JP2005232260A - Porous composite particle of cellulose inorganic compound - Google Patents

Porous composite particle of cellulose inorganic compound Download PDF

Info

Publication number
JP2005232260A
JP2005232260A JP2004041173A JP2004041173A JP2005232260A JP 2005232260 A JP2005232260 A JP 2005232260A JP 2004041173 A JP2004041173 A JP 2004041173A JP 2004041173 A JP2004041173 A JP 2004041173A JP 2005232260 A JP2005232260 A JP 2005232260A
Authority
JP
Japan
Prior art keywords
cellulose
inorganic compound
particles
porous composite
disintegration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004041173A
Other languages
Japanese (ja)
Inventor
Yusuke Yamazaki
有亮 山崎
Kazuhiro Daibu
和博 大生
Ichiro Ibuki
一郎 伊吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004041173A priority Critical patent/JP2005232260A/en
Publication of JP2005232260A publication Critical patent/JP2005232260A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a porous composite particle of a cellulose inorganic compound as an excipient that is highly optimized to have moldability, fluidity and disintegration in the production of a molding containing various active ingredients , in particular in the production of a medicine molding having excellent moldability, fluidity and disintegration, where the medicine molding is apt to have poor moldability, fluidity and disintegration, with which a molding having excellent mixing uniformity with active ingredients, slight weight dispersion, excellent content uniformity, sufficient hardness, slight tableting failure, low friability and excellent disintegration is actualized by a simple process. <P>SOLUTION: This porous composite particle of the cellulose inorganic compound is an aggregate of a cellulose dispersed particle having ≥2.0 L/D of 10-200 μm fraction in a water dispersion state and a water-insoluble inorganic compound particle and has ≥0.260 cm<SP>3</SP>/g intergranular pore volume. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、成形性、崩壊性、流動性の優れ、医薬品用途に適したセルロース無機化合物多孔質複合粒子、その複合粒子と1種以上の活性成分を含む成型体組成物に関する。   The present invention relates to a cellulose inorganic compound porous composite particle excellent in moldability, disintegration property, and fluidity and suitable for pharmaceutical use, and a molded body composition containing the composite particle and one or more active ingredients.

従来、医薬、食品、その他化学工業分野等において、セルロース粉末を賦形剤として用いることにより、活性成分を含有する成型体を調製することは、広く行われている。
このとき、用いられる、セルロース粉末としては、結晶セルロース、粉末セルロース、セルロース無機化合物多孔質複合粒子が知られており、たとえば、結晶セルロースとしては以下にあげる例がある。
Conventionally, in the fields of medicine, food, and other chemical industries, it has been widely practiced to prepare a molded body containing an active ingredient by using cellulose powder as an excipient.
At this time, as the cellulose powder to be used, crystalline cellulose, powdered cellulose, and cellulose inorganic compound porous composite particles are known. Examples of crystalline cellulose include the following.

特許文献1には、成形性と崩壊性が良いセルロース粉末として、平均重合度が150〜375、見かけ比容積が1.84〜8.92cm/g、粒度が300μm以下のセルロース粉末が記載されている。
特許文献2には、流動性、崩壊性が良いセルロース粉末として、平均重合度が60〜375、見かけ比容積が1.6〜3.1cm/g、見かけタッピング比容積が1.4cm/g以上で、安息角が35〜42°、200メッシュ以上の成分が2〜80重量%である微結晶セルロース凝集体が記載されている。
特許文献3には、成形性の良いセルロース粉末として、平均粒径が大きくとも30μmであり、かつ比表面積が1.3m/gであるβ−1,4−グルカン粉末が記載されている。
特許文献4には、成形性と崩壊性が良いセルロース粉末として、セルロース質物質を加水分解して得られる平均重合度100〜375、酢酸保持率が280%以上で、川北式(P・V0/(V0−V)=1/a・b+P/a)のa値が0.85〜0.90、b値が0.05〜0.10であり、見かけ比容積が4.0〜6.0cm/g、実質的に355μm以上の粒子がなく、平均粒子径が30〜120μmであるセルロース粉末についての記載がある。
Patent Document 1 describes a cellulose powder having an average degree of polymerization of 150 to 375, an apparent specific volume of 1.84 to 8.92 cm 3 / g and a particle size of 300 μm or less as a cellulose powder having good moldability and disintegration. ing.
In Patent Document 2, as a cellulose powder having good fluidity and disintegration, the average degree of polymerization is 60 to 375, the apparent specific volume is 1.6 to 3.1 cm 3 / g, and the apparent tapping specific volume is 1.4 cm 3 / A microcrystalline cellulose aggregate having an angle of repose of 35 to 42 ° and a component of 200 mesh or more of 2 to 80% by weight is described.
Patent Document 3 describes a β-1,4-glucan powder having an average particle size of 30 μm or less and a specific surface area of 1.3 m 2 / g as cellulose powder having good moldability.
In Patent Document 4, as a cellulose powder having good moldability and disintegrability, an average degree of polymerization of 100 to 375 obtained by hydrolyzing a cellulosic substance, an acetic acid retention rate of 280% or more, Kawakita formula (P · V 0 / (V 0 −V) = 1 / a · b + P / a) has an a value of 0.85 to 0.90, a b value of 0.05 to 0.10, and an apparent specific volume of 4.0 to 6 There is a description of cellulose powder having 0.0 cm 3 / g, substantially no particles of 355 μm or more, and an average particle size of 30 to 120 μm.

特許文献5には、成形性と流動性と崩壊性が良いセルロース粉末として、平均重合度が100〜375、75μmの篩を通過し38μm篩上に残留する粒子が全重量の70%以上で、かつ、粒子の長径短径比の平均値が2.0以上であることを特徴とする結晶セルロースが記載されている。
特許文献6には、成形性と崩壊性、流動性が良いセルロース粉末として、平均重合度が150〜450、75μm以下の粒子の平均L/D(長径/短径比)が2.0〜4.5、平均粒子径が20〜250μm、見かけ比容積が4.0〜7.0cm/g、安息角が54°以下であり、比表面積が0.5〜4m/gであるセルロース粉末の記載がある。
これらの公報に記載されるセルロース粉末は、セルロース単独で凝集体を形成させたもので、セルロースと無機化合物とを複合化させた複合粒子ではないので本発明のセルロース無機化合物多孔質複合粒子とは粒子構造の点で全く異なる。
In Patent Document 5, as a cellulose powder having good moldability, fluidity and disintegration, the average degree of polymerization is 100 to 375, particles passing through a 75 μm sieve and remaining on the 38 μm sieve are 70% or more of the total weight, And the crystalline cellulose characterized by the average value of the major axis / minor axis ratio of the particles being 2.0 or more is described.
In Patent Document 6, as a cellulose powder having good moldability, disintegration, and fluidity, the average L / D (major axis / minor axis ratio) of particles having an average degree of polymerization of 150 to 450 and 75 μm or less is 2.0 to 4. Cellulose powder having an average particle size of 20 to 250 μm, an apparent specific volume of 4.0 to 7.0 cm 3 / g, an angle of repose of 54 ° or less, and a specific surface area of 0.5 to 4 m 2 / g Is described.
The cellulose powder described in these publications is an aggregate formed of cellulose alone, and is not a composite particle obtained by combining cellulose and an inorganic compound. It is completely different in terms of particle structure.

結晶セルロース無機化合物複合粒子としては以下にあげる例がある。
特許文献7には、低コストの医薬品賦形剤として、加水分解を経た未乾燥の微結晶セルロース粒子と粒子サイズが30μmより小さい炭酸カルシウムとを共処理した微粒子であり、それぞれの成分を重量比で75:25〜35:65含む、250μm以上の留分がなく、平均粒子径が20〜150μmであり、嵩密度が0.35〜0.45g/cm(見掛け比容積で、2.22〜2.86cm/gに相当)のセルロース炭酸カルシウム複合粒子が記載されている。該公報の目的は、微結晶性セルロースと炭酸カルシウムを組み合わせることにより、低コストの賦形剤を提供することであり、本発明のように、セルロースと無機化合物とを複合化させることにより、粒子内細孔容積を高め、成形性、崩壊性、流動性の優れた粒子を得るものとは、目的が根本的に異なる。
Examples of the crystalline cellulose inorganic compound composite particles include the following.
In Patent Document 7, as a low-cost pharmaceutical excipient, there are fine particles obtained by co-treatment of hydrolyzed undried microcrystalline cellulose particles and calcium carbonate having a particle size of less than 30 μm. 75:25 to 35:65, having a fraction of 250 μm or more, an average particle size of 20 to 150 μm, and a bulk density of 0.35 to 0.45 g / cm 3 (apparent specific volume, 2.22 (Corresponding to ˜2.86 cm 3 / g) cellulose calcium carbonate composite particles. The purpose of this publication is to provide a low-cost excipient by combining microcrystalline cellulose and calcium carbonate, and by combining cellulose and an inorganic compound as in the present invention, particles The purpose is fundamentally different from that of obtaining particles having a high inner pore volume and excellent moldability, disintegration, and fluidity.

特許文献8には、圧縮性を改良した医薬品賦形剤として、共処理した微結晶性セルロースと重量比で約0.1〜20%の二酸化ケイ素との微粒子アグロメレートからなり、微結晶性セルロースと二酸化ケイ素がお互いに会合しており、該アグロメレートの該二酸化ケイ素部分が約1nm〜約100μm平均一次粒子径を有する二酸化ケイ素に由来する賦形剤組成物が記載されている。該賦形剤粒子は意図的に形成させた粒子内細孔を持たず、本発明のセルロース無機化合物複合体とは、粒子構造の点で全く異なる。該公報は、圧縮時の充填性を高めることを狙ったものであり、結晶セルロースの表面を覆いつくさない程度の配合量において圧縮成型性を改善したものである。従って、本発明の如く無機化合物と複合化させることにより、粒子内細孔容積を大きくし、粒子自身の塑性変形性を高めるものとは発想が根本的に異なる。また、粒子内細孔容積が0.260cm/g未満であり、意図的に形成させた細孔を持たないので、粒子内へ水が浸透し難く、崩壊性が不十分であった。 In Patent Document 8, as a pharmaceutical excipient with improved compressibility, it is composed of microcrystalline cellulose co-processed and fine particle agglomerate of about 0.1 to 20% by weight of silicon dioxide. Excipient compositions derived from silicon dioxide in which the silicon dioxide is associated with each other and the silicon dioxide portion of the agglomerate has an average primary particle size of about 1 nm to about 100 μm are described. The excipient particles do not have intentionally formed intraparticle pores, and are completely different from the cellulose inorganic compound composite of the present invention in terms of particle structure. This publication aims to improve the filling property at the time of compression, and improves the compression moldability at a blending amount that does not cover the surface of crystalline cellulose. Therefore, the idea is fundamentally different from that of increasing the pore volume in the particles and increasing the plastic deformability of the particles themselves by compounding with an inorganic compound as in the present invention. Moreover, since the pore volume in a particle | grain is less than 0.260 cm < 3 > / g and it does not have the pore formed intentionally, water did not osmose | permeate into a particle | grain and disintegration was inadequate.

このように、従来、セルロース無機化合物複合粒子において、セルロースと無機化合物との複合粒子に関して、その粒子内細孔容積を高め、粒子自身の塑性変形性を高めることにより、圧縮成形性を向上させることは知られていなかった。本発明は、セルロースと無機化合物との複合体において、粒子内細孔容積を高め、粒子自身の塑性変形性を高めることにより、成形性、流動性、崩壊性を高度に最適化された多孔質複合粒子を得るものであり、特に低成形性の薬物を高含量含む処方においても効果が得られるものである。
特公昭40−26274号公報 特公昭53−127553号公報 特開平2−84401号公報 特開平6−316535号公報 特開平11−152233号公報 WO02/02643号パンフレット USP4744987号公報 特表平10−500426号公報
Thus, conventionally, in the cellulose inorganic compound composite particles, with respect to the composite particles of cellulose and inorganic compounds, the pore volume in the particles is increased and the plastic deformability of the particles themselves is improved, thereby improving the compression moldability. Was not known. In the composite of cellulose and an inorganic compound, the present invention is a porous material in which moldability, fluidity, and disintegration are highly optimized by increasing the pore volume in the particles and increasing the plastic deformability of the particles themselves. The composite particles are obtained, and the effect can be obtained even in a formulation containing a high content of a low moldability drug.
Japanese Patent Publication No.40-26274 Japanese Patent Publication No.53-127553 JP-A-2-84401 JP-A-6-316535 Japanese Patent Laid-Open No. 11-152233 WO02 / 02643 pamphlet USP 4744987 Publication Japanese National Patent Publication No. 10-500426

本発明は、賦形剤として、各種活性成分を含む成型体の製造において、優れた成形性、流動性、崩壊性を示し、特に成形性、崩壊性、流動性の乏しい医薬品成型体製造において、活性成分との混合均一性に優れ、重量ばらつきが少なく、含量均一性に優れ、十分な硬度を有し、打錠障害が少なく、摩損度が低く、崩壊性が優れた成型体を簡便な工程で実現することを可能とする、成形性、流動性、崩壊性を高度に最適化したセルロース無機化合物多孔質複合粒子を提供することを目的とする。   The present invention shows excellent moldability, fluidity, and disintegration in the production of molded articles containing various active ingredients as excipients, and particularly in the production of pharmaceutical molded articles having poor moldability, disintegration, and fluidity. Simple process for molding with excellent mixing uniformity with active ingredients, low weight variation, excellent content uniformity, sufficient hardness, low tableting trouble, low friability, and excellent disintegration An object of the present invention is to provide porous composite particles of cellulose inorganic compound that are highly optimized in terms of moldability, fluidity, and disintegration, which can be realized by the above.

本発明者らは、前記課題を解決するため、特定の粒子形状を有するセルロース粒子と無機化合物粒子を複合化させることで粒子構造を制御し、粒子内細孔容積を高めることにより、流動性、崩壊性の良好な見掛け比容積範囲において、大幅に成形性が改善されることを見出すことにより、本発明をなすに至った。
すなわち本発明は、下記の通りである。
(1)水分散状態で10〜100μm留分のL/Dが2.0以上であるセルロース分散粒子と、水不溶性の無機化合物粒子との凝集体であって、粒子内細孔容積が0.260cm/g以上であることを特徴とするセルロース無機化合物多孔質複合粒子。
(2)1種以上の活性成分と(1)に記載のセルロース無機化合物多孔質複合粒子を含むことを特徴とする成型体組成物。
In order to solve the above problems, the present inventors control the particle structure by combining cellulose particles having a specific particle shape and inorganic compound particles, and increase the pore volume in the particles. The present invention has been made by finding that the moldability is greatly improved in the apparent specific volume range having good disintegration.
That is, the present invention is as follows.
(1) An aggregate of cellulose dispersed particles having an L / D of 2.0 or more of a 10 to 100 μm fraction in a water-dispersed state and water-insoluble inorganic compound particles, and the pore volume in the particles is 0.00. Cellulose inorganic compound porous composite particles characterized by being 260 cm 3 / g or more.
(2) A molded body composition comprising one or more active ingredients and the cellulose inorganic compound porous composite particles described in (1).

本発明のセルロース無機化合物多孔質複合粒子は、成形性、流動性、崩壊性に極めて優れているため、各種活性成分を含む成型体の製造において、本発明のセルロース無機化合物多孔質複合粒子を賦形剤として使用する際に、活性成分との混合均一性に優れ、重量ばらつきが少なく、活性成分の含量均一性に優れ、十分な硬度を有し、打錠障害が少なく、摩損度が低く、崩壊性が優れる成型体を簡便に提供できる。   Since the cellulose inorganic compound porous composite particles of the present invention are extremely excellent in moldability, fluidity, and disintegration, the cellulose inorganic compound porous composite particles of the present invention are imparted in the production of molded articles containing various active ingredients. When used as a dosage form, it has excellent mixing uniformity with the active ingredient, less weight variation, excellent content uniformity of the active ingredient, sufficient hardness, less tableting trouble, low friability, It is possible to simply provide a molded article having excellent disintegration properties.

本発明について、特に好ましい形態を中心に、以下具体的に説明する。
本発明のセルロース無機化合物多孔質複合粒子は、水分散状態で平均粒子径が10〜100μmにおいて、主成分のL/Dが2.0以上であるセルロース分散粒子からなる必要がある。ここでいうL/Dとは、セルロース粒子毎の長径と短径の比であり、L/Dが大きいことは、粒子が細長いことであり、セルロース分散全粒子から得られる平均径の上下約20μmの範囲で分画した主成分の(平均粒子径が20μm以下の場合は主成分の下限を設定しない)、平均L/Dのことを意味する。ここで、セルロース分散粒子のL/Dは大きければ大きいほど、粒子内細孔容積を大きくすることに寄与するが、セルロース分散粒子のL/Dが2.0未満であると、得られる無機化合物複合体に大きい粒子内細孔容積を与えられず、圧縮成形性が低下するため好ましくない。L/Dは、2.5以上が特に好ましく、さらに好ましくは2.8μm以上である。L/Dの上限は特に制限されるものではないが、得られるセルロース無機化合物多孔質複合粒子の平均粒子径から考えるとせいぜい6.0である。
The present invention will be specifically described below with a focus on particularly preferred embodiments.
The cellulose inorganic compound porous composite particles of the present invention need to be composed of cellulose-dispersed particles having an average particle diameter of 10 to 100 μm in an aqueous dispersion state and having a main component L / D of 2.0 or more. Here, L / D is the ratio of the major axis to the minor axis for each cellulose particle. A large L / D means that the particle is elongated, and about 20 μm above and below the average diameter obtained from all the cellulose-dispersed particles. Means the average L / D of the main components fractionated in the range (if the average particle size is 20 μm or less, the lower limit of the main component is not set). Here, the larger the L / D of the cellulose-dispersed particles, the larger the pore volume in the particles, which contributes to an increase in the pore volume. However, when the L / D of the cellulose-dispersed particles is less than 2.0, the resulting inorganic compound This is not preferable because a large intraparticle pore volume cannot be given to the composite and the compression moldability deteriorates. L / D is particularly preferably 2.5 or more, and more preferably 2.8 μm or more. The upper limit of L / D is not particularly limited, but it is 6.0 at most when considered from the average particle diameter of the obtained cellulose inorganic compound porous composite particles.

本発明のセルロース無機化合物多孔質複合粒子は、粒子内細孔容積は、0.260cm/g以上である必要がある。粒子内細孔容積は、粒子の圧縮成形性、崩壊性に寄与するものである。粒子内細孔容積が大きいと、圧縮時に粒子が潰れやすいため、塑性変形性が向上し、成型体の硬度が高くなる。また、粒子内細孔容積が大きいと、粒子内への水の浸透が促進されるため、崩壊性が向上する。粒子内細孔は、大きければ大きいほどよく、その上限は制限されるものではないが、粒子に付与する体積の限界を考えると、せいぜい3.0cm/gである。 In the cellulose inorganic compound porous composite particles of the present invention, the pore volume in the particles needs to be 0.260 cm 3 / g or more. The intra-particle pore volume contributes to the compression moldability and disintegration property of the particles. When the pore volume in the particles is large, the particles are easily crushed during compression, so that the plastic deformability is improved and the hardness of the molded body is increased. Moreover, since the penetration | invasion of the water into a particle | grain is accelerated | stimulated when the pore volume in a particle | grain is large, disintegration improves. The larger the pores in the particles, the better. The upper limit is not limited, but considering the limit of the volume applied to the particles, it is at most 3.0 cm 3 / g.

本発明のセルロース無機化合物多孔質複合粒子の粒子構造は、セルロース分散粒子と水不溶性の無機化合物との凝集体構造である必要がある。ここでいう凝集体構造とは、例えば、セルロース分散粒子と無機化合物粒子とを媒体に分散させた分散液を乾燥、またはセルロース分散粒子と無機化合物とを湿式または乾式で強攪拌させること(いわゆる複合化、コプロセス化、Coprocessing)により得られ、化学結合ではなく、物理的に密接に結合した凝集体構造のことを意味し、SEMを使用し(倍率1500〜8000倍)、粒子表面を観察した際に、セルロース粒子と無機化合物粒子のそれぞれを一次粒子とした二次凝集構造が観察される必要がある。この構造をとらない、例えば、セルロース分散粒子と水不溶性の無機化合物との物理混合物のような場合には、二次凝集構造をとらず、セルロース、無機化合物の一次粒子が個々に存在するのみであり、本発明の如く、流動性の優れた複合体は得られない。また、上記セルロースのL/Dが2.0未満である場合には、粒子内細孔容積が小さいため、流動性がよい複合体が得られたとしても、圧縮成形性が損なわれる。上記の要件を満たさなければ、本発明の如く、成形性、崩壊性、流動性に優れたものが得られないので好ましくない。   The particle structure of the cellulose inorganic compound porous composite particle of the present invention needs to be an aggregate structure of cellulose dispersed particles and a water-insoluble inorganic compound. The aggregate structure here refers to, for example, drying a dispersion in which cellulose dispersion particles and inorganic compound particles are dispersed in a medium, or vigorously stirring the cellulose dispersion particles and inorganic compound wet or dry (so-called composite Means an aggregate structure that is physically bonded rather than a chemical bond, and was obtained by SEM (magnification 1500 to 8000 times), and the particle surface was observed. At this time, it is necessary to observe a secondary aggregation structure in which cellulose particles and inorganic compound particles are primary particles. When this structure is not used, for example, in the case of a physical mixture of cellulose-dispersed particles and a water-insoluble inorganic compound, the secondary aggregate structure is not taken, and only primary particles of cellulose and inorganic compounds exist individually. As in the present invention, a composite having excellent fluidity cannot be obtained. Further, when the L / D of the cellulose is less than 2.0, since the pore volume in the particles is small, even if a composite having good fluidity is obtained, the compression moldability is impaired. If the above requirements are not satisfied, it is not preferable because a product excellent in moldability, disintegration, and fluidity cannot be obtained as in the present invention.

本発明のセルロース無機化合物多孔質複合粒子における無機化合物は、水に不溶性であれば特に制限はないが、例えば、含水二酸化ケイ素、軽質無水ケイ酸、合成ケイ酸アルミニウム、水酸化アルミナマグネシウム、第三リン酸カルシウム、タルク、メタケイ酸アルミン酸マグネシウム、リン酸水素カルシウム造粒物等の医薬品に使用されるものが好ましく、「医薬品添加物事典」(薬事日報社(株)発行)に賦形剤および流動化剤として分類されるものが挙げられる。これらは、単独で使用しても、2種以上を併用してもよい。   The inorganic compound in the cellulose inorganic compound porous composite particle of the present invention is not particularly limited as long as it is insoluble in water. For example, hydrous silicon dioxide, light anhydrous silicic acid, synthetic aluminum silicate, magnesium alumina hydroxide, third Those used in pharmaceutical products such as calcium phosphate, talc, magnesium aluminate metasilicate, calcium hydrogen phosphate granule, etc. are preferred. Excipients and fluidized in “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) What is classified as an agent is mentioned. These may be used alone or in combination of two or more.

本発明のセルロース無機化合物多孔質複合粒子は、0.1重量%以上70重量%以下の水不溶性無機化合物を含有することが好ましい。ここで、無機化合物は、セルロース同士の接触を抑制し、粒子内水素結合を過度に形成させないため、粒子内に大きい細孔容積を付与することができる。粒子内細孔容積を充分に付与する観点で無機化合物の含有量が0.1重量%以上、圧縮成形性を充分に発揮させる観点で70重量%以下が好ましい。 本発明のセルロース無機化合物多孔質複合粒子に使用される水不溶性無機化合物の粒子径は、0.001〜50μmであることが好ましい。本発明のセルロース無機化合物多孔質複合粒子は、セルロース分散粒子間に無機化合物を存在させることで、セルロース分散粒子同士の過度の水素結合を抑制し、複合粒子を多孔質化するものである。複合体粒子内に充分な細孔容積を付与する点で、無機化合物の粒子径が0.001μm以上、凝集体形成性の点で、50μm以下が好ましい。特に好ましくは、0.001〜25μmであり、さらに好ましくは0.001〜10μmである。   The cellulose inorganic compound porous composite particles of the present invention preferably contain 0.1% by weight or more and 70% by weight or less of a water-insoluble inorganic compound. Here, since the inorganic compound suppresses contact between celluloses and does not excessively form intraparticle hydrogen bonds, it can impart a large pore volume in the particles. The content of the inorganic compound is preferably 0.1% by weight or more from the viewpoint of sufficiently providing the pore volume in the particles, and 70% by weight or less from the viewpoint of sufficiently exerting the compression moldability. The particle diameter of the water-insoluble inorganic compound used in the cellulose inorganic compound porous composite particle of the present invention is preferably 0.001 to 50 μm. The cellulose inorganic compound porous composite particle of the present invention is to make the composite particle porous by suppressing an excessive hydrogen bond between the cellulose dispersed particles by allowing an inorganic compound to exist between the cellulose dispersed particles. In view of providing sufficient pore volume in the composite particles, the particle diameter of the inorganic compound is preferably 0.001 μm or more, and in terms of aggregate formation, it is preferably 50 μm or less. Especially preferably, it is 0.001-25 micrometers, More preferably, it is 0.001-10 micrometers.

本発明のセルロース無機化合物多孔質複合粒子の平均粒子径は、30〜250μmであることが好ましい。流動性の点で、平均粒子径が30μm以上、分離編析抑制の観点から、平均粒子径が250μm以下が好ましい。
本発明のセルロース無機化合物多孔質複合粒子の安息角は、流動性の点で45°以下であることが好ましい。特に好ましくは、41°以下である。安息角は小さければ小さいほどよく、下限は特に制限されるものではないが、高速連続圧縮時の活性成分との分離編析から考えて、せいぜい25°である。
本発明のセルロース無機化合物多孔質複合粒子の見掛け比容積は、2.0〜6.0cm/gであることが好ましい。圧縮成形性の点で、見掛け比容積2.0cm/g以上、充填性の点で、見掛け比容積6.0cm/g以下が好ましい。
The average particle size of the cellulose inorganic compound porous composite particles of the present invention is preferably 30 to 250 μm. From the viewpoint of fluidity, the average particle diameter is preferably 30 μm or more, and the average particle diameter is preferably 250 μm or less from the viewpoint of suppressing separation and sizing.
The angle of repose of the cellulose inorganic compound porous composite particles of the present invention is preferably 45 ° or less in terms of fluidity. Especially preferably, it is 41 degrees or less. The angle of repose is preferably as small as possible, and the lower limit is not particularly limited, but it is at most 25 ° in view of separation and knitting with the active ingredient during high-speed continuous compression.
The apparent specific volume of the cellulose inorganic compound porous composite particles of the present invention is preferably 2.0 to 6.0 cm 3 / g. From the viewpoint of compression moldability, an apparent specific volume of 2.0 cm 3 / g or more is preferable, and from the viewpoint of filling property, an apparent specific volume of 6.0 cm 3 / g or less is preferable.

以下に本発明のセルロース無機化合物多孔質複合粒子の製造方法について記述する。
本発明のセルロース無機化合物多孔質複合粒子は、水分散状態で10〜100μmのL/Dが2.0以上であるセルロース分散粒子と無機化合物粒子を媒体に分散させた分散液を乾燥することにより得られる。
天然セルロース系物質とは、植物性でも動物性でもよく、例えば木材、竹、麦わら、稲わら、コットン、ラミー、バガス、ケナフ、ビート、ホヤ、バクテリアセルロース等のセルロースを含有する天然物由来の繊維質物質であり、セルロースI型の結晶構造を有していることが好ましい。原料として、上記のうち1種の天然セルロース系物質を使用してもよいし、2種以上を混合したものを使用することも可能である。また、精製パルプの形態で使用することが好ましいが、パルプの精製方法には特に制限がなく、溶解パルプ、クラフトパルプ、NBKPパルプ等いずれのパルプを使用してもよい。ここで天然セルロース系物質は、パルプ等の原料を加水分解してもよく、しなくてもよい。特に加水分解する場合は、酸加水分解であっても、アルカリ酸化分解、熱水分解、スチームエクスプロージョン等であってもよく、いずれかの方法単独であっても、2種以上を併用してもよい。
The production method of the cellulose inorganic compound porous composite particles of the present invention will be described below.
The cellulose inorganic compound porous composite particles of the present invention are obtained by drying a dispersion in which cellulose dispersion particles having an L / D of 10 to 100 μm of 2.0 or more in an aqueous dispersion state and inorganic compound particles are dispersed in a medium. can get.
The natural cellulosic material may be plant or animal. For example, fibers derived from natural products containing cellulose such as wood, bamboo, straw, rice straw, cotton, ramie, bagasse, kenaf, beet, squirt, and bacterial cellulose. It is preferable that it is a crystalline substance and has a cellulose I type crystal structure. As a raw material, one kind of natural cellulosic substances among the above may be used, or a mixture of two or more kinds may be used. Moreover, although it is preferable to use with the form of refined pulp, there is no restriction | limiting in particular in the refinement method of a pulp, You may use any pulp, such as a dissolving pulp, a kraft pulp, and NBKP pulp. Here, the natural cellulosic material may or may not hydrolyze raw materials such as pulp. In particular, when hydrolyzing, it may be acid hydrolysis, alkali oxidative decomposition, hydrothermal decomposition, steam explosion, etc., either method alone or in combination of two or more. Also good.

上記製法において、セルロース系物質を含む固形分を、その後適当な媒体に分散させる場合に用いられる媒体としては、水が好ましいが、工業的に使用されるものであれば特に制限はなく、例えば、水及び/または有機溶剤を使用してもよい。有機溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブチルアルコール、2−メチルブチルアルコール、ベンジルアルコールなどのアルコール類、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素類、アセトン、エチルメチルケトンなどのケトン類が挙げられる。特に、有機溶剤は、医薬品に使用されるものが好ましく「医薬品添加物事典」(薬事日報社(株)発行)に溶剤として分類されるものが挙げられる。水、有機溶剤はそれを単独で使用しても、2種以上を併用することも自由であり、1種の媒体で一旦分散させたのち、その媒体を除去し、異なる媒体に分散させてもよい。   In the above production method, the medium used when the solid content containing the cellulosic material is then dispersed in an appropriate medium is preferably water, but is not particularly limited as long as it is industrially used. Water and / or organic solvents may be used. Examples of the organic solvent include alcohols such as methanol, ethanol, isopropyl alcohol, butyl alcohol, 2-methylbutyl alcohol, and benzyl alcohol, hydrocarbons such as pentane, hexane, heptane, and cyclohexane, acetone, and ethyl methyl ketone. Ketones are mentioned. In particular, the organic solvent is preferably used for pharmaceuticals, and examples thereof include those classified as solvents in “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.). Water and organic solvents can be used alone or in combination of two or more, and once dispersed in one medium, the medium can be removed and dispersed in a different medium. Good.

水分散状態で10〜100μmのL/Dが2.0以上であるセルロース分散粒子を得る方法としては、以下の方法があり、たとえば、i)加水分解を経ない、または加水分解を経たセルロース繊維または粒子に強い剪断、摩砕、破砕、粉砕を加えL/Dを調整する方法、ii)加水分解を経ない、または加水分解を経たセルロース繊維または粒子に、爆砕処理等の高圧処理を施し、セルロース粒子を長軸方向に分割し、高L/Dの粒子とし、必要に応じて、剪断力を与えL/Dを調整する方法、iii)加水分解を経ないまたは加水分解を経たセルロース繊維または粒子からなるL/Dが2.0以下のセルロース分散粒子から、低L/D成分を分離することでL/Dを調整する方法、iv)L/Dが2.0以上の成分と、L/Dが2.0以下の成分を混合することによりL/Dを調整する方法等のいずれの方法であってもよく、これらの方法を単独で使用しても、2種上を併用してもよい。これらの剪断・摩砕・粉砕方法は、湿式で行っても、乾式でおこなってもよく、それらを併用してもよい。   As a method for obtaining cellulose dispersed particles having an L / D of 10 to 100 μm of 2.0 or more in an aqueous dispersion state, there are the following methods, for example: i) Cellulose fibers that have not undergone hydrolysis or have undergone hydrolysis Or a method of adjusting L / D by applying strong shearing, grinding, crushing, and crushing to particles, ii) subjecting cellulose fibers or particles not subjected to hydrolysis or subjected to hydrolysis to high pressure treatment such as explosion treatment, A method in which cellulose particles are divided in a major axis direction to form particles having a high L / D, and if necessary, a shearing force is applied to adjust L / D; iii) a cellulose fiber that has not undergone hydrolysis or has undergone hydrolysis; or A method of adjusting L / D by separating a low L / D component from cellulose dispersed particles having an L / D of 2.0 or less, and iv) a component having an L / D of 2.0 or more, and L / D is 2.0 or less May be any method such as a method of adjusting the L / D by mixing the components, the use of these methods alone or in combination over two. These shearing, grinding, and pulverizing methods may be performed wet, dry, or a combination thereof.

剪断、摩砕、粉砕、破砕、爆砕等の方法としては、公知の方法であれば、制限はないが、例えば、ポータブルミキサー、立体ミキサー、側面ミキサーなどの1方向回転式、多軸回転式、往復反転式、上下移動式、回転+上下移動式、管路式等の撹拌翼を使用する剪断方法、ラインミキサー等の噴流式撹拌剪断方法、高剪断ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー等を使用する処理方法、例えばニーダーのような軸回転押し出し式の剪断方法でもよい。粉砕方法としては、スクリーンミル、ハンマーミル等のスクリーン式粉砕方法、フラッシュミル等の翼回転せん断スクリーン式粉砕方法、ジェットミル等の気流式粉砕方法、ボールミル、振動ボールミル等のボール式粉砕方法、翼攪拌式粉砕方法等のいずれでもよく、単独で使用しても、2種以上を併用してもよい。   As a method such as shearing, grinding, pulverization, crushing, and explosion, there is no limitation as long as it is a known method. For example, a one-way rotary type such as a portable mixer, a three-dimensional mixer, a side mixer, a multi-axis rotary type, Uses reciprocating reversal, up-and-down moving, rotating + up-and-down moving, pipe-type shearing methods using stirring blades, jet-type stirring shearing methods such as line mixers, high-shear homogenizer, high-pressure homogenizer, ultrasonic homogenizer, etc. For example, a shearing method of a shaft rotation extrusion type such as a kneader may be used. As the pulverization method, a screen-type pulverization method such as a screen mill or a hammer mill, a blade-rotating shear screen-type pulverization method such as a flash mill, an air-flow-type pulverization method such as a jet mill, a ball-type pulverization method such as a ball mill or a vibration ball mill, a blade Any of the stirring type pulverization methods may be used, and they may be used alone or in combination of two or more.

高L/D成分と低L/D成分を分離する方法としては、篩を使用した分級、サイクロン、遠心分離機を用いた遠心分離、コーミル、フラッシュミル等のスクリーン目を調整し、所望のL/D成分を分ける分離方法等のいずれの方法でもよく、単独で使用しても、2種以上を併用してもよい。
上記L/Dは、その分散液中のセルロース粒子の形状測定による検証をおこないながら、加水分解による原料セルロースの重合度、および、セルロースの加水分解および/または分散工程の条件、特に、これら溶液の攪拌力、を調整することにより、所望の範囲に制御することができる。一般に、加水分解溶液の酸、アルカリ濃度、反応温度を高くすると、セルロース重合度が低下し、分散液中のセルロース平均分散粒子径が小さくなる傾向にあり、また、溶液の攪拌力を強めても、セルロース分散粒子の平均粒子径が小さくなる傾向にある。
As a method for separating the high L / D component and the low L / D component, classification using a sieve, cyclone, centrifugal separation using a centrifuge, combil, flash mill, etc. are adjusted to obtain a desired L Any method such as a separation method that divides the / D component may be used alone or in combination of two or more.
While the L / D is verified by measuring the shape of the cellulose particles in the dispersion, the degree of polymerization of the raw material cellulose by hydrolysis and the conditions of the hydrolysis and / or dispersion process of cellulose, in particular of these solutions By adjusting the stirring force, the desired range can be controlled. In general, when the acid, alkali concentration and reaction temperature of the hydrolyzed solution are increased, the cellulose polymerization degree tends to decrease, the average cellulose dispersed particle size in the dispersion tends to decrease, and even if the stirring power of the solution is increased. The average particle size of the cellulose dispersed particles tends to be small.

水不溶性の無機化合物は、乾燥前に媒体を含む分散液中に存在していればよく、その添加方法、順序には、特に制限はないが、例えば、i)セルロース粒子と無機化合物を混合したものを媒体に添加し分散液とする方法、ii)セルロース分散液に無機化合物を添加し分散液とする方法、iii)無機化合物分散液にセルロースを添加し分散液とする方法のいずれを使用してもよい。
各成分の添加方法は、通常行われている方法であれば特に制限はないが、小型吸引輸送装置、空気輸送装置、バケットコンベヤ、圧送式輸送装置、バキュームコンベヤ、振動式定量フィーダー、スプレー、漏斗等を用いて連続的に添加しても、一括投入してもよい。
The water-insoluble inorganic compound may be present in the dispersion liquid containing the medium before drying, and the addition method and order thereof are not particularly limited. For example, i) The cellulose particles and the inorganic compound are mixed. Either a method of adding a substance to a medium to form a dispersion, ii) a method of adding an inorganic compound to the cellulose dispersion to make a dispersion, or iii) a method of adding cellulose to the inorganic compound dispersion to make a dispersion can be used. May be.
The method for adding each component is not particularly limited as long as it is a commonly used method, but it is a small suction transport device, pneumatic transport device, bucket conveyor, pressure transport device, vacuum conveyor, vibratory quantitative feeder, spray, funnel Or the like may be added continuously or in a batch.

混合方法は、通常行われている方法であれば特に制限はないが、V型、W型、ダブルコーン型、コンテナタック型混合機などの容器回転式混合機、あるいは高速撹拌型、万能撹拌型、リボン型、パグ型、ナウター型混合機などの撹拌式混合機、高速流動式混合機、ドラム式混合機、流動層式混合機を使用してもよい。またシェーカー等の容器振とう式混合機、ポータブルミキサー、立体ミキサー、側面ミキサーなどの1方向回転式、多軸回転式、往復反転式、上下移動式、回転+上下移動式、管路式等の撹拌翼を使用する分散方法、ラインミキサー等の噴流式撹拌分散方法、高剪断ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー等を使用する処理方法、例えばニーダーのような軸回転押し出し式の剪断方法でもよく、単独で使用しても、2種以上を併用してもよい。   The mixing method is not particularly limited as long as it is a normal method, but a container rotary mixer such as a V type, W type, double cone type, container tack type mixer, or a high speed stirring type, a universal stirring type. Further, a stirring type mixer such as a ribbon type, a pug type or a Nauter type mixer, a high-speed flow type mixer, a drum type mixer or a fluidized bed type mixer may be used. Also, shaker-type container shaker mixers, portable mixers, three-dimensional mixers, side mixers, etc., one-way rotary type, multi-axis rotary type, reciprocating reversal type, vertical movement type, rotation + vertical movement type, pipeline type, etc. A dispersion method using a stirring blade, a jet-type stirring dispersion method such as a line mixer, a high shear homogenizer, a high-pressure homogenizer, a processing method using an ultrasonic homogenizer, etc., for example, an axial rotation extrusion shear method such as a kneader, It may be used alone or in combination of two or more.

上記操作により得られたセルロース分散粒子および無機化合物は、乾燥前に5〜50重量%濃度の分散液とすることが好ましい。自流動性の点で5重量%以上、圧縮成形性の点で50重量%以下が好ましい。より好ましくは、5〜40重量%であり、さらに好ましくは、5〜30重量%である。
乾燥方法についても特に制限はないが、例えば、凍結乾燥、噴霧乾燥、ドラム乾燥、棚乾燥、気流乾燥、真空乾燥のいずれを使用してもよく、1種を単独で使用しても、2種以上を併用してもよい。噴霧乾燥する際の、噴霧方法は、ディスク式、加圧ノズル、加圧二流体ノズル、加圧四流体ノズル等のいずれの噴霧方法でもよく、1種を単独で使用しても、2種以上を併用してもよい。
The cellulose-dispersed particles and inorganic compound obtained by the above operation are preferably made into a dispersion having a concentration of 5 to 50% by weight before drying. 5% by weight or more is preferable in terms of self-fluidity and 50% by weight or less in terms of compression moldability. More preferably, it is 5 to 40% by weight, and further preferably 5 to 30% by weight.
The drying method is not particularly limited, and for example, any of freeze drying, spray drying, drum drying, shelf drying, airflow drying, and vacuum drying may be used. You may use the above together. The spraying method for spray drying may be any spraying method such as a disk type, a pressurized nozzle, a pressurized two-fluid nozzle, a pressurized four-fluid nozzle, etc. May be used in combination.

上記乾燥により得られた複合粒子の凝集構造は、上記の特定のL/Dのセルロース粒子を含む分散液中に、無機化合物粒子が存在した状態で、それらを同時に乾燥することにより達成される。乾燥時には、セルロースと無機化合物が均質に、会合した状態で、媒体が乾燥する際の、毛管凝縮作用により密に凝集すると考えられる。この凝集構造は、セルロース単独で乾燥、または無機化合物単独で乾燥したものに、無機化合物またはセルロースを添加しても得られない。
また、得られた複合粒子の粒子内細孔容積は、分散液中のセルロース粒子のL/Dにより決定される。L/Dが大きいほど、乾燥時の毛管凝縮による過度の粒子凝集を抑制する効果が大きく、そのため、粒子内に大きい細孔容積を形成できる。
The aggregate structure of the composite particles obtained by the drying is achieved by simultaneously drying the inorganic compound particles in the dispersion containing the specific L / D cellulose particles. During drying, it is considered that the cellulose and the inorganic compound are homogeneously associated with each other and are densely aggregated due to capillary condensation when the medium is dried. This agglomerated structure cannot be obtained by adding an inorganic compound or cellulose to a cellulose alone or a dried inorganic compound alone.
Moreover, the pore volume in the particle | grains of the obtained composite particle is determined by L / D of the cellulose particle in a dispersion liquid. The greater the L / D, the greater the effect of suppressing excessive particle aggregation due to capillary condensation during drying, and therefore a larger pore volume can be formed in the particles.

上記の噴霧乾燥する際には、分散液の表面張力を下げる目的で、微量の水溶性高分子、界面活性剤を添加しても、媒体の気化速度を促進させる目的で発泡剤または、ガスを分散液に添加してもよい。
水溶性高分子としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリアクリル酸、カルボキソビニルポリマー、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、アラビアゴム、デンプン糊当の「医薬品添加剤事典」(薬事日報社(株)発行)に記載される水溶性高分子類が挙げられ、1種を単独で使用しても、2種以上を併用してもよい。
When spray drying is performed, a foaming agent or a gas is added for the purpose of accelerating the vaporization rate of the medium even if a small amount of water-soluble polymer or surfactant is added for the purpose of reducing the surface tension of the dispersion. It may be added to the dispersion.
Examples of water-soluble polymers include “Hydroxypropyl cellulose, hydroxypropyl methyl cellulose, polyacrylic acid, carboxo vinyl polymer, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, methyl cellulose, gum arabic, starch glue,“ pharmaceutical additive encyclopedia ” Water-soluble polymers described in (published by Yakuji Nippo Co., Ltd.) may be mentioned, and one kind may be used alone or two or more kinds may be used in combination.

界面活性剤としては、例えば、リン脂質、グリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンソルビタンサンモノラウレート、ポリソルベート、モノオレイン酸ソルビタン、モノステアリン酸グリセリド、モノオキシエチレンソルビタンモノパルミテート、モノオキシエチレンソルビタンモノステアレート、モノオレイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ソルビタン、ラウリル硫酸ナトリウム等の「医薬品添加剤事典」(薬事日報社(株)発行)に界面活性剤として分類されるものが挙げられ、それを単独で使用しても、2種以上を併用することも自由である。   Examples of the surfactant include phospholipid, glycerin fatty acid ester, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene nonylphenyl ether, Polyoxyethylene polyoxypropylene glycol, polyoxyethylene sorbitan sun monolaurate, polysorbate, sorbitan monooleate, monostearate glyceride, monooxyethylene sorbitan monopalmitate, monooxyethylene sorbitan monostearate, polyoxymonooleate "Pharmaceutical Additives Encyclopedia" such as ethylene sorbitan, sorbitan monopalmitate, sodium lauryl sulfate ) Issued) those classified as a surfactant can be mentioned, even using it alone, it is free to combination of two or more.

発泡剤としては、酒石酸、炭酸水素ナトリウム、バレイショデンプン、無水クエン酸、薬用石鹸、ラウリル硫酸ナトリウム、ラウリン酸ジエタノールアミド、ラウマクロゴール等の「医薬品添加剤事典」(薬事日報社(株)発行)に記載される発泡剤類が挙げられ、1種を単独で使用しても、2種以上を併用してもよい。また、医薬品添加剤以外にも、炭酸水素ナトリウム、炭酸水素アンモニウム等の熱分解しガスを発生する重炭酸塩類、炭酸ナトリウム、炭酸アンモニウム等の酸と反応してガスを発生する炭酸塩類を使用してもよい。ただし、上記の炭酸塩類を使用する際には、酸とともに使用することが好ましい。酸としては、クエン酸、酢酸、アスコルビン酸、アジピン酸等の有機酸類、塩酸、硫酸、リン酸、硝酸等のプロトン酸、フッ化ホウ素等のルイス酸等の酸物質が挙げられ、医薬品・食品として使用されるものが好ましいが、それ以外でも同様の効果を有する。発泡剤ではなく、窒素、二酸化炭素、液化石油ガス、ジメチルエーテル等のガス類を分散液に含浸してもよい。
これらの水溶性高分子、界面活性剤、ガスを発生する物質は、乾燥前に添加されていればよく、その添加の順序には特に制限はない。
As foaming agents, pharmaceutical encyclopedias such as tartaric acid, sodium hydrogen carbonate, potato starch, anhydrous citric acid, medicated soap, sodium lauryl sulfate, lauric acid diethanolamide, laumacrogol (published by Yakuji Nippo Co., Ltd.) Can be used alone or in combination of two or more. In addition to pharmaceutical additives, use bicarbonates that generate gas by thermal decomposition such as sodium bicarbonate and ammonium bicarbonate, and carbonates that generate gas by reacting with acids such as sodium carbonate and ammonium carbonate. May be. However, when using the above carbonates, it is preferable to use them together with an acid. Examples of the acid include organic acids such as citric acid, acetic acid, ascorbic acid, and adipic acid, protic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and nitric acid, and acidic substances such as Lewis acids such as boron fluoride. Although what is used as is preferable, it has the same effect other than that. Instead of the foaming agent, the dispersion may be impregnated with a gas such as nitrogen, carbon dioxide, liquefied petroleum gas, or dimethyl ether.
These water-soluble polymers, surfactants, and substances that generate gas may be added before drying, and the order of addition is not particularly limited.

次に乾燥を経ない複合化方法について述べる。
乾燥を経ない場合は、加水分解を経たまたは経ないセルロース粒子と無機化合物を混合し、圧縮・剪断等の物理処理を施すことにより、複合化させてもよく、圧縮・剪断時に必要に応じて加熱してもよい。
圧縮方法としては、加圧ローラー、プレス機等の圧縮機により、一旦圧縮したものを粉砕し、粒径を調製してもよく、攪拌翼回転式、回転盤式攪拌機により遠心力をかけることで複合化してもよく、高速攪拌時に押しつけ(圧縮施して複合化させてもよい。
Next, a composite method without drying will be described.
In the case of not drying, it may be combined by mixing cellulose particles with and without hydrolysis and an inorganic compound and subjecting them to physical treatment such as compression / shearing. You may heat.
As a compression method, the compressed particle may be pulverized by a compressor such as a pressure roller or a press machine, and the particle size may be adjusted. By applying a centrifugal force with a stirring blade rotating type or rotating plate type stirring machine, It may be combined, or it may be pressed during high-speed stirring (compression may be applied to form a composite.

本発明でいう成型体組成物は、1種以上の活性成分と本発明のセルロース無機化合物多孔質複合粒子を含有していればよく、その量に特に制限はないが、好ましい使用範囲としては、活性成分は0.001〜99%、本発明のセルロース無機化合物多孔質複合粒子は1〜99%である。さらに、混合、攪拌、造粒、整粒、打錠等の公知の方法で加工できる。治療に有効な量の確保の点で活性成分0.001%以上、実用的な硬度、摩損度、崩壊性の点で99%以下が好ましい。
本発明の組成物は、活性成分、セルロース無機化合物多孔質複合粒子の他に、必要に応じて賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色剤、甘味剤を含むことも自由である。
The molded body composition referred to in the present invention only needs to contain one or more active ingredients and the cellulose inorganic compound porous composite particles of the present invention, and the amount thereof is not particularly limited. The active ingredient is 0.001 to 99%, and the cellulose inorganic compound porous composite particle of the present invention is 1 to 99%. Furthermore, it can be processed by a known method such as mixing, stirring, granulation, sizing, and tableting. The active ingredient is preferably 0.001% or more in terms of securing an effective amount for treatment, and 99% or less in terms of practical hardness, friability and disintegration.
The composition of the present invention comprises an active ingredient, a cellulose inorganic compound porous composite particle, and an excipient, a disintegrant, a binder, a fluidizing agent, a lubricant, a corrigent, a fragrance, and a colorant as necessary. It is also free to include sweeteners.

本発明の活性成分とは、医薬品薬効成分、農薬成分、肥料成分、飼料成分、食品成分、化粧品成分、色素、香料、金属、セラミックス、触媒、界面活性剤をいい、粉体状、結晶状、油状、液状、半固形状などいずれの形態でもよい、また溶出制御、苦味低減などの目的でコーティングを施したものであってもよい。活性成分は単独で使用しても、複数を併用してもよい。
例えば医薬品薬効成分としては、解熱鎮痛消炎薬、催眠鎮静薬、眠気防止薬、鎮暈薬、小児鎮痛薬、健胃薬、制酸薬、消化薬、強心薬、不整脈用薬、降圧薬、血管拡張薬、利尿薬、抗潰瘍薬、整腸薬、骨粗鬆症治療薬、鎮咳去痰薬、抗喘息薬、抗菌剤、頻尿改善剤、滋養強壮剤、ビタミン剤など、経口で投与されるものが対象となる。薬効成分は、それを単独で使用しても、2種以上を併用することも自由である。
The active ingredient of the present invention refers to pharmaceutical medicinal ingredients, agricultural chemical ingredients, fertilizer ingredients, feed ingredients, food ingredients, cosmetic ingredients, pigments, fragrances, metals, ceramics, catalysts, surfactants, powder, crystalline, It may be in any form such as oil, liquid or semi-solid, and may be coated for the purpose of elution control and bitterness reduction. The active ingredients may be used alone or in combination.
For example, anti-pyretic analgesics, antihypnotics, drowsiness preventives, antipruritics, pediatric analgesics, stomachic drugs, antacids, digestives, cardiotonic drugs, arrhythmic drugs, antihypertensives, vasodilators , Diuretics, anti-ulcer drugs, intestinal drugs, osteoporosis treatments, antitussive expectorants, anti-asthma drugs, antibacterial agents, frequent urination drugs, nourishing tonics, vitamins, etc. . The medicinal component can be used alone or in combination of two or more.

本発明で使用される、油状、液状活性成分としては、例えば、テプレノン、インドメタシン・ファルネシル、メナテトレノン、フィトナジオン、ビタミンA油、フェニペントール、ビタミン D、ビタミンE等のビタミン類、DHA(ドコサヘキサエン酸)、EPA(エイコサペンタエン酸)、肝油等の高級不飽和脂肪酸類、補酵素Q類、オレンジ油、レモン油、ペパーミント油等の油溶性香味料等の「日本薬局方」、「局外基」、「USP」、「NF」、「EP」に記載の医薬品薬効成分等が挙げられる。ビタミンEには種々の同族体、誘導体があるが、常温で液状であれば特に限定され ない。例えばdl−α−トコフェロール、酢酸dl−α−トコフェロール、d−α−トコフェロール、酢酸d−α−トコフェロール等を挙げることができ、上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。   Examples of oily and liquid active ingredients used in the present invention include teprenone, indomethacin farnesyl, menatetrenone, phytonadione, vitamin A oil, phenipitol, vitamin D, vitamin E and other vitamins, DHA (docosahexaenoic acid) , “Japanese Pharmacopoeia”, “Extraordinary Group”, such as EPA (eicosapentaenoic acid), higher unsaturated fatty acids such as liver oil, coenzyme Q, orange oil, lemon oil, peppermint oil, etc. Medicinal medicinal ingredients described in “USP”, “NF”, “EP” and the like. Vitamin E has various homologues and derivatives, but is not particularly limited as long as it is liquid at room temperature. For example, dl-α-tocopherol, dl-α-tocopherol acetate, d-α-tocopherol, d-α-tocopherol acetate and the like can be mentioned. Even if one kind selected from the above is used alone, two or more kinds can be used. Can also be used together.

半固形状活性成分としては、例えば地竜、カンゾウ、ケイヒ、シャクヤク、ボタンピ、カノコソウ、サンショウ、ショウキョウ、チンピ、マオウ、ナンテンジツ、オウヒ、オンジ、 キキョウ、シャゼンシ、シャゼンソウ、石蒜、セネカ、 バイモ、ウイキョウ、オウバク、オウレン、ガジュツ、 カミツレ、ゲンチアナ、ゴオウ、獣胆、シャジン、ショウキョウ、ソウジュツ、チョウジ、チンヒ、ビャクジュツ、チクセツニンジン、ニンジン、葛根湯、桂枝湯、香蘇散、紫胡桂枝湯、小紫胡湯、小青竜湯、麦門冬湯、半夏厚朴湯、麻黄湯等の漢方または生薬エキス類、カキ肉エキス、プロポリスおよびプロポリス抽出物、補酵素Q類等を挙げることができ、上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。   Semi-solid active ingredients include, for example, earth dragons, licorice, cinnamon, peonies, buttonpi, valerian, salamander, ginger, chimpi, mao, nantenjitsu, ohhi, onji, kyoukyo, shazenshi, shazenso, sarcophagus, seneca, baimo , Fennel, autac, auren, gadget, chamomile, gentian, goo, beast gall, shajin, ginger, sojutsu, clove, chinhi, sandalwood, chiketsu carrot, carrot, kakkonto, katsushiyu, kososan, purple katsura Mention herbal or herbal extracts such as hot water, small purple hot water, small blue dragon hot water, Mumon winter hot water, half summer Koboku hot water, Mao hot water, oyster meat extract, propolis and propolis extract, coenzyme Q, etc. It is possible to use one kind selected from the above alone or to use two or more kinds in combination.

賦形剤としては、アクリル酸デンプン、L−アスパラギン酸、アミノエチルスルホン酸、アミノ酢酸、あめ(粉)、アラビアゴム、アラビアゴム末、アルギン酸、アルギン酸ナトリウム、アルファー化デンプン、イノシトール、エチルセルロース、エチレン・酢酸ビニルコポリマー、塩化ナトリウム、オリーブ油、カオリン、カカオ脂、カゼイン、果糖、軽石粒、カルメロース、カルメロースナトリウム、含水二酸化ケイ素、乾燥酵母、乾燥水酸化アルミニウムゲル、乾燥硫酸ナトリウム、乾燥硫酸マグネシウム、カンテン、カンテン末、キシリトール、クエン酸、クエン酸ナトリウム、クエン酸二ナトリウム、グリセリン、グリセロリン酸カルシウム、グルコン酸ナトリウム、L−グルタミン、クレー、クレー粒、クロスカルメロースナトリウム、クロスポビドン、ケイ酸アルミン酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、軽質無水ケイ酸、軽質流動パラフィン、ケイヒ末、結晶セルロース、結晶セルロース・カルメロースナトリウム、結晶セルロース(粒)、ゲンマイコウジ、合成ケイ酸アルミニウム、合成ヒドロタルサイト、ゴマ油、小麦粉、コムギデンプン、小麦胚芽粉、コメコ、コメデンプン、酢酸カリウム、酢酸カルシウム、酢酸フタル酸セルロース、サフラワー油、サラシミツロウ、酸化亜鉛、酸化チタン、酸化マグネシウム、β―シクロデキストリン、ジヒドロキシアルミニウムアミノアセテート、2,6−ジ−ブチル−4−メチルフェノール、ジメチルポリシロキサン、酒石酸、酒石酸水素カリウム、焼セッコウ、ショ糖脂肪酸エステル、水酸化アルミナマグネシウム、水酸化アルミニウム・ゲル、水酸化アルミニウム・炭酸水素ナトリウム共沈物、水酸化マグネシウム、スクラワン、ステアリルアルコール、ステアリン酸、ステアリン酸カルシウム、ステアリン酸ポリオキシル、ステアリン酸マグネシウム、精製ゼラチン、精製セラック、精製白糖、精製白糖球状顆粒、セトステアリルアルコール、ポリエチレングリコール1000モノセチルエーテル、ゼラチン、、ソルビタン脂肪酸エステル、D−ソルビトール、第三リン酸カルシウム、ダイズ油、大豆不ケン化物、大豆レシチン、脱脂粉乳、タルク、炭酸アンモニウム、炭酸カルシウム、炭酸マグネシウム、中性無水硫酸ナトリウム、低置換度ヒドロキシプロピルセルロース、デキストラン、デキストリン、天然ケイ酸アルミニウム、トウモロコシデンプン、トラガント末、二酸化ケイ素、ニューカルゲン204、乳酸カルシウム、乳糖、、パーフィラー101、白色セラック、白色ワセリン、ハクド、白糖、白糖・デンプン球状顆粒、ハダカムギ緑葉エキス末、裸麦芽葉青汁乾燥粉末、ハチミツ、パラフィン、バレイショデンプン、半消化体デンプン、人血清アルブミン、ヒドロキシプロピルスターチ、ヒドロキシプロピルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロースフタレート、フィチン酸、ブドウ糖、ブドウ糖水和物、部分アルファー化デンプン、プルラン、プロピレングリコール、粉末還元麦芽糖水飴、粉末セルロース、ペクチン、ベントナイト、ポリアクリル酸ナトリウム、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレン(105)ポリオキシプロピレン(5)グリコール、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコール、ポリスチレンスルホン酸ナトリウム、ポリソルベート、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ポリエチレングリコール(分子量1500〜6000)、マルチトール、マルトース、D−マンニトール、水アメ、ミリスチン酸イソプロピル、無水乳糖、無水リン酸水素カルシウム、無水リン酸カルシウム造粒物、メタケイ酸アルミン酸マグネシウム、メチルセルロース、綿実粉、綿実油、モクロウ、モノステアリン酸アルミニウム、モノステアリン酸グリセリン、モノステアリン酸ソルビタン、薬用炭、ラッカセイ油、硫酸アルミニウム、硫酸カルシウム、粒状トウモトコシデンプン、流動パラフィン、dl−リンゴ酸、リン酸−水素カルシウム、リン酸水素カルシウム、リン酸水素カルシウム造粒物、リン酸水素ナトリウム、リン酸二水素カリウム、リン酸二水素カルシウム、リン酸二水素ナトリウム等の「医薬品添加剤事典」(薬事日報社(株)発行)に賦形剤として分類されるものが挙げられ、それを単独で使用しても、2種以上を併用することも自由である。   Excipients include starch acrylate, L-aspartic acid, aminoethylsulfonic acid, aminoacetic acid, candy (powder), gum arabic, gum arabic powder, alginic acid, sodium alginate, pregelatinized starch, inositol, ethylcellulose, ethylene Vinyl acetate copolymer, sodium chloride, olive oil, kaolin, cacao butter, casein, fructose, pumice grains, carmellose, carmellose sodium, hydrous silicon dioxide, dry yeast, dry aluminum hydroxide gel, dry sodium sulfate, dry magnesium sulfate, agar, Agar powder, xylitol, citric acid, sodium citrate, disodium citrate, glycerin, calcium glycerophosphate, sodium gluconate, L-glutamine, clay, clay granules, croscarmellose nato Um, crospovidone, magnesium aluminate silicate, calcium silicate, magnesium silicate, light anhydrous silicic acid, light liquid paraffin, cinnamon powder, crystalline cellulose, crystalline cellulose / carmellose sodium, crystalline cellulose (grain) Synthetic aluminum silicate, synthetic hydrotalcite, sesame oil, wheat flour, wheat starch, wheat germ flour, rice, rice starch, potassium acetate, calcium acetate, cellulose acetate phthalate, safflower oil, white beeswax, zinc oxide, titanium oxide, Magnesium oxide, β-cyclodextrin, dihydroxyaluminum aminoacetate, 2,6-di-butyl-4-methylphenol, dimethylpolysiloxane, tartaric acid, potassium hydrogen tartrate, baked gypsum, sucrose fatty acid ester, hydroxylation Alumina magnesium, aluminum hydroxide / gel, aluminum hydroxide / sodium bicarbonate coprecipitate, magnesium hydroxide, sucurawan, stearyl alcohol, stearic acid, calcium stearate, polyoxyl stearate, magnesium stearate, purified gelatin, purified shellac, purified Sucrose, refined sucrose spherical granules, cetostearyl alcohol, polyethylene glycol 1000 monocetyl ether, gelatin, sorbitan fatty acid ester, D-sorbitol, tricalcium phosphate, soybean oil, soybean unsaponifiable matter, soybean lecithin, skim milk powder, talc, carbonic acid Ammonium, calcium carbonate, magnesium carbonate, neutral anhydrous sodium sulfate, low-substituted hydroxypropylcellulose, dextran, dextrin, natural aluminum silicate Corn starch, tragacanth powder, silicon dioxide, new calgen 204, calcium lactate, lactose, perfiller 101, white shellac, white petrolatum, crushed, sucrose, sucrose / starch spherical granules, powdered green leaf extract, naked malt leaf blue Juice dry powder, honey, paraffin, potato starch, semi-digested starch, human serum albumin, hydroxypropyl starch, hydroxypropylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose phthalate, phytic acid, glucose, glucose hydrate, partial alphalation Starch, pullulan, propylene glycol, powdered maltose starch syrup, powdered cellulose, pectin, bentonite, sodium polyacrylate, polyoxyethylene alkyl ether, polyethylene Oxyethylene hydrogenated castor oil, polyoxyethylene (105) polyoxypropylene (5) glycol, polyoxyethylene (160) polyoxypropylene (30) glycol, sodium polystyrene sulfonate, polysorbate, polyvinyl acetal diethylaminoacetate, polyvinyl pyrrolidone, polyethylene Glycol (molecular weight 1500-6000), maltitol, maltose, D-mannitol, water candy, isopropyl myristate, anhydrous lactose, anhydrous calcium hydrogen phosphate, anhydrous calcium phosphate granulated product, magnesium metasilicate aluminate, methylcellulose, cottonseed powder Cottonseed oil, mole, aluminum monostearate, glyceryl monostearate, sorbitan monostearate, medicinal charcoal, peanut oil, sulfuric acid Luminium, calcium sulfate, granular corn starch, liquid paraffin, dl-malic acid, calcium hydrogen phosphate, calcium hydrogen phosphate, calcium hydrogen phosphate granulated product, sodium hydrogen phosphate, potassium dihydrogen phosphate, phosphoric acid Included in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as calcium dihydrogen and sodium dihydrogen phosphate are listed as excipients. The above can also be used together.

崩壊剤としては、クロスカルメロースナトリウム、カルメロース、カルメロースカルシウム、カルメロースナトリウム、低置換度ヒドロキシプロピルセルロース等のセルロース類、カルボキシメチルスターチナトリウム、ヒドロキシプロピルスターチ、コメデンプン、コムギデンプン、トウモロコシデンプン、バレイショデンプン、部分アルファー化デンプン等のデンプン類、クロスポビドン、クロスポビドンコポリマー等の合成高分子等の「医薬品添加物事典」(薬事日報社(株)発行)に崩壊剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。   Disintegrants include croscarmellose sodium, carmellose, carmellose calcium, carmellose sodium, celluloses such as low-substituted hydroxypropyl cellulose, carboxymethyl starch sodium, hydroxypropyl starch, rice starch, wheat starch, corn starch, potato Listed as disintegrants in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as starches, starches such as partially pregelatinized starch, synthetic polymers such as crospovidone and crospovidone copolymers Can do. Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.

結合剤としては、白糖、ブドウ糖、乳糖、果糖等の糖類、マンニトール、キシリトール、マルチトール、エリスリトール、ソルビトール等の糖アルコール類、ゼラチン、プルラン、カラギーナン、ローカストビーンガム、寒天、グルコナンナン、キサンタンガム、タマリンドガム、ペクチン、アルギン酸ナトリウム、アラビアガム等の水溶性多糖類、結晶セルロース、粉末セルロース、ヒドロキシプロピルセルロース、メチルセルロース等のセルロース類、アルファー化デンプン、デンプン糊等のデンプン類、ポリビニルピロリドン、カルボキシビニルポリマー、ポリビニルアルコール等の合成高分子類、リン酸水素カルシウム、炭酸カルシウム、合成ヒドロタルサイト、ケイ酸アルミン酸マグネシウム等の無機化合物類等「医薬品添加物事典」(薬事日報社(株)発行)に結合剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。   As binders, sugars such as sucrose, glucose, lactose, fructose, sugar alcohols such as mannitol, xylitol, maltitol, erythritol, sorbitol, gelatin, pullulan, carrageenan, locust bean gum, agar, gluconannan, xanthan gum, tamarind Water-soluble polysaccharides such as gum, pectin, sodium alginate, gum arabic, etc., celluloses such as crystalline cellulose, powdered cellulose, hydroxypropylcellulose, methylcellulose, starches such as pregelatinized starch, starch paste, polyvinylpyrrolidone, carboxyvinyl polymer, Synthetic polymers such as polyvinyl alcohol, inorganic compounds such as calcium hydrogen phosphate, calcium carbonate, synthetic hydrotalcite, magnesium aluminate silicate etc. "May include those classified as a binder (Yakujinipposha Corporation published). Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.

流動化剤としては、含水二酸化ケイ素、軽質無水ケイ酸等のケイ素化合物類等の「医薬品添加物事典」(薬事日報社(株)発行)に流動化剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。
滑沢剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸、ショ糖脂肪酸エステル、タルク等の「医薬品添加物事典」(薬事日報社(株)発行)に滑沢剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。
Examples of the fluidizing agent include those classified as fluidizing agents in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as silicon compounds such as hydrous silicon dioxide and light anhydrous silicic acid. . Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.
Examples of lubricants include those classified as lubricants in the “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as magnesium stearate, calcium stearate, stearic acid, sucrose fatty acid ester, and talc. be able to. Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.

矯味剤としては、グルタミン酸、フマル酸、コハク酸、クエン酸、クエン酸ナトリウム、酒石酸、リンゴ酸、アスコルビン酸、塩化ナトリウム、1−メントール等の「医薬品添加物事典」(薬事日報社(株)発行)に矯味剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。
香料としては、オレンジ、バニラ、ストロベリー、ヨーグルト、メントール、ウイキョウ油、ケイヒ油、トウヒ油、ハッカ油等の油類、緑茶末等の「医薬品添加物事典」(薬事日報社(株)発行)に着香剤、香料として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。
As a corrigent, "Pharmaceutical Additives Encyclopedia" such as glutamic acid, fumaric acid, succinic acid, citric acid, sodium citrate, tartaric acid, malic acid, ascorbic acid, sodium chloride, 1-menthol, etc. (published by Yakuji Nippo Co., Ltd.) ) Can be listed as a corrigent. Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.
Perfumes include orange, vanilla, strawberry, yogurt, menthol, fennel oil, cinnamon oil, spruce oil, mint oil, and other “pharmaceutical additives” (published by Yakuji Nippo Co., Ltd.). The thing classified as a flavoring agent and a fragrance | flavor can be mentioned. Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.

着色剤としては、食用赤色3号、食用黄色5号、食用青色1号等の食用色素、銅クロロフィンナトリウム、酸化チタン、リボフラビン等の「医薬品添加物事典」(薬事日報社(株)発行)に着色剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。
甘味剤としては、アスパルテーム、サッカリン、ギリチルリチン酸二カリウム、ステビア、マルトース、マルチトール、水飴、アマチャ末等の「医薬品添加物事典」(薬事日報社(株)発行)に甘味剤として分類されるものを挙げることができる。上記から選ばれる1種を単独で使用しても、2種以上を併用することも自由である。
Coloring agents include food colorings such as Food Red No. 3, Food Yellow No. 5, Food Blue No. 1, etc., “Pharmaceutical Additives Encyclopedia” such as copper chlorofin sodium, titanium oxide and riboflavin (published by Yakuji Nippo Co., Ltd.) And those classified as colorants. Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.
As sweeteners, those classified as sweeteners in “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as aspartame, saccharin, dipotassium gilicyrrhizinate, stevia, maltose, maltitol, chickenpox, and amacha powder Can be mentioned. Even if it uses individually by 1 type chosen from the above, it is also free to use 2 or more types together.

組成物の例としては、医薬品に用いる場合、錠剤、散剤、細粒剤、顆粒剤、エキス剤、丸剤の固形製剤等が挙げられる。医薬品に限らず、菓子、健康食品、食感改良剤、食物繊維強化剤等の食品、固形ファンデーション、浴用剤、動物薬、診断薬、農薬、肥料、セラミックス触媒等に利用されるものも本発明に含まれる。   Examples of the composition include tablets, powders, fine granules, granules, extracts, solid preparations of pills and the like when used for pharmaceuticals. The present invention includes not only pharmaceuticals but also foods such as confectionery, health foods, texture improvers, dietary fiber reinforcing agents, solid foundations, bath preparations, animal drugs, diagnostic agents, agricultural chemicals, fertilizers, ceramic catalysts, etc. include.

以下に1種以上の活性成分と本発明のセルロース無機化合物多孔質複合粒子を主成分とする錠剤組成物の製造方法について記述するが、一例であって、本発明の効果は、以下の方法に制限されるものではない。
ここでいう活性成分とは、固形状、液状、半固形状のいずれの形態でもよく、活性成分を単体で使用しても、活性成分を媒体に溶解、懸濁、乳化して使用してもよい。方法としては、活性成分と本発明のセルロース無機化合物多孔質複合粒子を混合した後、圧縮成型する方法が取れる。この際に、活性成分以外に、必要に応じて他の添加剤を配合してもよく、他の添加剤としては、例えば、上記に示す賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色剤、甘味剤、溶解補助剤の成分から選ばれる1種以上を配合してもよい。
Hereinafter, a method for producing a tablet composition comprising as a main component one or more active ingredients and the cellulose inorganic compound porous composite particles of the present invention will be described. However, it is an example, and the effect of the present invention is the following method. It is not limited.
The active ingredient here may be in any form of solid, liquid or semi-solid, and the active ingredient may be used alone or may be used by dissolving, suspending or emulsifying the active ingredient in a medium. Good. As a method, after mixing an active ingredient and the cellulose inorganic compound porous composite particle of the present invention, a compression molding method can be taken. At this time, in addition to the active ingredient, other additives may be blended as necessary. Examples of other additives include the excipients, disintegrants, binders, fluidizing agents described above, You may mix | blend 1 or more types chosen from the component of a lubricant agent, a corrigent, a fragrance | flavor, a coloring agent, a sweetening agent, and a solubilizing agent.

添加順序には、特に制限がなく、i)活性成分と本発明のセルロース無機化合物多孔質複合粒子と必要に応じ他の添加剤を一括混合し圧縮成型する方法、ii)活性成分と、流動化剤及び/または滑沢剤等の添加剤を前処理混合し、本発明のセルロース無機化合物多孔質複合粒子と、必要に応じ他の添加剤を混合した後、圧縮成型する方法のいずれでもよい。i、ii)により得られた圧縮成型用混合末に、滑沢剤を添加し、さらに混合した後、圧縮成型してもよい。   The order of addition is not particularly limited, and i) a method in which the active ingredient, the cellulose inorganic compound porous composite particle of the present invention and other additives as needed are mixed together and compression-molded, and ii) the active ingredient and fluidization Any of the compression molding methods may be used after additives such as an agent and / or a lubricant are pretreated and mixed, and the cellulose inorganic compound porous composite particles of the present invention are mixed with other additives as necessary. A lubricant may be added to the mixed powder for compression molding obtained in i, ii) and further mixed, and then compression molded.

特に水に難溶性の活性成分を使用する際は、以下の製造方法をとることができる。製造方法としては、例えば、i)活性成分に粉砕を施す、またはそのまま使用し、本発明のセルロース無機化合物多孔質複合粒子と必要に応じてその他の成分と混合し圧縮成型する方法、ii)活性成分を水及び/または有機溶媒及び/または溶解補助剤に溶解または分散させた後、本発明のセルロース無機化合物多孔質複合粒子と必要に応じて他の添加剤と混合し、必要に応じて水及び/または有機溶媒を留去し、圧縮成型する方法のいずれでもよい。圧縮成型前の活性成分の結晶形は製剤前の状態と同じであっても、異なってもよいが、安定性の点で同じであることが好ましい。水に難溶性の活性成分を使用する際は、特に溶解補助剤として、水溶性高分子、界面活性剤を併用し、媒体に分散させることが効果的である。ここでいう他の添加剤とは、本発明のセルロース無機化合物多孔質複合粒子以外の添加剤であり、例えば上記に示す賦形剤、崩壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色剤、甘味剤、溶解補助剤等の添加剤のことである。これらの添加剤は単独で使用しても、二種以上を併用してもよい。特にii)の方法の場合には、水に難溶性、不溶性の活性成分を一旦溶解または分散させる工程を経るため、活性成分の溶出改善の効果もある。特に医薬品活性成分の分散体として、ポリエチレングリコール等の液状分散体を併用する際は、元々の活性成分が結晶粉末であっても、それを分散させた分散体は液状または半固形状となるため、本発明のセルロース無機化合物多孔質複合粒子のように圧縮成形性、流動性に優れるものでないと錠剤化できない。また、医薬品活性成分の分散体として、ポリエチレングリコール等を使用する際は、活性成分が体内に吸収されたときに、血中においてポリエチレングリコールで被覆された構造をとるといわれており、肝臓で代謝され易い活性成分の薬効を持続させる効果も期待される。   In particular, when using an active ingredient hardly soluble in water, the following production method can be employed. Examples of the production method include: i) pulverizing an active ingredient or using it as it is, mixing the cellulose inorganic compound porous composite particles of the present invention with other components as necessary, and compression molding, ii) activity The components are dissolved or dispersed in water and / or an organic solvent and / or a solubilizing agent, and then mixed with the cellulose inorganic compound porous composite particles of the present invention and other additives as required, and water is added as necessary. And / or any method of distilling off the organic solvent and compression molding. The crystalline form of the active ingredient before compression molding may be the same as or different from the state before the preparation, but is preferably the same in terms of stability. When using a water-insoluble active ingredient, it is particularly effective to use a water-soluble polymer and a surfactant in combination as a solubilizing agent and disperse them in a medium. The other additives referred to here are additives other than the cellulose inorganic compound porous composite particles of the present invention. For example, the excipients, disintegrants, binders, fluidizing agents, lubricants, taste masking agents shown above. It is an additive such as an agent, a fragrance, a coloring agent, a sweetening agent, a solubilizing agent. These additives may be used alone or in combination of two or more. In particular, in the case of the method ii), there is an effect of improving the elution of the active ingredient because the process involves once dissolving or dispersing the slightly soluble and insoluble active ingredient in water. In particular, when a liquid dispersion such as polyethylene glycol is used in combination as a dispersion of a pharmaceutical active ingredient, even if the original active ingredient is a crystalline powder, the dispersion in which it is dispersed becomes liquid or semi-solid. Unless it is excellent in compression moldability and fluidity like the cellulose inorganic compound porous composite particles of the present invention, it cannot be tableted. In addition, when polyethylene glycol or the like is used as a dispersion of a pharmaceutical active ingredient, it is said that when the active ingredient is absorbed into the body, it has a structure covered with polyethylene glycol in the blood and is metabolized in the liver. It is also expected to have an effect of sustaining the medicinal effects of the active ingredients that are easily applied.

各成分の添加方法は、通常行われている方法であれば特に制限はないが、小型吸引輸送装置、空気輸送装置、バケットコンベヤ、圧送式輸送装置、バキュームコンベヤ、振動式定量フィーダー、スプレー、漏斗等を用いて連続的に添加しても、一括投入してもよい。 混合方法は、通常行われている方法であれば特に制限はないが、V型、W型、ダブルコーン型、コンテナタック型混合機などの容器回転式混合機、あるいは高速撹拌型、万能撹拌型、リボン型、パグ型、ナウター型混合機などの撹拌式混合機、高速流動式混合機、ドラム式混合機、流動層式混合機を使用してもよい。またシェーカー等の容器振とう式混合機を使用することもできる。   The method for adding each component is not particularly limited as long as it is a commonly used method, but it is a small suction transport device, pneumatic transport device, bucket conveyor, pressure transport device, vacuum conveyor, vibratory quantitative feeder, spray, funnel Or the like may be added continuously or in a batch. The mixing method is not particularly limited as long as it is a normal method, but a container rotary mixer such as a V type, W type, double cone type, container tack type mixer, or a high speed stirring type, a universal stirring type. Further, a stirring type mixer such as a ribbon type, a pug type or a Nauter type mixer, a high-speed flow type mixer, a drum type mixer or a fluidized bed type mixer may be used. A shaker mixer such as a shaker can also be used.

組成物の圧縮成形方法は、通常行われている方法であれば特に制限はないが、臼と杵を使用し所望の形状に圧縮成形する方法、予めシート状に圧縮成形した後所望の形状に割断する方法でもよい。圧縮成形機としては、例えば、静圧プレス機、ブリケッティングローラー型プレス機、平滑ローラー型プレス機等のローラー式プレス機、シングルパンチ打錠機、ロータリー打錠機等の圧縮機を使用できる。
溶解または分散方法としては、通常行われる溶解、分散方法であれば特に制限はないが、ポータブルミキサー、立体ミキサー、側面ミキサーなどの1方向回転式、多軸回転式、往復反転式、上下移動式、回転+上下移動式、管路式等の撹拌翼を使用する撹拌混合方法、ラインミキサー等の噴流式撹拌混合方法、気体吹き込み式の撹拌混合方法、高剪断ホモジナイザー、高圧ホモジナイザー、超音波ホモジナイザー等を使用する混合方法でも、シェーカーを使用する容器振とう式混合方法等を用いてもよい。
The compression molding method of the composition is not particularly limited as long as it is a commonly performed method, but a method of compression molding into a desired shape using a mortar and a pestle, after having been previously compression molded into a sheet shape, into a desired shape A method of cleaving may be used. As the compression molding machine, for example, a roller press such as a hydrostatic press, a briquetting roller press, a smooth roller press, a compressor such as a single punch tablet press, or a rotary tablet press can be used. .
The dissolution or dispersion method is not particularly limited as long as it is a commonly used dissolution and dispersion method, but it is a one-way rotation type such as a portable mixer, a three-dimensional mixer, a side mixer, a multi-axis rotation type, a reciprocating inversion type, and a vertical movement type. , Rotation + up / down moving type, stirring type mixing method using pipe type, jet type stirring mixing method such as line mixer, gas blowing type stirring mixing method, high shear homogenizer, high pressure homogenizer, ultrasonic homogenizer, etc. A mixing method using a shaker or a container shaking mixing method using a shaker may be used.

上記の製造方法において使用する有機溶剤としては、医薬品に使用されるものであれば、特に制限されるものではないが、例えばメタノール、エタノールなどのアルコール類、アセトンなどのケトン類等の「医薬品添加剤事典」(薬事日報社(株)発行)に溶剤として分類されるものが挙げられ、それを単独で使用しても、2種以上を併用することも自由である。
溶解補助剤としての水溶性高分子としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリアクリル酸、カルボキシビニルポリマー、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、メチルセルロース、エチルセルロース、アラビアゴム、デンプン糊等の「医薬品添加剤事典」(薬事日報社(株)発行)に記載される水溶性高分子が挙げられ、それを単独で使用しても、2種以上を併用することも自由である。
The organic solvent used in the above production method is not particularly limited as long as it is used in pharmaceuticals. For example, alcohols such as methanol and ethanol, ketones such as acetone, etc. Those classified as solvents in “Pharmaceutical Encyclopedia” (published by Yakuji Nippo Co., Ltd.) can be mentioned. They can be used alone or in combination of two or more.
Examples of the water-soluble polymer as a solubilizer include hydroxypropylcellulose, hydroxypropylmethylcellulose, polyacrylic acid, carboxyvinyl polymer, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, ethylcellulose, gum arabic, and starch paste. Water-soluble polymers described in “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) can be mentioned. They can be used alone or in combination of two or more.

溶解補助剤としての油脂としては、例えば、ステアリン酸モノグリセリド、ステアリ ン酸トリグリセリド、ステア リン酸ショ糖エステル、流動パラフィン等のパラフィン類、カルナウバロウ,硬化ヒマシ油等の硬化油類、ヒマシ油、ステアリン酸、ステアリルアルコール、ポリエチレングリコール等の「医薬品添加剤事典」(薬事日報社(株)発行)に記載される油脂が挙げられ、それを単独で使用しても、2種以上を併用することも自由である。
溶解補助剤としての界面活性剤としては、例えば、リン脂質、グリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンポリオキシプロピレングリコール、ポリオキシエチレンソルビタンサンモノラウレート、ポリソルベート、モノオレイン酸ソルビタン、モノステアリン酸グリセリド、モノオキシエチレンソルビタンモノパルミテート、モノオキシエチレンソルビタンモノステアレート、モノオレイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ソルビタン、ラウリル硫酸ナトリウム等の「医薬品添加剤事典」(薬事日報社(株)発行)に界面活性剤として分類されるものが挙げられ、それを単独で使用しても、2種以上を併用することも自由である。
Examples of fats and oils as solubilizers include stearic acid monoglyceride, stearic acid triglyceride, stearic acid sucrose ester, paraffins such as liquid paraffin, hardened oils such as carnauba wax and hardened castor oil, castor oil, stearic acid , Oils and fats described in “Pharmaceutical Additives Encyclopedia” (published by Yakuji Nippo Co., Ltd.) such as stearyl alcohol, polyethylene glycol, etc. are listed. They can be used alone or in combination of two or more. It is.
Surfactants as solubilizers include, for example, phospholipids, glycerin fatty acid esters, polyethylene glycol fatty acid esters, sorbitan fatty acid esters, polyoxyethylene hydrogenated castor oil, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxy Ethylene nonylphenyl ether, polyoxyethylene polyoxypropylene glycol, polyoxyethylene sorbitan sun monolaurate, polysorbate, sorbitan monooleate, glyceride monostearate, monooxyethylene sorbitan monopalmitate, monooxyethylene sorbitan monostearate, Pharmaceutical additives such as polyoxyethylene sorbitan monooleate, sorbitan monopalmitate, sodium lauryl sulfate, etc. "(Yakujinipposha Corporation published) those classified as a surfactant can be mentioned, even using it alone, it is free to combination of two or more.

本発明でいう錠剤とは、本発明のセルロース無機化合物多孔質複合粒子と、1種以上の活性成分と必要に応じて他の添加剤を含んだものであって、圧縮成形により得られ得る成型体をいう。本発明のセルロース無機化合物多孔質複合粒子を配合した錠剤用組成物は、特に、複雑な工程を経ずに直接打錠法のような簡便な方法で実用硬度が得られるものであるが、必要に応じて乾式顆粒圧縮法、湿式顆粒圧縮法、後末法、予め圧縮成形した錠剤を内核とする多核錠、予め圧縮した複数の成型体を重ねて再度圧縮する多層錠の製造方法等のいずれかの製造方法を使用してもよい。   The tablet referred to in the present invention includes a cellulose inorganic compound porous composite particle of the present invention, one or more active ingredients, and other additives as required, and can be obtained by compression molding. Refers to the body. The tablet composition containing the cellulose inorganic compound porous composite particles of the present invention can be obtained with practical hardness by a simple method such as a direct tableting method without complicated steps. Depending on the dry granule compression method, wet granule compression method, latter method, multi-nuclear tablet with pre-compressed tablet as the core, multi-layer tablet manufacturing method that compresses multiple pre-compressed moldings and compresses again, etc. The manufacturing method may be used.

本発明のセルロース無機化合物多孔質複合粒子は、圧縮成形性、流動性、崩壊性の賦形剤として要求される諸物性に優れるので、特に錠剤硬度が出にくく、錠剤表面の割れ、かけ、内部からの剥離、クラック等の打錠障害を生じやすい、薬物を多種、大量に含む錠剤、例えば大衆薬、漢方等のエキス粉末配合錠剤、小型の錠剤、エッジのくびれ等の圧縮圧が均等にかかり難い箇所を有するような円形でない変形錠剤、打圧・賦形剤との摩擦により失活し易い酵素・蛋白等の薬物、コーティング顆粒含有錠剤等に有効である。また、本発明のセルロース無機化合物多孔質複合粒子は、圧縮成形性、崩壊性に優れるため、比較的低い圧縮圧で実用的な摩損度を示す錠剤が得られる。そのため、錠剤内に空隙(導水管)を維持できるので、口腔内で迅速に崩壊させるような口腔内崩壊錠にも有効である。さらに、数種の組成の成分を一段回または他段階で圧縮成型する多層錠、有核錠に関しては、上記の硬度付与、一般的な打錠障害の抑制に加え、層間の剥離、クラックを抑制する効果もある。本発明のセルロース無機化合物多孔質複合粒子は、粒子自体の分割性にも優れ、割線錠等に使用した場合には、錠剤を均一に分割し易くなる。さらに、本発明のセルロース無機化合物多孔質複合粒子は発達した多孔質構造を有し、セルロース無機化合物多孔質複合粒子自体が微粒子状薬物、懸濁液状薬物、溶液状成分の保持性に優れるため、それを使用した錠剤も固、懸濁液、溶液状成分の保持性に優れる。そのため、錠剤に懸濁液状、溶液状の成分をレイヤリング、コーティング錠剤、さらに糖、炭酸カルシウム等の成分を懸濁状態で錠剤表面に積層させる糖衣錠剤等のレイヤリング、コーティング層、糖衣層の剥離防止、補強に使用することも有効である。   Cellulose inorganic compound porous composite particles of the present invention are excellent in various physical properties required as compression moldability, fluidity, and disintegrant excipients, so that tablet hardness is particularly difficult to occur, cracking of the tablet surface, cracking, internal Tablets that are prone to tableting problems such as peeling and cracking from tablets, and tablets containing a large amount of drugs, such as tablets containing a mixture of extract powders such as popular medicines and Kampo medicines, small tablets, and constriction of the edges are applied evenly. It is effective for non-circular deformed tablets having difficult portions, drugs such as enzymes and proteins that are easily inactivated by compression and friction with excipients, and tablets containing coated granules. Moreover, since the cellulose inorganic compound porous composite particles of the present invention are excellent in compression moldability and disintegration properties, tablets showing a practical degree of wear at a relatively low compression pressure can be obtained. Therefore, since a space | gap (water conduit) can be maintained in a tablet, it is effective also in an orally disintegrating tablet which disintegrates rapidly in an oral cavity. In addition, for multi-layered tablets and dry-coated tablets that are compression-molded with several components in one step or other steps, in addition to the above-mentioned hardness imparting and suppression of general tableting problems, delamination and cracking are suppressed. There is also an effect. The cellulose inorganic compound porous composite particles of the present invention are excellent in the splitting property of the particles themselves, and when used in a scored tablet or the like, the tablets can be easily divided uniformly. Furthermore, the cellulose inorganic compound porous composite particles of the present invention have a developed porous structure, and the cellulose inorganic compound porous composite particles themselves are excellent in the retention of fine particle drugs, suspension drugs, and solution components, Tablets using it are also excellent in retention of solid, suspension, and solution components. Therefore, layering of suspension and solution components on tablets, coating tablets, and layering of sugar-coated tablets, etc. in which components such as sugar and calcium carbonate are laminated on the tablet surface in a suspended state, coating layers, sugar coating layers It is also effective to use for prevention of peeling and reinforcement.

本発明のセルロース無機化合物多孔質複合粒子は発達した多孔質構造を有し、複合粒子自体が薬物の保持性に優れるため、薬物を細孔内に担持たせた粒子をそのまま細粒として使用しても、造粒して顆粒として使用しても、それらを圧縮成形してもよい。それらの細粒、顆粒、錠剤は、さらにその上にコーティングしてもよい。担持方法は、公知の方法であれば特に制限がないが、i)微粒子状薬物と混合し、細孔内に担持させる方法、ii)粉末状薬物と高シア化で混合し、強制的に細孔内に担持させる方法、iii)一旦溶液または分散液とした薬物と混合し、細孔内に担持たせた後、必要に応じ乾燥し担持させる方法、iv)昇華性の薬物と混合し、加熱及び/または減圧することで細孔内に昇華吸着させる方法、v)加熱前または加熱中に薬物と混合し、溶融させたものを細孔内に担持させる方法のいずれの方法でもよく、単独で使用しても、2種以上を併用してもよい。   The cellulose inorganic compound porous composite particles of the present invention have a developed porous structure, and the composite particles themselves are excellent in drug retention. Therefore, the particles in which the drug is supported in the pores are directly used as fine particles. Alternatively, they may be granulated and used as granules, or they may be compression molded. Those fine granules, granules and tablets may be further coated thereon. The loading method is not particularly limited as long as it is a known method, but i) a method in which it is mixed with a fine particle drug and loaded in the pores, ii) a powdered drug is mixed with high shearing, and is forcedly finely divided. A method of supporting in the pores, iii) a method of once mixing with the drug in the form of a solution or dispersion and supporting in the pores, then drying and supporting if necessary, iv) mixing with a sublimable drug and heating And / or a method of sublimating and adsorbing in the pores by reducing the pressure, or v) a method of mixing with a drug before or during heating and supporting a molten product in the pores, Even if it uses, 2 or more types may be used together.

本発明のセルロース無機化合物多孔質複合粒子は、発達した細孔構造を有し、適度に保水性、保油性を有するので賦形剤以外に、レイヤリング、コーティング用の核粒子としても使用でき、その際には、レイヤリング、コーティング工程において、粒子間の凝集を抑制する効果がある。レイヤリング、コーティングは乾式であっても、湿式であっても効果は同様である。
上記の如く圧縮成形し、錠剤にして使用する以外に、本発明の錠剤用組成物は、固体、液状成分の保持性にも優れるため、特に流動性、耐ブロッキング性、耐凝集性を改善する目的で顆粒剤または散剤として使用してもよい。顆粒剤、散剤の製造方法としては、例えば、乾式造粒、湿式造粒、加熱造粒、噴霧乾燥、マイクロカプセル化のいずれを使用しても同様の効果が得られる。
Cellulose inorganic compound porous composite particles of the present invention have a developed pore structure and have moderate water retention and oil retention, so that they can be used as core particles for layering and coating in addition to excipients, In that case, there exists an effect which suppresses aggregation between particle | grains in a layering and a coating process. The effects of layering and coating are the same whether they are dry or wet.
Besides being compressed and molded as described above and used as a tablet, the tablet composition of the present invention is excellent in retention of solid and liquid components, and thus improves fluidity, blocking resistance, and aggregation resistance. You may use as a granule or a powder for the purpose. As a method for producing granules and powders, the same effect can be obtained by using any of dry granulation, wet granulation, heat granulation, spray drying, and microencapsulation.

本発明を実施例に基づいて説明する。ただし、本発明の実施様態は、これら実施例の記載に限定されるものではない。なお、実施例、比較例における各物性の測定方法は以下の通りである。
(1)セルロース分散粒子、水不溶性無機化合物粒子の平均粒子径(μm)
水で分散した試料を、レーザー回折式粒度分布計(堀場製作所製、商品名、LA−910)を使用し、超音波処理なし、屈折率1.20で測定した累積体積50%粒子として表した。ただし、この測定値は、以下のロータップ式で得られる乾燥粒子の粒度分布と測定原理が全く異なるため、必ずしも相関するものではない。通常、セルロース分散粒子は、細長い繊維状の形態を取るものであり、レーザー回折により測定される平均粒子径は、繊維状粒子を、その長径の80%の長さを直径とする球とみなし、その直径に対する体積頻度で測定されるものである。それに対し、ロータップ式で得られる平均粒子径は、得られた粉末を篩上で振とうさせ、分画し、粒径に対する重量頻度を測定するものであり、ここでは、粒子の分画は、繊維の短径による。従って、一般的に、繊維の長径に依存するレーザー回折式の方が、繊維の短径に依存するロータップ式に対し、大きい値となる。
コロイド状(0.1μm以下)の無機化合物を使用する際は、粒子径が小さすぎるため、本測定方法では、平均粒子径を特定できなかった。
The present invention will be described based on examples. However, the embodiment of the present invention is not limited to the description of these examples. In addition, the measuring method of each physical property in an Example and a comparative example is as follows.
(1) Average particle diameter (μm) of cellulose dispersed particles and water-insoluble inorganic compound particles
The sample dispersed with water was expressed as a 50% cumulative volume particle measured with a laser diffraction particle size distribution meter (manufactured by Horiba, trade name, LA-910), without ultrasonic treatment and with a refractive index of 1.20. . However, this measured value does not necessarily correlate because the measurement principle and the particle size distribution of the dry particles obtained by the following low tap method are completely different. Usually, the cellulose dispersed particles are in the form of an elongated fiber, and the average particle diameter measured by laser diffraction is regarded as a sphere having a diameter of 80% of the major diameter of the fibrous particle, It is measured by volume frequency with respect to the diameter. On the other hand, the average particle size obtained by the low tap method is to shake the obtained powder on a sieve, fractionate, and measure the weight frequency with respect to the particle size. Here, the particle fraction is: Depending on the minor axis of the fiber. Therefore, in general, the laser diffraction type that depends on the major axis of the fiber has a larger value than the low tap type that depends on the minor axis of the fiber.
When a colloidal (0.1 μm or less) inorganic compound is used, the average particle size could not be specified by this measurement method because the particle size was too small.

(2)セルロース分散粒子の主成分の平均L/D
(1)で測定された平均粒子径の上下約20μm(平均粒子径が20μm以下の場合は分画の下限は設定しなかった)の留分を湿式でJIS標準篩(Z8801−1987)を用いて分画し、得られた分散液をガラス板上に延ばし、乾燥させ試料を得た。試料をマイクロスコープ(キーエンス製 商品名、VH−7000)で200倍で拡大像をとり、得られた像を画像解析装置((株)インタークエスト製、商品名、Image Hyper)を用いて、粒子に隣接する長方形のうち面積が最小となる長方形の長辺と短辺の比(長辺/短辺)を粒子のL/Dとした。粒子の平均L/Dとしては少なくとも粒子100個の平均値を用いた
(2) Average L / D of main components of cellulose dispersed particles
Using a JIS standard sieve (Z8801-1987), a wet fraction of about 20 μm above and below the average particle diameter measured in (1) (the lower limit of the fraction was not set when the average particle diameter was 20 μm or less) was used. The obtained dispersion was spread on a glass plate and dried to obtain a sample. Take a magnified image of the sample with a microscope (trade name, VH-7000, manufactured by KEYENCE) at 200 times, and use the image analysis device (trade name, Image Hyper, manufactured by Interquest Co., Ltd.) to obtain particles. The ratio of the long side to the short side (long side / short side) of the rectangle having the smallest area among the rectangles adjacent to is defined as L / D of the particle. The average value of at least 100 particles was used as the average L / D of the particles.

(3)乾燥粒子の平均粒子径(μm)
粉体試料の平均粒径はロータップ式篩振盪機(平工作所製、商品名、シーブシェーカーA型)、JIS標準篩(Z8801−1987)を用いて、試料10gを10分間篩分することにより粒度分布を測定し、累積重量50%粒径として表した。
(4)粒子内細孔容積(cm/g)
島津製作所(株)製、商品名、オートポア9520型を用い、水銀ポロシメトリーにより細孔分布を求めた。測定に用いた各試料粉体は、室温で15時間減圧乾燥したものを使用した。初期圧20kPaの測定により、得られた細孔分布から、細孔径0.1〜10μmを粒子内細孔容積として計算した。
(3) Average particle diameter of dry particles (μm)
The average particle size of the powder sample is obtained by sieving 10 g of the sample for 10 minutes using a low-tap sieve shaker (trade name, sieve shaker A type, manufactured by Hira Kogakusho), JIS standard sieve (Z8801-1987). The particle size distribution was measured and expressed as a 50% cumulative weight particle size.
(4) Intraparticle pore volume (cm 3 / g)
The pore distribution was determined by mercury porosimetry using a trade name, Autopore 9520 type, manufactured by Shimadzu Corporation. Each sample powder used for the measurement was dried under reduced pressure at room temperature for 15 hours. From the pore distribution obtained by measurement at an initial pressure of 20 kPa, a pore diameter of 0.1 to 10 μm was calculated as an intraparticle pore volume.

(5)安息角(°)
杉原式安息角測定器(スリットサイズ奥行10x幅50x高さ140mm、幅50mmの位置に分度器を設置)を使用し、定量フィーダーを使用し、セルロース粉末を3g/分でスリットに投下した際の動的自流動性を測定した。
(6)セルロース試料単独の圧縮成型
各セルロース粉末を0.5g計りとり、臼(菊水製作所製、材質SUS2,3を使用)に入れ、直径1.1cmの円形平面杵(菊水製作所製、材質SUS2,3を使用)で圧力が10MPaになるまで圧縮し(アイコーエンジニアリング製、商品名、PCM−1A使用、圧縮速度は1cm/分)、目標圧で10秒間保持した後、円柱状成型体を取り出した。
(5) Angle of repose (°)
Using a Sugihara-style repose angle measuring device (slit size depth 10x width 50x height 140mm, protractor installed at a position of 50mm width), using a quantitative feeder, the movement when dropping cellulose powder into the slit at 3g / min Self-fluidity was measured.
(6) Compression molding of cellulose sample alone 0.5 g of each cellulose powder is weighed and placed in a mortar (manufactured by Kikusui Seisakusho, using material SUS2, 3), and a circular flat bowl having a diameter of 1.1 cm (manufactured by Kikusui Seisakusho, material SUS2). , 3) until the pressure becomes 10 MPa (product name, PCM-1A manufactured by Aiko Engineering, compression speed is 1 cm / min) and held at the target pressure for 10 seconds, then the cylindrical molded body is taken out It was.

(7)錠剤硬度(N)
円柱状成型体あるいは錠剤をシュロインゲル硬度計(フロイント産業(株)製、商品名、6D型を用いて、円柱状成型体あるいは錠剤の直径方向に荷重を加え、破壊しそのときの荷重を測定した。試料10個の平均値で表した。
(8)崩壊時間(秒)
第14改正日本薬局方、一般試験法、錠剤の崩壊試験法に準じて崩壊試験を行った。円柱状成型体あるいは錠剤について、崩壊試験器(富山産業(株)製、商品名、NT−40HS型、ディスクなし)で、37℃、純水中における崩壊時間として求めた。試料6個の平均値で表した。
(7) Tablet hardness (N)
Using a Schleingel hardness meter (Freund Sangyo Co., Ltd., trade name, 6D type), apply a load in the diameter direction of the cylindrical molded body or tablet, break it, and measure the load at that time. It was expressed as an average value of 10 samples.
(8) Collapse time (seconds)
A disintegration test was conducted in accordance with the 14th revised Japanese Pharmacopoeia, general test method, and disintegration test method for tablets. About a cylindrical molded object or a tablet, it calculated | required as disintegration time in 37 degreeC and a pure water with the disintegration tester (Toyama Sangyo Co., Ltd. make, brand name, NT-40HS type, no disk). The average value of 6 samples was expressed.

[実施例1]
市販のパルプ(木材由来の天然セルロース溶解パルプ)を細断したものを2kgと、0.4%の塩酸水溶液30Lを低速型攪拌機(池袋琺瑯工業(株)製、商品名、30LGL反応器)に入れ攪拌しながら、116℃、1時間加水分解し、酸不溶解性残渣を得た(セルロース分散粒子の平均粒子径は51μmであり、L/Dは3.4であった)。得られた酸不溶解性残渣および水不溶解性無機化合物として二酸化ケイ素(トクヤマ製、商品名、ファインシール、平均粒子径5μm)を、量比50/50(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が20重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを噴霧乾燥(分散液供給速度6kg/hr、入口温度180〜220℃、出口温度50〜70℃)して、セルロース無機化合物多孔質複合粒子Aを得た。セルロース無機化合物多孔質複合粒子Aの諸物性を表1に示した。
[Example 1]
2 kg of shredded commercially available pulp (wood-derived natural cellulose-dissolved pulp) and 30% of 0.4% hydrochloric acid aqueous solution in a low-speed stirrer (trade name, 30LGL reactor manufactured by Ikebukuro Sakai Kogyo Co., Ltd.) While stirring, the mixture was hydrolyzed at 116 ° C. for 1 hour to obtain an acid-insoluble residue (the average particle size of cellulose dispersed particles was 51 μm, and L / D was 3.4). Silicon dioxide (product of Tokuyama, trade name, fine seal, average particle size 5 μm) as an acid-insoluble residue and water-insoluble inorganic compound obtained in a 90 L polybucket with a quantity ratio of 50/50 (based on solid content) Introduced, pure water was added so that the total solid content concentration was 20% by weight, and neutralized with ammonia water while stirring with a 3-1 motor (pH after neutralization was 7.5 to 8.0). This was spray-dried (dispersion supply rate 6 kg / hr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose inorganic compound porous composite particles A. Table 1 shows properties of the cellulose inorganic compound porous composite particle A.

[実施例2]
実施例1で得られたセルロース酸不溶解性残渣(セルロース分散粒子の平均粒子径は51μmであり、L/Dは3.4であった)および二酸化ケイ素(トクヤマ製、商品名、ファインシール、平均粒子径5μm)を、量比30/70(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が20重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを実施例1と同様に噴霧乾燥して、セルロース無機化合物多孔質複合粒子Bを得た。セルロース無機化合物多孔質複合粒子Bの諸物性を表1に示した。
[Example 2]
Cellulose acid insoluble residue obtained in Example 1 (average particle size of cellulose dispersed particles was 51 μm, L / D was 3.4) and silicon dioxide (made by Tokuyama, trade name, fine seal, An average particle diameter of 5 μm) is introduced into a 90 L plastic bucket at a quantity ratio of 30/70 (solid content base), and pure water is added so that the total solid content concentration becomes 20% by weight, while stirring with a 3-1 motor, The mixture was neutralized with aqueous ammonia (pH after neutralization was 7.5 to 8.0), and spray-dried in the same manner as in Example 1 to obtain cellulose inorganic compound porous composite particles B. Various physical properties of the cellulose inorganic compound porous composite particles B are shown in Table 1.

[実施例3]
実施例1で得られたセルロース酸不溶解性残渣(セルロース分散粒子の平均粒子径は51μmであり、L/Dは3.4であった)および二酸化ケイ素(日本アエロジル製、商品名、Aerosil200、平均粒子径0.1μm以下)を、量比99/1(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が15重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを実施例1と同様に噴霧乾燥して、セルロース無機化合物多孔質複合粒子Cを得た。セルロース無機化合物多孔質複合粒子Cの諸物性を表1に示した。
[Example 3]
Cellulose acid insoluble residue obtained in Example 1 (average particle size of cellulose dispersed particles was 51 μm, L / D was 3.4) and silicon dioxide (manufactured by Aerosil Japan, trade name, Aerosil 200, The average particle size of 0.1 μm or less) is introduced into a 90 L plastic bucket at a volume ratio of 99/1 (solid content basis), pure water is added so that the total solid content concentration is 15% by weight, and the mixture is stirred with a 3-1 motor. While neutralizing with aqueous ammonia (pH after neutralization was 7.5 to 8.0), this was spray-dried in the same manner as in Example 1 to obtain cellulose inorganic compound porous composite particles C. Obtained. Various physical properties of the cellulose inorganic compound porous composite particles C are shown in Table 1.

[実施例4]
実施例1で得られたセルロース酸不溶解性残渣(セルロース分散粒子の平均粒子径は51μmであり、L/Dは3.4であった)およびタルク(和光純薬製、平均粒子径が5μmになるよう調製)を、量比98/2(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が15重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを実施例1と同様に噴霧乾燥して、セルロース無機化合物多孔質複合粒子Dを得た。セルロース無機化合物多孔質複合粒子Dの諸物性を表1に示した。
[Example 4]
Cellulose acid insoluble residue obtained in Example 1 (average particle size of cellulose dispersed particles was 51 μm, L / D was 3.4) and talc (manufactured by Wako Pure Chemical Industries, average particle size of 5 μm) Prepared in a quantitative ratio of 98/2 (based on solid content) into a 90 L plastic bucket, and pure water is added so that the total solid content concentration becomes 15% by weight. The mixture was neutralized with aqueous ammonia (pH after neutralization was 7.5 to 8.0) and spray-dried in the same manner as in Example 1 to obtain cellulose inorganic compound porous composite particles D. Various physical properties of the cellulose inorganic compound porous composite particles D are shown in Table 1.

[実施例5]
実施例1で得られたセルロース酸不溶解性残渣(セルロース分散粒子の平均粒子径は51μmであり、L/Dは3.4であった)およびケイ酸アルミン酸ナトリウム(和光純薬製、平均粒子径が10μmになるよう調製)を、量比50/50(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が20重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを実施例1と同様に噴霧乾燥して、セルロース無機化合物多孔質複合粒子Eを得た。セルロース無機化合物多孔質複合粒子Eの諸物性を表1に示した。
[Example 5]
Cellulose acid insoluble residue obtained in Example 1 (average particle size of cellulose dispersed particles was 51 μm, L / D was 3.4) and sodium aluminate silicate (Wako Pure Chemical Industries, average (Prepared so that the particle diameter is 10 μm) is introduced into a 90 L plastic bucket at a volume ratio of 50/50 (based on solid content), and pure water is added so that the total solid content concentration is 20% by weight. While stirring, the solution was neutralized with aqueous ammonia (pH after neutralization was 7.5 to 8.0), and spray-dried in the same manner as in Example 1 to obtain cellulose inorganic compound porous composite particles E. Got. Table 1 shows properties of the cellulose inorganic compound porous composite particle E.

[実施例6]
市販のパルプ(木材由来の天然セルロース溶解パルプ)を細断したものを2kgと、0.2%の塩酸水溶液30Lを低速型攪拌機(池袋琺瑯工業(株)製、商品名、30LGL反応器)に入れ攪拌しながら、116℃、1時間加水分解し、酸不溶解性残渣を得た(セルロース分散粒子の平均粒子径は72μmであり、L/Dは4.0であった)およびタルク(和光純薬製、平均粒子径が5μmになるよう調製)を、量比98/2(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が10重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを実施例1と同様に噴霧乾燥して、セルロース無機化合物多孔質複合粒子Fを得た。セルロース無機化合物多孔質複合粒子Fの諸物性を表1に示した。
[Example 6]
2 kg of shredded commercial pulp (natural cellulose-dissolved pulp derived from wood) and 30 L of 0.2% hydrochloric acid aqueous solution are added to a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., trade name, 30LGL reactor) While stirring, the mixture was hydrolyzed at 116 ° C. for 1 hour to obtain an acid-insoluble residue (the average particle size of the cellulose dispersed particles was 72 μm, L / D was 4.0) and talc (sum) Mitsuru Pure Chemical Co., Ltd. (prepared so that the average particle size is 5 μm) is introduced into a 90 L plastic bucket at a quantitative ratio of 98/2 (solid content base), and pure water is added so that the total solid content concentration is 10% by weight. While stirring with a 3-1 motor, the solution was neutralized with aqueous ammonia (pH after neutralization was 7.5 to 8.0) and spray-dried in the same manner as in Example 1 to obtain a cellulose inorganic compound. Porous composite particles F were obtained. Various physical properties of the cellulose inorganic compound porous composite particles F are shown in Table 1.

[比較例1]
市販のパルプ(木材由来の天然セルロース溶解パルプ)を細断したものを2kgと、0.65%の塩酸水溶液30Lを低速型攪拌機(池袋琺瑯工業(株)製、商品名、30LGL反応器)に入れ攪拌しながら、122℃、1時間加水分解し、酸不溶解性残渣を得た(セルロース分散粒子の平均粒子径は35μmであり、L/Dは1.9であった)および二酸化ケイ素(日本アエロジル製、商品名、Aerosil200、平均粒子径0.1μm以下)を、量比98/2(固形分ベース)で、90Lポリバケツに導入し、全固形分濃度が20重量%になるように純水を加え3−1モーターで攪拌しながら、アンモニア水で中和(中和後のpHは7.5〜8.0であった)し、これを実施例1と同様に噴霧乾燥して、セルロース無機化合物多孔質複合粒子Gを得た。セルロース無機化合物複合粒子Gの諸物性を表1に示した。
[Comparative Example 1]
2 kg of shredded commercial pulp (natural cellulose-dissolved pulp derived from wood) and 30 L of 0.65% hydrochloric acid aqueous solution are added to a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., trade name, 30LGL reactor) While stirring, the mixture was hydrolyzed at 122 ° C. for 1 hour to obtain an acid-insoluble residue (the average particle size of the cellulose dispersed particles was 35 μm, L / D was 1.9) and silicon dioxide ( Nippon Aerosil Co., Ltd., trade name, Aerosil 200, average particle size 0.1 μm or less) is introduced into a 90-liter plastic bucket at a volume ratio of 98/2 (solid content basis), and pure so that the total solid content concentration is 20% by weight. While adding water and stirring with a 3-1 motor, the solution was neutralized with aqueous ammonia (pH after neutralization was 7.5 to 8.0) and spray-dried in the same manner as in Example 1. Cellulose inorganic compound porous composite To give a child G. Table 1 shows properties of the cellulose inorganic compound composite particle G.

Figure 2005232260
Figure 2005232260

本発明のセルロース無機化合物多孔質複合粒子は、成形性、流動性、崩壊性に極めて優れているため、各種活性成分を含む成型体の製造において、本発明のセルロース無機化合物多孔質複合粒子を主に医薬品分野で賦形剤として使用する際に、活性成分との混合均一性に優れ、重量ばらつきが少なく、活性成分の含量均一性に優れ、十分な硬度を有し、打錠障害が少なく、摩損度が低く、崩壊性が優れる成型体が簡便な方法で提供できる。   Since the cellulose inorganic compound porous composite particles of the present invention are extremely excellent in moldability, fluidity and disintegration, the cellulose inorganic compound porous composite particles of the present invention are mainly used in the production of molded articles containing various active ingredients. When used as an excipient in the pharmaceutical field, it has excellent mixing uniformity with the active ingredient, less weight variation, excellent content uniformity of the active ingredient, sufficient hardness, and less tableting trouble, A molded product having low friability and excellent disintegration can be provided by a simple method.

実施例1〜6におけるセルロース無機化合物多孔質複合粒子A〜Fと比較例1〜3におけるセルロース無機化合物複合粒子Gの安息角と硬度(いずれも試料を0.5g秤取り、10MPaの圧縮圧でφ1.1cmの円柱状成型体とした円柱状成型体の硬度)の関係を示すグラフである。実施例は、大きい粒子内細孔を有し、成形性が高く、全体的に比較例に対し流動性と成形性のバランスが優れていることが分かる。特に、実施例3、4、6は、比較例1と同等の安息角を示し、かつ比較例を上回る硬度を示している。Repose angle and hardness of cellulose inorganic compound porous composite particles A to F in Examples 1 to 6 and cellulose inorganic compound composite particles G in Comparative Examples 1 to 3 (both weigh 0.5 g of sample at a compression pressure of 10 MPa. It is a graph which shows the relationship of the hardness of the cylindrical molded object made into the cylindrical molded object of (phi) 1.1cm. It can be seen that the examples have large intra-particle pores and high moldability, and overall the balance between fluidity and moldability is superior to the comparative examples. In particular, Examples 3, 4, and 6 show an angle of repose equivalent to that of Comparative Example 1, and show a hardness higher than that of the Comparative Example. 実施例1〜6におけるセルロース無機化合物多孔質複合粒子A〜Fと比較例1〜3におけるセルロース無機化合物複合粒子Gの硬度と崩壊時間(いずれも試料を0.5g秤取り、10MPaの圧縮圧でφ1.1cmの円柱状成型体とした円柱状成型体の硬度、崩壊時間)の関係を示すグラフである。実施例は、大きい粒子内細孔を有し、崩壊性が良好で、全体的に比較例に対し成形性と崩壊性のバランスが優れていることが分かる。特に、実施例1、3、4、5は、比較例1と同等の硬度を示し、かつ比較例を上回る崩壊性を示している。Hardness and disintegration time of cellulose inorganic compound porous composite particles A to F in Examples 1 to 6 and cellulose inorganic compound composite particles G in Comparative Examples 1 to 3 (both weigh 0.5 g of sample at a compression pressure of 10 MPa. It is a graph which shows the relationship of the hardness of a cylindrical molded object made into the cylindrical molded object of (phi) 1.1cm, and disintegration time. It can be seen that the examples have large intraparticle pores and good disintegration, and overall, the balance between moldability and disintegration is superior to the comparative examples. In particular, Examples 1, 3, 4, and 5 show the same hardness as that of Comparative Example 1 and show a disintegration that exceeds the Comparative Example.

Claims (2)

水分散状態で10〜100μm留分のL/Dが2.0以上であるセルロース分散粒子と、水不溶性の無機化合物粒子との凝集体であって、粒子内細孔容積が0.260cm/g以上であることを特徴とするセルロース無機化合物多孔質複合粒子。 An aggregate of cellulose dispersed particles having an L / D ratio of 2.0 or more of a 10 to 100 μm fraction in a water-dispersed state and water-insoluble inorganic compound particles, and the pore volume in the particles is 0.260 cm 3 / Cellulose inorganic compound porous composite particles characterized by being g or more. 1種以上の活性成分と請求項1に記載のセルロース無機化合物多孔質複合粒子を含むことを特徴とする成型体組成物。   A molding composition comprising one or more active ingredients and the cellulose inorganic compound porous composite particles according to claim 1.
JP2004041173A 2004-02-18 2004-02-18 Porous composite particle of cellulose inorganic compound Pending JP2005232260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004041173A JP2005232260A (en) 2004-02-18 2004-02-18 Porous composite particle of cellulose inorganic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004041173A JP2005232260A (en) 2004-02-18 2004-02-18 Porous composite particle of cellulose inorganic compound

Publications (1)

Publication Number Publication Date
JP2005232260A true JP2005232260A (en) 2005-09-02

Family

ID=35015545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004041173A Pending JP2005232260A (en) 2004-02-18 2004-02-18 Porous composite particle of cellulose inorganic compound

Country Status (1)

Country Link
JP (1) JP2005232260A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115198A1 (en) * 2005-04-22 2006-11-02 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
WO2012002253A1 (en) 2010-06-29 2012-01-05 旭化成ケミカルズ株式会社 Composite particles which contain both cellulose and inorganic compound
JP2012025711A (en) * 2010-07-27 2012-02-09 Ohara Yakuhin Kogyo Kk Method for producing physiologically active substance-containing particle
JP2012525448A (en) * 2009-05-01 2012-10-22 エフピーイノベイションズ Control of the iridescent wavelength of nanocrystalline cellulose films
US8349365B2 (en) 2005-09-27 2013-01-08 Asahi Kasei Chemicals Corporation Cellooligosaccharide-containing composition
WO2013180248A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
WO2013180246A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
WO2013180249A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
JP5585920B2 (en) * 2010-12-27 2014-09-10 富田製薬株式会社 Particulate preparation
JP2015063521A (en) * 2013-09-02 2015-04-09 科研製薬株式会社 Tablet with high drug content and production method thereof
WO2017094569A1 (en) * 2015-11-30 2017-06-08 旭化成株式会社 Composite particles including cellulose, inorganic compound, and hydroxypropyl cellulose
WO2021105507A1 (en) 2019-11-29 2021-06-03 Arkema France Porous polymer powder, its composition, its use and composition comprising it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127553A (en) * 1977-04-13 1978-11-07 Asahi Chem Ind Co Ltd Vehicle
JPS61207343A (en) * 1985-03-08 1986-09-13 エフ・エム・シー・コーポレーシヨン Mixture composition of microcrystal cellulose and calcium carbonate and manufacture
JPH08104650A (en) * 1994-03-01 1996-04-23 Asahi Chem Ind Co Ltd Medicine component
JPH09278801A (en) * 1996-03-29 1997-10-28 Erawan Pharmaceut Res & Lab Co Ltd Aggregated particulate starch containing silicon dioxide
JPH10500426A (en) * 1995-01-09 1998-01-13 エドワード メンデル カンパニー,インコーポレーテッド Pharmaceutical excipients with improved compressibility
JPH11152233A (en) * 1997-11-20 1999-06-08 Asahi Chem Ind Co Ltd Crystalline cellulose and its production
WO2002002643A1 (en) * 2000-07-05 2002-01-10 Asahi Kasei Kabushiki Kaisha Cellulose powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127553A (en) * 1977-04-13 1978-11-07 Asahi Chem Ind Co Ltd Vehicle
JPS61207343A (en) * 1985-03-08 1986-09-13 エフ・エム・シー・コーポレーシヨン Mixture composition of microcrystal cellulose and calcium carbonate and manufacture
JPH08104650A (en) * 1994-03-01 1996-04-23 Asahi Chem Ind Co Ltd Medicine component
JPH10500426A (en) * 1995-01-09 1998-01-13 エドワード メンデル カンパニー,インコーポレーテッド Pharmaceutical excipients with improved compressibility
JPH09278801A (en) * 1996-03-29 1997-10-28 Erawan Pharmaceut Res & Lab Co Ltd Aggregated particulate starch containing silicon dioxide
JPH11152233A (en) * 1997-11-20 1999-06-08 Asahi Chem Ind Co Ltd Crystalline cellulose and its production
WO2002002643A1 (en) * 2000-07-05 2002-01-10 Asahi Kasei Kabushiki Kaisha Cellulose powder

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115198A1 (en) * 2005-04-22 2006-11-02 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
US8771742B2 (en) 2005-04-22 2014-07-08 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
US8153157B2 (en) 2005-04-22 2012-04-10 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
JP5240822B2 (en) * 2005-04-22 2013-07-17 旭化成ケミカルズ株式会社 Porous cellulose aggregate and molded body composition thereof
US8349365B2 (en) 2005-09-27 2013-01-08 Asahi Kasei Chemicals Corporation Cellooligosaccharide-containing composition
JP2012525448A (en) * 2009-05-01 2012-10-22 エフピーイノベイションズ Control of the iridescent wavelength of nanocrystalline cellulose films
WO2012002253A1 (en) 2010-06-29 2012-01-05 旭化成ケミカルズ株式会社 Composite particles which contain both cellulose and inorganic compound
EP2589618A1 (en) * 2010-06-29 2013-05-08 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
CN102958980A (en) * 2010-06-29 2013-03-06 旭化成化学株式会社 Composite particles which contain both cellulose and inorganic compound
US8951636B2 (en) 2010-06-29 2015-02-10 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
US9446137B2 (en) 2010-06-29 2016-09-20 Asahi Kasei Chemicals Corporation Composite particles which contain both cellulose and inorganic compound
JP5759457B2 (en) * 2010-06-29 2015-08-05 旭化成ケミカルズ株式会社 Composite particles containing cellulose and inorganic compounds
EP2589618A4 (en) * 2010-06-29 2014-05-21 Asahi Kasei Chemicals Corp Composite particles which contain both cellulose and inorganic compound
JP2012025711A (en) * 2010-07-27 2012-02-09 Ohara Yakuhin Kogyo Kk Method for producing physiologically active substance-containing particle
JP5585920B2 (en) * 2010-12-27 2014-09-10 富田製薬株式会社 Particulate preparation
JP2017165972A (en) * 2012-05-31 2017-09-21 旭化成株式会社 Cellulose powder
WO2013180248A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
WO2013180249A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
JPWO2013180248A1 (en) * 2012-05-31 2016-01-21 旭化成ケミカルズ株式会社 Cellulose powder
JPWO2013180249A1 (en) * 2012-05-31 2016-01-21 旭化成ケミカルズ株式会社 Cellulose powder
JPWO2013180246A1 (en) * 2012-05-31 2016-01-21 旭化成ケミカルズ株式会社 Cellulose powder
WO2013180246A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
US9592199B2 (en) 2012-05-31 2017-03-14 Asahi Kasei Chemicals Corporation Cellulose powder
US11390690B2 (en) 2012-05-31 2022-07-19 Asahi Kasei Chemicals Corporation Cellulose powder
US10662258B2 (en) 2012-05-31 2020-05-26 Asahi Kasei Chemicals Corporation Cellulose powder
JP2018028101A (en) * 2012-05-31 2018-02-22 旭化成株式会社 Cellulose powder
JP2019059949A (en) * 2012-05-31 2019-04-18 旭化成株式会社 Cellulose powder
JP2018172699A (en) * 2012-05-31 2018-11-08 旭化成株式会社 Cellulose powder
JP2019049012A (en) * 2012-05-31 2019-03-28 旭化成株式会社 Cellulose powder
JP2015063521A (en) * 2013-09-02 2015-04-09 科研製薬株式会社 Tablet with high drug content and production method thereof
EP3385306A4 (en) * 2015-11-30 2018-10-24 Asahi Kasei Kabushiki Kaisha Composite particles including cellulose, inorganic compound, and hydroxypropyl cellulose
US10426838B2 (en) 2015-11-30 2019-10-01 Asahi Kasei Kabushiki Kaisha Composite particles including cellulose, inorganic compound, and hydroxypropyl cellulose
WO2017094569A1 (en) * 2015-11-30 2017-06-08 旭化成株式会社 Composite particles including cellulose, inorganic compound, and hydroxypropyl cellulose
WO2021105507A1 (en) 2019-11-29 2021-06-03 Arkema France Porous polymer powder, its composition, its use and composition comprising it
CN114729083A (en) * 2019-11-29 2022-07-08 阿科玛法国公司 Porous polymer powder, composition thereof, use thereof and composition comprising same

Similar Documents

Publication Publication Date Title
JP5759457B2 (en) Composite particles containing cellulose and inorganic compounds
JP5240822B2 (en) Porous cellulose aggregate and molded body composition thereof
JP4969104B2 (en) Porous cellulose aggregate and molded body composition thereof
JP4737754B2 (en) Cellulose powder
JP6623231B2 (en) Composite particles comprising cellulose, inorganic compound and hydroxypropylcellulose
JPWO2009142255A1 (en) Cellulose powder excellent in segregation preventing effect and composition thereof
JP2005232260A (en) Porous composite particle of cellulose inorganic compound
JP6751491B1 (en) Cellulose powder, its use and tablets
JP5249568B2 (en) Molding powder, compression molding composition using the same, and method for producing molding powder
JP2005255619A (en) Solid pharmaceutical preparation composition comprising sublimable active ingredient and porous cellulose particle
JP2018083923A (en) Cellulose dispersion, method for producing cellulose dispersion, molded body composition, molded body, and method for producing molded body composition
JP2005255618A (en) Solid pharmaceutical preparation composition comprising slightly water-soluble active ingredient and porous cellulose particle
JP2005255617A (en) Solid pharmaceutical preparation composition comprising fine particulate active ingredient and porous cellulose aggregate
JP2005255616A (en) Solid pharmaceutical preparation composition comprising liquid or semi-solid active ingredient and porous cellulose aggregate particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713