JP4260883B2 - Method for producing metal composite material - Google Patents

Method for producing metal composite material Download PDF

Info

Publication number
JP4260883B2
JP4260883B2 JP51336197A JP51336197A JP4260883B2 JP 4260883 B2 JP4260883 B2 JP 4260883B2 JP 51336197 A JP51336197 A JP 51336197A JP 51336197 A JP51336197 A JP 51336197A JP 4260883 B2 JP4260883 B2 JP 4260883B2
Authority
JP
Japan
Prior art keywords
powder
carbon
producing
metal
hard constituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51336197A
Other languages
Japanese (ja)
Other versions
JPH11512783A (en
Inventor
ニーグレン,マッツ
ベスティン,グンナル
エクストランド,オーサ
Original Assignee
サンドビック インテレクチュアル プロパティー アクティエボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9503419A external-priority patent/SE507211C2/en
Application filed by サンドビック インテレクチュアル プロパティー アクティエボラーグ filed Critical サンドビック インテレクチュアル プロパティー アクティエボラーグ
Publication of JPH11512783A publication Critical patent/JPH11512783A/en
Application granted granted Critical
Publication of JP4260883B2 publication Critical patent/JP4260883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

powder metallurgy. SUBSTANCE: invention can be used for manufacturing metallic composites such as cemented carbide. Two-step process includes preparation of solution by dissolving and complexing at least one compound selected from Men(NO3)m and Men(SO4)m and other similar compounds Men-Xm, in which X ligands are of low- carbon type, preferably metal nitrates, or mixture of selected compound with at least one organically liganded metal salt in at least one polar solvent containing at least one complexing agent containing functional groups OH or NR2 (R is hydrogen or alkyl), provided that proportion of low- carbon or no-carbon metal salts is superior to 10%, preferably to 50% based on the total amount of metal salts. Refractory component powder is added to thus prepared solution, which is then evaporated to isolate powder. The latter is subjected to heat treatment in inert and/or slightly reductive atmosphere to give desired refractory component powder with coating based on at least one iron group metal. EFFECT: increased metallurgical linkage between metal and powder particles. 6 cl, 2 tbl

Description

本発明は超硬合金のような金属複合材料を製造する方法に関する。
米国特許第5,505,902号は、有機基を含有する少なくとも1種の鉄基金属の金属塩を1種または複数種溶解し、且つ少なくとも1種の極性溶剤中で、OHまたはNR3(RはHまたはアルキル)の形の官能基を含む少なくとも1種の錯体形成剤と錯結合させることが開示されている。硬質構成物質粉末及び、任意に、可溶性炭素源が、溶液に添加される。溶剤が蒸発されて、残留粉末が不活性及び/または還元雰囲気中で熱処理される。結果として、被膜硬質構成物質粉末が得られ、粉末は加圧成形剤の添加後に標準手法にしたがって加圧成形及び焼結が行われ、バインダー相中に硬質構成物質を含有する固形物が得られる。
前記方法は、超硬合金のためには非常に狭い範囲に維持する必要のある所望炭素含有量を得るために、大量(>1kg)の被膜粉末の熱処理を、純粋水素中及び/または必要以上に多くのガス流量でもって実施する必要があることが問題である。
すなわち、本発明の目的は、水素還元が本質的に省かれた上記米国特許の代替方法を提供することにある。
本発明の方法にしたがい、上記特許の少なくとも1種の有機塩が、炭素を含まないかまたは僅かに含む塩で部分的にまたは完全に置き換えられる。
本発明にしたがう方法は次の工程を含み、Meが、Co、Ni及び/またはFe、好ましくはCoである。
1.Men(NO3mと、Men(SO4mと、少量の<5wt−%好ましくは<2wt−%もっとも好ましくは無炭素含有量であるX基好ましくはMe−硝酸塩を含有する他の類似Men−Xm化合物と、の少なくとも1種を、単独で、または、
カルボオキシレートと、アセチルアセトネートと、シッフ塩基のような有機基好ましくはMe−酢酸塩を含有する窒素のような有機基と、を含む少なくとも1種のMe−塩とともに、
エタノール、アセトニトリル、ジメチルホルムアミドまたはジメチルスルホキシド、及びメタノール−エタノール及び水−グリコール好ましくはメタノールのような溶剤の組合せ、のような少なくとも1種の極性溶剤の中に
溶解する。
低炭素または無炭素含有量のMe−塩量は、Me−塩総量で>10%好ましくは>50%にする必要がある。トリエタノールアミンまたは他の錯形成剤、特に二つ以上の官能基即ちOHまたはNR3(RがHまたはアルキル)を含有する分子(0.1〜2.0モル錯形成剤/モル金属、好ましくは約0.5モル錯形成剤/モル金属)が、攪拌中に添加される。
2.WC粉末、及びWC粉末が、(Ti、W)C、(Ta、Nb)C、(Ti、Ta、Nb)C、(Ti、W)(C、N)、TiC、TaC、NbC、VDC及びCr32またはこれらの組み合わせを含むような硬質構成物質粉末が、好ましくは例えばジェット粉砕等によって解凝集させて、穏やかな攪拌を行いつつ添加され、且つ温度を上昇させて溶剤の蒸発を促進させる。混合物がさらに粘性を持ったときに、練り粉状の混合物が混練され、そしてほとんど乾燥したときに穏やかに粉砕して蒸発を促進する(溶剤が介在することを避けるため)。
3.前工程で得られたばらばらにされた粉末塊が、不活性及び/またはわずかに還元性の雰囲気で、約400〜1100℃好ましくは500〜900℃で熱処理される。十分に還元された粉末を達成するために、保持温度が必要である。熱処理時間は、粉末ベッド厚さ、バッチサイズ、ガス組成及び熱処理温度のような処理因子に影響され、実験によって決定する必要がある。窒素及び/または水素を通常使用するが、ヘリウム及びアンモニア(または、それらの混合物)を使用することができ、それによって、被膜の組成及び微細組織を変更することができる。
4.熱処理のあと、被膜された粉末は、エタノール中で加圧成形剤とともにスラリーへと単独で混合されるか、または、他の被膜された硬質構成物質粉末及び/または被膜されていない硬質構成物質粉末及び/またはバインダー相金属、及び可能であるならば炭素またはタングステンとともに混合され、所望の組成を達成する。このスラリーは、その後乾燥され、加圧成形され、且つ通常の方法で焼結され、バインダー相中に焼結された固形物状の硬質構成物質が得られる。
最良の溶剤の回収は、工業的製法に規模を拡大する場合は非常に重要である。
代わりに、加圧成形剤は、工程2にしたがって硬質構成物質粉末とともに添加することができ、直接乾燥し、加圧し且つ工程3にしたがう条件を考慮して焼結される。
実施例1
WC−6%Co超硬合金粉末混合物を、本発明にしたがい次の方法で製造した。すなわち、
硝酸塩/酢酸塩の比が7対6の72.63gの硝酸コバルト六水和物(Co(NO32・6H2O)及び62.26gの酢酸コバルト四水和物(Co(C2322・4H2O)の混合物を、800mlのメタノール(CH3OH)に溶解した。36.1mlのトリエタノールアミン((C25O)3N(0.5モルTEA/モルCo)を攪拌しつつ添加した。その後、ジェット粉砕したWC粉末を500g添加し、且つ温度を約70℃に上昇した。注意深く攪拌を連続的に行い、その間に混合物が粘性を持つまでメタノールを蒸発させた。練り粉状の混合物を作り、それがほぼ乾燥したとき軽圧力でもって粉砕した。
得られた粉末は、約1cm厚みの多孔質床の炉内で、種々のバッチサイズで焼成され、且つ流れガス雰囲気(ガス流量:2000リットル/h)を変化させ、10℃/minの速度で700℃まで加熱し、保持時間は3時間で、10℃/minで冷却した。
粉末バッチはコバルト及び炭素に関して分析し、実施した熱処理プログラムの結果を以下に要約する。

Figure 0004260883
参照バッチを作成し、そして硝酸塩/酢酸塩の混合物の置き換えを除外し、134.89gの酢酸コバルト四水和物(Co(C2322・4H2O)だけを上記にしたがい同一の熱処理を施した。粉末バッチはコバルト及び炭素に関して分析し、実施した熱処理プログラムの結果を以下に要約する。
Figure 0004260883
The present invention relates to a method of manufacturing a metal composite material such as a cemented carbide.
U.S. Pat. No. 5,505,902 dissolves one or more metal salts of at least one iron-based metal containing organic groups, and in at least one polar solvent, OH or NR 3 ( It is disclosed that R is complexed with at least one complexing agent comprising a functional group in the form of H or alkyl). A hard constituent powder and, optionally, a soluble carbon source is added to the solution. The solvent is evaporated and the residual powder is heat treated in an inert and / or reducing atmosphere. As a result, a coating hard constituent powder is obtained, and the powder is subjected to pressure molding and sintering according to a standard method after the addition of the pressure molding agent, and a solid containing a hard constituent in the binder phase is obtained. .
The method involves heat treatment of large quantities (> 1 kg) of coating powder in pure hydrogen and / or more than necessary to obtain the desired carbon content that needs to be maintained in a very narrow range for cemented carbide. It is a problem that it is necessary to carry out with a large gas flow rate.
Thus, it is an object of the present invention to provide an alternative method to the above US patent that essentially eliminates hydrogen reduction.
In accordance with the method of the present invention, at least one organic salt of the above patent is partially or completely replaced with a salt containing no or little carbon.
The method according to the invention comprises the following steps, wherein Me is Co, Ni and / or Fe, preferably Co.
1. Others containing Me n (NO 3 ) m , Me n (SO 4 ) m and small amounts of <5 wt-%, preferably <2 wt-%, most preferably carbon-free X group, preferably Me-nitrate Or at least one of the similar Me n -X m compounds, alone or
With at least one Me-salt comprising carbooxylate, acetylacetonate, and an organic group such as a Schiff base, preferably an organic group such as nitrogen containing Me-acetate,
It is soluble in at least one polar solvent such as ethanol, acetonitrile, dimethylformamide or dimethyl sulfoxide, and methanol-ethanol and water-glycol, preferably a combination of solvents such as methanol.
The amount of Me-salt with low or no carbon content should be> 10%, preferably> 50% in total Me-salt. Triethanolamine or other complexing agents, in particular molecules containing two or more functional groups, ie OH or NR 3 (where R is H or alkyl) (0.1-2.0 mol complexing agent / mol metal, preferably About 0.5 mol complexing agent / mol metal) is added during stirring.
2. WC powder and WC powder are (Ti, W) C, (Ta, Nb) C, (Ti, Ta, Nb) C, (Ti, W) (C, N), TiC, TaC, NbC, VDC and Hard constituent powders, including Cr 3 C 2 or combinations thereof, are preferably deagglomerated, for example by jet milling, added with gentle agitation and increased temperature to promote solvent evaporation Let When the mixture becomes more viscous, the dough-like mixture is kneaded and when it is almost dry it gently grinds to promote evaporation (to avoid solvent intervention).
3. The loose powder mass obtained in the previous step is heat treated at about 400-1100 ° C., preferably 500-900 ° C., in an inert and / or slightly reducing atmosphere. In order to achieve a fully reduced powder, a holding temperature is required. The heat treatment time is influenced by processing factors such as powder bed thickness, batch size, gas composition and heat treatment temperature and needs to be determined by experiment. Nitrogen and / or hydrogen are usually used, but helium and ammonia (or mixtures thereof) can be used, thereby changing the composition and microstructure of the coating.
4). After heat treatment, the coated powder can be mixed alone into a slurry with a pressing agent in ethanol, or other coated hard component powder and / or uncoated hard component powder. And / or mixed with a binder phase metal and, if possible, carbon or tungsten to achieve the desired composition. This slurry is then dried, pressure molded, and sintered in the usual manner to obtain a solid hard constituent that is sintered in the binder phase.
The best solvent recovery is very important when scaling up to industrial processes.
Alternatively, the pressure forming agent can be added with the hard constituent powder according to step 2, and is directly dried, pressed and sintered taking into account the conditions according to step 3.
Example 1
A WC-6% Co cemented carbide powder mixture was prepared according to the present invention by the following method. That is,
72.63 g cobalt nitrate hexahydrate (Co (NO 3 ) 2 .6H 2 O) with a nitrate / acetate ratio of 7 to 6 and 62.26 g cobalt acetate tetrahydrate (Co (C 2 H The mixture of 3 O 2 ) 2 · 4H 2 O) was dissolved in 800 ml of methanol (CH 3 OH). 36.1 ml of triethanolamine ((C 2 H 5 O) 3 N (0.5 mol TEA / mol Co) was added with stirring, then 500 g of jet milled WC powder was added and the temperature was reduced to about The temperature rose to 70 ° C. Careful stirring was continued, during which time the methanol was evaporated until the mixture became viscous, a dough-like mixture was made and ground with light pressure when it was almost dry.
The obtained powder was fired in various batch sizes in a porous bed furnace having a thickness of about 1 cm, and the flow gas atmosphere (gas flow rate: 2000 l / h) was changed at a rate of 10 ° C./min. The sample was heated to 700 ° C. and cooled at 10 ° C./min for 3 hours.
The powder batch was analyzed for cobalt and carbon and the results of the heat treatment program performed are summarized below.
Figure 0004260883
Make a reference batch and exclude the replacement of the nitrate / acetate mixture, only 134.89 g of cobalt acetate tetrahydrate (Co (C 2 H 3 O 2 ) 2 .4H 2 O) as above The same heat treatment was applied. The powder batch was analyzed for cobalt and carbon and the results of the heat treatment program performed are summarized below.
Figure 0004260883

Claims (5)

Me n (NO 3 m 、Me n (SO 4 m または、低炭素若しくは無炭素のX基による同様な化合物Me n −X m の少なくとも1種を単独か、または有機基を含有する少なくとも1種のMe−塩とともに、OHまたはRがH若しくはアルキルであるNR 3 の形の官能基を含む少なくとも1種の錯体形成剤を有する少なくとも1種の極性溶剤中で、溶解し、錯結合させ、且つ低炭素若しくは無炭素のMe−塩量が、Me−塩の総量の10%以上となるようにした溶液による、鉄基金属Meで被膜した硬質構成物質粉末の製造方法であって
) 硝酸コバルト六水和物(Co(NO32・6H2O)、及び酢酸コバルト四水和物(Co(C2322・4H2O)の混合物を、メタノール(CH35O)に溶解する工程、
) 上記()の工程により製作された溶液に、トリエタノールアミン(C25O)3Nを攪拌しつつ添加する工程、
) 上記()の工程により製作された溶液に、WC粉末を添加して混合物とし、温度を70度に上昇させる工程、
) 上記()の工程により製造された混合物のメタノールを蒸発させてWC粉末を回収する工程、
) 上記()の工程により回収されたWC粉末を不活性ガスまたはわずかに還元性の雰囲気で熱処理して、Co金属で被覆された硬質構成物質粉末を得る工程、
を備える硬質構成物質粉末の製造方法。
At least one of Me n (NO 3 ) m , Me n (SO 4 ) m or similar compound Me n -X m with a low carbon or carbonless X group , or at least one containing an organic group Dissolving and complexing in at least one polar solvent with at least one complex-forming agent comprising a functional group in the form of NR 3 where OH or R is H or alkyl together with a seed Me-salt ; And a method of producing a hard constituent powder coated with an iron-based metal Me , with a solution in which the amount of low-carbon or carbon-free Me-salt is 10% or more of the total amount of Me-salt ,
( 1 ) A mixture of cobalt nitrate hexahydrate (Co (NO 3 ) 2 .6H 2 O) and cobalt acetate tetrahydrate (Co (C 2 H 3 O 2 ) 2 .4H 2 O) is mixed with methanol. A step of dissolving in (CH 3 H 5 O),
( 2 ) A step of adding triethanolamine (C 2 H 5 O) 3 N to the solution prepared by the step ( 1 ) while stirring,
( 3 ) A step of adding WC powder to the solution produced by the step ( 2 ) to obtain a mixture and raising the temperature to 70 degrees,
( 4 ) A step of recovering WC powder by evaporating methanol of the mixture produced by the step ( 3 ) above,
( 5 ) A step of obtaining a hard constituent powder coated with Co metal by heat-treating the WC powder recovered by the step ( 4 ) in an inert gas or a slightly reducing atmosphere,
A method for producing a hard constituent powder comprising:
前記低炭素若しくは無炭素のMe−塩の炭素含有量が5wt-%C未満であることを特徴とする請求項1記載の硬質構成物質粉末の製造方法。 The method for producing a hard constituent material powder according to claim 1, wherein the carbon content of the low-carbon or carbon-free Me-salt is less than 5 wt-% C. 前記WC粉末が、(Ti、W)C、(Ta、Nb)C、(Ti、Ta、Nb)C、(Ti、W)(C、N)、TiC、TaC、NbC、VC及びCr32またはこれらの組合せを含むことを特徴とする請求項1記載の硬質構成物質粉末の製造方法。The WC powder is ( Ti, W) C, (Ta, Nb) C, (Ti, Ta, Nb) C, (Ti, W) (C, N), TiC, TaC, NbC, VC and Cr 3 C. 2. The method for producing a hard constituent powder according to claim 1, comprising 2 or a combination thereof. 前記熱処理が、400〜1100℃の温度であることを特徴とする請求項1記載の硬質構成物質粉末の製造方法。The method for producing a hard constituent powder according to claim 1, wherein the heat treatment is performed at a temperature of 400 to 1100 ° C. 熱処理雰囲気が、窒素、水素、アルゴン、ヘリウム、アンモニアまたはこれらの混合物を含むことを特徴とする請求項1記載の硬質構成物質粉末の製造方法。The method for producing a hard constituent powder according to claim 1, wherein the heat treatment atmosphere contains nitrogen, hydrogen, argon, helium, ammonia or a mixture thereof.
JP51336197A 1995-09-29 1996-09-27 Method for producing metal composite material Expired - Fee Related JP4260883B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9503419A SE507211C2 (en) 1995-09-29 1995-09-29 Ways to make coated hardened powder
SE9503419-5 1995-09-29
PCT/SE1996/001213 WO1997011804A1 (en) 1995-09-29 1996-09-27 Method of making metal composite materials

Publications (2)

Publication Number Publication Date
JPH11512783A JPH11512783A (en) 1999-11-02
JP4260883B2 true JP4260883B2 (en) 2009-04-30

Family

ID=20399680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51336197A Expired - Fee Related JP4260883B2 (en) 1995-09-29 1996-09-27 Method for producing metal composite material

Country Status (5)

Country Link
JP (1) JP4260883B2 (en)
KR (1) KR100432118B1 (en)
AT (1) ATE190254T1 (en)
DE (1) DE69607018T2 (en)
RU (1) RU2164841C2 (en)

Also Published As

Publication number Publication date
KR100432118B1 (en) 2004-09-20
KR19990063851A (en) 1999-07-26
JPH11512783A (en) 1999-11-02
DE69607018D1 (en) 2000-04-13
ATE190254T1 (en) 2000-03-15
RU2164841C2 (en) 2001-04-10
DE69607018T2 (en) 2000-09-14

Similar Documents

Publication Publication Date Title
EP0752921B1 (en) Method of making metal composite materials
RU2130822C1 (en) Method of preparing hard material powders
JP4226702B2 (en) Method for producing metal composite material
US5887242A (en) Method of making metal composite materials
JP4267738B2 (en) Method for producing hard constituent powder mixture
JP4260883B2 (en) Method for producing metal composite material
KR101139745B1 (en) Method of making submicron cemented carbide
EP1043411B1 (en) Method of making metal composite materials
CN113416862A (en) Preparation method of hard alloy and hard alloy prepared by adopting same
JPH10140209A (en) Production of cemented carbide by injection molding

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080516

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees