、2・・・を一列に配置しているが、配置の仕方はこれに限定されず、例えば、図3に示した実施例のように配置してもよい。この実施例では、反応管2、2・・・を二列に配置して、この二列に並ぶ反応管2、2・・・によって形成された反応管部2aの外周に沿って高周波加熱コイル3を巻回している。   3 and 4 are top views showing the positional relationship between reaction tubes and high-frequency heating coils in another embodiment of the silicon production apparatus of the present invention. In the embodiment of FIG. 1, the reaction tubes 2, 2... Are arranged in a line, but the arrangement is not limited to this, and may be arranged as in the embodiment shown in FIG. . In this embodiment, the reaction tubes 2, 2... Are arranged in two rows, and the high-frequency heating coil is arranged along the outer periphery of the reaction tube portion 2 a formed by the reaction tubes 2, 2. 3 is wound.

また、図4に示した実施例では、反応管2、2・・・を環状に配置して、この環状に並ぶ反応管2、2・・・によって形成された反応管部2aの外周に沿って高周波加熱コイル3を巻回している。このように反応管2、2・・・を環状に配置する態様では、環状の反応管部2aの内側に、さらに同心円状に高周波加熱コイル3を設置するとともにその内周に沿って反応管2、2・・・を配置するようにしてもよく、このように高周波加熱コイル3の内周に沿って反応管2、2・・・を配置した構成を同心円状に何重に設けてもよい。   In the embodiment shown in FIG. 4, reaction tubes 2, 2... Are arranged in a ring shape, and along the outer periphery of the reaction tube portion 2 a formed by the reaction tubes 2, 2. The high frequency heating coil 3 is wound around. Thus, in the aspect which arrange | positions reaction tube 2,2 ... cyclically | annularly, the high frequency heating coil 3 is further installed concentrically inside the cyclic | annular reaction tube part 2a, and reaction tube 2 is along the inner periphery. 2... May be arranged, and the configuration in which the reaction tubes 2, 2... Are arranged along the inner periphery of the high-frequency heating coil 3 in this manner may be provided in multiple concentric circles. .

このように、高周波加熱コイル3の内周に沿った位置に複数本の反応管2、2・・・が水平方向に並設されていれば、反応管2、2・・・が並設される仕方は、図1のような直線状、図3のような二列状、図4のような環状など特に限定されないが、高周波加熱コイル3からの高周波によって効率的に加熱を行うためには、各反応管2の管壁の少なくとも一部を高周波加熱コイル3の内周面と近接させることが好ましい。   As described above, if a plurality of reaction tubes 2, 2,... Are arranged in parallel in the position along the inner periphery of the high-frequency heating coil 3, the reaction tubes 2, 2,. 1 is not particularly limited, such as a straight line as shown in FIG. 1, a two-row shape as shown in FIG. 3, and an annular shape as shown in FIG. 4, but in order to efficiently perform heating by the high frequency from the high frequency heating coil 3. It is preferable that at least a part of the tube wall of each reaction tube 2 is brought close to the inner peripheral surface of the high-frequency heating coil 3.

また、各反応管2は、高周波加熱コイル3による加熱を効率よく行うために、互いの管壁を接することなく離間して配置することが望ましい。   Moreover, in order to perform the heating by the high frequency heating coil 3 efficiently, it is desirable that the reaction tubes 2 are arranged apart from each other without contacting the tube walls.

高周波加熱コイル3のコイル形状(コイル軸に対する横断面の形状)は特に限定されず、真円状、楕円状、矩形状、三角形状など種々の形状とすることができるが、例えば、楕円状のコイルの内周面に沿って、楕円状の反応管部2aを形成するように各反応管2を均等配置する態様などが望ましい。   The coil shape (cross-sectional shape with respect to the coil axis) of the high-frequency heating coil 3 is not particularly limited, and may be various shapes such as a perfect circle, an ellipse, a rectangle, and a triangle. A desirable mode is one in which the reaction tubes 2 are arranged uniformly so as to form an elliptical reaction tube portion 2a along the inner peripheral surface of the coil.

また、反応管2の形状も特に限定されず、その横断面が真円状、楕円状または矩形状のものなどが使用可能である。   Further, the shape of the reaction tube 2 is not particularly limited, and those having a cross section of a perfect circle, an ellipse or a rectangle can be used.

このように、複数の反応管2、2・・・を並設し、これらの反応管群の最外側に沿ったラインの外周に高周波加熱コイル3を巻回した構成を導入してシリコン製造装置を構成し、各反応管2、2・・・を高周波加熱コイル3で加熱した状態で各管内へクロロシラン類と水素とを供給して、管内面にシリコンを析出させる。そして、前述した第1の方法では溶融状態のシリコンを各反応管2、2・・・の下端部の開口から落下させて下方に設けら
れたシリコン回収部で連続的に回収する。一方、前述した第2の方法では、各反応管2、2・・・の内面に一度シリコンを固体として析出させた後、この内面をシリコンの融点以上に加熱して、析出物の一部または全部を溶融させて落下させ、落下方向に設けられたシリコン回収部で回収する。
In this way, a plurality of reaction tubes 2, 2. In this state, the reaction tubes 2, 2... Are heated by the high-frequency heating coil 3, and chlorosilanes and hydrogen are supplied into the tubes to deposit silicon on the inner surfaces of the tubes. In the first method described above, the molten silicon is dropped from the opening at the lower end of each reaction tube 2, 2... And continuously recovered by the silicon recovery section provided below. On the other hand, in the second method described above, silicon is once deposited as a solid on the inner surface of each reaction tube 2, 2..., And then the inner surface is heated above the melting point of silicon, The whole is melted and dropped, and recovered by a silicon recovery unit provided in the dropping direction.

本発明のシリコン製造装置において、それぞれの反応管へのガスの供給と排出、および反応析出物であるシリコンの取り出しは、反応管毎に個別に行ってもよいが、反応管上部と反応管下部のいずれか、あるいはその両方を共通した室に接続して、反応管上部に接続された共通室からそれぞれの反応管に同時にガスを供給し、反応管下部に接続された共通室から各反応管からの排ガスおよび反応析出物を同時に回収することも可能である。   In the silicon production apparatus of the present invention, the supply and discharge of gas to each reaction tube and the removal of silicon as reaction precipitates may be performed separately for each reaction tube. One or both of these are connected to a common chamber, gas is simultaneously supplied to each reaction tube from the common chamber connected to the upper part of the reaction tube, and each reaction tube is connected to the common chamber connected to the lower part of the reaction tube. It is also possible to collect exhaust gas and reaction deposits from the same.

図1は、本発明のシリコン製造装置の一実施例における反応管と高周波加熱コイルとの配置関係を示した上面図である。FIG. 1 is a top view showing an arrangement relationship between a reaction tube and a high-frequency heating coil in an embodiment of the silicon production apparatus of the present invention. 図2は、図1の正面図である。FIG. 2 is a front view of FIG. 図3は、本発明のシリコン製造装置の他の実施例における反応管と高周波加熱コイルとの配置関係を示した上面図である。FIG. 3 is a top view showing an arrangement relationship between a reaction tube and a high-frequency heating coil in another embodiment of the silicon production apparatus of the present invention. 図4は、本発明のシリコン製造装置の他の実施例における反応管と高周波加熱コイルとの配置関係を示した上面図である。FIG. 4 is a top view showing an arrangement relationship between a reaction tube and a high-frequency heating coil in another embodiment of the silicon production apparatus of the present invention. 図5は、従来のシリコン製造装置を示した概略断面図である。FIG. 5 is a schematic cross-sectional view showing a conventional silicon manufacturing apparatus. 図6は、従来のシリコン製造装置における反応管と高周波加熱コイルとの配置関係を示した上面図である。FIG. 6 is a top view showing the positional relationship between a reaction tube and a high-frequency heating coil in a conventional silicon manufacturing apparatus. 図7は、図6の正面図である。FIG. 7 is a front view of FIG.

符号の説明Explanation of symbols

2 反応管
2a 反応管部
3 高周波加熱コイル
21 上部開口
100 シリコン製造装置
102 反応管
103 高周波加熱コイル
104 ガス供給口
105 回収部
106 ガス供給管
107 間隙
108 ガス排出口
109 回収シリコン
111 密閉容器
2 Reaction tube 2a Reaction tube section 3 High-frequency heating coil 21 Upper opening 100 Silicon manufacturing apparatus 102 Reaction tube 103 High-frequency heating coil 104 Gas supply port 105 Recovery unit 106 Gas supply tube 107 Gap 108 Gas discharge port 109 Recovery silicon 111 Sealed container

Claims (1)

炭素材料を基材とする反応管と、
前記反応管を加熱する高周波加熱コイルとを備え、クロロシラン類と水素とを前記反応管の内部へ供給して反応させ、管内面にシリコンを析出させる多結晶シリコンの製造装置であって、
前記反応管は複数本の反応管を、互いの管壁が接することなく離間して並設して構成され、且つ、前記高周波加熱コイルは前記複数本の反応管によって形成される反応管部の外周に、該反応管部と間隙をあけて巻回して設けられ、これにより、前記複数本の反応管の全体が、一つの高周波加熱コイルで巻回されるように構成されたことを特徴とするシリコン製造装置。

A reaction tube based on a carbon material;
A high-frequency heating coil for heating the reaction tube, supplying chlorosilanes and hydrogen to the inside of the reaction tube to cause reaction, and depositing silicon on the inner surface of the tube,
The reaction tube is configured by arranging a plurality of reaction tubes in parallel with each other without being in contact with each other , and the high-frequency heating coil is a reaction tube portion formed by the plurality of reaction tubes. The reaction tube section is wound around the outer periphery of the reaction tube portion so that the entire reaction tube is wound by a single high-frequency heating coil. Silicon manufacturing equipment.

JP2003298642A 2003-08-22 2003-08-22 Silicon production equipment Expired - Fee Related JP4261289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003298642A JP4261289B2 (en) 2003-08-22 2003-08-22 Silicon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003298642A JP4261289B2 (en) 2003-08-22 2003-08-22 Silicon production equipment

Publications (2)

Publication Number Publication Date
JP2005067939A JP2005067939A (en) 2005-03-17
JP4261289B2 true JP4261289B2 (en) 2009-04-30

Family

ID=34404090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003298642A Expired - Fee Related JP4261289B2 (en) 2003-08-22 2003-08-22 Silicon production equipment

Country Status (1)

Country Link
JP (1) JP4261289B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290960A1 (en) * 2007-12-28 2010-11-18 Hiroo Noumi Apparatus for producing silicon
CN102190304B (en) * 2010-03-08 2015-04-15 三菱综合材料株式会社 Apparatus for producing trichlorosilane

Also Published As

Publication number Publication date
JP2005067939A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5360147B2 (en) Polycrystalline silicon reduction furnace
KR101600651B1 (en) Protective device for electrode holders in cvd reactors
JP4905638B2 (en) Electrode short-circuit prevention method and short-circuit prevention plate
JP5119856B2 (en) Trichlorosilane production equipment
JP2006206387A (en) Polycrystalline silicon reducing furnace and polycrystalline silicon rod
JP2010006689A (en) Apparatus for producing trichlorosilane, and method for producing trichlorosilane
JP2010155782A (en) Polycrystalline silicon rod
JP4261289B2 (en) Silicon production equipment
CN104245116B (en) For the manufacture of reactor and the method for HIGH-PURITY SILICON
WO2018076139A1 (en) Method for producing polycrystalline silicon and method for producing monocrystalline silicon
WO2016052841A1 (en) Poly-silicon manufacturing apparatus and method using high-efficiency hybrid horizontal reactor
JP5642755B2 (en) Apparatus and method for depositing polycrystalline silicon
JP6165965B2 (en) Gas distributor for Siemens furnace
KR101640286B1 (en) Apparatus and method for producing polysilicon using streamer discharge
JP5542031B2 (en) Polycrystalline silicon manufacturing method and polycrystalline silicon manufacturing system
KR20130016740A (en) Manufacturing method of polycrystalline silicon rod
KR101420338B1 (en) Insulation Sleeve for CVD Reactor and CVD Reactor with The Insulation Sleeve
TWI605871B (en) Polysilicon manufacturing apparatus
KR101590679B1 (en) Apparatus for generating dual plasma and method of producing polysilicon using same
WO2015174705A1 (en) Device for manufacturing polysilicon using horizontal reactor and method for manufacturing same
KR101755764B1 (en) Apparatus for producing polysilicon and preparation of polysilicon using same
KR101380767B1 (en) Cvd reactor for producing polysilicon
KR101871019B1 (en) Apparatus for producing polysilicon and preparation of polysilicon using same
JP2010037159A (en) Silicon manufacturing device
JP2022166478A (en) Device for producing polycrystalline silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees