JP3582739B2 - Temperature sensitive fluid type fan coupling device - Google Patents

Temperature sensitive fluid type fan coupling device Download PDF

Info

Publication number
JP3582739B2
JP3582739B2 JP27024894A JP27024894A JP3582739B2 JP 3582739 B2 JP3582739 B2 JP 3582739B2 JP 27024894 A JP27024894 A JP 27024894A JP 27024894 A JP27024894 A JP 27024894A JP 3582739 B2 JP3582739 B2 JP 3582739B2
Authority
JP
Japan
Prior art keywords
drive disk
wall
oil
coupling device
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27024894A
Other languages
Japanese (ja)
Other versions
JPH07253124A (en
Inventor
健一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP27024894A priority Critical patent/JP3582739B2/en
Publication of JPH07253124A publication Critical patent/JPH07253124A/en
Application granted granted Critical
Publication of JP3582739B2 publication Critical patent/JP3582739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Details Of Gearings (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、一般に自動車における機関冷却用のファン回転を制御して、絶えず走行状態に応じた冷却送風量を機関に供給する温度感応型流体式ファン・カップリング装置に関するものである。
【0002】
【従来の技術】
従来、この種のファン・カップリング装置としては、例えば図35に示すように、回転軸体に固着される外周付近を厚肉壁27−1となす駆動ディスク27をもって形成せしめ、トルク伝達室24に内装して密封器匣側の内周壁面とトルク伝達間隙を保持して構成されていた。なお、25は仕切板であり、密封器匣の内部を油溜り室26と前記トルク伝達室24とに区劃してなるものである。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来の駆動ディスク27によるものにあっては、トルク伝達力並びにダム(図示せず)でのポンピング機能の向上とに関連した前記厚肉壁27−1の構造および、機関の停止状態からの再始動時あるいは走行中での低入力回転状態から高入力回転への急加速時に、トルク伝達室24内に存在する油によって図31や図32に(ロ)で示すようにファンの“ツレ廻り”現象を生ぜしめ、回転の急激な上昇により異常なファン騒音を招き、また寒冷時での暖気運転を阻害することとなった。
【0004】
このことを詳細に説明すると、トルク伝達室の油量は、該トルク伝達室からのダムによる回収量と、前記油溜り室から流出調整孔を通って前記トルク伝達室への供給量との差により定まるが、外部温度が下がって流出調整孔が閉じられ供給される油量が減った場合でもファン回転速度が低下しない現象がある期間発生する。これはダムによる回収量がダムの回収能力不足により少ないために、トルク伝達室内の油量が減るのに時間がかかる(タイムラグがある)ため、その間しばらくはトルクが伝達してしまうからである。
【0005】
ダムの回収能力は入力回転速度と出力回転速度の差(相対回転数)に比例して向上するが、低入力回転ではこの能力が相対的に低いため、特に低温時の初期には回収量が不足し図31(ロ)のように高いファン回転速度が維持され“ツレ廻り”現象が生じてしまい、昇温特性と降温特性の作動温度差を意味するヒステリシスが大きくなる。換言すると、ヒステリシスが大きいということは、ダムの回収能力が低いことを意味し、トルク伝達室内に残留する油が“ツレ廻り”現象を発生させることを意味する。
【0006】
また、従来技術では外周付近での局部厚肉壁27−1の形成によって板材によるプレス成型を不可能とし、厚肉の鋳造と切削加工によるため駆動ディスク27自体の加工性の低下を招き、製品コストを高価となすとともに、概して製品重量の増加を余儀なくされる等の問題を有した。
【0007】
本発明は従来技術の有する前記問題に鑑みてなされたものであって、停止後の始動時並びに走行中での高入力回転への急加速時のファン側の“ツレ廻り”を、カップリング装置としてのトルク伝達力を低下することなしに効果的に抑制することができ、したがって外部温度とファン回転数が略対応できる温度感応型流体式ファン・カップリング装置を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明に係る温度感応型流体式ファン・カップリング装置は、先端部に駆動ディスクを固着した回転軸体上に軸受を介して支承し、かつ外周部に冷却ファンを取付けたケースとカバーとからなる密封器匣の内部を、油の流出調整孔を有する仕切板によって油溜り室と前記駆動ディスクを内装するトルク伝達室とに区劃し、回転時の油の集溜する駆動ディスクの外周側壁面に対向する密封器匣側の内周側壁部の一部に少なくとも1つのダムと該ダムに連なってトルク伝達室側より油溜り室側に通ずる循環流通路を形成するとともに、油溜り室側に位置してその一端を油溜り室に固定し、他端部を外部周囲の温度が設定値を超えると該仕切板の流出調整孔を開放し、設定値以下では閉鎖する弁部材を前記カバーの前面に設けた感温体の温度変化に伴う変形に連動するように内部に備え、駆動ディスクと前記密封器匣とのなす外方付近の対向壁面に設けたトルク伝達間隙部での油の有効接触面積を増減させて、駆動側の回転体から被駆動側の密封器匣側への回転トルク伝達を制御するようにしてなるファン・カップリング装置において、前記駆動ディスクをその外周側壁部に軸方向へ突出した突起壁を設けて断面略コ字状に形成し、さらに前記駆動ディスクの一側面と前記突起壁および前記密封器匣の内周側面によって一部油の収納室を形成したことを特徴とするものであり、さらに前記突起壁の幅厚を駆動ディスクのなす直径の7%以上の関係寸法に形成し、また前記突起壁の自由端側とこれに対向する密封器匣の内周側面側のいずれか一方に環状突起を、他方に前記環状突起が遊嵌する環状凹溝を設けたり、前記突起壁の自由端側とこれに対向する密封器匣の内周側面側から軸方向に突出する環状突起を、微小間隙cをおいて並設せしめたりするものである。
【0009】
また、本発明は先端部に駆動ディスクを固着した回転軸体上に軸受を介して支承し、かつ外周部に冷却ファンを取付けたケースとカバーとからなる密封器匣の内部を、油の流出調整孔を有する仕切板によって油溜り室と前記駆動ディスクを内装するトルク伝達室とに区劃し、回転時の油の集溜する駆動ディスクの外周側壁面に対向する密封器匣側の内周側壁部の一部に少なくとも1つのダムと該ダムに連なってトルク伝達室側より油溜り室側に通ずる循環流通路を形成するとともに、油溜り室側に位置してその一端を油溜り室に固定し、他端部を外部周囲の温度が設定値を超えると該仕切板の流出調整孔を開放し、設定値以下では閉鎖する弁部材を前記カバーの前面に設けた感温体の温度変化に伴う変形に連動するように内部に備え、駆動ディスクと前記密封器匣とのなす外方付近の対向壁面に設けたトルク伝達間隙部での油の有効接触面積を増減させて、駆動側の回転体から被駆動側の密封器匣側への回転トルク伝達を制御するようにしてなるファン・カップリング装置において、駆動ディスクをその外周側壁部に軸方向の両側へ突出した突起壁を設けて断面略I字状に形成し、さらに駆動ディスクの側面と前記突起壁および密封器匣の内周側面によって2つの一部油の収納室を形成したり、また前記と同様、突起壁の幅厚を駆動ディスクのなす直径の7%以上の関係寸法に形成したり、また前記突起壁の自由端の少なくとも一方とこれに対向する密封器匣の内周側面側のいずれか一方に環状突起を、他方に前記環状突起が遊嵌する環状凹溝を設けたり、また前記突起壁の自由端の少なくとも一方とこれに対向する密封器匣の内周側面側から軸方向に突出する環状突起を、微小間隙をおいて並設せしめたことを特徴とするものである。
【0010】
さらに、本発明は前記ファン・カップリング装置において、駆動ディスクをその外周側壁部に軸方向に突出した突起壁を設けて断面略コ字状もしくは略I字状となすとともに、その外周壁面をダムの全面にわたって対設する厚状幅となし、かつ駆動ディスクのなす少なくとも一方側面と、前記突起壁および密封器匣の内周側面によって形成された一部油の収納室内に、径方向に突設した放射状の隔壁により複数の区劃室を設けて構成し、さらに前記と同様、突起壁の幅厚を駆動ディスクのなす直径の7%以上の関係寸法に形成したり、また前記突起壁の自由端の少なくとも一方とこれに対向する密封器匣の内周側面側のいずれか一方に環状突起を、他方に前記環状突起が遊嵌する環状凹溝を設けたり、また前記突起壁の自由端の少なくとも一方とこれに対向する密封器匣の内周側面側から軸方向に突出する環状突起を、微小間隙をおいて並設せしめたり、前記断面略コ字状もしくは略I字状の駆動ディスクの回転方向に対する区劃室の隔壁のなす外方根元付近の前部にそれぞれ流通孔を貫設して形成したりするものである。
【0011】
また、前記断面略コ字状もしくは略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成したことを特徴とするものであり、好ましくは断面略コ字状の駆動ディスクの場合は該ディスクの側壁または突起壁または環状リブの少なくとも一つに流通孔を穿設し、また断面略I字状の駆動ディスクの場合は該ディスクの両突起壁または環状リブのいずれか一方に流通孔を穿設し、もしくは前記した環状リブにスリットを形成したことを特徴とするものである。
【0012】
【作用】
本発明は上記のごとく構成されているため、機関停止の間にあってトルク伝達室側の油を収納室、または収納室内の一部の区劃室内部に溜めることとなってトルク伝達間隙部に残留する油を少量となすこととなり、またかかる状態でのその後の機関始動時において収納室内の一部の区劃室内に限定されて収容された油が微小間隙を通って徐々に微量ずつトルク伝達室側に供給される。また、ディスク幅/ディスク直径を従来装置の5%以下から7%以上に変えることによりダム幅の増加の効果で作動油回収のポンピング機能が向上し、感温特性におけるヒステリシス作用が低減(特に低入力回転時の効果が急加速時の“ツレ廻り”現象の改善に対して大きい)すると共に、低入力回転時はディスクの回転数が低くディスク収納室、または収納室内の一部の区画室の油へ作用する遠心力も少なくディスク収納室内の油は微小間隙を通るため出にくくなり、トルク伝達間隙部の油面は従来装置より低下することとなる。
【0013】
このことは、駆動ディスクと密封器匣の間の相対回転数(スリップ回転)が大きくなることを意味し油の回収能力を向上する(逆に高入力回転時はディスク収納室内の油に働く遠心力が大きいため、油は微小間隙から徐々に流出して、トルク伝達間隙部の油面を上げ、ファン回転数をやがて上昇させる)。したがって、高粘度の油の使用、あるいは低トルクのファン使用時にみられる相対回転数の不足(ダム機能の不足)に伴う、例えば80℃前後の中間温度での1000rpm前後の低入力回転付近での走行中から高入力回転への急加速時に際しても、図31および図32に(イ)で示すように収納室への一部油の収納によってトルク伝達間隙部での油面を下げることとなって作動状態を最少限の油量で維持し、したがって図33(イ)で示すようにヒステリシスを小さくする結果となり、いずれの場合にもファンの“ツレ廻り”現象を効果的に抑制することとなる。
【0014】
なお、収納室内に径方向に突設した放射状の隔壁により複数の区劃室を設けて構成した駆動ディスクの場合、トルク伝達室内の油はダムにより排出油路へ圧送されるが、一部は油の存在しない、あるいは油の少ない収納室内の多くの区劃室へ流通孔を介して逆流しトルク伝達室内の油量を減少させる。
【0015】
また、放射状の隔壁での伝熱効果によって油温の上昇に伴う駆動ディスクのトルク伝達表面側の熱を放射状の隔壁を介して回転軸体へ伝えて放熱効果を促進することも可能となる。
【0016】
また、駆動ディスクの突起壁の内周面に径方向に突出する環状リブを設けたことにより、該リブが一種の堰の作用をすることにより油の収納室または収納室内の一部の区劃室内の油がいったん環状リブを越えるまで溜り、トルク伝達間隙部へ流れる油量が減少するのでファンの“ツレ廻り”現象をより効果的に抑制することとなる。なお、流通孔やスリットがある場合、ディスク収納室または収納室内の一部の区劃室内にいったん溜った油はその後駆動ディスクの突起壁または環状リブまたはディスク外側壁に設けられた流通孔またはスリットより徐々に流出しディスク外周のダムにより速やかに排出油路へ圧送される。
【0017】
【実施例】
図1は駆動ディスクをその外周側壁部に軸方向へ突出した突起壁を設けて断面略コ字状に形成し、さらに前記駆動ディスクの一側面と前記突起壁および前記密封器匣の内周側面によって一部油の収納室を形成した温度感応型流体式ファン・カップリング装置を示す縦断面図、図2〜図5はそれぞれ同上ファン・カップリング装置の他の実施例を示す要部拡大縦断面図、図6はさらに他の実施例の図1相当図、図7は駆動ディスクをその外周側壁部に軸方向の両側へ突出した突起壁を設けて断面略I字状に形成し、さらに前記駆動ディスクの側面と前記突起壁および前記密封器匣の内周側面によって2つの一部油の収納室を形成した温度感応型流体式ファン・カップリング装置を示す縦断面図、図8〜図14はそれぞれ同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図、図15は駆動ディスクをその外周側壁部に軸方向に突出した突起壁を設けて断面略コ字状となすとともに、その外周壁面をダムの全面にわたって対設する厚状幅となし、かつ駆動ディスクのなす少なくとも一方側面と、前記突起壁および密封器匣の内周側面によって形成された一部油の収納室内に、径方向に突設した放射状の隔壁により複数の区劃室を設けて構成した温度感応型流体式ファン・カップリング装置を示す縦断面図、図16〜図18はそれぞれ同上のファン・カップリング装置における他の実施例を示す要部縦断面図、図19〜図21はそれぞれ断面略コ字状もしくは略I字状の駆動ディスクを有するファン・カップリング装置の別の実施例を示すファン・カップリング装置全体の縦断面図、図22〜図24は同上のファン・カップリング装置における駆動ディスク単体を線図により示す平面図で、図22は停止時、図23は始動時、図24は連続定速時での区劃室での油の状態を示し、図25はさらに他の実施例を示す駆動ディスク単体を線図により示す平面図、図26〜図28は断面略コ字状駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成した駆動ディスクの一部を示す縦断面図、図29、図30は断面略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成した駆動ディスクの一部を示す縦断面図、図31および図32は本発明と従来例との“ツレ廻り”現象を比較した特性図、図33は本発明と従来例との感温特性を比較した特性図、図34は駆動ディスクのなす周側壁部の幅厚と“ツレ廻り”との関係を示す特性曲線図であって、1は回転軸体、2はケース、3はカバー、4はトルク伝達室、5は仕切板、6は油溜り室、7は駆動ディスク、8は弁部材、9は連桿、10は感温体、11は支持金具、12はダム、13は循環流通路、14、14−1、14a、14bは油の収納室、14a−1、14b−1は区劃室、15は環状突起、16は重錘体、17は冷却フィン、18は隔壁、19は環状リブである。
【0018】
すなわち、図1〜図5および図15〜図18に示すごとく、駆動ディスクをその外周側壁部に軸方向へ突出した突起壁を設けて断面略コ字状に形成し、さらに前記駆動ディスクの一側面と前記突起壁および前記密封器匣の内周側面によって一部油の収納室を形成した温度感応型流体式ファン・カップリング装置における回転軸体1は、その先端部に外周側壁に後方への高さ12.0mmからなる突起壁7−1を有して全体の幅厚を14.0mmの断面コ字状となす直径146.5mmからなる駆動ディスク7を固着し、かつ後端部に相手基体への取付フランジ壁を有して駆動側として構成するものである。そして、該軸体上に軸受を介して外周部に冷却フィン17を取付けたケース2とカバー3とからなる被駆動側としての密封器匣を支承してなるものである。
【0019】
また、駆動ディスクをその外周側壁部に軸方向の両側へ突出した突起壁を設けて断面略I字状に形成し、さらに前記駆動ディスクの側面と前記突起壁および前記密封器匣の内周側面によって2つの一部油の収納室を形成した温度感応型流体式ファン・カップリング装置における回転軸体1は、その先端部に外周側壁に軸方向であって後方および前方の両方向へそれぞれ突出延長する突起壁7−1を有して全体の幅厚を前記コ字状と同じ14.0mmの断面略I字状となす直径146.5mmからなる駆動ディスク7を固着したものであって、前記突起壁7−1と該駆動ディスクの側面および前記密封器匣のケース2およびカバー3の内周面により2つの油の収納室14、14−1が形成され、機関停止の間および低入力回転の間にあって一部油を収納してトルク伝達室4側の油面を下げるものである。
【0020】
仕切板5は密封器匣の内部を油溜り室6と前記駆動ディスク7を内装するトルク伝達室4とに区劃してなるものであって、該仕切板には油溜り室6よりトルク伝達室4への油の流出調整孔5−1を設けてある。また、駆動ディスク7はトルク伝達室4内にあって密封器匣の対向壁面とトルク伝達のための間隙を保持してあるとともに、密封器匣の内周面と突起壁7−1の自由端との間に微小間隙cを設けてある。この微小間隙cは、駆動ディスク7の直径が80〜230mmで作動油の粘土が1000〜30000cStの場合、0.3〜0.8mmに設定すると“ツレ廻り”現象の防止に極めて優れた効果があることがわかった。一方、駆動ディスク7はその製作を容易にするため図5に示すように板材を用いてプレス成型により構成することもできる。なお、図2、図18は、トルク伝達室のカバー3側と駆動ディスク7との対向面にラビリンス機構を設けた例を示したものである。
【0021】
弁部材8は仕切板5に設けられた流出調整孔5−1を開閉する作用をするもので、油溜り室6側の仕切板5の壁面にその一端を鋲着し、他端を該調整孔部に位置してなるもので、カバー3の前面に固定した支持金具11にその両端部を係止した短冊状(図1、図6、図15、図19、図20参照)または渦巻状(図21参照)の板状バイメタルからなる感温体10による外部周囲の温度変化に伴う変形に連動するように連桿9を介して内部に備えてある。
【0022】
ダム12は回転作動時の油の集溜する駆動ディスク7の外周側壁面に対向する密封器匣側の内周側壁部の一部に、駆動ディスク7のなす幅厚の全幅にわたって対設してなるものであって、回転方向の該ダムの手前に近傍して設けたトルク伝達室4側より油溜り室6への循環流通路13とによってポンピング機能をなすものである。
【0023】
断面略コ字状に形成した駆動ディスクの場合、油の収納室14は駆動ディスク7の外周側壁部に軸方向の後方へ突出した突起壁7−1と該駆動ディスクの背面側の側面および密封器匣のケース2の内周面により形成された油の収納室であり、機関停止の間および低入力回転の間にあって一部油を収納してトルク伝達室4側の油面を下げるものである。
【0024】
また、断面略I字状に形成した駆動ディスクの場合は、前記突起壁7−1と該駆動ディスクの側面および前記密封器匣のケース2およびカバー3の内周面により2つの油の収納室14、14−1が形成され、上記と同様、機関停止の間および低入力回転の間にあって一部油を収納してトルク伝達室4側の油面を下げるものである。
【0025】
一方、断面略コ字状もしくは略I字状の駆動ディスク7の幅厚は、該駆動ディスクの直径の7%以上となす関係寸法に形成することが好ましい。その理由は、図34に示すように7%を境に始動“ツレ廻り”現象が急激に抑制されて改善されるからである。そして、その後の走行中での高入力回転への急加速時に、収納室での油の収納による油面の状態と、幅広となす駆動ディスク7の外周側壁全幅での幅広なダム12とによるポンピング機能とによって、ファンの“ツレ廻り”現象を効果的に抑制するものである。なお、始動“ツレ廻り”とは、図31に示すように入力回転が始動後2000rpm一定で継続した時、ファン回転数が上昇後1400rpmにまで下がった時の時間間隔をいい、本発明ではファンの最高回転数が約1200rpmに押さえられているに対し、従来技術では約1900rpmとなってしまう。
【0026】
また、断面略コ字状の駆動ディスク7の突起壁7−1の後端部に環状に設けた環状凹溝7−2と密封器匣の内周側面側の対向面に該凹溝に遊嵌される環状突起15を設けたり(図1、図2、図15、図18)、突起壁7−1の自由端側とこれに対向する密封器匣の内周側面から軸方向に突出する環状突起15を、微小間隙cをおいて並設せしめたり(図4)、または突起壁7−1の自由端を微小間隙cをおいて密封器匣の内周側面内部に突出させたり(図5)すると収納室14からの油の流出が制限され、“ツレ廻り”現象の抑制は一層効果的になる。この効果は突起壁7−1の後端側に環状凹溝を、またケース2側の対向面に環状突起を設けても同様に発揮できる。
【0027】
また、図8に示すように前記突起壁7−1の自由端の一方または両方に環状に設けた環状凹溝7−2と密封器匣の内周側面側の対向面に該凹溝に遊嵌される環状突起15を設けたり、図9に示すように図8とは反対に密封器匣の内周側面側に環状に設けた環状凹溝15−1と突起壁7−1の自由端の一方または両方の対向面に該溝に遊嵌される環状突起7−3を設けたり、図10および図12〜図14に示すように突起壁7−1の自由端側とこれに対向する密封器匣の内周側面から軸方向に突出する環状突起15を、微小間隙cをおいて並設せしめたりすると、収納室14からの油の流出が制限され、“ツレ廻り”現象の抑制はいっそう効果的になる。
【0028】
上記した図1〜図5および図15〜図18に示す実施例においては、駆動ディスク7の外周側壁部より軸方向の後方へ突出させて形成した突起壁7−1と背面側の側面および密封器匣のケース2の内周側面により収納室14を形成したものを示したが、図6、図19に示すように突起壁7−1を駆動ディスク7の外周側壁部より軸方向の前方へ突出させて駆動ディスク7の突起壁7−1と前面側の側面および密封器匣のカバー3の内周面によって収納室14を形成することもでき、図6、図19の実施例でも略同様の“ツレ廻り”現象の防止効果が得られる。
【0029】
なお、断面略I字状となす駆動ディスク7は、その製作を容易にするため図11に示すように板材を打抜いた後曲げ加工を施し、次いで駆動ディスク部分と突起壁部分とをリベット止め、スポット溶接、ろう付等により一体化したり、図12および図13に示すように突起壁7−1の外周にさらに円筒体7aを接合することもでき、また図14に示すように一枚の板材を用いてプレス成型により構成することもできる。
【0030】
次に、図15〜図20に示す実施例における油の収納室14a、14bは、駆動ディスク7の一方側面(図15〜図19)または両側面(図20、図21)に形成され、該収納室内に径方向に突設した放射状からなる隔壁18により複数の区劃室14a−1、14b−1を設けて構成される。この収納室14a、14bは、略I字状の駆動ディスクの場合、区劃室14b−1をディスクの一方側面のみに設けることもできる(図21)。この収納室14a、14bは機関停止の間および低入力回転の間にあって一部油を収納してトルク伝達室4側の油面を下げるものである。そして、必要に応じて該駆動ディスクの基部付近に複数の流通孔P−1または/および駆動ディスク7の回転方向に対する区劃室14a−1、14b−1の隔壁18のなす外方根元付近の前部にそれぞれ流通孔Pー2を穿設する。
【0031】
上記収納室内に放射状の隔壁18で区劃された複数の区劃室14a−1、14b−1を設けて構成された駆動ディスクを用いたファン・カップリング装置の場合、トルク伝達室4内に油が多量にある状態、もしくは流出調整孔5−1が開弁した状態で機関が停止されると、トルク伝達室4内の油は流通孔Pー1および微小間隙c部を通って放射状壁18で区劃された収納室14aのうち下方に位置するもののみに流入することとなり(図22では下方の4つの区劃室14a−1のみに流入し、横および上方の収納室へは流入しない)、結果としてトルク伝達室4内に残留する油を減少させることになる。
【0032】
この状態で機関を始動すると、図23に示したように停止時に下方に位置していた区劃室14a−1のみに油が存在し、他の区劃室は油の存在しない空の状態で回転することになる。一方、油は駆動ディスク7の回転による遠心力により微小間隙cからトルク伝達室4へ流出することになるが、このときトルク伝達室4への流出は、油が流入した4つの区劃室14a−1のみから行われ、他の区劃室からは流出しないため極めて微量である。
【0033】
なお、ダム12により加圧された油は循環流通路13へ圧送されるが、その加圧された油の一部は油の存在しない多くの区劃室14a−1へ流通孔P−2および微小間隙cを介して流入し、トルク伝達室4内の油を減少させることになる。
【0034】
したがって、機関始動直後の“ツレ廻り”現象はトルク伝達室4内の油がダム12でポンピングされて油溜り室6へ排出されることもあって極く短期間に制御される。
【0035】
次に、流出調整孔5−1が開弁した一定回転時における動作は図24の通りであって、収納室14a内に溜った油は駆動ディスク7の回転によって遠心力により微小間隙cから順次トルク伝達室4に流入するとともに、油溜り室6内の油が流出調整孔5−1を介してトルク伝達室4に供給され駆動ディスク7の回転トルクを油を介して被駆動側の密封器匣へ伝達する。一方、トルク伝達室4内の油はダム12によりポンピングされ循環流通路13を介して再び油溜り室6へ排出される。
【0036】
さらに、通常走行中の急加速時においては、駆動ディスク7は急激な高速回転してトルク伝達室4内の油がダム12により加圧されて一部はダム12のポンピングにより循環流通路13を経て油溜り室6へ排出されるが、一部は微小間隙cおよび流通孔P−2より一時的に収納室14aへ流入するため、結果としてトルク伝達室4内の油を減少し急加速時の“ツレ廻り”現象も防止できる。
【0037】
なお、図25に示すように放射状壁18を比較的短寸状に形成しても、上記実施例に比べて始動“ツレ廻り”現象の防止性能はやや劣るものの、特に本発明で目的とした通常走行時での急加速時の“ツレ廻り”現象については略同じように防止することができる。
【0038】
また、図26〜図29に示すように駆動ディスク7の突起壁7−1に環状リブ19を突設することにより、ファンの“ツレ廻り”現象をより効果的に抑制することができる。
【0039】
すなわち、図26、図27は断面略コ字状駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブ19を形成した駆動ディスクの一部を示し、図28、図29は略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成した駆動ディスクの一部を示すもので、この環状リブ19の作用により、油の収納室14または収納室内の一部の区劃室14a−1、14b−1内の油は環状リブ19の高さいったん溜り、その後環状リブ19をオーバーフローした油が微小間隙cに向かって流れることになり、その間トルク伝達間隙部へ流れる油量が減少するのでファンの“ツレ廻り”現象をより効果的に抑制することとなる。なお、ディスク収納室14または収納室内の一部の区劃室14a−1、14b−1内にいったん溜った油はその後駆動ディスク7の環状リブ19または突起壁7−1またはディスクの外側壁に設けられたきわめて小径の流通孔Pー3、Pー4、Pー5より徐々に流出しディスク外周のダムにより速やかに排出油路へ圧送される。なお、環状リブ19に設ける油の排出手段としては、流通孔に替えてスリットを形成しても同様の作用効果が得られる。
【0040】
【発明の効果】
この発明は上記のごとく、駆動ディスクのなす直径に対して好ましくは7%以上となす突起壁とによる外周壁部での厚状幅構造と、その周側面の全幅にわたるダムとの対設構造並びに収納室の構造とにより、機関停止の間および低入力回転の間にあって一部油の単一または2つの収納室、または複数の区劃室での収納に伴いトルク伝達室側の油面を下げることとなって、作動状態を最小限の油量で維持せしめるため、その後の始動時および走行中での高入力回転への急加速時に、前記油面の状態と、一部の区劃室からの収納された作動油の微量の流出と、ダムによる効率的なポンピング機能とによってファンの“ツレ廻り”現象を効果的に抑制することができ、さらに駆動ディスクの突起壁の内周面に径方向に突出する環状リブを設けることにより“ツレ廻り”現象をより効果的に抑制することができる結果、異常なファン騒音の防止並びに寒冷時の暖気運転を促進することができ、さらに断面略コ字状またはI字状となす駆動ディスクの簡素な形状より簡易に得ることができ、また所望に応じ板材によるプレス成型によって製作できるため加工性を高め、安価にしてかつ軽量となすことができる等、極めて有用性に富むものである。
【図面の簡単な説明】
【図1】駆動ディスクをその外周側壁部に軸方向へ突出した突起壁を設けて断面略コ字状に形成し、さらに前記駆動ディスクの一側面と前記突起壁および前記密封器匣の内周側面によって一部油の収納室を形成した温度感応型流体式ファン・カップリング装置を示す縦断面図
【図2】同上ファン・カップリング装置の他の実施例を示す要部拡大縦断面図である。
【図3】同上ファン・カップリング装置の他の実施例を示す要部拡大縦断面図である。
【図4】同上ファン・カップリング装置の他の実施例を示す要部拡大縦断面図である。
【図5】同上ファン・カップリング装置の他の実施例を示す要部拡大縦断面図である。
【図6】同上ファン・カップリング装置の他の実施例の図1相当図である。
【図7】駆動ディスクをその外周側壁部に軸方向の両側へ突出した突起壁を設けて断面略I字状に形成し、さらに前記駆動ディスクの側面と前記突起壁および前記密封器匣の内周側面によって2つの一部油の収納室を形成した温度感応型流体式ファン・カップリング装置を示す縦断面図である。
【図8】同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図である。
【図9】同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図である。
【図10】同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図である。
【図11】同上のファン・カップリング装置における他の実施例を示す図7相当図である。
【図12】同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図である。
【図13】同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図である。
【図14】同上のファン・カップリング装置における他の実施例を示す要部拡大縦断面図である。
【図15】駆動ディスクをその外周側壁部に軸方向に突出した突起壁を設けて断面略コ字状となすとともに、その外周壁面をダムの全面にわたって対設する厚状幅となし、かつ駆動ディスクのなす少なくとも一方側面と、前記突起壁および密封器匣の内周側面によって形成された一部油の収納室内に、径方向に突設した放射状の隔壁により複数の区劃室を設けて構成した温度感応型流体式ファン・カップリング装置を示す縦断面図である。
【図16】同上のファン・カップリング装置における他の実施例を示す要部縦断面図である。
【図17】同上のファン・カップリング装置における他の実施例を示す要部縦断面図である。
【図18】同上のファン・カップリング装置における他の実施例を示す要部縦断面図である。
【図19】同上のファン・カップリング装置の他の実施例を示す図15相当図である。
【図20】同上のファン・カップリング装置の他の実施例を示す図7相当図である。
【図21】同上のファン・カップリング装置の他の実施例を示す図7相当図である。
【図22】同上のファン・カップリング装置の停止時における駆動ディスク単体の線図により示す平面図である。
【図23】同上のファン・カップリング装置の始動時における駆動ディスク単体の線図により示す平面図である。
【図24】同上のファン・カップリング装置の連続定速時における区劃室での油の状態を示する平面図である。
【図25】同上のファン・カップリング装置の他の実施例における駆動ディスク単体の線図により示す平面図である。
【図26】断面略コ字状駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成した駆動ディスクの一部を示す縦断面図である。
【図27】同上駆動ディスクの他の実施例を示す図26相当図である。
【図28】同上駆動ディスクのさらに他の実施例を示す図26相当図である。
【図29】断面略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成した駆動ディスクの一部を示す縦断面図である。
【図30】同上駆動ディスクの他の実施例を示す図29相当図である。
【図31】本発明と従来例との始動時の“ツレ廻り”現象を比較した特性図である。
【図32】本発明と従来例との加速時の“ツレ廻り”現象を比較した特性図である。
【図33】本発明と従来例との感温特性を比較した特性図で、(イ)は本発明の特性図、(ロ)は従来の特性図である。
【図34】油の収納室での駆動ディスクのなす周側壁部の幅厚と“ツレ廻り”との関係を示す特性曲線図である。
【図35】従来例を示す一部切欠き断面図である。
【符号の説明】
1 回転軸体
2 ケース
3 カバー
4 トルク伝達室
5 仕切板
5−1 流出調整孔
6 油溜り室
7 駆動ディスク
7−1 突起壁
8 弁部材
9 連桿
10 感温体
11 支持金具
12 ダム
13 循環流通路
14、14−1、14a、14b 油の収納室
14a−1、14b−1 区劃室
15 環状突起
16 重錘体
17 冷却ファン
18 隔壁
19 環状リブ
[0001]
[Industrial applications]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a temperature-responsive fluid-type fan coupling device that controls the rotation of a fan for cooling an engine in an automobile and constantly supplies a cooling air flow according to a running state to the engine.
[0002]
[Prior art]
Conventionally, as this type of fan coupling device, for example, as shown in FIG. 35, a drive disk 27 forming a thick wall 27-1 around the outer periphery fixed to a rotating shaft is formed, and a torque transmission chamber 24 is formed. And the inner peripheral wall surface on the side of the casing housing and the torque transmission gap are maintained. Reference numeral 25 denotes a partition plate which divides the interior of the casing into an oil sump chamber 26 and the torque transmission chamber 24.
[0003]
[Problems to be solved by the invention]
However, in such a conventional drive disk 27, the structure of the thick wall 27-1 related to the improvement of the torque transmitting force and the pumping function in a dam (not shown) and the engine At the time of restarting from the stop state or at the time of rapid acceleration from the low input rotation state to the high input rotation during running, the fan existing in the torque transmission chamber 24 is cooled by the fan as shown in FIG. As a result, a sudden increase in rotation caused abnormal fan noise and hindered warm-up operation in cold weather.
[0004]
To explain this in detail, the amount of oil in the torque transmission chamber is determined by the difference between the amount recovered by the dam from the torque transmission chamber and the amount supplied to the torque transmission chamber from the oil reservoir through the outflow adjustment hole. However, even if the outside temperature drops and the outflow adjustment hole is closed and the amount of supplied oil decreases, there occurs a period during which there is a phenomenon that the fan rotation speed does not decrease. This is because the amount of oil collected by the dam is small due to the insufficient collection capacity of the dam, so it takes time to reduce the amount of oil in the torque transmission chamber (there is a time lag), and the torque is transmitted for a while during that time.
[0005]
The recovery capacity of the dam increases in proportion to the difference between the input rotation speed and the output rotation speed (relative rotation speed). However, since this ability is relatively low at low input rotation, the recovery amount is low especially at the beginning of low temperature. Insufficiently, the high fan rotation speed is maintained as shown in FIG. 31 (b), and the phenomenon of "rounding" occurs, and the hysteresis, which means the operating temperature difference between the temperature raising characteristics and the temperature lowering characteristics, increases. In other words, a large hysteresis means that the recovery capacity of the dam is low, and that the oil remaining in the torque transmission chamber causes a "slip" phenomenon.
[0006]
Further, in the prior art, press forming using a plate material becomes impossible by forming the local thick wall 27-1 near the outer periphery, and the workability of the drive disk 27 itself is lowered due to the thick casting and cutting. There are problems that the cost is high and the weight of the product is generally increased.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is intended to reduce the "circling around" on the fan side at the time of starting after stopping and at the time of rapid acceleration to high input rotation during running. It is an object of the present invention to provide a temperature-responsive fluid-type fan-coupling device that can effectively suppress the torque transmission force as described above without lowering it, and therefore can substantially correspond to the external temperature and the fan rotation speed.
[0008]
[Means for Solving the Problems]
A temperature-responsive fluid-type fan coupling device according to the present invention comprises a case and a cover, which are supported via a bearing on a rotating shaft body having a drive disk fixed to a tip end, and a cooling fan is attached to an outer peripheral portion. The inside of the sealed casing is partitioned into an oil reservoir and a torque transmission chamber containing the drive disk by a partition plate having an oil outflow adjustment hole, and an outer peripheral side of the drive disk for collecting oil during rotation. At least one dam and a circulating flow passage extending from the torque transmission chamber side to the oil sump chamber side and connected to the dam are formed in a part of the inner peripheral side wall portion on the sealer box side facing the wall surface, and the oil sump chamber side The valve member is fixed at one end to the oil sump chamber, and the other end is opened when the temperature of the outside ambient exceeds a set value, the outlet adjustment hole of the partition plate is opened, and when the temperature is below the set value, the valve member is closed. Temperature change of the temperature sensitive body In order to increase or decrease the effective contact area of the oil in the torque transmission gap provided on the opposing wall near the outside between the drive disk and the casing, the rotation is provided on the drive side. In a fan coupling device configured to control transmission of rotational torque from a body to a driven casing side, a drive disk is provided with a projection wall protruding in an axial direction on an outer peripheral side wall thereof, and a cross section of the drive disk is formed. The drive disk is formed in a U-shape, and an oil storage chamber is partially formed by one side surface of the drive disk, the projection wall, and the inner peripheral side surface of the sealer box. Is formed in a relational dimension of at least 7% of the diameter of the drive disk, and an annular projection is formed on one of the free end side of the projection wall and the inner peripheral side face of the sealer box facing the projection wall. The annular projection is loosely fitted to the other An annular groove is provided, or an annular protrusion axially protruding from the free end side of the protrusion wall and the inner peripheral side surface of the sealer box facing the free end side is arranged in parallel with a small gap c. is there.
[0009]
In addition, the present invention provides an oil spill that is supported by a bearing on a rotating shaft body having a drive disk fixed to a tip end thereof, and that includes a cover and a case having a cooling fan attached to an outer peripheral portion. A partition plate having an adjustment hole is partitioned into an oil sump chamber and a torque transmission chamber housing the drive disk, and an inner periphery of the sealer box side facing an outer peripheral side wall surface of the drive disk for collecting oil during rotation. At least one dam and a circulating flow passage extending from the torque transmission chamber side to the oil sump chamber side are formed in a part of the side wall portion, and one end thereof is located on the oil sump chamber side and is connected to the oil sump chamber. When the temperature of the outside ambient exceeds the set value, the other end is opened, and the flow control hole of the partition plate is opened. It is equipped internally with the drive By increasing or decreasing the effective contact area of oil in the torque transmitting gap provided on the opposing wall near the outside between the disc and the casing, the drive-side rotating body is moved to the driven-side casing casing side. In a fan coupling device configured to control the transmission of rotational torque, a drive disk is formed in a substantially I-shaped cross section by providing projecting walls protruding to both sides in the axial direction on an outer peripheral side wall portion thereof. Two side oil storage chambers are formed by the side surface, the projection wall, and the inner peripheral side surface of the casing, and the width and thickness of the projection wall are, as described above, 7% or more of the diameter of the drive disk. Or an annular projection on at least one of the free ends of the projection wall and the inner peripheral side of the sealer box facing the free end, and an annular groove into which the annular projection is loosely fitted. Free end of the projection wall An annular projection projecting axially from at least one the inner peripheral surface side of the sealed housing opposite thereto, is characterized in that the allowed juxtaposed at a small gap.
[0010]
Further, according to the present invention, in the fan coupling device, the drive disk is provided with a projecting wall protruding in the axial direction on an outer peripheral side wall thereof to have a substantially U-shaped cross section or a substantially I-shaped cross section, and the outer peripheral wall surface is provided with a dam. A thick width opposed to the entire surface of the drive disk, and radially projecting into at least one side surface of the drive disk and a partial oil storage chamber formed by the projection wall and the inner peripheral side surface of the sealer box. A plurality of compartments are provided by the radial partitions described above, and the width and thickness of the projection wall are formed to have a relational dimension of at least 7% of the diameter of the drive disk, and the freeness of the projection wall is also increased. An annular projection is provided on at least one of the ends and one of the inner peripheral side faces of the sealer box opposed thereto, and an annular groove in which the annular projection is loosely fitted is provided on the other side, or a free end of the projection wall is provided. At least one And annular projections that protrude in the axial direction from the inner peripheral side surface of the sealer box facing this, are arranged side by side with a small gap, or the rotation direction of the drive disk having a substantially U-shaped or substantially I-shaped cross section. And a through hole is formed in the front part near the outer root formed by the partition wall of the compartment.
[0011]
An annular rib protruding in a radial direction is formed at an outer end portion of an inner peripheral wall surface of the projecting wall of the drive disk having a substantially U-shaped or substantially I-shaped cross section, and preferably a cross section is preferably formed. In the case of a substantially U-shaped drive disk, a flow hole is formed in at least one of a side wall or a projection wall or an annular rib of the disk, and in the case of a drive disk having a substantially I-shaped cross section, both projection walls of the disk are provided. Alternatively, a flow hole is formed in one of the annular ribs, or a slit is formed in the annular rib.
[0012]
[Action]
Since the present invention is configured as described above, the oil on the side of the torque transmission chamber is stored in the storage chamber or a part of the compartment inside the storage chamber during the stop of the engine, so that the oil remains in the torque transmission gap. The amount of oil to be stored is reduced to a small amount, and when the engine is subsequently started in such a state, the oil contained in a limited portion of the storage chamber within the storage chamber is gradually reduced by a small amount through the minute gap. Supplied to the side. Also, by changing the disk width / disk diameter from 5% or less to 7% or more of the conventional device, the pumping function of hydraulic oil recovery is improved due to the effect of increasing the dam width, and the hysteresis effect in the temperature-sensitive characteristics is reduced (particularly low. The effect at the time of input rotation is great for the improvement of the "slip around" phenomenon at the time of sudden acceleration), and at low input rotation, the rotation speed of the disk is low and the disk storage room or some of the compartments in the storage room The centrifugal force acting on the oil is also small, and the oil in the disk storage chamber passes through the minute gap, so that it is difficult for the oil to come out, and the oil level in the torque transmission gap is lower than that of the conventional device.
[0013]
This means that the relative rotation speed (slip rotation) between the drive disk and the casing is increased, and the oil recovery capacity is improved. Due to the large force, the oil gradually flows out of the minute gap, raises the oil level in the torque transmission gap, and eventually increases the fan speed.) Therefore, the use of high-viscosity oil or the use of a low-torque fan causes the relative rotational speed to be insufficient (insufficient dam function), for example, around a low input rotation of around 1000 rpm at an intermediate temperature of around 80 ° C. Even during rapid acceleration from running to high input rotation, the oil level in the torque transmission gap is lowered by storing part of the oil in the storage chamber as shown in FIG. As a result, the operation state is maintained with the minimum oil amount, and therefore the hysteresis is reduced as shown in FIG. 33 (a). In either case, the "slipping" phenomenon of the fan is effectively suppressed. Become.
[0014]
In the case of a drive disk configured by providing a plurality of compartments by radial partitions protruding in the storage chamber in the radial direction, the oil in the torque transmission chamber is pressure-fed to a discharge oil passage by a dam. The oil flows back to many compartments in the oil-free or oil-less storage chamber through the circulation holes to reduce the amount of oil in the torque transmission chamber.
[0015]
In addition, the heat transfer effect of the radial partitions allows the heat on the torque transmitting surface side of the drive disk accompanying the rise in oil temperature to be transmitted to the rotating shaft via the radial partitions, thereby promoting the heat radiation effect.
[0016]
Also, by providing an annular rib projecting in the radial direction on the inner peripheral surface of the projecting wall of the drive disk, the rib acts as a kind of weir to partition the oil storage chamber or a part of the storage chamber. The oil inside the chamber temporarily accumulates beyond the annular rib, and the amount of oil flowing into the torque transmission gap is reduced, so that the phenomenon of "spinning" of the fan is more effectively suppressed. If there is a circulation hole or a slit, the oil once accumulated in the disk storage chamber or a part of the compartment inside the storage chamber is then used for the distribution hole or the slit provided on the projection wall or the annular rib of the drive disk or the disk outer wall. The oil gradually flows out and is quickly pumped to the discharge oil passage by the dam on the outer periphery of the disk.
[0017]
【Example】
FIG. 1 shows a drive disk provided with a projection wall protruding in the axial direction on an outer peripheral side wall thereof, formed in a substantially U-shaped section, and further provided with one side surface of the drive disk, the projection wall, and an inner peripheral side surface of the sealer box. FIG. 2 is a longitudinal sectional view showing a temperature-responsive fluid-type fan coupling device in which an oil storage chamber is partially formed, and FIGS. 6, FIG. 6 is a view corresponding to FIG. 1 of still another embodiment, and FIG. 7 is a drive disk formed with a projection wall projecting to both sides in the axial direction on the outer peripheral side wall portion, and formed in a substantially I-shaped cross section. FIG. 8 is a longitudinal sectional view showing a temperature-responsive fluid-type fan coupling device in which two partial oil storage chambers are formed by the side surface of the drive disk, the projection wall, and the inner peripheral side surface of the sealer housing; 14 is the same fan cup FIG. 15 is an enlarged longitudinal sectional view of a main part showing another embodiment of the driving apparatus, and FIG. 15 shows a drive disk having a substantially U-shaped cross section by providing a projecting wall protruding in the axial direction on an outer peripheral side wall thereof. At least one side surface of the drive disk and a partial oil storage chamber formed by the projection wall and the inner peripheral side surface of the sealer box are formed in a radial direction. FIG. 16 is a longitudinal sectional view showing a temperature-responsive fluid-type fan coupling device constructed by providing a plurality of compartments with provided radial partitions, and FIGS. FIGS. 19 to 21 are longitudinal sectional views showing a main part of an example, and FIGS. 19 to 21 show another embodiment of a fan coupling device having a drive disk having a substantially U-shaped cross section or a substantially I-shaped cross section, respectively. FIG. 22 to FIG. 24 are plan views showing the drive disk unit alone in the fan coupling device in the same manner as the above in a diagrammatic manner. FIG. 22 is a stop, FIG. 23 is a start, and FIG. 25 shows the state of oil in the compartment at a time, FIG. 25 is a plan view schematically showing a drive disk alone showing still another embodiment, and FIGS. 26 to 28 are projections of a drive disk having a substantially U-shaped cross section. FIG. 29 and FIG. 30 are longitudinal cross-sectional views each showing a part of a drive disk in which an annular rib protruding in the radial direction is formed at the outer end of the inner peripheral wall surface of the wall. FIG. 31 and FIG. 32 are longitudinal sectional views showing a part of a drive disk in which a radially projecting annular rib is formed at an outer end portion of a peripheral wall surface, and FIG. 31 and FIG. FIG. 33 is a characteristic diagram comparing the temperature sensitivity characteristics of the present invention and the conventional example. Is a characteristic curve diagram showing a relationship between the width of the peripheral side wall portion formed by the drive disk and “surrounding”, wherein 1 is a rotating shaft body, 2 is a case, 3 is a cover, 4 is a torque transmission chamber, and 5 is a torque transmission chamber. A partition plate, 6 is an oil sump chamber, 7 is a drive disk, 8 is a valve member, 9 is a connecting rod, 10 is a temperature sensing element, 11 is a support bracket, 12 is a dam, 13 is a circulation passage, and 14 and 14-1. , 14a and 14b are oil storage chambers, 14a-1 and 14b-1 are partition chambers, 15 is an annular projection, 16 is a weight body, 17 is a cooling fin, 18 is a partition, and 19 is an annular rib.
[0018]
That is, as shown in FIGS. 1 to 5 and FIGS. 15 to 18, the drive disk is formed to have a substantially U-shaped cross section by providing a projecting wall protruding in the axial direction on the outer peripheral side wall portion. The rotating shaft body 1 in the temperature-responsive fluid-type fan coupling device, in which a part of the oil storage chamber is formed by the side surface, the protruding wall, and the inner peripheral side surface of the sealer box, is provided at the front end of the rotating shaft body rearward on the outer peripheral side wall. A drive disk 7 having a diameter of 146.5 mm and having a projection wall 7-1 having a height of 12.0 mm and an overall width of 14.0 mm and having a U-shaped cross section is fixed to the rear end portion. It is configured as a drive side with a flange wall for attachment to a mating base. Further, a sealer box as a driven side comprising the case 2 and the cover 3 having the cooling fins 17 mounted on the outer peripheral portion thereof via bearings on the shaft body is supported.
[0019]
Further, the drive disk is formed on the outer peripheral side wall portion with a projection wall protruding to both sides in the axial direction to have a substantially I-shaped section, and further, the side surface of the drive disk, the projection wall, and the inner peripheral side surface of the sealer box. The rotary shaft body 1 in the temperature-responsive fluid-type fan coupling device in which two partial oil storage chambers are formed at the front end thereof protrudes and extends in the axial direction on the outer peripheral side wall and in both the rearward and forward directions. A drive disk 7 having a diameter of 146.5 mm having a projection wall 7-1 having a width of about 14.0 mm, which is substantially the same as that of the U-shape, and having an overall width of 146.5 mm. Two oil storage chambers 14 and 14-1 are formed by the projection wall 7-1, the side surface of the drive disk, and the inner peripheral surfaces of the casing 2 and the cover 3 of the sealer box. Some in between Houses the one in which lowering the oil surface of the torque transmission chamber 4 side.
[0020]
The partition plate 5 divides the interior of the casing into an oil sump chamber 6 and a torque transmission chamber 4 in which the drive disk 7 is housed, and transmits the torque from the oil sump chamber 6 to the partition plate. An oil outflow adjustment hole 5-1 for the chamber 4 is provided. The drive disk 7 is located in the torque transmitting chamber 4 and holds a gap for transmitting torque with the opposing wall surface of the casing, and the inner peripheral surface of the casing and the free end of the projection wall 7-1. Is provided with a minute gap c. When the diameter of the driving disk 7 is 80 to 230 mm and the clay of the working oil is 1000 to 30000 cSt, the minute gap c is set to 0.3 to 0.8 mm. I found it. On the other hand, the drive disk 7 can be formed by press molding using a plate material as shown in FIG. 5 in order to facilitate its manufacture. FIGS. 2 and 18 show an example in which a labyrinth mechanism is provided on the surface of the torque transmission chamber facing the cover 3 and the drive disk 7.
[0021]
The valve member 8 has a function of opening and closing the outflow adjusting hole 5-1 provided in the partition plate 5, one end of which is attached to the wall surface of the partition plate 5 on the oil sump chamber 6 side, and the other end is adjusted. It is located in the hole, and has a rectangular shape (see FIGS. 1, 6, 15, 15, 19, and 20) or a spiral shape in which both ends are locked to a support fitting 11 fixed to the front surface of the cover 3. It is provided inside through a connecting rod 9 so as to interlock with deformation caused by a temperature change of the external surroundings caused by a temperature sensing element 10 made of a plate-shaped bimetal (see FIG. 21).
[0022]
The dam 12 is provided on a part of the inner peripheral side wall portion on the sealer box side facing the outer peripheral side wall surface of the drive disk 7 where oil is collected during the rotation operation, over the entire width of the drive disk 7. The pumping function is provided by the circulation flow passage 13 from the torque transmission chamber 4 side provided near the dam in the rotation direction to the oil reservoir chamber 6.
[0023]
In the case of a drive disk having a substantially U-shaped cross section, the oil storage chamber 14 has a projection wall 7-1 protruding rearward in the axial direction on the outer peripheral side wall portion of the drive disk 7, a rear side surface of the drive disk, and a seal. An oil storage chamber formed by the inner peripheral surface of the case 2 of the casing, which partially stores oil during engine stoppage and during low input rotation to lower the oil level on the torque transmission chamber 4 side. is there.
[0024]
In the case of a drive disk having a substantially I-shaped cross section, two oil storage chambers are formed by the projection wall 7-1, the side surface of the drive disk, and the inner peripheral surfaces of the case 2 and the cover 3 of the sealer box. 14 and 14-1 are formed, similar to the above, for partially storing oil during engine stop and low input rotation to lower the oil level on the torque transmission chamber 4 side.
[0025]
On the other hand, it is preferable that the width of the drive disk 7 having a substantially U-shaped or substantially I-shaped cross section is formed to have a relational dimension that is equal to or more than 7% of the diameter of the drive disk. The reason for this is that, as shown in FIG. 34, the phenomenon of "starting around" at the boundary of 7% is sharply suppressed and improved. Then, at the time of rapid acceleration to high input rotation during traveling thereafter, pumping by the state of the oil surface due to the storage of the oil in the storage chamber and the wide dam 12 in the entire width of the outer peripheral side wall of the drive disk 7 being wide. The function effectively suppresses the phenomenon of "spinning" of the fan. In addition, the start “rounding” refers to a time interval when the input rotation continues to be constant at 2000 rpm after the start and the fan rotation speed drops to 1400 rpm after the start, as shown in FIG. Is limited to about 1200 rpm, whereas in the prior art it is about 1900 rpm.
[0026]
Further, an annular groove 7-2 provided in an annular shape at the rear end of the projecting wall 7-1 of the drive disk 7 having a substantially U-shaped cross section, and a play in the concave groove on the inner peripheral side surface of the casing. An annular projection 15 to be fitted is provided (FIGS. 1, 2, 15, and 18), and an axial projection protrudes from the free end side of the projection wall 7-1 and the inner peripheral side surface of the sealer box facing the free end side. The annular projections 15 may be juxtaposed with a small gap c (FIG. 4), or the free ends of the projection walls 7-1 may protrude into the inner peripheral side surface of the sealer box with a small gap c (FIG. 4). 5) Then, the outflow of the oil from the storage chamber 14 is restricted, and the suppression of the "circling around" phenomenon becomes more effective. This effect can be similarly exerted by providing an annular groove on the rear end side of the projection wall 7-1 and an annular projection on the facing surface on the case 2 side.
[0027]
Further, as shown in FIG. 8, an annular groove 7-2 provided in one or both of the free ends of the projection wall 7-1 and an opposing surface on the inner peripheral side surface of the sealer box play with the concave groove. An annular concave groove 15-1 and a free end of a projection wall 7-1 are provided on the inner peripheral side surface of the sealer box, as shown in FIG. An annular projection 7-3 which is loosely fitted in the groove is provided on one or both of the opposed surfaces, or as shown in FIGS. 10 and 12 to 14, the free end side of the projection wall 7-1 is opposed to the free end side. If the annular projections 15 projecting in the axial direction from the inner peripheral side surface of the sealer box are juxtaposed with a small gap c between them, the outflow of oil from the storage chamber 14 is restricted, and the phenomenon of "circling around" is suppressed. Be more effective.
[0028]
In the embodiment shown in FIGS. 1 to 5 and FIGS. 15 to 18 described above, the projection wall 7-1 formed so as to protrude rearward in the axial direction from the outer peripheral side wall portion of the drive disk 7 and the rear side surface and the sealing Although the storage chamber 14 is formed by the inner peripheral side surface of the case 2 of the casing, the projecting wall 7-1 is moved forward in the axial direction from the outer peripheral side wall portion of the drive disk 7 as shown in FIGS. The storage chamber 14 can also be formed by projecting the projection wall 7-1 of the drive disk 7, the side surface on the front side, and the inner peripheral surface of the cover 3 of the sealer box. The effect of preventing the "rounding" phenomenon can be obtained.
[0029]
The drive disk 7 having a substantially I-shaped cross section is formed by punching a plate material as shown in FIG. 11 and then bending the drive disk 7 to facilitate its manufacture, and then riveting the drive disk portion and the projection wall portion. , Spot welding, brazing, or the like, or a cylindrical body 7a can be further joined to the outer periphery of the projecting wall 7-1 as shown in FIGS. 12 and 13, and as shown in FIG. It can also be formed by press molding using a plate material.
[0030]
Next, the oil storage chambers 14a and 14b in the embodiment shown in FIGS. 15 to 20 are formed on one side surface (FIGS. 15 to 19) or both side surfaces (FIGS. 20 and 21) of the drive disk 7. A plurality of compartments 14a-1 and 14b-1 are provided by radial partitions 18 projecting radially into the storage chamber. When the storage chambers 14a and 14b are substantially I-shaped drive disks, the partition chamber 14b-1 may be provided only on one side of the disk (FIG. 21). These storage chambers 14a and 14b are used to partially store oil during engine stoppage and during low input rotation to lower the oil level on the torque transmission chamber 4 side. If necessary, a plurality of flow holes P-1 and / or the vicinity of the outer base formed by the partition wall 18 of the compartments 14a-1 and 14b-1 in the rotation direction of the drive disk 7 near the base of the drive disk. A flow hole P-2 is formed in the front part.
[0031]
In the case of a fan coupling device using a drive disk configured by providing a plurality of compartments 14a-1 and 14b-1 partitioned by radial partitions 18 in the storage chamber, the torque transmission chamber 4 When the engine is stopped with a large amount of oil or with the outflow adjustment hole 5-1 opened, the oil in the torque transmission chamber 4 passes through the communication hole P-1 and the small gap c to form a radial wall. 18 flows into only the lower one of the storage chambers 14a partitioned in FIG. 18 (in FIG. 22, it flows into only the four lower storage chambers 14a-1 and flows into the lateral and upper storage chambers). No), as a result, the oil remaining in the torque transmission chamber 4 is reduced.
[0032]
When the engine is started in this state, as shown in FIG. 23, oil is present only in the compartment 14a-1 which was located below at the time of stoppage, and the other compartments are empty in the absence of oil. Will rotate. On the other hand, the oil flows out of the small gap c into the torque transmission chamber 4 due to the centrifugal force generated by the rotation of the drive disk 7, and at this time, the oil flows out of the four compartments 14a into which the oil flows. It is performed only from -1 and does not flow out of other compartments, so it is extremely small.
[0033]
The oil pressurized by the dam 12 is sent to the circulation flow passage 13 by pressure, and a part of the pressurized oil flows to many compartments 14a-1 where no oil is present. The oil flows through the small gap c and the oil in the torque transmission chamber 4 is reduced.
[0034]
Therefore, the phenomenon of “slipping” immediately after the start of the engine is controlled in a very short time because the oil in the torque transmission chamber 4 is pumped by the dam 12 and discharged to the oil sump chamber 6.
[0035]
Next, the operation at the time of constant rotation when the outflow adjustment hole 5-1 is opened is as shown in FIG. 24, and the oil accumulated in the storage chamber 14a is sequentially moved from the minute gap c by centrifugal force due to the rotation of the drive disk 7. While flowing into the torque transmission chamber 4, the oil in the oil reservoir chamber 6 is supplied to the torque transmission chamber 4 through the outflow adjustment hole 5-1 and the rotational torque of the drive disk 7 is sealed via the oil to the driven side sealer. Transmit to the box. On the other hand, the oil in the torque transmission chamber 4 is pumped by the dam 12 and discharged to the oil sump chamber 6 again through the circulation flow passage 13.
[0036]
Further, at the time of rapid acceleration during normal running, the drive disk 7 rotates rapidly at a high speed, and the oil in the torque transmission chamber 4 is pressurized by the dam 12, and a part of the oil flows through the circulation flow passage 13 by pumping the dam 12. Although the oil is discharged to the oil sump chamber 6, a part of the oil temporarily flows into the storage chamber 14 a through the small gap c and the circulation hole P- 2, and as a result, the oil in the torque transmission chamber 4 is reduced, and the speed is accelerated. Can also be prevented.
[0037]
Even if the radial wall 18 is formed in a relatively short shape as shown in FIG. 25, the performance of preventing the phenomenon of "starting around" is slightly inferior to that of the above embodiment, but it is particularly aimed at in the present invention. "Surrounding" phenomenon at the time of sudden acceleration during normal running can be substantially similarly prevented.
[0038]
26 to 29, the projecting wall 7-1 of the drive disk 7 is provided with the annular rib 19 so as to more effectively suppress the "slipping" phenomenon of the fan.
[0039]
26 and 27 show a part of a drive disk in which a radially projecting annular rib 19 is formed at the outer end of the inner peripheral wall surface of the projecting wall of the substantially U-shaped drive disk in cross section. Reference numeral 29 denotes a part of a drive disk having a substantially I-shaped drive disk formed with a radially projecting annular rib at the outer end of the inner peripheral wall surface of the projecting wall of the drive disk. The oil in the storage chamber 14 or some of the compartments 14a-1 and 14b-1 in the storage chamber temporarily accumulates at the height of the annular rib 19, and then the oil overflowing the annular rib 19 flows toward the minute gap c. As a result, the amount of oil flowing to the torque transmission gap decreases during that time, so that the phenomenon of "slipping" of the fan is more effectively suppressed. The oil once accumulated in the disk storage chamber 14 or in some of the compartments 14a-1 and 14b-1 in the storage chamber is then transferred to the annular rib 19 of the drive disk 7, the projection wall 7-1 or the outer wall of the disk. It gradually flows out of the provided very small diameter flow holes P-3, P-4 and P-5 and is quickly pumped to the discharge oil passage by the dam on the outer periphery of the disk. The same operation and effect can be obtained by forming a slit as the oil discharging means provided on the annular rib 19 instead of the flow hole.
[0040]
【The invention's effect】
As described above, the present invention provides a structure in which a thick width structure at an outer peripheral wall portion by a projection wall which preferably accounts for 7% or more of a diameter of a drive disk, a dam structure extending over the entire width of a peripheral side surface thereof, and Due to the structure of the storage chamber, the oil level on the torque transmission chamber side is lowered during storage of the oil in the single or two storage chambers or in a plurality of compartments during engine stop and low input rotation. In other words, in order to maintain the operating state with a minimum amount of oil, at the time of subsequent start-up and sudden acceleration to high input rotation during traveling, the state of the oil level and the A small amount of hydraulic oil that has been stored and the efficient pumping function of the dam can effectively suppress the "slipping" phenomenon of the fan. Providing an annular rib projecting in the direction As a result, it is possible to more effectively suppress the "circling around" phenomenon, thereby preventing abnormal fan noise and promoting warm-up operation in cold weather, and a drive having a substantially U-shaped or I-shaped cross section. The disk can be obtained easily from a simple shape, and can be manufactured by press molding with a plate material as required. Therefore, the workability can be enhanced, and the disk can be made inexpensive and lightweight.
[Brief description of the drawings]
FIG. 1 is a perspective view of a drive disk provided with a projection wall protruding in an axial direction on an outer peripheral side wall thereof, and formed in a substantially U-shaped cross section; and one side of the drive disk, the projection wall, and the inner periphery of the sealer box. Longitudinal sectional view showing a temperature-responsive fluid-type fan coupling device in which an oil storage chamber is partially formed by the side.
FIG. 2 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 3 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 4 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 5 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 6 is a view corresponding to FIG. 1 of another embodiment of the fan coupling device;
FIG. 7 is a cross-sectional view of the drive disk formed on the outer peripheral side wall portion of the drive disk with projecting walls protruding to both sides in the axial direction and having a substantially I-shaped cross-section; It is a longitudinal cross-sectional view which shows the temperature-responsive fluid-type fan coupling apparatus which formed the storage chamber of two partial oils by the peripheral side surface.
FIG. 8 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 9 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 10 is an enlarged longitudinal sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 11 is a diagram corresponding to FIG. 7, showing another embodiment of the fan coupling device of the above.
FIG. 12 is an enlarged vertical sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 13 is an enlarged vertical sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 14 is an enlarged vertical sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 15 is a cross-sectional view of a drive disk provided with a projection wall protruding in the axial direction on an outer peripheral side wall thereof, and having a substantially U-shaped cross-section; A plurality of compartments are provided by radially projecting radial partitions in a partial oil storage chamber formed by at least one side face of the disc and the projection wall and the inner peripheral side face of the casing. It is a longitudinal cross-sectional view which shows the temperature-responsive type fluid-type fan coupling device.
FIG. 16 is a vertical sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 17 is a vertical sectional view of a main portion showing another embodiment of the fan coupling device of the above.
FIG. 18 is a vertical sectional view of a main part showing another embodiment of the fan coupling device of the above.
FIG. 19 is a view corresponding to FIG. 15 showing another embodiment of the fan coupling device of the above.
FIG. 20 is a view corresponding to FIG. 7, showing another embodiment of the fan coupling device of the above.
FIG. 21 is a view corresponding to FIG. 7, showing another embodiment of the fan coupling device of the above.
FIG. 22 is a plan view showing the drive disk alone when the fan coupling device is stopped.
FIG. 23 is a plan view showing a diagram of the drive disk alone when the fan coupling device is started.
FIG. 24 is a plan view showing a state of oil in a compartment at the time of continuous constant speed of the fan coupling device.
FIG. 25 is a plan view showing a drive disk unit alone in another embodiment of the fan coupling device of the above.
FIG. 26 is a longitudinal sectional view showing a part of a drive disk in which an annular rib protruding in a radial direction is formed at an outer end of an inner peripheral wall surface of a projecting wall of a substantially U-shaped drive disk.
FIG. 27 is a view corresponding to FIG. 26, showing another embodiment of the drive disk of the above.
FIG. 28 is a view corresponding to FIG. 26, showing still another embodiment of the above-mentioned drive disk.
FIG. 29 is a longitudinal sectional view showing a part of a drive disk in which an annular rib protruding in a radial direction is formed at an outer end of an inner peripheral wall surface of a projection wall of the drive disk having a substantially I-shaped cross section.
FIG. 30 is a view corresponding to FIG. 29, showing another embodiment of the drive disk of the above.
FIG. 31 is a characteristic diagram comparing the “slipping” phenomenon at the time of startup between the present invention and the conventional example.
FIG. 32 is a characteristic diagram comparing the “slipping” phenomenon during acceleration between the present invention and the conventional example.
FIGS. 33A and 33B are characteristic diagrams comparing the temperature sensitivity characteristics of the present invention and a conventional example, wherein FIG. 33A is a characteristic diagram of the present invention, and FIG.
FIG. 34 is a characteristic curve diagram showing a relationship between the width of a peripheral side wall portion formed by a drive disk in an oil storage chamber and “circling around”.
FIG. 35 is a partially cutaway sectional view showing a conventional example.
[Explanation of symbols]
1 rotating shaft
2 cases
3 Cover
4 Torque transmission chamber
5 Partition plate
5-1 Outflow adjustment hole
6 oil sump room
7 Drive disk
7-1 Projection wall
8 Valve members
9 connecting rods
10 Thermosensitive body
11 Support bracket
12 Dam
13 Circulation flow passage
14, 14-1, 14a, 14b Oil storage chamber
14a-1, 14b-1 compartment
15 Annular protrusion
16 Weights
17 Cooling fan
18 Partition wall
19 annular rib

Claims (11)

先端部に駆動ディスクを固着した回転軸体上に軸受を介して支承し、かつ外周部に冷却ファンを取付けたケースとカバーとからなる密封器匣の内部を、油の流出調整孔を有する仕切板によって油溜り室と前記駆動ディスクを内装するトルク伝達室とに区劃し、回転時の油の集溜する駆動ディスクの外周側壁面に対向する密封器匣側の内周側壁部の一部に少なくとも1つのダムと該ダムに連なってトルク伝達室側より油溜り室側に通ずる循環流通路を形成するとともに、油溜り室側に位置してその一端を油溜り室に固定し、他端部を外部周囲の温度が設定値を超えると該仕切板の流出調整孔を開放し、設定値以下では閉鎖する弁部材を前記カバーの前面に設けた感温体の温度変化に伴う変形に連動するように内部に備え、駆動ディスクと前記密封器匣とのなす外方付近の対向壁面に設けたトルク伝達間隙部での油の有効接触面積を増減させて、駆動側の回転体から被駆動側の密封器匣側への回転トルク伝達を制御するようにしてなるファン・カップリング装置において、前記駆動ディスクをその外周側壁部に軸方向へ突出した突起壁を設けて断面略コ字状に形成し、さらに前記駆動ディスクの一側面と前記突起壁および前記密封器匣の内周側面によって一部油の収納室を形成したことを特徴とする温度感応型流体式ファン・カップリング装置。A partition that has an oil outflow adjustment hole inside the sealer box consisting of a case and a cover, which is supported via a bearing on a rotating shaft with a drive disk fixed to the tip, and a cooling fan is mounted on the outer periphery. A part of the inner peripheral side wall portion on the sealer box side which is partitioned by a plate into an oil reservoir chamber and a torque transmission chamber housing the drive disk, and faces the outer peripheral side wall surface of the drive disk in which oil is collected during rotation. At least one dam and a circulating flow passage extending from the torque transmission chamber side to the oil sump chamber side and connected to the dam, and having one end fixed to the oil sump chamber and located at the oil sump chamber side; When the temperature around the outside exceeds the set value, the outlet adjustment hole of the partition plate is opened, and when it is below the set value, the valve member that closes is linked to the deformation caused by the temperature change of the temperature sensor provided on the front surface of the cover. Inside, the drive disk and the By increasing or decreasing the effective contact area of oil in the torque transmission gap provided on the opposing wall near the outside with the casing, the transmission of rotational torque from the rotating body on the driving side to the sealed casing side on the driven side In the fan coupling device to be controlled, the drive disk is formed to have a substantially U-shaped cross section by providing a projecting wall protruding in the axial direction on an outer peripheral side wall portion thereof, and further includes one side surface of the drive disk and the drive disk. A temperature-sensitive fluid-type fan coupling device, wherein an oil storage chamber is partially formed by the projection wall and the inner peripheral side surface of the casing. 先端部に駆動ディスクを固着した回転軸体上に軸受を介して支承し、かつ外周部に冷却ファンを取付けたケースとカバーとからなる密封器匣の内部を、油の流出調整孔を有する仕切板によって油溜り室と前記駆動ディスクを内装するトルク伝達室とに区劃し、回転時の油の集溜する駆動ディスクの外周側壁面に対向する密封器匣側の内周側壁部の一部に少なくとも1つのダムと該ダムに連なってトルク伝達室側より油溜り室側に通ずる循環流通路を形成するとともに、油溜り室側に位置してその一端を油溜り室に固定し、他端部を外部周囲の温度が設定値を超えると該仕切板の流出調整孔を開放し、設定値以下では閉鎖する弁部材を前記カバーの前面に設けた感温体の温度変化に伴う変形に連動するように内部に備え、駆動ディスクと前記密封器匣とのなす外方付近の対向壁面に設けたトルク伝達間隙部での油の有効接触面積を増減させて、駆動側の回転体から被駆動側の密封器匣側への回転トルク伝達を制御するようにしてなるファン・カップリング装置において、駆動ディスクをその外周側壁部に軸方向の両側へ突出した突起壁を設けて断面略I字状に形成し、さらに駆動ディスクの側面と前記突起壁および密封器匣の内周側面によって2つの一部油の収納室を形成したことを特徴とする温度感応型流体式ファン・カップリング装置。A partition that has an oil outflow adjustment hole inside the sealer box consisting of a case and a cover, which is supported via a bearing on a rotating shaft with a drive disk fixed to the tip, and a cooling fan is mounted on the outer periphery. A part of the inner peripheral side wall portion on the sealer box side which is partitioned by a plate into an oil reservoir chamber and a torque transmission chamber housing the drive disk, and faces the outer peripheral side wall surface of the drive disk in which oil is collected during rotation. Forming at least one dam and a circulating flow passage extending from the torque transmission chamber side to the oil sump chamber side in communication with the dam, and being located on the oil sump chamber side and having one end fixed to the oil sump chamber; When the temperature around the outside exceeds the set value, the outlet adjustment hole of the partition plate is opened, and when it is below the set value, the valve member that closes is linked to the deformation caused by the temperature change of the temperature sensor provided on the front surface of the cover. Inside, the drive disk and the By increasing or decreasing the effective contact area of oil in the torque transmission gap provided on the opposing wall near the outside with the casing, the transmission of rotational torque from the rotating body on the driving side to the sealed casing side on the driven side In the fan coupling device to be controlled, the drive disk is formed on the outer peripheral side wall portion with a projection wall protruding to both sides in the axial direction to have a substantially I-shaped cross section. A temperature-sensitive fluid-type fan coupling device, wherein two partial oil storage chambers are formed by a wall and an inner peripheral side surface of a sealer box. 前記駆動ディスクをその外周側壁部に軸方向に突出した突起壁を設けて断面略コ字状もしくは略I字状となすとともに、その外周壁面をダムの全面にわたって対設する厚状幅となし、かつ駆動ディスクのなす少なくとも一方側面と、前記突起壁および密封器匣の内周側面によって形成された一部油の収納室内に、径方向に突設した放射状の隔壁により複数の区劃室を設けて構成したことを特徴とする請求項1又は2記載の温度感応型流体式ファン・カップリング装置。The drive disk is provided with a projecting wall protruding in the axial direction on an outer peripheral side wall thereof to have a substantially U-shaped cross section or a substantially I-shaped cross section, and the outer peripheral wall has a thick width opposed to the entire surface of the dam, A plurality of compartments are provided by radial partition walls projecting in a radial direction in a part oil storage chamber formed by at least one side surface of the drive disk and the projection wall and the inner peripheral side surface of the sealer box. 3. The temperature-responsive fluid-type fan coupling device according to claim 1, wherein the fluid-type fan coupling device is configured as follows. 突起壁の幅厚を駆動ディスクのなす直径の7%以上の関係寸法に形成したことを特徴とする請求項1乃至3のいずれか1項記載の温度感応型流体式ファン・カップリング装置。4. The temperature-responsive fluid-type fan coupling device according to claim 1, wherein a width of the projection wall is set to a relational dimension of 7% or more of a diameter of the drive disk. 突起壁の自由端側とこれに対向する密封器匣の内周側面側のいずれか一方に環状突起を、他方に前記環状突起が遊嵌する環状凹溝を設けたことを特徴とする請求項1乃至4のいずれか1項記載の温度感応型流体式ファン・カップリング装置。An annular projection is provided on one of a free end side of the projection wall and an inner peripheral side surface of the sealer box facing the projection wall, and an annular groove for loosely fitting the annular projection is provided on the other side. The temperature-responsive fluid-type fan coupling device according to any one of claims 1 to 4. 突起壁の自由端の少なくとも一方とこれに対向する密封器匣の内周側面側から軸方向に突出する環状突起を、微小間隙をおいて並設せしめたことを特徴とする請求項1乃至5のいずれか1項記載の温度感応型流体式ファン・カップリング装置。6. A method according to claim 1, wherein at least one of the free ends of the projection wall and an annular projection axially projecting from an inner peripheral side surface of the casing housing facing the free end are arranged with a small gap therebetween. The temperature-responsive fluid-type fan coupling device according to any one of the preceding claims. 前記駆動ディスクの回転方向に対する区劃室の隔壁のなす外方根元付近の前部にそれぞれ流通孔を貫設して形成したことを特徴とする請求項3乃至7のいずれか1項記載の温度感応型流体式ファン・カップリング装置。The temperature according to any one of claims 3 to 7, wherein a flow hole is formed in a front portion near an outer root formed by a partition wall of the partition in the rotation direction of the drive disk. Sensitive fluid-type fan coupling device. 前記断面略コ字状または前記断面略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成したことを特徴とする請求項3乃至8のいずれか1項記載の温度感応型流体式ファン・カップリング装置。9. An annular rib protruding in a radial direction is formed at an outer end portion of an inner peripheral wall surface of a projection wall of the drive disk having the substantially U-shaped cross section or the I-shaped cross section. The temperature-responsive fluid-type fan coupling device according to claim 1. 前記断面略コ字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成するとともに、該ディスクの側壁、突起壁または環状リブの少なくとも1つに流通孔を穿設したことを特徴とする請求項3乃至8のいずれか1項記載の温度感応型流体式ファン・カップリング装置。An annular rib protruding in the radial direction is formed at the outer end of the inner peripheral wall surface of the projection wall of the drive disk having a substantially U-shaped cross section, and at least one of the side wall, the projection wall, or the annular rib of the disk has a through hole. 9. The temperature-responsive fluid-type fan / coupling device according to claim 3, wherein: 前記断面略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成するとともに、該ディスクの両突起壁または環状リブのいずれか一方に流通孔を穿設したことを特徴とする請求項3乃至8のいずれか1項記載の温度感応型流体式ファン・カップリング装置。An annular rib protruding in the radial direction is formed at the outer end of the inner peripheral wall surface of the projecting wall of the drive disk having the substantially I-shaped cross section, and a flow hole is formed in one of both projecting walls or the annular rib of the disk. 9. The temperature-sensitive fluid-type fan coupling device according to claim 3, wherein the fan-shaped coupling device is provided. 前記断面略コ字状もしくは略I字状の駆動ディスクの突起壁の内周壁面外方端部に径方向に突出する環状リブを形成するとともに、前記環状リブにスリットを形成したことを特徴とする請求項3乃至8のいずれか1項記載の温度感応型流体式ファン・カップリング装置。An annular rib protruding in the radial direction is formed at an outer end of an inner peripheral wall surface of the projecting wall of the drive disk having a substantially U-shaped or substantially I-shaped cross section, and a slit is formed in the annular rib. The temperature-responsive fluid-type fan coupling device according to any one of claims 3 to 8.
JP27024894A 1993-11-17 1994-10-07 Temperature sensitive fluid type fan coupling device Expired - Fee Related JP3582739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27024894A JP3582739B2 (en) 1993-11-17 1994-10-07 Temperature sensitive fluid type fan coupling device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP31122293 1993-11-17
JP5-311222 1994-01-27
JP2479494 1994-01-27
JP6-24794 1994-01-27
JP27024894A JP3582739B2 (en) 1993-11-17 1994-10-07 Temperature sensitive fluid type fan coupling device

Publications (2)

Publication Number Publication Date
JPH07253124A JPH07253124A (en) 1995-10-03
JP3582739B2 true JP3582739B2 (en) 2004-10-27

Family

ID=27284791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27024894A Expired - Fee Related JP3582739B2 (en) 1993-11-17 1994-10-07 Temperature sensitive fluid type fan coupling device

Country Status (1)

Country Link
JP (1) JP3582739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931096B2 (en) * 2001-07-03 2012-05-16 臼井国際産業株式会社 Temperature-sensitive fluid type fan and coupling device
JP2007198151A (en) * 2006-01-24 2007-08-09 Mitsubishi Fuso Truck & Bus Corp Method of regulating oil for fluid fan-coupling

Also Published As

Publication number Publication date
JPH07253124A (en) 1995-10-03

Similar Documents

Publication Publication Date Title
US5501183A (en) Temperature sensitive fluid fan coupling
JP2775431B2 (en) Temperature-sensitive hydraulic fan coupling device
JPH0823376B2 (en) Temperature-sensitive fluid type fan coupling device
JP2898394B2 (en) Thermo-sensitive fluid-type fan coupling device
US3648811A (en) Viscous fluid clutch
JPS62124330A (en) Temperature sensitive operating type liquid fan coupling device
JP2554862Y2 (en) Temperature sensitive fluid type fan coupling device
JPS5947167B2 (en) Temperature-controlled fluid coupling
CN106662174A (en) Temperature-sensitive fluid fan clutch device
JP3582739B2 (en) Temperature sensitive fluid type fan coupling device
JPH0356328B2 (en)
JPH08296669A (en) Fluid type fan coupling device
US4633988A (en) Fluid coupling device with improved modulation capability
JP2709458B2 (en) Temperature-sensitive fluid fan coupling device
JP4931096B2 (en) Temperature-sensitive fluid type fan and coupling device
JP3221631B2 (en) Temperature sensitive fluid type fan coupling device
JP2536504B2 (en) Viscous fluid fitting
JPS59190521A (en) Viscous fluid joint
US4457417A (en) Torque responsive fluid coupling device
EP0106581A1 (en) Fluid coupling device with improved modulation capability
JPH0324905Y2 (en)
JPH0642108Y2 (en) Temperature-sensitive fluid type fan coupling device
JPH0642109Y2 (en) Temperature Sensitive Fluid Fan Coupling Device
JP2791576B2 (en) Temperature sensitive fluid type fan coupling device
JP3216151B2 (en) Viscous fluid coupling

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040723

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100806

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120806

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130806

LAPS Cancellation because of no payment of annual fees