JP4260400B2 - Temperature-sensitive fluid type fan and coupling device - Google Patents

Temperature-sensitive fluid type fan and coupling device Download PDF

Info

Publication number
JP4260400B2
JP4260400B2 JP2002012683A JP2002012683A JP4260400B2 JP 4260400 B2 JP4260400 B2 JP 4260400B2 JP 2002012683 A JP2002012683 A JP 2002012683A JP 2002012683 A JP2002012683 A JP 2002012683A JP 4260400 B2 JP4260400 B2 JP 4260400B2
Authority
JP
Japan
Prior art keywords
oil
chamber
torque transmission
coupling device
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002012683A
Other languages
Japanese (ja)
Other versions
JP2002317827A (en
Inventor
雅人 山田
吉信 飯田
晴康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2002012683A priority Critical patent/JP4260400B2/en
Publication of JP2002317827A publication Critical patent/JP2002317827A/en
Application granted granted Critical
Publication of JP4260400B2 publication Critical patent/JP4260400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、一般に自動車における機関冷却用のファン回転を制御して、絶えず走行状態に応じた冷却送風量を機関に供給する温度感応型流体式ファン・カップリング装置に関する。
【0002】
【従来の技術】
従来のこの種ファン・カップリング装置としては、トルク伝達室に供給された油によって駆動ディスクの駆動トルクをケースに伝達する方式のものが一般的であり、その構造は例えば、密封ケース内を仕切板によってトルク伝達室と油溜り室とに区分し、トルク伝達室内に駆動ディスクを駆動部の駆動によって回転自在に設け、油溜り室の油を仕切板またはカバーに形成した流出調整孔からトルク伝達室に供給し、トルク伝達室の油を循環路により油溜り室に戻すようにした構造の温度感応型流体式ファン・カップリング装置が知られている(特公昭63−21048号公報等参照)。この種のファン・カップリング装置によると、油溜り室からトルク伝達室に供給される油によって駆動ディスクの駆動トルクがケースに伝達され、ケースに取付けられたファンが回転し、例えば自動車用エンジンの冷却が行われる。また、この種のファン・カップリング装置は、短冊タイプまたは渦巻タイプのバイメタルによって雰囲気温度を検出し、この温度が上昇すると流出調整孔の開度を増加させてトルク伝達室内の油量を増加させ、ケースの回転数を上げ、ファンを高速度で回転し冷却効果を上げるようにしている。
【0003】
しかしながら、この種のファン・カップリング装置には以下に記載する問題点がある。
すなわち、トルク伝達室内に油が多量に存在している状態においてエンジン再始動をする時または走行中の急加速時に、駆動側の駆動ディスクの加速に追随してトルク伝達室内に多量に存在する油により被駆動側のケース(冷却ファン)も短時間ではあるが回転の急上昇を引起こす。この現象は一般には“つれ廻り”現象と言われ、ファン騒音やそれに伴う不快感を生じ、かつエンジン出力を吸収し、燃費も悪くなる。
【0004】
このような“つれ廻り”現象を解決する手段としては、例えば仕切板の供給孔から流出する油をいったん直径方向の反対側に導き、そこからトルク伝達室内に供給するようにしたもの(特公昭63−21048号公報参照)、駆動ディスクを中空構造にして副油溜り室(アイドル油溜り室)を設けたもの、あるいは大風量ファンを低速回転で運転する方式等が知られている。
【0005】
しかしながら、従来の温度感応型流体式ファン・カップリング装置には、以下に記載する欠点があった。
図8は従来の一般的なファン・カップリング装置を例示したもので、密封ケース111内を仕切板114によってトルク伝達室112と油溜り室113とに区分され、トルク伝達室112内には中実構造の駆動ディスク115が該トルク伝達室112の内周面との間にトルク伝達間隙部112−1が形成されるように、駆動部(図面省略)の駆動によって回転する回転軸体116に軸受117を介して回転自在に設けられ、外部周囲の温度の変化に応じて作動する弁部材118により油溜り室113内の油が仕切板114に設けられた流出調整孔114−1からトルク伝達室112に供給され、トルク伝達室112内の油が循環路121により油溜り室113に戻される構造となしたものである。118−1はリニアウェイト(リニア特性を得るためのカウンターウェイト)である。119は回転時の油の集溜する駆動ディスク115の外周壁部と対向する密封ケース111側の内周壁面の一部に設けられたダム、120は密封ケース111の外側に設けた感温体(バイメタル)である。
しかるに、かかる構造のファン・カップリング装置の場合は、仕切板114の流出調整孔114−1より出た油が、トルク伝達間隙部112−1に入る手前の空間部112−2に溜まり、トルク伝達間隙部112−1へ進入可能となる遠心力による圧力(油の水頭圧)を得るのに十分な油量に達するまで、または油の温度が上昇して粘度低下するまで滞留(停滞)する。そしてこの滞留した油が、加速時や起動時にダム119によってトルク伝達間隙部112−1の外周側に存在する油が油溜り室113側に排出されはじめてもトルク伝達間隙部112−1に流入し続け、トルクを伝達してしまって前記“つれ廻り”現象や、作動遅れなどの原因となっていた。また、この滞留油が存在することにより全体の油量も多く必要であった。
【0006】
また、図9、図10は駆動ディスクを中空構造にして副油溜り室(アイドル油溜り室)を設けたファン・カップリング装置を例示したもので、このうち図9に示すファン・カップリング装置は、駆動ディスクを中空とした以外は図8に示すものと同様、密封ケース111内を仕切板114によってトルク伝達室112と油溜り室113とに区分され、トルク伝達室112内には、内部を中空となしてアイドル油溜り室145−1となし、かつその側壁面に前記トルク伝達室112に通ずる流通孔145−2と、該流通孔を開閉する遠心バルブ145−3を有する駆動ディスク145が該トルク伝達室112の内周面との間にトルク伝達間隙部112−1が形成されるように、駆動部(図面省略)の駆動によって回転する回転軸体116に軸受117を介して回転自在に設けられ、外部周囲の温度の変化に応じて作動する弁部材118により油溜り室113内の油が仕切板114に設けられた流出調整孔114−1からトルク伝達室112に供給され、トルク伝達室112内の油が循環路(図面省略)により油溜り室113に戻される構造となし、かつ仕切板114に油溜り室113内の油を直接アイドル油溜り室145−1へ導入するためのガイド部114−2が設けられている(特公昭59−28778号公報参照)。すなわち、このファン・カップリング装置は、作動中、流出調整孔114−1を出た油をアイドル油溜り室145−1に入れ、遠心バルブ145−3を介して流通孔145−2よりトルク伝達間隙部112−1へ油を供給する方式である。
しかるに、この図9に示すファン・カップリング装置の場合は、遠心バルブ145−3の効かない入力回転の低い時には、余剰の油がアイドル油溜り室145−1内に溜まり、この状態で入力回転が上昇して遠心バルブ145−3が開くと、この余剰油がトルク伝達間隙部112−1に流入し続け、前記と同様、“つれ廻り”現象や、作動遅れなどの原因となっていた。また、この余剰油が存在することにより全体の油量も多く必要であった。
【0007】
また図10に示すファン・カップリング装置は、図9に示すものと同様、密封ケース111内を仕切板114によってトルク伝達室112と油溜り室113とに区分され、トルク伝達室112内には、内部を中空となしてアイドル油溜り室245−1となし、かつその側壁面に前記トルク伝達室112に通ずる流通孔245−2を有する駆動ディスク245が該トルク伝達室112の内周面との間にトルク伝達間隙部112−1が形成されるように、駆動部(図面省略)の駆動によって回転する回転軸体116に軸受117を介して回転自在に設けられ、外部周囲の温度の変化に応じて作動する弁部材118により油溜り室113内の油が仕切板114に設けられた流出調整孔114−1からトルク伝達室112に供給され、トルク伝達室112内の油が循環路121(図9)により油溜り室113に戻される構造となしたものである(特許第2775431号公報参照)。このファン・カップリング装置は、静止時に油をディスク内に取込み、起動時に伝達面の残留油を最少にする機構を備えたもので、起動つれ回りにのみ有効である。
ところが、このファン・カップリング装置の場合は、仕切板114の流出調整孔114−1より出た油が、トルク伝達間隙部112−1に入る手前の空間部112−3に溜まり、図8に示すファン・カップリング装置と同様、トルク伝達間隙部112−1へ進入可能となる遠心力による圧力(油の水頭圧)を得るのに十分な油量に達するまで、または油の温度が上昇して粘度低下するまで滞留(停滞)する。そしてこの滞留した油が、加速時や起動時にダム119によってトルク伝達間隙部112−1の外周側に存在する油が油溜り室113側に排出されはじめてもトルク伝達間隙部112−1に流入し続け、トルクを伝達してしまって前記“つれ廻り”現象や、作動遅れなどの原因となっていた。また、この滞留油が存在することにより全体の油量も多く必要であった。
【0008】
さらに、前記図10に示すファン・カップリング装置と類似のもので、起動時と加速時にディスク内に油を取込み、起動および加速つれ廻りを防止する機構を備えたファン・カップリング装置が提案されている(特開平6−17849号公報参照)。しかし、このファン・カップリング装置は、短い加速時に、完全にディスク内へ油を回収することが困難である。また、作動時には、前記図10に示すファン・カップリング装置と同様、油は仕切板の流出調整孔を出た後、トルク伝達間隙部の手前で滞留するため、加速時のつれ廻り対策としては十分とはいえず、作動遅れもあり、さらに余剰油が存在するため全体の油量も多く必要であった。
【0009】
【発明が解決しようとする課題】
前記したごとく、従来のファン・カップリング装置では、仕切板の流出調整孔より出た油が、トルク伝達間隙部に入る手前の空間でトルク伝達間隙部への遠心力による進入圧力を得るのに十分な油量、または粘度低下するまで滞留(停滞)するため、この滞留(余剰)油がトルク伝達間隙部手前の空間に十分にないとトルク伝達間隙部へ油が流入しないため必要なファン回転制御特性が得られず、一方でこの滞留(余剰)油のためにつれ廻りや、作動遅れなどの原因となっていた。
すなわち、バイメタルなどの感温体の温度変形や外部からの電磁制御により弁部材が作動しても、前記したごとくトルク伝達間隙部手前の空間に油が滞留するため、所定のファン回転が得られるまでに遅れが生じたり、自己発熱、外部熱など、油粘度が変化することによってファン挙動が不安定となる要因となっていた。
【0010】
本発明は、このような従来技術の問題点を解決するためになされたもので、トルク伝達間隙部手前の空間での油の滞留を防止することによって起動時、加速時のつれ廻り現象を防止でき、また油の滞留がなくても作動遅れを防止でき、温度指示に対するファン回転の安定制御(温度特性の安定化)が可能な温度感応型流体式ファン・カップリング装置を提供しようとするものである。
【0011】
【課題を解決するための手段】
本発明に係る温度感応型流体式ファン・カップリング装置は、先端部に駆動ディスクを固着した回転軸体上に軸受を介して支承され、かつ外周部に冷却ファンを取付けた密封器匣の内部を、油の流出調整孔を有する仕切板により油溜り室と前記駆動ディスクを内装するトルク伝達室とに区劃し、回転時の油の集溜する駆動ディスクの外周壁部と対向する密封器匣側の内周壁面の一部にダムと、該ダムに連なってトルク伝達室側より油溜り室側に通ずる循環流通路を形成すると共に、外部周囲の温度が設定値を超えると前記仕切板の流出調整孔を開放し、設定値以下では閉鎖する弁部材を前記カバーの外側表面に設けた感温体の温度変化に伴う変形に連動するように内部に備え、駆動ディスクと前記密封器匣との対向壁面に設けたトルク伝達間隙部での油の有効接触面積を増減させて、回転軸体側から被駆動側の密封器匣側への回転トルク伝達を制御するようにしてなるファン・カップリング装置であって、前記駆動ディスクの内部を中空となしてアイドル油溜り室となし、かつその側壁面もしくは外周壁面に前記トルク伝達室に通ずる少なくとも1個の流通孔を設けてアイドル油溜り室とトルク伝達室を連通する油の流通手段を備えた温度感応型流体式ファン・カップリング装置において、作動中に仕切板の流出調整孔から出た油を、高速回転している入力軸側のディスク内を通すことによって、高い遠心力が与えられ、またディスクのアイドル油溜り室の内周壁構造を、放射状もしくは螺旋状溝を有する小径内周壁構造にすることにより少ない油量で大きな水頭圧が得られ、ディスク内の油を安定して直接トルク伝達間隙部へ流入させることを可能となしたもので、前記油溜り室内の油が前記仕切板の流出調整孔より直接前記アイドル油溜り室内へ導入される機構を備え、さらにアイドル油溜り室に導入された油がトルク伝達間隙部へ流出するよう端部に流通孔を有する放射状の通流溝を当該ディスクの中空部の内周壁面上に少なくとも1つ有し、かつ前記アイドル油溜り室内の油が密封器匣の駆動に必要な最も少ない量となって滞留しないよう前記内周壁面を小径内周壁と通流溝とで成したことを特徴とするものである。
【0012】
本発明において、ディスクのアイドル油溜り室の内周面は、好ましくは放射状に設けた複数の通流溝の先端にトルク伝達間隙に通ずる流通孔を設け、各通流溝間の壁面はディスクの回転中心に対し曲率中心を偏心させた円弧面で構成する。
【0013】
【発明の実施の形態】
図1は本発明に係る温度感応型ファン・カップリング装置の基本構成を示す要部縦断側面図、図2は図1A−A線上の一部断面図、図3は本発明に係る温度感応型ファン・カップリング装置における通流溝の形態を示す断面図、(a)(b)は通流溝を放射状に設けた例、(c)は通流溝を放射状に設け、かつ油溜り室内周面を、ディスクの回転中心に対し曲率中心を偏心させた円弧面で構成した例、(d)は通流溝をディスクの半径方向中心線に対しある角度傾斜させて設けた例、(e)は通流溝を螺旋状に設けた例、図4は本発明に係る温度感応型ファン・カップリング装置における油溜り室内の油を直接アイドル油溜り室へ導入するための各種形態を例示したもので、(a)は仕切板の流出調整孔に鍔部を設けた例、(b)は仕切板をオフセット構造とした例、(c)は仕切板の流出調整孔をパイプで構成した例、(d)は密封器匣と駆動ディスク間をラビリンス構造とした例、図5は本発明に係る温度感応型ファン・カップリング装置の他の実施例を示す要部縦断側面図である。
【0014】
すなわち、本発明はその基本構成を図1に示すごとく、密封器匣1内を仕切板4によってトルク伝達室2と油溜り室3とに区分され、トルク伝達室2内には、内部を中空となしてアイドル油溜り室5−1となし、かつその側壁面に前記トルク伝達室2に通ずる流通孔5−2を有する駆動ディスク5が該トルク伝達室2の内周面との間にトルク伝達間隙部2−1が形成されるように、駆動部(図面省略)の駆動によって回転する回転軸体6に軸受7を介して回転自在に設けられている。
前記駆動ディスク5には、油溜り室内3内の油が直接中空の駆動ディスク内へ導入されるように、内周端部にガイド5−4が設けられ、さらにアイドル油溜り室5−1に開口する油の通流溝5−3はディスクの内周壁面上に放射状に好ましくは等間隔で複数設けられ、各通流溝5−3はトルク伝達間隙部2−1に開口させ、かつ各通流溝5−3の端部にはトルク伝達間隙部2−1に開口する流通孔5−2が当該ディスクの側面もしくは外周上に少なくとも1つ設けられ、アイドル油溜り室5−1は当該アイドル油溜り室内の油が密封器匣の駆動に必要な最も少ない量となって滞留しないよう前記内周壁面を小径内周壁5−5と前記放射状の通流溝5−3とで構成している。また各通流溝5−3間の壁面は、回転中心を曲率中心とした同心円で構成するが、後述するごとく回転中心に曲率中心がない偏心した円弧面で構成してもよい。その理由は、後述する図3(c)に示す通り、段付き肩部を有する通流溝5−3cを有する構造となるため、該肩部に加速時に油が当接、流れに径方向外方への流れを生じ、圧力が上昇してトルク伝達間隙へ流出し易くなるためである。
なお、本実施例においても、外部周囲の温度の変化に応じてバイメタルや外部の電磁コイルなどにより作動する弁部材8により油溜り室3内の油が仕切板4に設けられた流出調整孔4−1から駆動ディスク5のアイドル油溜り室5−1へ導入され、アイドル油溜り室5−1内の油がトルク伝達室2に供給され、トルク伝達室2内の油が循環路(図面省略)により油溜り室3に戻される構造となしている。8−1はリニアウェイトである。
【0015】
上記構成のファン・カップリング装置において、作動中は仕切板4の流出調整孔4−1から出た油が、ガイド5−4を介して直接中空の駆動ディスク5のアイドル油溜り室5−1へ導入される。このアイドル油溜り室5−1内の油は、回転軸体6の速い回転速度による大きな遠心力によってディスクの内周壁面上に放射状に設けられた各通流溝5−3へ流入し、各通流溝5−3の端部に設けられた流通孔5−2よりトルク伝達間隙部2−1へスムースに導入される。
すなわち、本発明のファン・カップリング装置の場合は、仕切板4の流出調整孔4−1から出た油が高速回転している入力軸側の駆動ディスク5内へ直接入ることにより高い遠心力が与えられるので該油に高圧が安定して得られ、余剰油がなくてもアイドル油溜り室5−1内の油は当該室内に滞留することなくトルク伝達間隙部2−1へ容易に進入する。したがって、入力軸側の駆動ディスクが高速回転している時には、アイドル油溜り室5−1内には油がほとんど滞留することがないため、つれ廻り現象が発生することがなく、またファン回転制御が滞留油(余剰油)に依存しないため応答性も向上する。さらに滞留油(余剰油)がほとんど存在しない上、駆動ディスク5はアイドル油溜り室5−1内の油が密封器匣の駆動に必要な最も少ない量となって滞留しないよう前記内周壁面を小径の内周壁5−5と放射状の通流溝5−3とで構成しているので、全体の油量も少なくて済む。
なお、トルク伝達間隙部2−1へ進入する油の圧力Pは、下記式1の通り遠心力に比例する。
【0016】
【式1】
P=m×r×ω
m:油質量
r:トルク伝達間隙部での半径位置
ω:油の存在するところの回転速度(角速度)で2乗に比例する
【0017】
したがって、例えば従来型ではトルク伝達間隙手前の空間部のrが40mm、本発明の放射状に設けられた通流溝先端の流通孔部のrが55mmの場合、従動側(ファン側)の回転速度が例えば1000r/min.のとき、本発明では3000r/min.であり、本発明では9倍の圧力となる。すなわち、従来型に比べ、本発明は同等圧力を発生するための余剰油量を極めて少なくできることがわかる。
【0018】
次に、本発明に係る温度感応型ファン・カップリング装置におけるアイドル油溜り室5−1の通流溝の形態を図3に基づいて説明すると、(a)は回転中心を曲率中心とした同心円状の内周壁に、例えば4つの放射状U字溝状の通流溝5−3aを設けた構造、(b)は同じく回転中心を曲率中心とした同心円状の内周壁に、4つの先細りV字状の通流溝5−3bを設けた構造、(c)は放射状U字溝状であって、溝の肩部が回転方向後方が高い構造の通流溝5−3cを4つ設けると共に、各通流溝5−3c間の内周壁を回転中心に曲率中心がない偏心した円弧面で構成した構造、(d)は回転中心を曲率中心とした同心円状の内周壁に、ディスクの半径方向中心線に対しある角度傾斜させて直線状もしくは円弧状に設けた4つの放射状U字溝状の通流溝5−3dを設けた構造、(e)は駆動ディスクの内周壁内に螺旋状の通流溝5−3eを設けた構造をそれぞれ示す。
なお、上記各通流溝の断面形状としては、例えば矩形、U字形、V字形、円形等がある。円形の場合は、ドリル加工により穿孔した後、外周からボールを打込んで封孔して形成する。
【0019】
また、上記各通流溝に設ける流通孔5−2の形態としては、▲1▼駆動ディスク5の片側のトルク伝達面に流通孔5−2を設ける方式、▲2▼駆動ディスク5の両側のトルク伝達面に流通孔5−2を設ける方式、▲3▼流通孔の面積を大きくするために、長孔、楕円孔にする方式、▲4▼トルクの安定化と流通孔の面積を大きくするために、ディスクの周方向に複数設ける方式、▲5▼流通孔の面積を大きくするために、半径方向に複数設ける方式、▲6▼トルク伝達面に設けた傾斜した放射状溝に流通孔を設ける方式等がある。
なお、この流通孔5−2は、駆動ディスク5の密封器匣1対向壁面に限らず、駆動ディスク5の外周壁部に設けてもよい。駆動ディスク5の外周壁部に設けた場合は、OFFまたは低温時に駆動ディスクから供給された油がトルク伝達面を通らずにダム(図面省略)により回収されるので、回転を下げるのに有効である。
【0020】
さらに、本発明に係る温度感応型ファン・カップリング装置における油溜り室内の油を直接アイドル油溜り室へ導入するための各種形態としては、図4に例示したごとく、(a)は仕切板4の流出調整孔4−1に、駆動ディスク5側に設けたガイド5−4に被さるように鍔部4−1aを設けた例、(b)は仕切板4の端部を、駆動ディスク5側に設けたガイド5−4が被さるように軸方向にオフセット構造とした例、(c)は仕切板4の流出調整孔をパイプ4−1bで構成した例、(d)は駆動ディスク5側のガイド5−4を直角に折曲げ、密封器匣1側に前記直角に折曲げたガイド5−4を嵌合させる凹部1−1を設けて、密封器匣1と駆動ディスク5間をラビリンス構造とした例があり、いずれも油溜り室3内の油が仕切板4の流出調整孔4−1より直接中空の駆動ディスク5のアイドル油溜り室5−1内へ導入される構造となっている。
【0021】
なお、図5に示す温度感応型ファン・カップリング装置は、平板式のディスクに替えて、駆動ディスク5と、従動側の密封器匣1対向壁面とのトルク伝達間隙部間をラビリンス構造としたもので、作用効果は前記図1に示すものと同様である。
【0022】
【実施例】
実施例1
図1に示す本発明の温度感応型ファン・カップリング装置(ディスク外径120mm、ディスク厚さ10mm)の加速つれ廻り性能を図6(a)に示す。また、比較のため、従来型の温度感応型ファン・カップリング装置(ディスク外径120mm、ディスク厚さ10mm)の加速つれ廻り性能を図6(b)に示す。図6(a)(b)は、各雰囲気温度(50℃、60℃、70℃、80℃)で入力回転速度を5分間1000r/min.に維持後、入力回転速度を1000r/min.から4000r/min.に急加速した場合のデータである。
このデータより明らかなごとく、加速つれ廻り性能は例えば雰囲気温度80℃の場合、従来型では3100r/min.であったのが、本発明では2250r/min.に改善された。また、本発明は従来型に比べファン回転の制御性能が安定し、かつ油量も減少できた。
【0023】
実施例2
図1に示す本発明の温度感応型ファン・カップリング装置(ディスク外径120mm、ディスク厚さ10mm)の起動時つれ廻り性能を図7(a)に示す。また、比較のため、従来型の温度感応型ファン・カップリング装置(ディスク外径120mm、ディスク厚さ10mm)の起動時つれ廻り性能を図7(b)に示す。図7(a)(b)は、ON状態運転停止後、停止したまま常温で10分間放置し、入力回転を2000r/min.まで急加速した場合のデータである。
このデータより明らかなごとく、従来型では1800r/min.を超えるつれ廻り時間が約9秒であったのに対し、本発明では3秒以下に大幅短縮できた。
また、本実施例においても、本発明は従来型に比べファン回転の制御性能が安定し、かつ油量も減少できた。
【0024】
【発明の効果】
以上説明したごとく、本発明に係る温度感応型ファン・カップリングは、仕切板の流出調整孔から出た油が高速回転している入力軸側の駆動ディスク内へ直接入ることにより高い遠心力が与えられるので該油に安定かつ高圧が得られ、余剰油がなくても駆動ディスク内の油は高速回転に伴って当該ディスク内に滞留することなくトルク伝達間隙部へ容易に進入するので、駆動ディスク内には油がほとんど滞留することがない。
したがって、本発明装置によれば、起動時、加速時のつれ廻り現象や、作動遅れの防止がはかられ、またファン回転制御が滞留油(余剰油)に依存しないため温度指示に対する応答性が向上しファン回転の安定制御(温度特性の安定化)が可能となる。さらに滞留油(余剰油)がほとんど存在しない上、駆動ディスクはアイドル油溜り室油が密封器匣の駆動に必要最も少ない量となって滞留しないよう前記内周壁面を小径内周壁と放射状の通流溝とで構成しているので、全体の油量も少なくて済むなどの優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る温度感応型ファン・カップリング装置の基本構成を示す要部縦断側面図である。
【図2】図1A−A線上の一部断面図である。
【図3】本発明に係る温度感応型ファン・カップリング装置における通流溝の形態を示す断面図で、(a)(b)は通流溝を放射状に設けた例、(c)は通流溝を放射状に設け、かつ油溜り室内周面を、ディスクの回転中心に対し曲率中心を偏心させた円弧面で構成した例、(d)は通流溝をディスクの半径方向中心線に対しある角度傾斜させて設けた例、(e)は通流溝を螺旋状に設けた例である。
【図4】本発明に係る温度感応型ファン・カップリング装置における油溜り室内の油を直接アイドル油溜り室へ導入するための各種形態を例示した要部縦断面図で、(a)は仕切板の流出調整孔に鍔部を設けた例、(b)は仕切板をオフセット構造とした例、(c)は仕切板の流出調整孔をパイプで構成した例、(d)は密封器匣と駆動ディスク間をラビリンス構造とした例である。
【図5】本発明に係る温度感応型ファン・カップリング装置の他の実施例を示す要部縦断側面図である。
【図6】本発明の実施例1における温度感応型ファン・カップリング装置の加速つれ廻り性能を示す図で、(a)は本発明の加速つれ廻り性能、(b)は従来型の加速つれ廻り性能をそれぞれ示す。
【図7】本発明の実施例2における温度感応型ファン・カップリング装置の起動時つれ廻り性能を示す図で、(a)は本発明の起動時つれ廻り性能、(b)は従来型の起動時つれ廻り性能をそれぞれ示す。
【図8】従来の一般的なファン・カップリング装置の一例を示す要部縦断側面図である。
【図9】駆動ディスクを中空構造にした従来のファン・カップリング装置の一例を示す要部縦断側面図である。
【図10】駆動ディスクを中空構造にした従来のファン・カップリング装置の他の例を示す要部縦断側面図である。
【符号の説明】
1 密封器匣
2 トルク伝達室
2−1 トルク伝達間隙部
3 油溜り室
4 仕切板
4−1 流出調整孔
4−1a 鍔部
4−1b パイプ
5 駆動ディスク
5−1 アイドル油溜り室
5−2 流通孔
5−3、5−3a、5−3b、5−3c、5−3d、5−3e 通流溝
5−4 ガイド
5−5 小径内周壁
6 回転軸体
7 軸受
8 弁部材
8−1 リニアウェイト
[0001]
BACKGROUND OF THE INVENTION
The present invention generally relates to a temperature-sensitive fluid type fan / coupling device that controls rotation of a fan for cooling an engine in an automobile and continuously supplies a cooling air flow amount corresponding to a running state to the engine.
[0002]
[Prior art]
As a conventional fan coupling device of this type, a system in which the drive torque of the drive disk is transmitted to the case by the oil supplied to the torque transmission chamber is generally used. It is divided into a torque transmission chamber and an oil reservoir chamber by a plate, and a drive disk is provided in the torque transmission chamber so as to be rotatable by driving of the drive unit, and the oil is transmitted from the oil drainage adjustment hole formed in the partition plate or cover. There is known a temperature-sensitive fluid type fan / coupling device having a structure in which the oil in the torque transmission chamber is supplied to the chamber and returned to the oil sump chamber through the circulation path (see Japanese Patent Publication No. 63-21048). . According to this type of fan coupling device, the drive torque of the drive disk is transmitted to the case by the oil supplied from the oil reservoir to the torque transmission chamber, and the fan attached to the case rotates, for example, for an automobile engine. Cooling takes place. In addition, this type of fan coupling device detects the ambient temperature with a strip-type or spiral-type bimetal, and when this temperature rises, it increases the opening of the outflow adjustment hole to increase the amount of oil in the torque transmission chamber. The number of rotations of the case is increased and the fan is rotated at a high speed to increase the cooling effect.
[0003]
However, this type of fan coupling device has the following problems.
That is, when the engine is restarted in a state where a large amount of oil is present in the torque transmission chamber or during sudden acceleration during traveling, the oil present in a large amount in the torque transmission chamber following the acceleration of the drive disk on the drive side As a result, the case (cooling fan) on the driven side also causes a rapid increase in rotation for a short time. This phenomenon is generally referred to as a “traveling” phenomenon, which causes fan noise and accompanying discomfort, absorbs engine output, and deteriorates fuel consumption.
[0004]
As a means for solving such a “spinning” phenomenon, for example, the oil flowing out from the supply hole of the partition plate is once guided to the opposite side in the diametrical direction and then supplied from there to the torque transmission chamber (Japanese Examined Patent Publication) 63-2101048), a drive disk having a hollow structure and a secondary oil reservoir (idle oil reservoir), or a system in which a large air flow fan is operated at a low speed is known.
[0005]
However, the conventional temperature-sensitive fluid type fan coupling device has the following drawbacks.
FIG. 8 shows an example of a conventional general fan coupling device. The sealed case 111 is divided into a torque transmission chamber 112 and an oil sump chamber 113 by a partition plate 114, and the torque transmission chamber 112 has a middle portion. A rotating shaft body 116 that rotates by driving of a drive unit (not shown) is formed so that a torque transmission gap portion 112-1 is formed between the actual drive disk 115 and the inner peripheral surface of the torque transmission chamber 112. The oil in the oil reservoir chamber 113 is transmitted from the outflow adjustment hole 114-1 provided in the partition plate 114 by the valve member 118 which is provided rotatably via the bearing 117 and operates in accordance with a change in the ambient temperature. The oil is supplied to the chamber 112 and the oil in the torque transmission chamber 112 is returned to the oil sump chamber 113 by the circulation path 121. Reference numeral 118-1 denotes a linear weight (counter weight for obtaining linear characteristics). Reference numeral 119 denotes a dam provided on a part of the inner peripheral wall surface on the side of the sealing case 111 facing the outer peripheral wall portion of the drive disk 115 where oil is collected during rotation, and reference numeral 120 denotes a temperature sensing element provided outside the sealing case 111. (Bimetal).
However, in the case of the fan coupling device having such a structure, the oil that has flowed out from the outflow adjustment hole 114-1 of the partition plate 114 is accumulated in the space portion 112-2 before entering the torque transmission gap portion 112-1, and torque is increased. It stays (stagnates) until a sufficient amount of oil is obtained to obtain pressure (oil head pressure) due to centrifugal force that can enter the transmission gap 112-1 or until the temperature of the oil rises and the viscosity decreases. . The accumulated oil flows into the torque transmission gap 112-1 even when the oil existing on the outer periphery of the torque transmission gap 112-1 starts to be discharged to the oil reservoir chamber 113 side by the dam 119 during acceleration or startup. Subsequently, torque was transmitted to cause the “swinging” phenomenon and operation delay. In addition, the presence of this staying oil required a large amount of oil as a whole.
[0006]
9 and 10 exemplify a fan coupling device in which the drive disk has a hollow structure and is provided with a secondary oil reservoir (idle oil reservoir), of which the fan coupling device shown in FIG. Is the same as that shown in FIG. 8 except that the drive disk is hollow, and the inside of the sealed case 111 is divided into a torque transmission chamber 112 and an oil sump chamber 113 by a partition plate 114. Is formed as an idle oil reservoir chamber 145-1, and a drive disk 145 having a circulation hole 145-2 communicating with the torque transmission chamber 112 on its side wall surface and a centrifugal valve 145-3 for opening and closing the circulation hole. Is supported by a rotating shaft 116 that is rotated by driving of a driving unit (not shown) so that a torque transmitting gap 112-1 is formed between the inner surface of the torque transmitting chamber 112 and the inner surface of the torque transmitting chamber 112. The oil in the oil sump chamber 113 is provided from the outflow adjustment hole 114-1 provided in the partition plate 114 by a valve member 118 that is rotatably provided via 17 and operates in accordance with a change in external ambient temperature. 112, and the oil in the torque transmission chamber 112 is returned to the oil reservoir chamber 113 by a circulation path (not shown), and the oil in the oil reservoir chamber 113 is directly supplied to the partition plate 114 by the idle oil reservoir chamber 145. -1 is provided (see Japanese Patent Publication No. 59-28778). That is, during operation, this fan / coupling device puts oil that has exited the outflow adjustment hole 114-1 into the idle oil reservoir chamber 145-1, and transmits torque from the circulation hole 145-2 through the centrifugal valve 145-3. In this system, oil is supplied to the gap 112-1.
However, in the case of the fan coupling device shown in FIG. 9, when the input rotation at which the centrifugal valve 145-3 is not effective is low, excess oil is accumulated in the idle oil sump chamber 145-1. When the centrifugal valve 145-3 is opened and the centrifugal valve 145-3 is opened, this excess oil continues to flow into the torque transmission gap portion 112-1, causing the “running around” phenomenon and the operation delay as described above. In addition, due to the presence of this surplus oil, a large amount of oil as a whole was necessary.
[0007]
The fan coupling device shown in FIG. 10 is divided into a torque transmission chamber 112 and an oil sump chamber 113 by a partition plate 114 in the sealed case 111, similar to that shown in FIG. A drive disk 245 having a hollow inside to form an idle oil sump chamber 245-1 and having a flow hole 245-2 communicating with the torque transmission chamber 112 on the side wall surface thereof is connected to the inner peripheral surface of the torque transmission chamber 112. The rotating shaft body 116 that is rotated by driving of a driving unit (not shown) is rotatably provided via a bearing 117 so that a torque transmission gap portion 112-1 is formed between them. The oil in the oil reservoir chamber 113 is supplied to the torque transmission chamber 112 from the outflow adjusting hole 114-1 provided in the partition plate 114 by the valve member 118 that operates in response to the torque transmission chamber 1 Oil in 2 is that without the structure that is returned to the oil reservoir chamber 113 by a circulation passage 121 (FIG. 9) (see Japanese Patent No. 2775431). This fan coupling device is equipped with a mechanism that takes oil into the disk when stationary and minimizes residual oil on the transmission surface during startup, and is effective only during startup.
However, in the case of this fan coupling device, the oil that has flowed out from the outflow adjustment hole 114-1 of the partition plate 114 accumulates in the space portion 112-3 before entering the torque transmission gap portion 112-1, and is shown in FIG. Similar to the fan coupling device shown, the oil temperature rises until a sufficient amount of oil is obtained to obtain a pressure (oil head pressure) due to centrifugal force that can enter the torque transmission gap 112-1. Until the viscosity drops. The accumulated oil flows into the torque transmission gap 112-1 even when the oil existing on the outer periphery of the torque transmission gap 112-1 starts to be discharged to the oil reservoir chamber 113 side by the dam 119 during acceleration or startup. Subsequently, torque was transmitted to cause the “swinging” phenomenon and operation delay. In addition, the presence of this staying oil required a large amount of oil as a whole.
[0008]
Further, a fan coupling device similar to the fan coupling device shown in FIG. 10 and having a mechanism for taking oil into the disk at the time of starting and accelerating and preventing the starting and accelerating rotation is proposed. (See JP-A-6-17849). However, it is difficult for this fan coupling device to completely recover the oil into the disk during a short acceleration. In addition, during operation, the oil stays in front of the torque transmission gap after exiting the outlet adjustment hole of the partition plate, as in the fan coupling device shown in FIG. It was not sufficient, there was a delay in operation, and there was a surplus oil.
[0009]
[Problems to be solved by the invention]
As described above, in the conventional fan coupling device, the oil that has flowed out from the outflow adjustment hole of the partition plate is used to obtain the pressure of entry due to the centrifugal force into the torque transmission gap in the space before entering the torque transmission gap. Since the oil stays (stagnates) until the amount of oil or the viscosity decreases, the necessary rotation of the fan is necessary because the oil does not flow into the torque transmission gap unless the remaining (surplus) oil is sufficient in the space in front of the torque transmission gap. On the other hand, the control characteristics could not be obtained. On the other hand, this stagnant (excess) oil caused stagnation and operation delay.
That is, even if the valve member is operated by temperature deformation of a temperature sensing element such as a bimetal or external electromagnetic control, the oil stays in the space before the torque transmission gap as described above, so that a predetermined fan rotation can be obtained. The fan behavior becomes unstable due to a delay in the time until it is produced, or due to changes in oil viscosity, such as self-heating and external heat.
[0010]
The present invention has been made to solve such problems of the prior art, and prevents the stagnation phenomenon during startup and acceleration by preventing oil from staying in the space in front of the torque transmission gap. It is possible to provide a temperature-sensitive fluid type fan coupling device that can prevent operation delay even if oil does not stay and can stably control fan rotation in response to temperature indication (stabilization of temperature characteristics). It is.
[0011]
[Means for Solving the Problems]
  The temperature-sensitive fluid type fan / coupling device according to the present invention is supported by a rotating shaft having a drive disk fixed to a tip portion thereof via a bearing, and an inner portion of a sealer box having a cooling fan attached to an outer peripheral portion. Is divided into an oil reservoir chamber and a torque transmission chamber in which the drive disk is built by a partition plate having an oil outflow adjusting hole, and is opposed to the outer peripheral wall portion of the drive disk where oil is collected during rotation. A dam and a circulation flow passage that is connected to the dam and communicates from the torque transmission chamber side to the oil reservoir chamber side are formed in a part of the inner peripheral wall surface on the heel side, and the partition plate when the external ambient temperature exceeds a set value And a valve member that closes below the set value is provided in the interior so as to be interlocked with the deformation accompanying the temperature change of the temperature sensing element provided on the outer surface of the cover. Between torque transmission on the opposite wall The fan coupling device is configured to control the rotational torque transmission from the rotating shaft body side to the driven sealer cage side by increasing / decreasing the effective contact area of oil at the section, Distributing oil that communicates between the idle oil sump chamber and the torque transmission chamber by forming a hollow inside to form an idle oil sump chamber and providing at least one flow hole communicating with the torque transmission chamber on the side wall surface or outer peripheral wall surface thereof In a temperature-sensitive fluid type fan / coupling device equipped with means, high centrifugal force can be obtained by passing the oil coming out of the flow-out adjusting hole of the partition plate during operation through the disk on the input shaft side rotating at high speed. In addition, by making the inner peripheral wall structure of the idle oil sump chamber of the disk a small diameter inner peripheral wall structure having radial or spiral grooves, a large head pressure can be obtained with a small amount of oil. Which was without it possible to flow the oil in the click to a stable direct torque transmission gap portion, the oil of the oil reservoir chamber directly from the outflow adjusting hole of the partition plateThe idle oil sump chamberEquipped with a mechanism to be introducedfurtherTheIdle oil sump chamberIntroduced oilHas a flow hole at the end so that it flows into the torque transmission gap.Having at least one flow groove on the inner peripheral wall surface of the hollow portion of the disk, andAboveIdle sump chamberOilThe smallest amount required to drive the sealThe inner wall surfaceSmall diameterofInner wallAnd in the flow channelStructureCompletionIt is characterized by that.
[0012]
In the present invention, the inner peripheral surface of the idle oil reservoir chamber of the disk is preferably provided with a flow hole communicating with the torque transmission gap at the tip of a plurality of flow grooves provided radially, and the wall surface between the flow grooves is the disk wall. It is composed of a circular arc surface in which the center of curvature is eccentric with respect to the rotation center.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional side view of a main part showing a basic configuration of a temperature-sensitive fan / coupling device according to the present invention, FIG. 2 is a partial cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a temperature-sensitive type according to the present invention. Sectional drawing which shows the form of the flow groove in a fan coupling device, (a) (b) is an example which provided the flow groove radially, (c) is the flow groove provided radially, and the oil sump inside circumference (D) is an example in which the surface is formed by an arc surface in which the center of curvature is decentered with respect to the center of rotation of the disk, (d) is an example in which the flow groove is provided at an angle with respect to the radial center line of the disk, (e) Is an example in which the flow groove is provided in a spiral shape, and FIG. 4 illustrates various modes for directly introducing the oil in the oil sump chamber into the idle sump chamber in the temperature-sensitive fan / coupling device according to the present invention. (A) is an example in which a flange is provided in the outflow adjustment hole of the partition plate, and (b) is a partition plate. (C) is an example in which the outflow adjustment hole of the partition plate is configured by a pipe, (d) is an example in which the sealer cage and the drive disk are provided with a labyrinth structure, and FIG. 5 is a temperature-sensitive structure according to the present invention. It is a principal part vertical side view which shows the other Example of a type | mold fan coupling device.
[0014]
  That is, as shown in FIG. 1, the basic structure of the present invention is that the inside of the seal box 1 is divided into the torque transmission chamber 2 and the oil sump chamber 3 by the partition plate 4, and the torque transmission chamber 2 has a hollow interior. Thus, the drive disk 5 having the idle oil sump chamber 5-1 and having the flow hole 5-2 communicating with the torque transmission chamber 2 on the side wall thereof is torqued between the inner peripheral surface of the torque transmission chamber 2. A rotating shaft body 6 that is rotated by driving of a driving portion (not shown) is rotatably provided via a bearing 7 so that the transmission gap portion 2-1 is formed.
  The drive disk 5 is provided with a guide 5-4 at the inner peripheral end so that the oil in the oil reservoir 3 is directly introduced into the hollow drive disk, and further in the idle oil reservoir 5-1. A plurality of open oil flow grooves 5-3 are provided radially on the inner peripheral wall surface of the disk, preferably at equal intervals. Each flow groove 5-3 is opened in the torque transmission gap 2-1 and At the end of the flow groove 5-3, at least one flow hole 5-2 that opens to the torque transmission gap 2-1 is provided on the side surface or the outer periphery of the disk.The oil in the idle oil sump chamber drives the sealer cage.necessaryThe inner peripheral wall so that it does not staySmall diameterofInner wall 5-5And the radial flow groove 5-3.Yes. The wall surface between the flow grooves 5-3 is formed of a concentric circle with the center of rotation as the center of curvature, but may be formed of an eccentric arc surface having no center of curvature as described later. The reason for this is that, as shown in FIG. 3 (c), which will be described later, the structure has a flow groove 5-3c having a shoulder with a stepped portion. This is because the pressure increases and the pressure rises easily and flows out to the torque transmission gap.
  Also in this embodiment, the oil in the oil sump chamber 3 is provided in the partition plate 4 by the valve member 8 that is operated by a bimetal, an external electromagnetic coil, or the like according to a change in the ambient ambient temperature. -1 is introduced into the idle oil sump chamber 5-1 of the drive disk 5, the oil in the idle oil sump chamber 5-1 is supplied to the torque transmission chamber 2, and the oil in the torque transmission chamber 2 is a circulation path (not shown) ) To return to the oil sump chamber 3. 8-1 is a linear weight.
[0015]
  In the fan / coupling device having the above-described configuration, during operation, the oil discharged from the outflow adjusting hole 4-1 of the partition plate 4 directly passes through the guide 5-4, and the idle oil reservoir chamber 5-1 of the hollow drive disk 5 is directly connected. Introduced into. The oil in the idle oil reservoir 5-1 flows into the respective flow grooves 5-3 provided radially on the inner peripheral wall surface of the disk by a large centrifugal force due to the high rotational speed of the rotary shaft body 6, The flow is smoothly introduced into the torque transmission gap 2-1 from the flow hole 5-2 provided at the end of the flow groove 5-3.
  In other words, in the case of the fan coupling device of the present invention, the oil that has flowed out of the outflow adjustment hole 4-1 of the partition plate 4 enters the drive disk 5 on the input shaft side where the oil is rotating at high speed.DirectlySince high centrifugal force is given by entering, high pressure can be stably obtained for the oil, and even if there is no surplus oil, the oil in the idle oil reservoir 5-1 does not stay in the chamber, and the torque transmission gap 2 Enter -1 easily. Therefore, when the drive disk on the input shaft side is rotating at a high speed, the oil hardly stays in the idle oil reservoir chamber 5-1, so that no floating phenomenon occurs and the fan rotation control is performed. However, since it does not depend on stay oil (surplus oil), responsiveness is also improved. Furthermore, there is almost no stagnant oil (surplus oil), and the drive disk 5 is in the idle oil sump chamber 5-1.OilThe smallest amount required to drive the sealThe inner peripheral wall surface is composed of a small-diameter inner peripheral wall 5-5 and radial flow grooves 5-3 so as not to stay.Therefore, the total amount of oil can be reduced.
  Note that the pressure P of the oil that enters the torque transmission gap 2-1 is proportional to the centrifugal force as shown in the following formula 1.
[0016]
[Formula 1]
P = m × r × ω2
m: Oil mass
r: Radial position in the torque transmission gap
ω: Rotational speed (angular speed) where oil is present, proportional to square
[0017]
Therefore, for example, in the conventional type, when the r in the space before the torque transmission gap is 40 mm and the r in the flow hole at the tip of the flow groove provided radially is 55 mm, the rotational speed on the driven side (fan side) Is, for example, 1000 r / min. In the present invention, 3000 r / min. In the present invention, the pressure is 9 times. That is, it can be seen that the present invention can significantly reduce the amount of excess oil for generating the same pressure as compared with the conventional type.
[0018]
Next, the form of the flow groove of the idle oil sump chamber 5-1 in the temperature-sensitive fan / coupling device according to the present invention will be described with reference to FIG. 3. (a) is a concentric circle whose center of curvature is the center of curvature. A structure in which, for example, four radial U-shaped flow grooves 5-3a are provided on the inner circumferential wall, (b) is a concentric inner circumferential wall having a center of curvature and four tapered V-shapes. (C) is a radial U-shaped groove, and four shoulders 5-3c having a structure in which the shoulder of the groove is higher in the rearward direction of rotation, A structure in which the inner peripheral wall between each flow groove 5-3c is composed of an eccentric arc surface having no center of curvature around the center of rotation, (d) is a concentric inner peripheral wall having the center of curvature as the center of curvature, and the radial direction of the disk Four radial U-shaped grooves that are linearly or arcuately inclined at an angle to the center line It shows the structure in which a flowing groove 5-3d of the (e) is provided with a spiral flowing grooves 5-3e in the inner inside wall of the drive disc structure, respectively.
In addition, as a cross-sectional shape of each said flow groove, there exist a rectangle, a U-shape, a V-shape, circular, etc., for example. In the case of a round shape, the hole is formed by drilling, and then a ball is struck from the outer periphery and sealed.
[0019]
Further, as the form of the flow holes 5-2 provided in the respective flow grooves, (1) a method of providing the flow holes 5-2 on one side of the torque transmission surface of the drive disk 5, and (2) both sides of the drive disk 5 A method of providing the flow hole 5-2 on the torque transmission surface, (3) a method of using a long hole or an elliptical hole to increase the area of the flow hole, and (4) increasing the torque stabilization and the area of the flow hole. In order to increase the area of the circulation hole, (5) a method of providing a plurality of radial holes, and (6) a circulation hole in an inclined radial groove provided on the torque transmission surface. There are methods.
The circulation hole 5-2 is not limited to the wall surface of the drive disk 5 facing the sealer cage 1 but may be provided on the outer peripheral wall portion of the drive disk 5. When provided on the outer peripheral wall of the drive disk 5, the oil supplied from the drive disk at the time of OFF or low temperature is collected by a dam (not shown) without passing through the torque transmission surface, which is effective for lowering the rotation. is there.
[0020]
Furthermore, as shown in FIG. 4 as various forms for directly introducing the oil in the oil sump chamber into the idle oil sump chamber in the temperature-sensitive fan / coupling device according to the present invention, FIG. An example in which the flange 4-1a is provided in the outflow adjustment hole 4-1 so as to cover the guide 5-4 provided on the drive disk 5 side, (b) shows the end of the partition plate 4 on the drive disk 5 side. (C) is an example in which the outflow adjustment hole of the partition plate 4 is configured by the pipe 4-1b, and (d) is an example of the drive disk 5 side. The guide 5-4 is bent at a right angle, and a recess 1-1 for fitting the guide 5-4 bent at the right angle is provided on the sealer cage 1 side, and a labyrinth structure is provided between the sealer cage 1 and the drive disk 5. In both cases, the oil in the oil sump chamber 3 adjusts the outflow of the partition plate 4. 4-1 has a the introduced structures from directly hollow drive disk 5 in the idle oil reservoir chamber 5-1.
[0021]
The temperature-sensitive fan / coupling device shown in FIG. 5 has a labyrinth structure between the torque transmission gap between the drive disk 5 and the wall surface facing the sealer 密封 1 on the driven side instead of the flat disk. The operational effects are the same as those shown in FIG.
[0022]
【Example】
Example 1
FIG. 6 (a) shows the accelerated running performance of the temperature-sensitive fan / coupling device (disc outer diameter 120 mm, disc thickness 10 mm) of the present invention shown in FIG. For comparison, FIG. 6B shows the accelerated running performance of a conventional temperature-sensitive fan coupling device (disc outer diameter 120 mm, disc thickness 10 mm). 6 (a) and 6 (b) show that the input rotational speed is 1000 r / min. For 5 minutes at each ambient temperature (50 ° C., 60 ° C., 70 ° C., 80 ° C.). At an input rotational speed of 1000 r / min. To 4000 r / min. This is the data when accelerating rapidly.
As is clear from this data, the acceleration and running performance is, for example, 3100 r / min. In the present invention, 2250 r / min. Improved. In addition, the fan rotation control performance of the present invention is stable and the oil amount can be reduced as compared with the conventional type.
[0023]
Example 2
FIG. 7A shows the running performance of the temperature-sensitive fan coupling device (disc outer diameter 120 mm, disc thickness 10 mm) of the present invention shown in FIG. For comparison, FIG. 7 (b) shows the running performance of a conventional temperature-sensitive fan / coupling device (disk outer diameter 120 mm, disk thickness 10 mm) at the time of startup. 7 (a) and 7 (b) show that after the ON state operation is stopped, the operation is stopped and left at room temperature for 10 minutes, and the input rotation is 2000 r / min. It is data when accelerating suddenly.
As is apparent from this data, the conventional type is 1800 r / min. The traveling time exceeding about 9 seconds was about 9 seconds, whereas in the present invention, it was able to be greatly shortened to 3 seconds or less.
Also in this embodiment, the present invention can stabilize the fan rotation control performance and reduce the oil amount as compared with the conventional type.
[0024]
【The invention's effect】
  As described above, the temperature-sensitive fan coupling according to the present invention is inserted into the drive disk on the input shaft side where the oil coming out from the outflow adjustment hole of the partition plate is rotating at high speed.DirectlySince a high centrifugal force is given by entering the oil, a stable and high pressure is obtained for the oil, and even if there is no excess oil, the oil in the drive disk does not stay in the disk due to high-speed rotation and enters the torque transmission gap. Since it enters easily, oil hardly stays in the drive disk.
  Therefore, according to the device of the present invention, it is possible to prevent the floating phenomenon at the time of start-up and acceleration and the operation delay, and the fan rotation control does not depend on the staying oil (surplus oil), so that the response to the temperature instruction is achieved. It is possible to improve and control fan rotation stably (stabilization of temperature characteristics). Furthermore, there is almost no stagnant oil (surplus oil) and the drive disk is an idle oil sump chamber.InsideofOilNecessary for driving the seal boxNamostFewWith quantitySo that the inner wall surface does not staySmall diameterofWith the inner wallWith radial flow groovesTherefore, an excellent effect is achieved such that the total amount of oil can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional side view of an essential part showing a basic configuration of a temperature-sensitive fan / coupling device according to the present invention.
FIG. 2 is a partial cross-sectional view taken along the line AA in FIG.
FIGS. 3A and 3B are cross-sectional views showing the shape of a flow groove in the temperature-sensitive fan coupling device according to the present invention. FIGS. 3A and 3B are examples in which the flow grooves are provided radially, and FIG. An example in which the flow groove is provided radially and the circumferential surface of the oil sump chamber is formed by an arc surface whose center of curvature is decentered with respect to the rotation center of the disk, (d) shows the flow groove with respect to the radial center line of the disk. An example in which it is inclined at a certain angle, (e) is an example in which a flow groove is provided in a spiral shape.
FIG. 4 is a longitudinal sectional view of a main part illustrating various modes for directly introducing oil in an oil sump chamber into an idle oil sump chamber in the temperature-sensitive fan / coupling device according to the present invention. (B) is an example in which the partition plate has an offset structure, (c) is an example in which the outflow adjustment hole of the partition plate is formed of a pipe, and (d) is a sealer bowl. And a labyrinth structure between the drive disks.
FIG. 5 is a longitudinal sectional side view showing a main part of another embodiment of the temperature-sensitive fan / coupling device according to the present invention.
FIGS. 6A and 6B are diagrams showing acceleration running performance of the temperature-sensitive fan coupling device according to the first embodiment of the present invention. FIG. 6A is an acceleration running performance of the present invention, and FIG. 6B is a conventional acceleration running performance. Each wheel performance is shown.
FIGS. 7A and 7B are diagrams showing the starting performance of the temperature-sensitive fan / coupling device according to the second embodiment of the present invention. FIG. 7A shows the starting performance of the present invention, and FIG. 7B shows the conventional type. It shows the running performance at startup.
FIG. 8 is a longitudinal sectional side view of an essential part showing an example of a conventional general fan coupling device.
FIG. 9 is a longitudinal sectional side view of an essential part showing an example of a conventional fan coupling device in which a drive disk has a hollow structure.
FIG. 10 is a longitudinal side view of a main portion showing another example of a conventional fan coupling device in which a drive disk has a hollow structure.
[Explanation of symbols]
1 Sealing bowl
2 Torque transmission chamber
2-1 Torque transmission gap
3 Oil reservoir
4 Partition plate
4-1 Outflow adjustment hole
4-1a buttock
4-1b Pipe
5 Drive disk
5-1 Idle oil reservoir
5-2 Distribution hole
5-3, 5-3a, 5-3b, 5-3c, 5-3d, 5-3e
5-4 Guide
5-5 Small diameter inner wall
6 Rotating shaft
7 Bearing
8 Valve members
8-1 Linear weight

Claims (1)

先端部に駆動ディスクを固着した回転軸体上に軸受を介して支承された密封器匣の内部を、油の流出調整孔を有する仕切板により油溜り室と前記駆動ディスクを内装するトルク伝達室とに区劃し、密封器匣側の内周壁面の一部に設けたダムに連なるトルク伝達室側より油溜り室側に通ずる循環流通路が形成され、外部周囲の温度が設定値を超えると前記仕切板の流出調整孔を開放し、設定値以下では閉鎖する弁部材を備え、駆動ディスクとトルク伝達間隙部での油の有効接触面積を増減させて、回転軸体側から被駆動側の密封器匣側への回転トルク伝達を制御するようにしてなるファン・カップリング装置であって、前記駆動ディスクの内部を中空となしてアイドル油溜り室となし、かつその側壁面もしくは外周壁面に前記トルク伝達室に通ずる少なくとも1個の流通孔を設けてアイドル油溜り室とトルク伝達室を連通する油の流通手段を備えた温度感応型流体式ファン・カップリング装置において、前記油溜り室内の油が前記仕切板の流出調整孔より直接前記アイドル油溜り室内へ導入される機構を備え、さらにアイドル油溜り室に導入された油がトルク伝達間隙部へ流出するよう端部に流通孔を有する放射状の通流溝を当該ディスクの中空部の内周壁面上に少なくとも1つ有し、かつ前記アイドル油溜り室内の油が密封器匣の駆動に必要な最も少ない量となって滞留しないよう前記内周壁面を小径内周壁と通流溝とで成したことを特徴とする温度感応型流体式ファン・カップリング装置。A torque transmission chamber in which an oil reservoir chamber and the drive disk are housed by a partition plate having an oil outflow adjustment hole inside a sealer cage that is supported via a bearing on a rotary shaft body having a drive disk fixed to the tip. A circulation flow passage is formed from the torque transmission chamber side connected to the dam provided on a part of the inner wall surface of the sealer cage side to the oil sump chamber side, and the ambient temperature exceeds the set value. And a valve member that opens and closes below the set value, and increases or decreases the effective contact area of oil between the drive disk and the torque transmission gap, so that the rotating shaft body side is driven to the driven side. A fan / coupling device configured to control transmission of rotational torque to the sealer cage side, wherein the inside of the drive disk is hollowed to form an idle oil reservoir, and on the side wall surface or the outer peripheral wall surface thereof. Pass through the torque transmission chamber In the temperature-sensitive fluid type fan / coupling device provided with at least one flow hole and an oil flow means that communicates between the idle oil sump chamber and the torque transmission chamber, the oil in the sump chamber is separated from the partition plate. outflow adjusting hole with a mechanism to be introduced directly to the idle oil reservoir chamber from further radial through having flow holes in the end portion so that the oil introduced into the idle oil reservoir chamber flows out into the torque transmission gap portion Nagaremizo a has at least one on the inner peripheral wall surface of the hollow portion of the disc, and the least amount and the inner periphery so as not to stay I do necessary oil of the idle oil reservoir chamber to drive the sealed housing temperature sensitive hydraulic fan coupling device, characterized in that have configured the wall with a smaller diameter of the inner peripheral wall and flows groove.
JP2002012683A 2001-02-19 2002-01-22 Temperature-sensitive fluid type fan and coupling device Expired - Fee Related JP4260400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002012683A JP4260400B2 (en) 2001-02-19 2002-01-22 Temperature-sensitive fluid type fan and coupling device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-42269 2001-02-19
JP2001042269 2001-02-19
JP2002012683A JP4260400B2 (en) 2001-02-19 2002-01-22 Temperature-sensitive fluid type fan and coupling device

Publications (2)

Publication Number Publication Date
JP2002317827A JP2002317827A (en) 2002-10-31
JP4260400B2 true JP4260400B2 (en) 2009-04-30

Family

ID=26609646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012683A Expired - Fee Related JP4260400B2 (en) 2001-02-19 2002-01-22 Temperature-sensitive fluid type fan and coupling device

Country Status (1)

Country Link
JP (1) JP4260400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931096B2 (en) * 2001-07-03 2012-05-16 臼井国際産業株式会社 Temperature-sensitive fluid type fan and coupling device
JP6516281B2 (en) * 2014-05-19 2019-05-22 臼井国際産業株式会社 Highly reactive fluid fan and clutch device

Also Published As

Publication number Publication date
JP2002317827A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP2699084B2 (en) Temperature-sensitive fluid fan coupling device
JPS63152732A (en) Temperature sensing fluid type fan coupling device
JP2775431B2 (en) Temperature-sensitive hydraulic fan coupling device
JPS5947167B2 (en) Temperature-controlled fluid coupling
US20170219024A1 (en) Temperature-sensitive fluid fan clutch device
JP4931096B2 (en) Temperature-sensitive fluid type fan and coupling device
JP4260400B2 (en) Temperature-sensitive fluid type fan and coupling device
JPH09126248A (en) Fluid coupling
JP2709458B2 (en) Temperature-sensitive fluid fan coupling device
US3560120A (en) Rotary compressor
JP2811812B2 (en) Viscous fluid coupling device
JPS59190521A (en) Viscous fluid joint
JPH07217441A (en) Noncontact seal device for turbocharger
JP3801742B2 (en) Temperature-sensitive fan drive
JPH0451220Y2 (en)
JPH0451221Y2 (en)
JPH04262096A (en) Water pump
JPH0547867Y2 (en)
JPH0451222Y2 (en)
JP3582739B2 (en) Temperature sensitive fluid type fan coupling device
JP2599193Y2 (en) Fluid coupling
JP2791576B2 (en) Temperature sensitive fluid type fan coupling device
JPH0324905Y2 (en)
JP4023144B2 (en) Viscous fluid coupling device
US6336538B1 (en) Fluid coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees