JP4260237B2 - Crystalline cellulose and process for producing the same - Google Patents
Crystalline cellulose and process for producing the same Download PDFInfo
- Publication number
- JP4260237B2 JP4260237B2 JP31957697A JP31957697A JP4260237B2 JP 4260237 B2 JP4260237 B2 JP 4260237B2 JP 31957697 A JP31957697 A JP 31957697A JP 31957697 A JP31957697 A JP 31957697A JP 4260237 B2 JP4260237 B2 JP 4260237B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- crystalline cellulose
- sieve
- powder
- tablet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Medicinal Preparation (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、医薬用途において使用される結晶セルロースであって、圧縮成形性が改良された結晶セルロースに関する。
【0002】
【従来の技術】
多くの医薬用粉体原料は、圧縮しても成形しないために、圧縮成形性をもつ賦形剤を配合する必要がある。結晶セルロースは圧縮成形性をもつ賦形剤として知られ、医薬用分野において長年使用されている。医薬品分野において原料粉体を成形し圧縮成形物(錠剤)とすることは、輸送や使用に際して磨損や破壊が生じない強度を付与することなど、取り扱い性の改善や機能の付与という点で大きな利点を生じる。
【0003】
製薬メーカーにおいては、原料粉体の錠剤化に際し、錠剤中の主剤(粉体原料)の配合量が多い場合、例えば、医薬品分野における小形錠製造の場合などには、賦形剤の配合量が著しく制限されるため所望の錠剤の強度を得られない問題や、また、所望の錠剤の強度を得るために過剰な圧縮成形力をかけざるを得ない場合などには、圧縮成形機(打錠機)に負担を掛け、部品の消耗を早めてしまうし、フィルムコーティングを施した顆粒と賦形剤を混合し、打錠して錠剤(このような錠剤を顆粒含有錠という)を得る場合や酵素や抗生物質を錠剤化する場合には、フィルムの損傷や酵素、抗生物質の変質が生じるなどの問題がある。
【0004】
上記の問題を解決するためには、結晶セルロースの特性については、少量でより高い成形性を付与する、あるいは低打圧でも高い成形性を付与するなど成形性の大幅な改善が必要となる。
一方医薬品錠剤における錠剤には、服用後のすばやい薬理効果の発現のために錠剤の崩壊時間が短いことが要求される。これまで結晶セルロースの成形性を改善するためには、結晶セルロースを微粉砕して粒子個々の接触面積を増大させたり(特開昭63−267731号公報)、あるいはセルロース粉末を多孔性にして粒子自身の密度を下げる工夫がなされてきた(特開平2−84401号公報)。しかし、特開昭63−267731号公報記載の発明品や特開平2−84401号公報記載の発明品では、高い成形性を示すものの、錠剤の間隙(導水管)も減少してしまうので錠剤の崩壊性が著しく悪いという欠点があった。
【0005】
高成形性でかつ速崩壊性の両者の機能をバランス良く付与した結晶セルロースとしては、セルロース質物質を酸加水分解あるいはアルカリ酸化分解して得られる平均重合度100〜375、酢酸保持率280%以上で、かつ、定数a及びbがそれぞれ0.85〜0.90、0.05〜0.10の川北の式で表される圧縮特性を有する結晶セルロース(特開平6−316535号公報)がある。また、これは該セルロース粒子を固形分濃度40重量%以下、pH5〜8.5、電気伝導度300μS/cm以下の湿潤又は水分散状態で100℃以上に加熱し、乾燥することによって得られるもので、500mgを100kgf/cm2 で10秒間圧縮することにより得られる底面の面積が1cm2 である円柱状成形体の直径方向の破壊強度が10kgf以上、崩壊時間が100秒以内を達成している。
【0006】
現在のところ前述の崩壊性を示すもので、特開平6−316535号公報記載の発明品を超える成形性を示すものは見あたらない。特開平6−316535号公報記載の発明品が、従来の結晶セルロースに比較し高成形性の付与を可能とした理由の一つとして、1 H−NMRスペクトル法にて測定される吸着水横緩和時間が0.00024秒以内であるため吸着水と水素結合しやすいようなセルロース分子の水酸基がより多く存在し、圧縮成形に寄与できる水酸基の量が多いことが挙げられている。
【0007】
前述のように結晶セルロースの成形性の向上は、製薬メーカーの現状の問題を克服し、さらには従来不可能であった薬物の錠剤化を可能にする等製剤設計に大きく寄与するものであるが、特開平6−316535号公報記載の発明品よりもなお、さらに一層の成形性向上が望まれる場合がある。
【0008】
【発明が解決しようとする課題】
本発明は、上記の如き要望を満たすもので、錠剤等に用いたとき、圧縮成形性が著しく改良され、かつ、崩壊性にも優れた結晶セルロースを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明者は、上記のような現状に鑑み、結晶セルロースの粒子形態の変化、すなわち粒子形状の変化に着目し、粒子形状と錠剤の破壊強度の関係について鋭意検討した結果、本発明を完成させるに至った。
即ち、本発明は、平均重合度が100〜375、75μm篩を通過し38μm篩上に残留する粒子が全重量の70%以上、かつ、粒子の長径短径比の平均値が2.0以上であることを特徴とする結晶セルロース、及びその製法に関する。
【0010】
以下、本発明について詳細に説明する。
本発明でいう結晶セルロースは、精製木材パルプ、竹パルプ、コットンリンター、ラミー等のセルロース質物質を酸加水分解、あるいはアルカリ酸化分解、酵素分解、スチームエクスプロージョン分解等によって解重合した後精製して得られるものであり、平均重合度は100〜375、好ましくは150〜375、さらに好ましくは180〜300の白色粉末状の物質である。この物質は特定の重合度を有するために、セルロース粉末の中でも特に高い成形性を有するものであるが、その平均重合度は100〜375であることが必要がある。平均重合度が100未満だと成形性が不足するので好ましくなく、また、375を超えると繊維性が現れるため粉体として流動性及び崩壊性が低下するので好ましくない。
【0011】
また、結晶セルロースの機能を失わない程度に、ヘミセルロース、リグニン、油脂などの成分を含んでも良い。その含有量は水分を除いた本発明の結晶セルロースのおおよそ10%以下である。
本発明の結晶セルロースは、75μm篩を通過し38μm篩上に残留する粒子が全重量の70%以上で、かつ、粒子の長径短径比の平均値が2.0以上であることが必要である。この理由について以下に説明する。
【0012】
結晶セルロースの粒度と粒子形状の関係について本発明者が精査した結果、エアージェットシーブ(ALPINE製エアージェットシーブA200LS型)を使用して篩分した粒度分画のうち、75μm以上の粒子あるいは38μmより小さな粒子は丸状の粒子が多く、75μm篩を通過し38μm篩上に残る粒子は棒状の粒子が多いことを見いだした。ここで使用した篩とはJIS標準篩(Z8801−1987)である。
【0013】
さらに、結晶セルロース粒子の粒子形状と錠剤の破壊強度との関係についても精査した結果、粒子形状が棒状になるほど、すなわち、粒子の長径短径比が大きくなるほど錠剤の破壊強度が高くなることを見いだした。すなわち、錠剤の破壊強度の向上に寄与する粒子は棒状粒子であり、これらの粒子を多く存在させることにより錠剤の破壊強度が高まることが明らかになった。
【0014】
特開平6−316535号公報記載の発明品は、エアージェットシーブを使用し篩分したとき、75μm篩を通過し38μm篩上に残留する粒子の長径短径比の平均値は2.0未満である。
本発明者が見いだした知見によれば、さらに錠剤の破壊強度を高めるためには粒子の長径短径比を増大させる必要がある。そのためには、特開平6−316535号公報記載の発明品を篩分し、例えば、エアージェットシーブ篩分により75μm篩を通過し38μmに残留する粒子を集める等により、粒子の長径短径比の平均を2.0以上にすることが可能となるのである。このようにして結晶セルロース粉体中の棒状粒子の割合を増加させ、粒子の長径短径比の平均値を2.0以上にすると、特開平6−316535号公報記載の発明品から造られる錠剤の錠剤硬度に比較して、驚くべきことに1割以上の硬度の向上が達成できることが判明した。
【0015】
なお、特開平6−316535号公報記載の発明品を篩分して得た75μm篩を通過し38μm篩上に残留する粒子が全重量の70%以上でかつ粒子の長径短径比の平均値が2.0以上としたものは、特開平6−316535号公報記載の発明品中、500mgを100kgf/cm2 で10秒間圧縮することにより得られる底面の面積が1cm2 である円柱状成形体の直径方向の破壊強度が最も高いものに比較しても、1割以上の硬度の向上が認められた。
【0016】
上述したように、粒子の長径短径比が大きい棒状粒子は、例えば、エアージェットシーブを使用して篩分した時には75μm篩を通過し38μm篩上に残留する粒子群中に多く存在するので、平均粒子径は38〜75μmの範囲に全重量に対して70%以上入ることが好ましい。
粒子の長径短径比が粉体の錠剤の破壊強度に影響を及ぼすことに関しては、Effects of Particle Shape and size onthe Tensile Strength of Powders(I.Nikolakakis and N.Pilpel,Powder Technology,56,95−103,1988)や、The effect ofparticle shape on the mechanical properties of powders(L.W.Wong,N.Pilpel,International Jounal of Pharmaceutics,59,145−154,1990)などに記載があるが、前者は酸化鉄、銅フタロシアニン、炭酸カルシウム、ジソディウムクロモグリケート、ガラスについて、後者はスターチ1500、塩化ナトリウム、乳糖、Emcompressについての記載があるのみで、結晶セルロースについては知られていなかったものであり、本発明は、結晶セルロースの錠剤の破壊強度が粒子の長径短径比に依存することを見いだした点で、従来の知見からは予想外のことである。
【0017】
さらに本発明の結晶セルロースは、見掛け比容積について特に制限はないが、4.5〜7.0cm3 /gが好ましく、さらに好ましくは5.0〜6.5cm3 /gである。粒子形状が棒状の粒子が増加し粒子の長径短径比の平均値が2.0を超えると粒子の充填性が悪くなり、見掛け比容積は5.0cm3 /g以上となる。しかし7.0cm3 /gを超えると粉体の流動性が低下する傾向がある。
【0018】
本発明でいう篩分とは、ロータップ式篩粉機やエアージェットシーブなどの篩粉機を用いる方法や、工業的には粉体を適当なメッシュサイズの金属製の網(シフター)を通す方法などをいうが、その他粉体を特定の粒子の大きさの粒度分布に制御する方法全てを含む。
本発明の結晶セルロースを得るために行う篩分に供する結晶セルロースの製造方法は、上述した方法中、長径短径比の大きな粒子を多く生じさせるという観点から特開平6−316535号公報記載の方法が望ましい。すなわち、セルロース質物質を酸加水分解し、必要があればその前後に機械的処理(磨砕等)を施すことによりセルロース粒子を得た後精製する。得られたセルロース粒子は、固形分濃度が40重量%以下、好ましくは10〜23重量%、25℃におけるpHが5〜8.5、電気伝導度が300μS/cm以下の湿潤状態あるいは水分散状態で100℃〜120℃で加熱処理し、ドラム乾燥機やベルト乾燥機あるいは100℃以上の水蒸気を用いた二流体ノズルで噴霧乾燥する方法等により乾燥する方法で得られた結晶セルロースであることが望ましい。
【0019】
また、本発明の結晶セルロースは、主として錠剤や顆粒剤、細粒剤、カプセル剤等の体を成す成形組成物として使用される。成形方法の例として主要なものは、直接粉末圧縮法による成形である。直接粉末圧縮法とは、医薬品薬効粉末と種々の添加剤を一度に、あるいは何度かに分けて混合し、ついで、その混合粉末を金型(臼)に充填して杵で圧縮することにより錠剤を製造する方法である。圧縮成形機としては、一般に用いられている単発打錠機、ロータリー打錠機などを使用することができる。混合粉体の流動性が劣る場合は、強制フィーダーの使用が好ましい。
【0020】
本発明の結晶セルロースの使用量は、通常、混合粉体重量に対して1〜99重量%である。結晶セルロースの量として、1重量%未満では成形機能が十分には発揮できない場合があり、99重量%以上では医薬品薬効粉末含量が少ないため、治療に有効な濃度を十分には達成し得ないか、あるいは薬効成分の分離偏析が著しく実用的でない。結晶セルロースの成形性機能の発揮という観点からは、好ましくは5〜70重量%、特に10〜50重量%の使用が好ましい。
【0021】
【発明の実施の形態】
以下、実施例により本発明をさらに説明するが、これらは本発明の範囲を制限するものではない。
なお、実施例、比較例におけるセルロース粒子水分散体、粉体試料及び錠剤の物性等の測定方法は以下の通りである。
【0022】
・平均重合度[−]
INDUSTRIAL AND ENGINEERING CHEMISTRY Vol.42,No.3 p502〜507(1950)に記載された銅安溶液粘度法により測定した値。
・粒子の長径短径比[−]
1個の粒子の光学顕微鏡像を画像解析(装置:Hyper700、ソフトウエア:Imagehyper、共に(株)インタークエスト製)処理した時、粒子に外接する長方形のうち、面積が最小となる長方形の長辺と短辺の比(長辺/短辺)であり、その平均値とは、少なくとも粒子400個について求めた長径短径比の平均値である。
【0023】
・pH[−]
セルロース水分散体を25℃に調整し、ガラス電極式水素イオン濃度計(東亜電波工業(株)製、pHメーター;HM−20E型)にて測定する。
・見掛け比容積[cm3 /g]
100cm3 のガラス製メスシリンダーに粉体試料を定量フィーダーなどを用い、2〜3分かけて粗充填し、粉体層上面を筆のような軟らかい刷毛で水平にならしその容積を読みとり、これを粉体試料の重量で除した値である。粉体の重量は、容積が70〜100cm3 程度になるように適宜決定する。
【0024】
・圧縮特性(川北の式の定数aおよびb)
粉体試料0.50gを精秤し、底面積が1cm2 の円柱状成形体を調製することができる片側圧縮タイプの金型に仕込み、ハンドプレスにて200、400、800、1200、1600kgf/cm2 まで圧縮し、この圧力で10秒間保持し、次いで錠剤を取り出す。各圧力で10個、計50個の錠剤を製し、それぞれの重量と厚みを測定し、粉体の体積減少率(C)を次式より計算する。
【0025】
C=(V0 −V)/V0
(ここで、V0 は前述した粉体の見掛け比容積[cm3 /g]であり、Vは錠剤の比容積[cm3 /g]を表す。)
圧縮圧力PとP/Cの関係を最小自乗法で直線回帰し(P/C=S+P・T)、その傾きTと切片Sより川北の式の定数aとbを計算する。
【0026】
(a=1/T、b=T/S)
・粒度分布及び平均粒径
粉体試料の粒度分布および平均粒径は、エアージェットシーブによりJIS標準篩を用いて試料50gを5分間篩分することにより粒度分布を求め、その累積50重量%の粒度を平均粒径とした。
【0027】
・錠剤の破壊強度[kgf]
粉体試料0.30gを精秤し、底面積が1cm2 の円柱状成形体を調製することができる片側圧縮タイプの金型に仕込み、ハンドプレスにて100kgf/cm2 まで圧縮し、この圧力で10秒間保持し、錠剤を調製する。シュロインゲル硬度計(フロイント産業(株)製、6D型)で錠剤の直径方向に荷重を加え、破壊したときの荷重で表す。繰り返し数は10でその数平均値をとる。
【0028】
・錠剤の崩壊時間[s]
第十三改正日本薬局方、一般試験法、錠剤の崩壊試験法に準じて崩壊試験を行う。崩壊試験機は富山産業(株)製NT−2HS型を用い、試料6個の数平均をとる。
【0029】
【実施例】
市販DPパルプを細断し、10%塩酸水溶液中で105℃で30分間加水分解して得られた酸不溶解残渣を濾過、洗浄,pH調整、濃度調整を行い、固形分濃度17%、pH6.4、電気伝導度120μS/cmのセルロース粒子分散体を得た。
【0030】
これをドラム乾燥機(楠木製作所KDD−1型、スチーム圧力3.5kgf/cm2 、ドラム表面温度136℃、ドラム回転数2rpm、溜め部水分散体温度100℃)で乾燥後、ハンマーミルで粉砕し、目開き425μmの篩で粗大粒子を除き、特開平6−316535号公報記載の発明品に相当する粉末を得た。
さらにこの粉末を、エアージェットシーブを使用して目開き75μm篩で粗大粒子を除き、目開き38μm篩で微細粒子を除くことにより試料Aを得た。
【0031】
【比較例】
実施例で調製した特開平6−316535号公報記載の発明品に相当するものを試料Bとした。これは特開平6−316535号公報記載の発明品の中でも、500mgを100kgf/cm2 で10秒間圧縮することにより得られる底面の面積が1cm2 である円柱状成形体の直径方向の破壊強度が最も高いものである。
【0032】
実施例(試料A)、比較例(試料B)の粉体物性および錠剤特性を表1に示す。
【0033】
【表1】
【0034】
【発明の効果】
本発明の結晶セルロースは、錠剤等に用いたとき、圧縮成形性がきわめて優れており、かつ崩壊性も良好であることから、医薬用途において有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a crystalline cellulose used in a pharmaceutical application and having improved compression moldability.
[0002]
[Prior art]
Many pharmaceutical powder raw materials do not form even when compressed, and therefore, it is necessary to add an excipient having compression moldability. Crystalline cellulose is known as an excipient with compression moldability and has been used in the pharmaceutical field for many years. In the pharmaceutical field, molding raw material powders into compression-molded products (tablets) is a great advantage in terms of improving handling and adding functions, such as providing strength that does not cause abrasion or breakage during transportation and use. Produce.
[0003]
In the case of a pharmaceutical manufacturer, when the raw material powder is tableted, if the amount of the main ingredient (powder raw material) in the tablet is large, for example, in the case of manufacturing a small tablet in the pharmaceutical field, the amount of the excipient is If the problem is that the strength of the desired tablet cannot be obtained due to severe limitations, or if excessive compression molding force is required to obtain the desired tablet strength, a compression molding machine (tablet compression) Machine), parts are consumed quickly, and the film-coated granules and excipients are mixed and compressed into tablets (such tablets are called granule-containing tablets). In the case of tableting enzymes and antibiotics, there are problems such as film damage and degradation of enzymes and antibiotics.
[0004]
In order to solve the above-mentioned problems, it is necessary to significantly improve the formability of the crystalline cellulose, such as imparting higher formability with a small amount, or imparting high formability even with low impact pressure.
On the other hand, tablets in pharmaceutical tablets are required to have a short disintegration time in order to develop a quick pharmacological effect after taking. Until now, in order to improve the moldability of crystalline cellulose, the crystalline cellulose is finely pulverized to increase the contact area of each particle (Japanese Patent Laid-Open No. 63-267331), or by making the cellulose powder porous A device has been devised to reduce its own density (Japanese Patent Laid-Open No. 2-84401). However, the invention described in Japanese Patent Laid-Open No. 63-267331 and the invention described in Japanese Patent Laid-Open No. 2-84401 show high moldability, but the gap between tablets (water conduit) is also reduced. There was a drawback that the disintegration was remarkably bad.
[0005]
As the crystalline cellulose having both functions of high moldability and fast disintegrating in a good balance, an average degree of polymerization of 100 to 375 obtained by acid hydrolysis or alkali oxidation decomposition of a cellulosic material, acetic acid retention rate of 280% or more In addition, there is a crystalline cellulose (Japanese Patent Laid-Open No. 6-316535) having compression characteristics represented by Kawakita's equations with constants a and b of 0.85 to 0.90 and 0.05 to 0.10, respectively. . This is obtained by heating the cellulose particles to 100 ° C. or higher in a wet or water-dispersed state with a solid content concentration of 40% by weight or less, a pH of 5 to 8.5, and an electric conductivity of 300 μS / cm or less, and drying. Thus, the fracture strength in the diametrical direction of the cylindrical molded body having a bottom surface area of 1 cm 2 obtained by compressing 500 mg at 100 kgf / cm 2 for 10 seconds has achieved a collapse time of within 100 seconds. .
[0006]
At present, there is no material that exhibits the above-mentioned disintegration property and exhibits a moldability that exceeds that of the invention described in JP-A-6-316535. One of the reasons why the invention described in Japanese Patent Laid-Open No. 6-316535 is capable of imparting high formability compared to conventional crystalline cellulose is the lateral relaxation of adsorbed water measured by 1 H-NMR spectroscopy. It is mentioned that since the time is within 0.00024 seconds, there are more hydroxyl groups of cellulose molecules that are likely to be hydrogen-bonded to adsorbed water, and the amount of hydroxyl groups that can contribute to compression molding is large.
[0007]
As described above, the improvement of the moldability of crystalline cellulose greatly contributes to formulation design, such as overcoming the current problems of pharmaceutical manufacturers and enabling tableting of drugs that was not possible in the past. In some cases, further improvement in moldability may be desired as compared with the invention described in JP-A-6-316535.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to satisfy the above-mentioned demands, and to provide crystalline cellulose which is remarkably improved in compression moldability and excellent in disintegration when used in tablets and the like.
[0009]
[Means for Solving the Problems]
In view of the present situation as described above, the inventor paid attention to the change in the particle shape of crystalline cellulose, that is, the change in the particle shape, and as a result of earnestly examining the relationship between the particle shape and the breaking strength of the tablet, the present invention is completed. It came to.
That is, in the present invention, the average degree of polymerization is 100 to 375, the particles passing through the 75 μm sieve and remaining on the 38 μm sieve are 70% or more of the total weight, and the average value of the major axis to minor axis ratio of the particles is 2.0 or more. The present invention relates to a crystalline cellulose characterized by
[0010]
Hereinafter, the present invention will be described in detail.
Crystalline cellulose as used in the present invention is purified by depolymerizing cellulosic materials such as purified wood pulp, bamboo pulp, cotton linter, and ramie by acid hydrolysis, alkaline oxidative decomposition, enzymatic decomposition, steam explosion decomposition, etc. The obtained product is a white powdery substance having an average degree of polymerization of 100 to 375, preferably 150 to 375, and more preferably 180 to 300. Since this substance has a specific degree of polymerization, it has a particularly high moldability among cellulose powders, but the average degree of polymerization needs to be 100 to 375. If the average degree of polymerization is less than 100, the moldability is insufficient, which is not preferable, and if it exceeds 375, the fiber property appears, so that the fluidity and disintegration as a powder decrease, which is not preferable.
[0011]
Moreover, components such as hemicellulose, lignin, and fats and oils may be included to such an extent that the function of crystalline cellulose is not lost. Its content is approximately 10% or less of the crystalline cellulose of the present invention excluding moisture.
In the crystalline cellulose of the present invention, the particles passing through the 75 μm sieve and remaining on the 38 μm sieve must be 70% or more of the total weight, and the average value of the major axis to minor axis ratio of the particles must be 2.0 or more. is there. The reason for this will be described below.
[0012]
As a result of careful examination by the present inventor on the relationship between the particle size and particle shape of crystalline cellulose, particles of 75 μm or more or 38 μm or more out of the particle size fraction obtained by sieving using air jet sheave (ALPINE Air Jet Sheave A200LS type) It was found that the small particles are mostly round particles and the particles that pass through the 75 μm sieve and remain on the 38 μm sieve are mostly rod-like particles. The sieve used here is a JIS standard sieve (Z8801-1987).
[0013]
Furthermore, as a result of careful examination of the relationship between the particle shape of the crystalline cellulose particles and the breaking strength of the tablet, it was found that the breaking strength of the tablet increases as the particle shape becomes rod-shaped, that is, the larger the major axis / minor axis ratio of the particles. It was. That is, it has been clarified that the particles that contribute to improving the breaking strength of the tablet are rod-like particles, and the presence of many of these particles increases the breaking strength of the tablet.
[0014]
In the invention described in JP-A-6-316535, the average value of the major axis / minor axis ratio of particles passing through a 75 μm sieve and remaining on the 38 μm sieve is less than 2.0 when sieving using an air jet sieve. is there.
According to the knowledge found by the present inventors, it is necessary to increase the major axis / minor axis ratio of the particles in order to further increase the breaking strength of the tablet. For this purpose, the invention product described in JP-A-6-316535 is sieved and, for example, the particles having a major axis / minor axis ratio of particles are collected by passing through a 75 μm sieve by air jet sieve sieve and collecting particles remaining at 38 μm. The average can be made 2.0 or more. Thus, when the ratio of the rod-like particles in the crystalline cellulose powder is increased and the average value of the major axis / minor axis ratio of the particles is 2.0 or more, the tablet produced from the invention described in JP-A-6-316535 Surprisingly, it has been found that an improvement in hardness of 10% or more can be achieved.
[0015]
In addition, the average value of the ratio of the major axis to the minor axis of the particles is 70% or more of the total weight of the particles passing through the 75 μm sieve obtained by sieving the invention described in JP-A-6-316535 and remaining on the 38 μm sieve. Is a cylindrical molded body having a bottom area of 1 cm 2 obtained by compressing 500 mg at 100 kgf / cm 2 for 10 seconds in the invention described in JP-A-6-316535. Even when compared with those having the highest fracture strength in the diameter direction, an improvement in hardness of 10% or more was recognized.
[0016]
As described above, since the rod-like particles having a large major axis / minor axis ratio are, for example, a large amount in the particle group passing through the 75 μm sieve and remaining on the 38 μm sieve when sieving using an air jet sieve, The average particle diameter is preferably in the range of 38 to 75 μm with 70% or more of the total weight.
Regarding the effect of particle length and breadth ratio on the fracture strength of powder tablets, Effects of Particle Shape and size once the Tensile Strength of Powders (I. Nikolacakis and N. Pilpel, 103 Poldel, 95, Tolder 95 , 1988) and The effect of particulate shape on the mechanical properties of powders (LW Wong, N. Pilpel, International Journal of Pharmaceuticals, 1914) , Copper phthalocyanine, calcium carbonate, disodium cromogri For Kate and Glass, the latter only includes descriptions about starch 1500, sodium chloride, lactose, and Emcompress, and was not known for crystalline cellulose. It is unexpected from the conventional knowledge in that it has been found to depend on the major axis / minor axis ratio.
[0017]
Furthermore, although there is no restriction | limiting in particular about the apparent specific volume of the crystalline cellulose of this invention, 4.5-7.0cm < 3 > / g is preferable, More preferably, it is 5.0-6.5cm < 3 > / g. When the number of rod-shaped particles increases and the average value of the major axis / minor axis ratio exceeds 2.0, the packing property of the particles deteriorates and the apparent specific volume becomes 5.0 cm 3 / g or more. However, if it exceeds 7.0 cm 3 / g, the fluidity of the powder tends to decrease.
[0018]
The term “sieving” as used in the present invention means a method using a sieve device such as a low-tap type sieve or an air jet sieve, or a method of passing a metal mesh (shifter) of an appropriate mesh size industrially. However, all other methods for controlling the powder to a specific particle size distribution are included.
The method for producing crystalline cellulose used for sieving performed to obtain the crystalline cellulose of the present invention is a method described in JP-A-6-316535 from the viewpoint of producing a large number of particles having a major axis / minor axis ratio in the above-described method. Is desirable. That is, the cellulose material is hydrolyzed and, if necessary, is subjected to mechanical treatment (grinding, etc.) before and after that to obtain cellulose particles and then purified. The obtained cellulose particles have a solid concentration of 40% by weight or less, preferably 10 to 23% by weight, a pH of 5 to 8.5 at 25 ° C., and an electric conductivity of 300 μS / cm or less in a wet state or a water-dispersed state. It is a crystalline cellulose obtained by heat drying at 100 ° C. to 120 ° C. and drying by a method such as a drum dryer, a belt dryer, or a two-fluid nozzle using water vapor of 100 ° C. or higher. desirable.
[0019]
The crystalline cellulose of the present invention is mainly used as a molding composition forming a body such as a tablet, granule, fine granule or capsule. A main example of the molding method is molding by a direct powder compression method. In the direct powder compression method, the medicinal medicinal powder and various additives are mixed at once or several times, then the mixed powder is filled into a mold (mortar) and compressed with a scissors. This is a method for producing a tablet. As the compression molding machine, generally used single-punch tablet machines, rotary tablet machines, and the like can be used. When the fluidity of the mixed powder is inferior, it is preferable to use a forced feeder.
[0020]
The usage-amount of the crystalline cellulose of this invention is 1 to 99 weight% normally with respect to mixed powder weight. If the amount of crystalline cellulose is less than 1% by weight, the molding function may not be fully exerted, and if it is 99% by weight or more, there is little medicinal medicinal powder content. Or, segregation and segregation of medicinal ingredients is extremely impractical. From the viewpoint of exhibiting the moldability function of crystalline cellulose, it is preferably used in an amount of 5 to 70% by weight, particularly 10 to 50% by weight.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be further described by way of examples, but these examples do not limit the scope of the present invention.
In addition, the measuring methods, such as a cellulose particle aqueous dispersion in an Example and a comparative example, a powder sample, and the physical property of a tablet, are as follows.
[0022]
・ Average degree of polymerization [-]
INDUSTRIAL AND ENGINEERING CHEMISTRY Vol. 42, no. 3 Value measured by the copper solution viscosity method described in p502-507 (1950).
-Ratio of major axis to minor axis of particles [-]
The long side of the rectangle that has the smallest area among the rectangles circumscribing the particles when image analysis of the optical microscope image of one particle (device: Hyper700, software: Imagehyper, both manufactured by Interquest Co., Ltd.) And the ratio of the short side (long side / short side), and the average value is the average value of the major axis / minor axis ratio determined for at least 400 particles.
[0023]
・ PH [-]
The cellulose aqueous dispersion is adjusted to 25 ° C. and measured with a glass electrode type hydrogen ion concentration meter (manufactured by Toa Denpa Kogyo Co., Ltd., pH meter; HM-20E type).
-Apparent specific volume [cm 3 / g]
A powder sample is roughly packed in a 100 cm 3 glass measuring cylinder using a quantitative feeder, etc., and the upper surface of the powder layer is leveled with a soft brush like a brush and the volume is read. Is divided by the weight of the powder sample. The weight of the powder is appropriately determined so that the volume is about 70 to 100 cm 3 .
[0024]
・ Compression characteristics (constants a and b of Kawakita's formula)
A powder sample of 0.50 g is precisely weighed and charged into a single-side compression mold that can prepare a cylindrical molded body having a bottom area of 1 cm 2 and is hand-pressed at 200, 400, 800, 1200, 1600 kgf / Compress to cm 2 and hold at this pressure for 10 seconds, then remove the tablet. 50 tablets in total, 10 at each pressure, are prepared, their weight and thickness are measured, and the volume reduction rate (C) of the powder is calculated from the following equation.
[0025]
C = (V 0 −V) / V 0
(Here, V 0 is the apparent specific volume [cm 3 / g] of the powder, and V is the specific volume [cm 3 / g] of the tablet.)
A linear regression of the relationship between the compression pressure P and P / C is performed by the least square method (P / C = S + P · T), and the constants a and b of the Kawakita equation are calculated from the slope T and the intercept S.
[0026]
(A = 1 / T, b = T / S)
-Particle size distribution and average particle size The particle size distribution and average particle size of the powder sample were determined by sieving 50 g of the sample with an air jet sieve using a JIS standard sieve for 5 minutes, and the cumulative 50% by weight. The particle size was defined as the average particle size.
[0027]
・ Tablet breaking strength [kgf]
The powder sample 0.30g precisely weighed, bottom area is charged in a mold of one side compression type can be prepared cylindrical molded body 1 cm 2, and compressed by a hand press to 100 kgf / cm 2, the pressure Hold for 10 seconds to prepare tablets. A load is applied in the diameter direction of the tablet with a Schleingel hardness tester (Freund Sangyo Co., Ltd., 6D type), and it is expressed as a load when it is broken. The number of repetitions is 10, and the number average value is taken.
[0028]
・ Tablet disintegration time [s]
The disintegration test is conducted in accordance with the 13th revised Japanese Pharmacopoeia, general test method, and tablet disintegration test method. The disintegration tester uses NT-2HS type manufactured by Toyama Sangyo Co., Ltd. and takes the number average of 6 samples.
[0029]
【Example】
A commercially available DP pulp is shredded and hydrolyzed in a 10% aqueous hydrochloric acid solution at 105 ° C. for 30 minutes to filter, wash, adjust the pH, and adjust the concentration to obtain a solid content of 17%, pH 6 4. A cellulose particle dispersion having an electric conductivity of 120 μS / cm was obtained.
[0030]
This is dried with a drum dryer (Kakigi Seisakusho KDD-1 type, steam pressure 3.5 kgf / cm 2 , drum surface temperature 136 ° C., drum rotation speed 2 rpm, reservoir water dispersion temperature 100 ° C.), and pulverized with a hammer mill. Then, coarse particles were removed with a sieve having an opening of 425 μm to obtain a powder corresponding to the invention described in JP-A-6-316535.
Further, using this air jet sieve, coarse particles were removed with a sieve having an opening of 75 μm and fine particles were removed with a sieve having an opening of 38 μm to obtain Sample A.
[0031]
[Comparative example]
Sample B corresponding to the invention described in JP-A-6-316535 prepared in the examples was used. This is because, among the inventions described in JP-A-6-316535, the fracture strength in the diametrical direction of a cylindrical molded body having a bottom surface area of 1 cm 2 obtained by compressing 500 mg at 100 kgf / cm 2 for 10 seconds. The highest one.
[0032]
Table 1 shows the powder physical properties and tablet characteristics of the example (sample A) and the comparative example (sample B).
[0033]
[Table 1]
[0034]
【The invention's effect】
The crystalline cellulose of the present invention, when used for tablets or the like, is extremely excellent in compression moldability and has good disintegration properties, and thus is useful in pharmaceutical applications.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31957697A JP4260237B2 (en) | 1997-11-20 | 1997-11-20 | Crystalline cellulose and process for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31957697A JP4260237B2 (en) | 1997-11-20 | 1997-11-20 | Crystalline cellulose and process for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11152233A JPH11152233A (en) | 1999-06-08 |
JP4260237B2 true JP4260237B2 (en) | 2009-04-30 |
Family
ID=18111815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31957697A Expired - Fee Related JP4260237B2 (en) | 1997-11-20 | 1997-11-20 | Crystalline cellulose and process for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4260237B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1300420B1 (en) | 2000-07-05 | 2015-11-18 | Asahi Kasei Kabushiki Kaisha | Cellulose powder |
RU2297426C2 (en) | 2003-05-30 | 2007-04-20 | Асахи Касеи Кемикалз Корпорейшн | Powdered cellulose |
WO2005073286A1 (en) | 2004-01-30 | 2005-08-11 | Asahi Kasei Chemicals Corporation | Porous cellulose aggregate and formed product composition comprising the same |
JP2005232260A (en) * | 2004-02-18 | 2005-09-02 | Asahi Kasei Chemicals Corp | Porous composite particle of cellulose inorganic compound |
JP2005255618A (en) * | 2004-03-11 | 2005-09-22 | Asahi Kasei Chemicals Corp | Solid pharmaceutical preparation composition comprising slightly water-soluble active ingredient and porous cellulose particle |
JP2005255619A (en) * | 2004-03-11 | 2005-09-22 | Asahi Kasei Chemicals Corp | Solid pharmaceutical preparation composition comprising sublimable active ingredient and porous cellulose particle |
JP2005255617A (en) * | 2004-03-11 | 2005-09-22 | Asahi Kasei Chemicals Corp | Solid pharmaceutical preparation composition comprising fine particulate active ingredient and porous cellulose aggregate |
JP2005255616A (en) * | 2004-03-11 | 2005-09-22 | Asahi Kasei Chemicals Corp | Solid pharmaceutical preparation composition comprising liquid or semi-solid active ingredient and porous cellulose aggregate particle |
US8153157B2 (en) | 2005-04-22 | 2012-04-10 | Asahi Kasei Chemicals Corporation | Porous cellulose aggregate and molding composition thereof |
EP2865443A1 (en) * | 2013-10-24 | 2015-04-29 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Capsule, namely nanocapsule, microcapsule or macrocapsule, having a very low oxygen permeability |
WO2019130701A1 (en) * | 2017-12-26 | 2019-07-04 | 旭化成株式会社 | Cellulose powder |
-
1997
- 1997-11-20 JP JP31957697A patent/JP4260237B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11152233A (en) | 1999-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0609976B1 (en) | Excipient comprising microcrystalline cellulose having high compressibility and process for preparing it | |
JP4260237B2 (en) | Crystalline cellulose and process for producing the same | |
JP5759655B2 (en) | Method for producing microcrystalline cellulose | |
EP1300420B1 (en) | Cellulose powder | |
US7998505B2 (en) | Dry granulation binders, products, and use thereof | |
Kothari et al. | Comparative evaluations of powder and mechanical properties of low crystallinity celluloses, microcrystalline celluloses, and powdered celluloses | |
MXPA04005183A (en) | Calcium metasilicates and methods for making the same. | |
JP3534130B2 (en) | Pharmaceutical composition | |
JP3568567B2 (en) | High moldability excipient and method for producing the same | |
US20030089465A1 (en) | Process for producing microcrystalline cellulose | |
KR20110105341A (en) | Low-substituted hydroxypropylcellulose and solid preparation comprising the same | |
BR112013022431B1 (en) | Polysaccharide derivative, dosage form, process for preparing a dosage form and use of a polysaccharide derivative | |
WO1981002521A1 (en) | Pharmaceutical vehicle composition and process of producing same | |
JPH0538732B2 (en) | ||
KR20020025028A (en) | Base Material for Dry Tableting Comprising Low-substituted Hydroxypropyl Cellulose | |
KR20100014828A (en) | Method of preparing alkali cellulose or a cellulose derivative | |
JP4306965B2 (en) | Bulking and decomposing composition, method for achieving it and use thereof | |
Bakre et al. | Effects of drying methods on the physicochemical and compressional characteristics of okra powder and the release properties of its metronidazole tablet formulation | |
Alamdari et al. | Microcrystalline cellulose from soybean hull as an excipient in solid dosage forms: Preparation, powder characterization, and tableting properties | |
Olorunsola et al. | Extraction and physicochemical characterization of a potential multifunctional pharma-excipient from crab shell wastes | |
WO2002036875A9 (en) | Process for producing microcrystalline cellulose with a desired dp | |
JP2518854B2 (en) | Manufacturing method of solid formulation | |
CA2502652C (en) | Method for producing dust-free alkaline earth peroxides | |
YUASA et al. | Studies on internal structure of tablets. VI. Stress dispersion in tablets by excipients | |
Nwachukwu et al. | Application of microcrystalline cellulose from Saccharum officinarum as dry binder in ciprofloxacin tablet formulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080904 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080904 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080919 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090202 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090204 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120220 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130220 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140220 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |