JP2017165972A - Cellulose powder - Google Patents

Cellulose powder Download PDF

Info

Publication number
JP2017165972A
JP2017165972A JP2017090401A JP2017090401A JP2017165972A JP 2017165972 A JP2017165972 A JP 2017165972A JP 2017090401 A JP2017090401 A JP 2017090401A JP 2017090401 A JP2017090401 A JP 2017090401A JP 2017165972 A JP2017165972 A JP 2017165972A
Authority
JP
Japan
Prior art keywords
cellulose powder
organic carbon
pure water
cellulose
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017090401A
Other languages
Japanese (ja)
Other versions
JP6383835B2 (en
Inventor
和博 大生
Kazuhiro Daibu
和博 大生
真幸 垣澤
Masayuki Kakizawa
真幸 垣澤
山下 満男
Mitsuo Yamashita
満男 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2017165972A publication Critical patent/JP2017165972A/en
Application granted granted Critical
Publication of JP6383835B2 publication Critical patent/JP6383835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • A61K9/2018Sugars, or sugar alcohols, e.g. lactose, mannitol; Derivatives thereof, e.g. polysorbates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2059Starch, including chemically or physically modified derivatives; Amylose; Amylopectin; Dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose

Abstract

PROBLEM TO BE SOLVED: To provide a cellulose powder having suppressed burnt deposit during drying, less in black debris, thereby capable of contributing percent defective of tablets and further having largely improved coloring property with medicines having an amino group at a terminal and suitable for an excipient for compression molding.SOLUTION: There is provided a cellulose powder having average polymerization degree of 100 to 300, weight average particle diameter of more than 30 μm and 250 μm or less, apparent specific volume of 2.0 cm/g or more and less than 4.0 cm/g and organic carbon amount derived from residual impurities defined by total organic carbon amount (%) during 1% NaOH extraction-all organic carbon amount (%) during pure water extraction of 0.002 to 0.060%.SELECTED DRAWING: None

Description

本発明は、医薬、食品、工業用途において使用されるセルロース粉末に関する。より詳細には、医薬用途において、乾燥時の焦げが抑制され、黒色異物が少なく、その結果錠剤の不良率低減に寄与でき、さらには末端にアミノ基を有する薬物との着色性が大きく改善された圧縮成形用賦形剤に適するセルロース粉末及びそれからなる成形体に関する。   The present invention relates to a cellulose powder used in pharmaceutical, food and industrial applications. More specifically, in pharmaceutical use, the burning at the time of drying is suppressed, there are few black foreign substances, and as a result, it can contribute to the reduction of the defective rate of tablets, and further the colorability with a drug having an amino group at the terminal is greatly improved. The present invention relates to a cellulose powder suitable for an excipient for compression molding and a molded body comprising the same.

錠剤等の製剤化においては、健康への悪影響を防止する目的で、徹底した衛生管理が行われている。錠剤に用いられる原材料は、製造工程で篩過し、錠剤中へ異物の混入自体を防ぐ方法や、最終製品の外観検査により異物が認められた錠剤を取り除くことが行われている。しかし、天然原料由来の黒点・斑点が原因で消費者クレームとなることがあり、錠剤用の原材料へは、天然原料由来の異物についても厳しく管理することが求められる。
圧縮成形用賦形剤として用いられるセルロース粉末としては以下のものが知られている。
In the formulation of tablets and the like, thorough hygiene management is performed for the purpose of preventing adverse health effects. Raw materials used for tablets are sieved during the manufacturing process to prevent foreign substances from entering the tablets themselves, and to remove tablets in which foreign substances are recognized by visual inspection of the final product. However, there may be consumer complaints due to black spots and spots derived from natural raw materials, and the raw materials for tablets are required to strictly control foreign materials derived from natural raw materials.
The following are known as cellulose powders used as excipients for compression molding.

特公昭40−26274号公報Japanese Patent Publication No.40-26274 特公昭56−2047号公報Japanese Patent Publication No.56-2047 国際公開第2006/115198号パンフレットInternational Publication No. 2006/115198 Pamphlet 特開昭57−212231号公報JP-A-57-212231

セルロース粉末中の異物は天然原料由来の不純物や、セルロース自体が変色したもの等がある。セルロース自体が変色する原因として、乾燥時の焦げが考えられるが、乾燥時の焦げを低減する方法については知られていなかった。
本発明は、乾燥時の焦げが抑制され、黒色異物が少なく、その結果錠剤の不良率低減に寄与でき、さらには末端にアミノ基を有する薬物との着色性が大きく改善された圧縮成形用賦形剤に適するセルロース粉末を提供することを目的とする。
Foreign substances in the cellulose powder include impurities derived from natural raw materials and those in which the cellulose itself is discolored. As a cause of discoloration of cellulose itself, burning at the time of drying can be considered, but a method for reducing the burning at the time of drying has not been known.
The present invention provides a compression molding composition that has reduced charring during drying, has less black foreign matter, and as a result can contribute to a reduction in the defective rate of tablets, and further has greatly improved coloring with a drug having an amino group at the terminal. The object is to provide a cellulose powder suitable for the form.

本発明者らは上述した現状に鑑み鋭意検討した結果、セルロース粉末を製造する際、特定の製造条件にすることで、乾燥時の焦げを抑制され、黒色異物が少なく、その結果錠剤の不良率低減に寄与でき、さらには末端にアミノ基を有する薬物との着色性を低減することができることを見出し、本発明を達成したものである。即ち本発明は、下記の通りである。
(1)平均重合度が100〜300、重量平均粒子径が30μmより大きく、250μm以下、見掛け比容積が2.0cm3/g以上〜4.0cm3/g未満、及び1%NaOH抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)で定義される残留不純物由来の有機炭素量が0.002〜0.060%であるセルロース粉末、
(2)粒子内細孔容積が0.1cm/g以上、0.265cm/g未満である(1)のセルロース粉末、
(3)セルロース粉末50g中に含まれる黒色の目視異物が0〜20個である(1)のセルロース粉末、
(4)(1)又は(3)のセルロース粉末を含む成形体、
(5)成形体が1つ以上の活性成分を含む錠剤である(4)の成形体、
(6)天然セルロース質物質を塩酸濃度0.05〜0.15%、加水分解温度125〜150℃、及び加水分解時間110分を超え、150分以下の条件で、又は塩酸濃度0.15%を超え〜0.4%、加水分解温度125〜150℃、及び加水分解時間50〜150分の条件で加水分解し、次いで得られた分散液を入口温度150〜300℃で噴霧乾燥することにより、平均重合度100−300、重量平均粒子径30μmより大きく、250μm以下、見掛け比容積2.0cm3/g以上〜4.0cm3/g未満、及び1%NaOH抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)で定義される残留不純物由来の有機炭素量が0.002〜0.060%のセルロース粉末を得る、該セルロース粉末の製造方法、
(7)1つ以上の活性成分と、糖類、糖アルコール類、デンプン類、崩壊剤から選ばれる1つ以上の添加剤と、セルロース粉末とを含む成形体であって、硬度が50〜100N、引張強度が0.1〜5.5MPa、摩損度が0〜0.5%、アセトン中での成形体直径膨潤率が0〜3.3%である成形体、
(8)セルロース粉末を5〜90重量%含む(7)の成形体、
(9)成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量が0.002〜0.060%である(7)又は(8)の成形体。
(10)成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出されるセルロース粉末中の残留不純物由来の全有機炭素量が0.002〜0.060%である(7)又は(8)の成形体。
As a result of intensive studies in view of the above-mentioned present situation, the present inventors have made specific production conditions when producing cellulose powder, so that scorching during drying is suppressed and there are few black foreign substances, resulting in a defective rate of tablets. The present invention has been achieved by finding that it can contribute to reduction, and that coloration with a drug having an amino group at the terminal can be reduced. That is, the present invention is as follows.
(1) The average degree of polymerization is 100 to 300, the weight average particle size is larger than 30 μm, 250 μm or less, the apparent specific volume is 2.0 cm 3 / g to less than 4.0 cm 3 / g, and 1% NaOH is extracted. Total organic carbon amount (%)-cellulose powder having an organic carbon amount derived from residual impurities defined by total organic carbon amount (%) at the time of extraction with pure water of 0.002 to 0.060%,
(2) pore volume within a particle is 0.1 cm 3 / g or more, the cellulose powder of less than 0.265 cm 3 / g (1),
(3) The cellulose powder according to (1), wherein 0 to 20 black visual foreign matters are contained in 50 g of the cellulose powder.
(4) A molded article containing the cellulose powder of (1) or (3),
(5) The molded body according to (4), wherein the molded body is a tablet containing one or more active ingredients.
(6) Natural cellulosic material with a hydrochloric acid concentration of 0.05 to 0.15%, a hydrolysis temperature of 125 to 150 ° C., and a hydrolysis time exceeding 110 minutes and 150 minutes or less, or a hydrochloric acid concentration of 0.15% To 0.4%, a hydrolysis temperature of 125 to 150 ° C., and a hydrolysis time of 50 to 150 minutes, and then the resulting dispersion is spray dried at an inlet temperature of 150 to 300 ° C. Average polymerization degree 100-300, weight average particle diameter larger than 30 μm, 250 μm or less, apparent specific volume 2.0 cm 3 / g to less than 4.0 cm 3 / g, and total organic carbon amount during 1% NaOH extraction ( %)-A method for producing the cellulose powder, wherein a cellulose powder having a residual impurity-derived organic carbon content of 0.002 to 0.060% defined by the total organic carbon content (%) at the time of extraction with pure water is obtained.
(7) A molded article comprising one or more active ingredients, one or more additives selected from sugars, sugar alcohols, starches, and disintegrants, and cellulose powder, having a hardness of 50 to 100 N, A molded article having a tensile strength of 0.1 to 5.5 MPa, a friability of 0 to 0.5%, and a molded article diameter swelling ratio in acetone of 0 to 3.3%;
(8) A molded article according to (7) containing 5 to 90% by weight of cellulose powder,
(9) The total organic carbon content derived from residual impurities in the molded product residue extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing is 0.002 to 0.060% (7) or The molded article of (8).
(10) The total organic carbon amount derived from residual impurities in the cellulose powder extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing of the molded body is 0.002 to 0.060% (7) or The molded article of (8).

本発明のセルロース粉末は、乾燥時の焦げが抑制され、黒色異物が少なく、その結果錠剤の不良率低減に寄与でき、さらには末端にアミノ基を有する薬物との着色性を低減する効果を有する。   The cellulose powder of the present invention has the effect of suppressing burning at the time of drying, less black foreign matter, and consequently contributing to the reduction of the defective rate of tablets, and further reducing the colorability with a drug having an amino group at the terminal. .

以下本発明について詳細に説明する。
本発明のセルロース粉末は、その平均重合度が100−300であり、好ましくは150−300、さらに好ましくは180−250である。平均重合度が100以上とすることで成形性が向上するので好ましく、また300以下とすることで繊維性が発現することなく粉体の流動性及び崩壊性も優れるので好ましい。平均重合度が100−300の場合は成形性、崩壊性、流動性のバランスが特に優れるので好ましい。
The present invention will be described in detail below.
The cellulose powder of the present invention has an average degree of polymerization of 100-300, preferably 150-300, more preferably 180-250. It is preferable that the average degree of polymerization is 100 or more because moldability is improved, and it is preferable that the average degree of polymerization is 300 or less because the fluidity and disintegration of the powder are excellent without exhibiting fiber properties. An average degree of polymerization of 100-300 is preferred because the balance of moldability, disintegration, and fluidity is particularly excellent.

本発明のセルロース粉末は重量平均粒径が30μmより大きく、250μm以下である必要がある。30μm超えとすることで、付着凝集性が増すことなくハンドリングが向上し、さらに流動性も優れ、また250μm以下とすることで活性成分との分離偏析が起こることもなく,製剤の含量均一性を悪化させる恐れもないので好ましい。好ましくは、30μmより大きく、180μm以下である。   The cellulose powder of the present invention needs to have a weight average particle size of more than 30 μm and 250 μm or less. When the thickness exceeds 30 μm, handling is improved without increasing adhesion and cohesion, fluidity is excellent, and when the thickness is 250 μm or less, separation and segregation from the active ingredient does not occur, and the content uniformity of the preparation is improved. This is preferable because there is no risk of deterioration. Preferably, it is larger than 30 μm and 180 μm or less.

本発明のセルロース粉末は、見掛け比容積が2.0cm3/g以上、4.0cm3/g未満である必要がある。見掛け比容積が2.0cm3/g以上であると成形性が向上し、4.0cm3/g未満であると崩壊性、流動性が向上するので好ましい。また繊維性が現れることなく弾性回復しにくいため、成形性に優れる傾向にある。好ましくは2.2−3.8cm3/g、特に好ましくは2.2−2.9cm3/gである。 Cellulose powder of the present invention has an apparent specific volume of 2.0 cm 3 / g or more, needs to be less than 4.0 cm 3 / g. When the apparent specific volume is 2.0 cm 3 / g or more, the moldability is improved, and when it is less than 4.0 cm 3 / g, the disintegration property and the fluidity are improved. In addition, since it is difficult to recover elasticity without exhibiting fiber properties, it tends to be excellent in moldability. Preferably it is 2.2-3.8 cm < 3 > / g, Most preferably, it is 2.2-2.9 cm < 3 > / g.

本発明のセルロース粉末は、タッピング見掛け密度が0.30−0.60g/cm3であることが好ましい。さらに好ましくは0.35−0.58g/cm3、特に好ましくは0.4−0.55g/cm3である。タッピング見掛け密度が0.60g/cm以下だと成形性が向上するため好ましい。 The cellulose powder of the present invention preferably has a tapping apparent density of 0.30-0.60 g / cm 3 . More preferably 0.35-0.58g / cm 3, particularly preferably 0.4-0.55g / cm 3. A tapping apparent density of 0.60 g / cm 3 or less is preferable because moldability is improved.

本発明のセルロース粉末は含量均一性の観点より、粉体の流動性の指標となる安息角が36°以上44°未満であることが好ましい。さらに好ましくは36°〜42°である。   The cellulose powder of the present invention preferably has an angle of repose of 36 ° or more and less than 44 °, which is an index of the fluidity of the powder, from the viewpoint of content uniformity. More preferably, it is 36 degrees-42 degrees.

本発明のセルロース粉末は実質的に粒子内細孔容積を持たないことが好ましく、WO2006/115198の多孔質セルロース凝集体とは異なるものである。該公報の測定法に準じて測定した本発明のセルロース粉末の粒子内細孔容積の値は、0.1cm/g以上、0.265cm/g未満であることが好ましい。実質的に粒子内細孔を持たなくさせることで、薬物との接触面積が減少し、末端にアミノ基を有する薬物との着色がしにくくなるため好ましい。 The cellulose powder of the present invention preferably has substantially no intraparticle pore volume, which is different from the porous cellulose aggregate of WO 2006/115198. The value of pore volume within a particle of the cellulose powder of the present invention measured according to the publication of the assay, 0.1 cm 3 / g or more, preferably less than 0.265 cm 3 / g. By substantially eliminating the intraparticle pores, the contact area with the drug is reduced, and coloring with the drug having an amino group at the terminal becomes difficult, which is preferable.

本発明のセルロース粉末は、セルロース原料に残留する不純物に由来する有機炭素量が0.002%−0.060%である必要がある。0.060%以下とすることで乾燥時にセルロース粒子が焦げにくくなり好ましい。0.002%以上とすることで末端にアミノ基を有する薬物との反応による着色が低減するため好ましい。   In the cellulose powder of the present invention, the amount of organic carbon derived from impurities remaining in the cellulose raw material needs to be 0.002% -0.060%. By setting it to 0.060% or less, the cellulose particles are less likely to be burned during drying, which is preferable. The content of 0.002% or more is preferable because coloring due to a reaction with a drug having an amino group at the terminal is reduced.

本発明でいう残留不純物由来の有機炭素量とは、セルロース粉末(5g)中から純水(80mL)により抽出される全有機炭素(TOC)量と、セルロース粉末(5g)中から1%水酸化ナトリウム水溶液(80mL)により抽出されるTOC量との差で定義する。1%水酸化ナトリウム水溶液で抽出されるTOC量は、セルロース粉末中に含まれるアルカリ可溶性成分と純水可溶性成分の量を反映する。このTOC量から、純水で抽出されるTOC量、すなわち純水溶性成分を差し引くと、セルロース粉末中のアルカリ可溶性成分が求められ、これがすなわち、残留不純物由来の有機炭素量と相関する。   The amount of organic carbon derived from residual impurities in the present invention refers to the total amount of organic carbon (TOC) extracted from cellulose powder (5 g) with pure water (80 mL), and 1% hydroxylation from cellulose powder (5 g). It is defined as the difference from the amount of TOC extracted with an aqueous sodium solution (80 mL). The amount of TOC extracted with a 1% sodium hydroxide aqueous solution reflects the amount of alkali-soluble components and pure water-soluble components contained in the cellulose powder. By subtracting the TOC amount extracted with pure water, that is, the pure water-soluble component, from this TOC amount, the alkali-soluble component in the cellulose powder is obtained, and this correlates with the amount of organic carbon derived from residual impurities.

本発明のセルロース粉末は、本発明で定義する残留不純物由来の有機炭素量が特定範囲であることから、乾燥時の熱で焦げる成分及び、末端にアミノ基を有する薬物と反応する成分の両方が低減しているため、乾燥時に焦げにくく、その結果末端にアミノ基を有する薬物との反応性を低減できる。残留不純物由来の有機炭素量は、セルロース粉末中のごく微量な成分ではあるが、驚くべきことに、この量が多いほど、乾燥時に焦げやすいことを見出した。
また同時に、残留不純物由来の有機炭素量が少ないものは、末端にアミノ基を有する薬物と反応して着色しやすくなることも見出した。これはおそらく、残留不純物由来の有機炭量が少ないものは、加水分解時に抽出される成分が多いということを意味するが、この抽出成分が微量ではあるが洗浄後も個々のセルロース粉末粒子の表面に残存しており、加熱によりこの抽出成分が変色し薬物との反応性を高めるためと思われる。残留不純物由来の有機炭素量を本発明の範囲内とすると、常用されている噴霧乾燥温度150〜300℃におけるセルロース粒子の焦げやすさが大幅に低減し、焦げ異物の発生を抑制できる。
以上より、残留不純物由来の有機炭素量を本発明で規定する範囲内とすると、乾燥時の焦げを抑制できかつ、末端にアミノ基を有する薬物との着色性を劇的に改善できることを見出した。末端にアミノ基を有する薬物との着色性は、黒色異物数が多いほど高くなったが、これは乾燥により焦げたものも末端にアミノ基を有する薬物との反応に関与しているものと思われる。
In the cellulose powder of the present invention, the amount of organic carbon derived from residual impurities as defined in the present invention is within a specific range, so both the component that burns with heat during drying and the component that reacts with a drug having an amino group at the terminal are included. Since it is reduced, it is difficult to burn when dried, and as a result, the reactivity with a drug having an amino group at the terminal can be reduced. The amount of organic carbon derived from residual impurities is a very small amount of components in the cellulose powder, but surprisingly, it has been found that the larger the amount, the more likely it is burnt during drying.
At the same time, it has also been found that those having a small amount of organic carbon derived from residual impurities are likely to be colored by reacting with a drug having an amino group at the terminal. This probably means that a small amount of organic charcoal derived from residual impurities means that many components are extracted during hydrolysis. This is thought to be due to discoloration of the extracted component by heating and increasing the reactivity with the drug. When the amount of organic carbon derived from residual impurities is within the range of the present invention, the ease of scorching of cellulose particles at a spray drying temperature of 150 to 300 ° C., which is commonly used, is greatly reduced, and the occurrence of scorching foreign matter can be suppressed.
From the above, it was found that when the amount of organic carbon derived from residual impurities is within the range specified in the present invention, scorching during drying can be suppressed, and coloring with a drug having an amino group at the terminal can be dramatically improved. . The coloration with drugs having an amino group at the end increased as the number of black foreign bodies increased, but this seems to be related to the reaction with the drug having an amino group at the end even when burned by drying. It is.

本発明のセルロース粉末は、天然セルロース質物質を、従来よりも高い温度で加水分解することにより得られる。すなわち、塩酸濃度0.05〜0.15%、反応温度125−150℃、所定の反応温度に到達後、110分を超え−150分間以下で加水分解するか、又は塩酸濃度0.15%を超え〜0.4%、反応温度125−150℃、所定の反応温度に到達後、50分−150分間以下で加水分解することにより、加水分解時にセルロース粒子中から熱水で抽出される残留不純物由来の有機炭素量と相関するセルロース粒子内部の不純物を増大させることができ、その後の洗浄で抽出された該不純物が除去されるため、乾燥後にセルロース粒子内に残留する不純物由来の有機炭素量を低減することが可能となる。   The cellulose powder of the present invention can be obtained by hydrolyzing a natural cellulosic material at a higher temperature than before. That is, after reaching a predetermined reaction temperature with a hydrochloric acid concentration of 0.05 to 0.15%, a reaction temperature of 125 to 150 ° C. Exceeding to 0.4%, reaction temperature 125-150 ° C. After reaching the predetermined reaction temperature, hydrolysis is performed for 50 minutes to 150 minutes or less, so that residual impurities are extracted from the cellulose particles with hot water during hydrolysis. Impurities inside the cellulose particles that correlate with the amount of organic carbon derived from can be increased, and the impurities extracted in the subsequent washing are removed, so the amount of organic carbon derived from impurities remaining in the cellulose particles after drying is reduced. It becomes possible to reduce.

加水分解温度について、詳細に検討した結果、驚くべきことに、塩酸濃度0.05〜0.15%の場合は加水分解温度125℃以上かつ加水分解時間が110分を超えるか、または、塩酸濃度0.15超え〜0.4%の場合は加水分解温度125℃以上かつ加水分解時間が50〜150分であると、乾燥後にセルロース粒子内に残留する残留不純物由来の有機炭素量が劇的に減少し、本発明で規定する特定範囲の残留不純物由来の有機炭素量となることを見出した。これはセルロース粒子内部の残留不純物由来の有機炭素量と相関する不純物が、125℃以上においては、本願で規定する範囲内において塩酸濃度が高いほど、又は反応時間が長いほど、抽出されやすくなるためと思われる。すなわち、125℃以上においては、塩酸濃度が高いほど、又は反応時間が長いほど、乾燥後にセルロース粒子内に残留する残留不純物由来の有機炭素量が低減していくため、これらを調整することで残留不純物由来の有機炭素量を本願で規定する特定範囲内とすることができる。   As a result of examining the hydrolysis temperature in detail, surprisingly, when the hydrochloric acid concentration is 0.05 to 0.15%, the hydrolysis temperature is 125 ° C. or more and the hydrolysis time exceeds 110 minutes, or the hydrochloric acid concentration In the case of more than 0.15 to 0.4%, when the hydrolysis temperature is 125 ° C. or more and the hydrolysis time is 50 to 150 minutes, the amount of organic carbon derived from residual impurities remaining in the cellulose particles after drying is dramatically increased. It was found that the amount of organic carbon derived from residual impurities in a specific range specified in the present invention was reduced. This is because impurities that correlate with the amount of organic carbon derived from residual impurities inside the cellulose particles are more easily extracted at 125 ° C. or higher as the hydrochloric acid concentration is higher or the reaction time is longer within the range specified in the present application. I think that the. That is, at 125 ° C. or higher, the higher the concentration of hydrochloric acid or the longer the reaction time, the lower the amount of organic carbon derived from residual impurities remaining in the cellulose particles after drying. The amount of organic carbon derived from impurities can be within a specific range defined in the present application.

上記の加水分解条件下で、攪拌処理を施すことにより、加水分解後のセルロース分散液の体積平均粒子径を70−150μmとすることが好ましい。該セルロース分散液を脱水後、純水で数回洗浄し、アルカリで中和した後、再び脱水することにより、固形分20−50重量%のセルロースケークとすることが好ましい。   It is preferable that the volume average particle diameter of the cellulose dispersion after hydrolysis is 70 to 150 μm by performing a stirring treatment under the above hydrolysis conditions. The cellulose dispersion is dehydrated, washed several times with pure water, neutralized with alkali, and then dehydrated again to obtain a cellulose cake having a solid content of 20 to 50% by weight.

本発明のセルロース粉末は、上記セルロースケークを純水で固形分10−25重量%のセルローススラリーとし、攪拌処理等により、乾燥前のセルロース分散液の体積平均粒子径を40μm以上、50μm未満とした後、噴霧乾燥することが好ましい。乾燥前のセルロース分散液の体積平均粒子径が40μm以上だと、乾燥後のセルロース粉末の流動性が向上し、50μm未満だと繊維性が発現しにくく、流動性が向上する。   In the cellulose powder of the present invention, the cellulose cake is made into a cellulose slurry having a solid content of 10-25% by weight with pure water, and the volume average particle size of the cellulose dispersion before drying is set to 40 μm or more and less than 50 μm by stirring treatment or the like. Thereafter, spray drying is preferred. When the volume average particle size of the cellulose dispersion before drying is 40 μm or more, the fluidity of the cellulose powder after drying is improved, and when it is less than 50 μm, the fiber property is hardly expressed and the fluidity is improved.

噴霧乾燥温度は常用される入口温度150〜300℃が使用できる。入口温度が高いとセルロース粒子が焦げやすくなる方向であるが、本発明のセルロース粉末はこの温度範囲においても、従来のセルロース粉末より焦げにくいという特性を有する。   As the spray drying temperature, a commonly used inlet temperature of 150 to 300 ° C. can be used. Although the cellulose particles tend to burn easily when the inlet temperature is high, the cellulose powder of the present invention has a characteristic that it is harder to burn than the conventional cellulose powder even in this temperature range.

反応中或いはその後工程における攪拌は、セルロース繊維を短くする作用があり、攪拌力を強くすると粒子の体積平均粒子径を小さくでき、攪拌力を弱くすると体積平均粒子径を大きくできる。所望の体積平均粒子径となるよう、適宜、攪拌力を制御することで、セルロース粒子の体積平均粒子径を本発明の範囲内とすることが可能である。   Agitation during the reaction or in the subsequent step has an effect of shortening the cellulose fiber. When the stirring force is increased, the volume average particle diameter of the particles can be decreased, and when the stirring force is decreased, the volume average particle diameter can be increased. By appropriately controlling the stirring force so as to obtain a desired volume average particle diameter, the volume average particle diameter of the cellulose particles can be within the range of the present invention.

攪拌力の大きさは、攪拌槽の大きさ、形状、攪拌翼の大きさ、形状、回転数、邪魔板数等を変更することで制御可能である。   The magnitude of the stirring force can be controlled by changing the size and shape of the stirring tank, the size and shape of the stirring blade, the number of rotations, the number of baffle plates, and the like.

反応後、洗浄、pH調整した乾燥前のセルロース分散液のIC(電気伝導度)は200μS/cm以下であることが好ましい。200μS/cm以下であれば、粒子の水中での分散性が向上し、崩壊性も良好となる。好ましくは150μS/cm以下、さらに好ましくは100μS/cm以下である。セルロース分散液を調製する際には水の他、本件発明の効果を損なわない範囲であれば、有機溶媒を少量含む水であってもよい。   The IC (electric conductivity) of the cellulose dispersion before drying after washing and adjusting the pH is preferably 200 μS / cm or less. If it is 200 μS / cm or less, the dispersibility of the particles in water will be improved, and the disintegration will be good. Preferably it is 150 μS / cm or less, more preferably 100 μS / cm or less. When preparing the cellulose dispersion, water containing a small amount of an organic solvent may be used as long as the effect of the present invention is not impaired in addition to water.

本発明でいう天然セルロース質物質とは、木材、竹、コットン、ラミー等、セルロースを含有する天然物由来の植物性繊維質物質であり、セルロースI型の結晶構造を有しているものであることが好ましい。製造収率の観点からはこれらを精製したパルプであることが特に好ましく、α−セルロース含量が85%以上であることが望ましい。   The natural cellulosic material referred to in the present invention is a vegetable fiber material derived from natural products containing cellulose, such as wood, bamboo, cotton, ramie, etc., and has a cellulose I type crystal structure. It is preferable. From the viewpoint of production yield, it is particularly preferable that these are refined pulps, and the α-cellulose content is desirably 85% or more.

本発明のセルロース粉末は、吸水能が1.8−3.0cm/gであることが好ましい。1.8cm/g以上だと成形性も向上するため好ましく、3.0cm/g以下だと繊維性が発現しにくく、流動性、崩壊性が良好となるため好ましい。 The cellulose powder of the present invention preferably has a water absorption capacity of 1.8-3.0 cm 3 / g. When it is 1.8 cm 3 / g or more, the moldability is improved, and it is preferable, and when it is 3.0 cm 3 / g or less, the fiber property is hardly expressed, and the fluidity and disintegration property are preferable.

本発明のセルロース粉末は、セルロース粉末50g中に含まれる黒色の目視異物が0〜20個であることが好ましい。異物数が少ないほど、末端にアミノ基を有する薬物との反応性を低減するので好ましい。   The cellulose powder of the present invention preferably has 0 to 20 black visual foreign substances contained in 50 g of cellulose powder. A smaller number of foreign substances is preferable because reactivity with a drug having an amino group at the terminal is reduced.

本発明でいう成形体とは、本発明のセルロース粉末を含み、混合、攪拌、造粒、打錠、整粒、乾燥等の公知の方法を適宜選択して加工した成形物をいう。成形体の例としては、医薬品に用いる場合、錠剤、散剤、細粒剤、顆粒剤、エキス剤、丸剤、カプセル剤、トローチ剤、パップ剤の固形製剤等が挙げられる。医薬品に限らず、菓子、健康食品、食感改良剤、食物繊維強化剤等の食品、固形ファンデーション、浴用剤、動物薬、診断薬、農薬、肥料、セラミックス触媒等に利用されるものも本発明に含まれる。   The molded product as used in the present invention refers to a molded product containing the cellulose powder of the present invention and processed by appropriately selecting a known method such as mixing, stirring, granulation, tableting, sizing and drying. Examples of molded articles include solid preparations such as tablets, powders, fine granules, granules, extracts, pills, capsules, troches, and poultices when used for pharmaceuticals. The present invention includes not only pharmaceuticals but also foods such as confectionery, health foods, texture improvers, dietary fiber reinforcing agents, solid foundations, bath preparations, animal drugs, diagnostic agents, agricultural chemicals, fertilizers, ceramic catalysts, etc. include.

本発明でいう成形体は、本発明のセルロース粉末を含有していればよくその量は特に限定しないが、好ましくは成形体重量に対して1−99.9重量%である。1重量%以上では成形体の磨損や破壊を防止でき、十分な物性を付与できる。好ましくは、3重量%以上、好ましくは5重量%以上である。99.9重量%以下であれば、活性成分の十分な効能が得られる。   The amount of the molded body referred to in the present invention is not particularly limited as long as it contains the cellulose powder of the present invention, but it is preferably 1-99.9% by weight based on the weight of the molded body. If it is 1% by weight or more, the molded product can be prevented from being worn or destroyed, and sufficient physical properties can be imparted. Preferably, it is 3% by weight or more, preferably 5% by weight or more. If it is 99.9% by weight or less, sufficient efficacy of the active ingredient can be obtained.

さらに、本発明でいう成形体は、本発明のセルロース粉末の他に、必要に応じて活性成分、崩壊剤、結合剤、流動化剤、滑沢剤、矯味剤、香料、着色料、甘味剤、界面活性剤等の他の添加剤を含有することも自由である。   In addition to the cellulose powder of the present invention, the molded product referred to in the present invention includes an active ingredient, a disintegrant, a binder, a fluidizing agent, a lubricant, a corrigent, a fragrance, a colorant, and a sweetener as necessary. It is also free to contain other additives such as surfactants.

崩壊剤としては、クロスカルメロースナトリウム、カルメロース、カルメロースカルシウム、カルメロースナトリウム、低置換度ヒドロキシプロピルセルロース等のセルロース類、カルボキシメチルスターチナトリウム、ヒドロキシプロピルスターチ、コメデンプン、コムギデンプン、トウモロコシデンプン、バレイショデンプン、部分アルファー化デンプン等のデンプン類、クロスポビドン等が挙げられる。   Disintegrants include croscarmellose sodium, carmellose, carmellose calcium, carmellose sodium, celluloses such as low-substituted hydroxypropylcellulose, carboxymethyl starch sodium, hydroxypropyl starch, rice starch, wheat starch, corn starch, potato Starches, starches such as partially pregelatinized starch, crospovidone and the like can be mentioned.

結合剤としては、白糖、ブドウ糖、乳糖、果糖などの糖類、マンニトール、キシリトール、マルチトール、エリスリトール、ソルビトール等の糖アルコール類、ゼラチン、プルラン、カラギーナン、ローカストビーンガム、寒天、コンニャクマンナン、キサンタンガム、タマリンドガム、ペクチン、アルギン酸ナトリウム、アラビアガム等の水溶性多糖類、結晶セルロース、粉末セルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース等のセルロース類、アルファー化デンプン、デンプン糊等のデンプン類、ポリビニルピロリドン、カルボキシビニルポリマー、ポリビニルアルコール等の合成高分子類等、リン酸水素カルシウム、炭酸カルシウム、合成ヒドロタルサイト、ケイ酸アルミン酸マグネシウム等の無機類等が挙げられる。   Binders include sugars such as sucrose, glucose, lactose, fructose, sugar alcohols such as mannitol, xylitol, maltitol, erythritol, sorbitol, gelatin, pullulan, carrageenan, locust bean gum, agar, konjac mannan, xanthan gum, tamarind Water-soluble polysaccharides such as gum, pectin, sodium alginate, gum arabic, crystalline cellulose, powdered cellulose, celluloses such as hydroxypropylcellulose, hydroxypropylmethylcellulose, methylcellulose, starches such as pregelatinized starch and starch paste, polyvinylpyrrolidone, Synthetic polymers such as carboxyvinyl polymer and polyvinyl alcohol, calcium hydrogen phosphate, calcium carbonate, synthetic hydrotalcite, aluminate silicate Inorganic acids such as Neshiumu like.

流動化剤としては含水二酸化ケイ素、軽質無水ケイ酸等が挙げられる。滑沢剤としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸、ショ糖脂肪酸エステル、タルク等が挙げられる。矯味剤としてはグルタミン酸、フマル酸、コハク酸、クエン酸、クエン酸ナトリウム、酒石酸、リンゴ酸、アスコルビン酸、塩化ナトリウム、l−メントールなどが挙げられる。   Examples of the fluidizing agent include hydrous silicon dioxide and light anhydrous silicic acid. Examples of the lubricant include magnesium stearate, calcium stearate, stearic acid, sucrose fatty acid ester, talc and the like. Examples of the corrigent include glutamic acid, fumaric acid, succinic acid, citric acid, sodium citrate, tartaric acid, malic acid, ascorbic acid, sodium chloride, 1-menthol and the like.

香料としてはオレンジ、バニラ、ストロベリー、ヨーグルト、メントール、ウイキョウ油、ケイヒ油、トウヒ油、ハッカ油等の油類、緑茶末等が挙げられる。着色剤としては食用赤色3号、食用黄色5号、食用青色1号等の食用色素、銅クロロフィリンナトリウム、酸化チタン、リボフラビンなどが挙げられる。甘味剤としてはアスパルテーム、サッカリン、グリチルリチン酸二カリウム、ステビア、マルトース、マルチトール、水飴、アマチャ末等が挙げられる。界面活性剤としては、リン脂質、グリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン硬化ヒマシ油等が挙げられる。   Examples of the fragrances include oranges, vanilla, strawberry, yogurt, menthol, fennel oil, cinnamon oil, spruce oil, mint oil, and green tea powder. Examples of the colorant include food colors such as Food Red No. 3, Food Yellow No. 5, and Food Blue No. 1, copper chlorophyllin sodium, titanium oxide, riboflavin, and the like. Examples of sweeteners include aspartame, saccharin, dipotassium glycyrrhizinate, stevia, maltose, maltitol, starch syrup, and amacha powder. Examples of the surfactant include phospholipid, glycerin fatty acid ester, polyethylene glycol fatty acid ester, sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil, and the like.

また本発明でいう活性成分とは、医薬品薬効成分、農薬成分、肥料成分、飼料成分、食品成分、化粧品成分、色素、香料、金属、セラミックス、触媒、界面活性剤等をいい、粉体状、結晶状、油状、溶液状などいずれの形状でもよい。また溶出制御、苦味低減等の目的でコーティングを施したものであってもよい。本発明のセルロース粉末は特に、不快な臭気を有する活性成分に対して有効である。   The active ingredient as used in the present invention means pharmaceutical medicinal ingredients, agricultural chemical ingredients, fertilizer ingredients, feed ingredients, food ingredients, cosmetic ingredients, pigments, fragrances, metals, ceramics, catalysts, surfactants, etc., in powder form, It may be any shape such as crystalline, oily, or solution. Further, it may be coated for the purpose of elution control, bitterness reduction and the like. The cellulose powder of the present invention is particularly effective for active ingredients having an unpleasant odor.

例えば医薬品薬効成分としては、例えば、アスピリン、アスピリンアルミニウム、アセトアミノフェン、エテンザミド、サザピリン、サリチルアミド、ラクチルフェネチジン、塩酸イソチベンジル、塩酸ジフェニルピラリン、塩酸ジフェンヒドラミン、塩酸ジフェテロール、塩酸トリプロリジン、塩酸トリペレナミン、塩酸トンジルアミン、塩酸フェネタジン、塩酸メトジラジン、サリチル酸ジフェンヒドラミン、ジフェニルジスルホン酸カルビノキサミン、酒石酸アリメマジン、タンニン酸ジフェンヒドラミン、テオクル酸ジフェニルピラリン、ナパジシル酸メブヒドロリン、プロメタジンメチレン二サリチル酸塩、マレイン酸カルビノキサミン、dl−マレイン酸クロルフェニラミン、d−マレイン酸クロルフェニラミン、リン酸ジフェテロール、塩酸アロクラミド、塩酸クロペラスチン、クエン酸ペントキシベリン(クエン酸カルベタペンタン)、クエン酸チペピジン、ジブナートナトリウム、臭化水素酸デキストロメトルファン、デキストロメトルファン・フェノールフタリン酸、ヒベンズ酸チペピジン、フェンジゾ酸クロペラスチン、リン酸コデイン、リン酸ジヒドロコデイン、塩酸ノスカピン、ノスカピン、dl−塩酸メチルエフェドリン、dl−メチルエフェドリンサッカリン塩、グアヤコールスルホン酸カリウム、グアイフェネシン、安息香酸ナトリウムカフェイン、カフェイン、無水カフェイン、ビタミンB1及びその誘導体並びにそれらの塩類、ビタミンB2及びその誘導体並びにそれらの塩類、ビタミンC及びその誘導体並びにそれらの塩類、ヘスペリジン及びその誘導体並びにそれらの塩類、ビタミンB6及びその誘導体並びにそれらの塩類、ニコチン酸アミド、パントテン酸カルシウム、アミノ酢酸、ケイ酸マグネシウム、合成ケイ酸アルミニウム、合成ヒドロタルサイト、酸化マグネシウム、ジヒドロキシアルミニウム・アミノ酢酸塩(アルミニウムグリシネート)、水酸化アルミニウムゲル(乾燥水酸化アルミニウムゲルとして)、乾燥水酸化アルミニウムゲル、水酸化アルミニウム・炭酸マグネシウム混合乾燥ゲル、水酸化アルミニウム・炭酸水素ナトリウムの共沈生成物、水酸化アルミニウム・炭酸カルシウム・炭酸マグネシウムの共沈生成物、水酸化マグネシウム・硫酸アルミニウムカリウムの共沈生成物、炭酸マグネシウム、メタケイ酸アルミン酸マグネシウム、塩酸ラニチジン、シメチジン、ファモチジン、ナプロキセン、ジクロフェナックナトリウム、ピロキシカム、アズレン、インドメタシン、ケトプロフェン、イブプロフェン、塩酸ジフェニドール、塩酸ジフェニルピラリン、塩酸ジフェンヒドラミン、塩酸プロメタジン、塩酸メクリジン、ジメンヒドリナート、タンニン酸ジフェンヒドラミン、タンニン酸フェネタジン、テオクル酸ジフェニルピラリン、フマル酸ジフェンヒドラミン、プロメタジンメチレンジサリチル酸塩、臭化水素酸スポコラミン、塩酸オキシフェンサイクリミン、塩酸ジサイクロミン、塩酸メチキセン、臭化メチルアトロピン、臭化メチルアニソトロピン、臭化メチルスポコラミン、臭化メチル−1−ヒヨスチアミン、臭化メチルベナクチジウム、ベラドンナエキス、ヨウ化イソプロパミド、ヨウ化ジフェニルピペリジノメチルジオキソラン、塩酸パパベリン、アミノ安息香酸、シュウ酸セシウム、ピペリジルアセチルアミノ安息香酸エチル、アミノフィリン、ジプロフィリン、テオフィリン、炭酸水素ナトリウム、フルスルチアミン、硝酸イソソルバイド、エフェドリン、セファレキシン、アンピシリン、スルフィキサゾール、スクラルファート、アリルイソプロピルアセチル尿素、ブロムワレリル尿素等、マオウ、ナンテンジツ、オウヒ、オンジ、カンゾウ、キキョウ、シャゼンシ、シャゼンソウ、セネガ、バイモ、ウイキョウ、オウバク、オウレン、ガジュツ、カミツレ、ケイヒ、ゲンチアナ、ゴオウ、獣胆(ユウタンを含む)、シャジン、ショウキョウ、ソウジュツ、チョウジ、チンピ、ビャクジュツ、地竜、チクセツニンジン、ニンジン、カノコソウ、ボタンピ、サンショウ及びこれらのエキス等、インスリン、バゾプレッシン、インターフェロン、ウロキナーゼ、セラチオペプチターゼ、ソマトスタチン等の「日本薬局方」、「局外基」、「USP」、「NF」、「EP」に記載の医薬品薬効成分等を挙げることができ、上記から選ばれる1種を単独で使用しても、2種以上を併用してもよい。   For example, as a medicinal medicinal component, for example, aspirin, aspirin aluminum, acetaminophen, etenzamide, sazapyrine, salicylamide, lactylphenetidine, isothibenzyl hydrochloride, diphenylpyraline hydrochloride, diphenhydramine hydrochloride, dipheterol hydrochloride, triprolidine hydrochloride, tripelenamine hydrochloride, Tonsilamine hydrochloride, phenetazine hydrochloride, methodirazine hydrochloride, diphenhydramine salicylate, carbinoxamine diphenyldisulfonate, alimemazine tartrate, diphenhydramine tannate, diphenylpyraline teocrate, promethazine methylene disalicylate, carbinoxamine maleic acid dichlormamine hydrochloride , D-chlorpheniramine maleate, difephosphate Roll, aloclamide hydrochloride, cloperastine hydrochloride, pentoxyberine citrate (carbetapentane citrate), tipepidine citrate, dibutate sodium, dextromethorphan hydrobromide, dextromethorphan / phenolphthalic acid, tipepidine hibenzate, Fendizoic acid cloperastine, phosphate codeine, dihydrocodeine phosphate, noscapine hydrochloride, noscapine, dl-methylephedrine hydrochloride, dl-methylephedrine saccharin salt, potassium guaiacolsulfonate, guaifenesin, sodium benzoate caffeine, caffeine, anhydrous caffeine, Vitamin B1 and derivatives thereof and salts thereof, vitamin B2 and derivatives thereof and salts thereof, vitamin C and derivatives thereof and salts thereof, hesperidin Derivatives thereof and salts thereof, vitamin B6 and derivatives thereof and salts thereof, nicotinamide, calcium pantothenate, aminoacetic acid, magnesium silicate, synthetic aluminum silicate, synthetic hydrotalcite, magnesium oxide, dihydroxyaluminum / aminoacetic acid Salt (aluminum glycinate), aluminum hydroxide gel (as dry aluminum hydroxide gel), dry aluminum hydroxide gel, aluminum hydroxide / magnesium carbonate mixed dry gel, aluminum hydroxide / sodium bicarbonate coprecipitation product, water Coprecipitation product of aluminum oxide / calcium carbonate / magnesium carbonate, coprecipitation product of magnesium hydroxide / potassium aluminum sulfate, magnesium carbonate, magnesium aluminate metasilicate, ranitidine hydrochloride, Cimetidine, famotidine, naproxen, diclofenac sodium, piroxicam, azulene, indomethacin, ketoprofen, ibuprofen, diphenidol hydrochloride, diphenylpyraline hydrochloride, diphenhydramine hydrochloride, promethazine hydrochloride, meclizine hydrochloride, dimenhydrinate, diphenhydramine tannate, phenocendine tannate Pyralin, diphenhydramine fumarate, promethazine methylene disalicylate, spocollamine hydrobromide, oxyphencyclimine hydrochloride, dicyclomine hydrochloride, methixene hydrochloride, methyl atropine bromide, methyl anisotropine bromide, methyl spocollamine bromide, methyl bromide -1-hyostiamine, methylbenactidium bromide, belladonna extract, isopropy iodide , Diphenylpiperidinomethyldioxolane iodide, papaverine hydrochloride, aminobenzoic acid, cesium oxalate, ethyl piperidylacetylaminobenzoate, aminophylline, diprofylline, theophylline, sodium bicarbonate, fursultiamine, isosorbide nitrate, ephedrine, cephalexin, ampicillin , Sulfixazole, sucralfate, allylisopropylacetylurea, bromvalerylurea, etc. , Gooh, Beast (including Yutan), Shajin, Syoukyo, Sojitsu, Clove, Chimpi, Sandalwood, Earth Dragon, Chikutsutsu Carrots, carrots, valerians, buttonpis, salamanders and their extracts, insulin, vasopressin, interferon, urokinase, seratopeptidase, somatostatin, etc. “Japanese Pharmacopoeia”, “External group”, “USP”, “NF The medicinal medicinal ingredients described in “EP” can be used, and one kind selected from the above may be used alone, or two or more kinds may be used in combination.

本発明の成形体に含まれる活性成分の量は成形体重量に対して好ましくは0.01〜99重量%である。活性成分が0.01重量%以上であれば、十分な薬効が期待できる。また99重量%以下であれば、賦形剤量が十分で、成形体の磨損や破壊などを防止でき、満足する物性を成形体に付与できる。   The amount of the active ingredient contained in the molded product of the present invention is preferably 0.01 to 99% by weight based on the weight of the molded product. If the active ingredient is 0.01% by weight or more, sufficient medicinal effects can be expected. Moreover, if it is 99 weight% or less, the amount of excipient | filler is sufficient, can prevent the abrasion of a molded object, destruction, etc., and can provide a satisfying physical property to a molded object.

本発明でいう錠剤とは、本発明のセルロース粉末と、必要に応じて他の添加剤を含んだものであって、直接打錠法、顆粒圧縮法、後末法のいずれかで得られうる成形体をいい、その中でも直接打錠により得られた錠剤が特に好ましい。   The tablet referred to in the present invention contains the cellulose powder of the present invention and other additives as necessary, and can be obtained by any of the direct tableting method, granule compression method, and terminal method. A tablet obtained by direct tableting is particularly preferred.

本発明の成形体、好ましくは錠剤のうち、1つ以上の活性成分と、糖類、糖アルコール類、デンプン類、崩壊剤から選ばれる1つ以上の添加剤を含む場合、本発明のセルロース粉末を配合すると、硬度が50〜100N、引張強度が0.1〜5.5MPa、摩損度が0〜0.5%、アセトン中での成形体、好ましくは錠剤の直径膨潤率が0〜3.3%の成形体、好ましくは錠剤が得られる。成形体、好ましくは錠剤中のセルロース粉末の配合量としては、5〜90重量%が好ましい。5〜90重量%の範囲であると上記物性のバランスが取れるため好ましい。   When the molded product of the present invention, preferably a tablet, contains one or more active ingredients and one or more additives selected from sugars, sugar alcohols, starches, and disintegrants, the cellulose powder of the present invention is used. When blended, the hardness is 50 to 100 N, the tensile strength is 0.1 to 5.5 MPa, the friability is 0 to 0.5%, and the molded article in acetone, preferably the diameter swelling rate of the tablet is 0 to 3.3. % Shaped bodies, preferably tablets. As a compounding quantity of the cellulose powder in a molded object, Preferably a tablet, 5-90 weight% is preferable. The range of 5 to 90% by weight is preferable because the above physical properties can be balanced.

本願のセルロース粉末を成形体、好ましくは錠剤に配合すると、上記の硬度、引張強度、摩損度であり、かつアセトン中での成形体、好ましくは錠剤の直径膨潤率が0〜3.3%の成形体、好ましくは錠剤となりうる。好ましくは、2.0を超え〜3.3%である。アセトン中での成形体、好ましくは錠剤の直径膨潤率が0〜3.3%の範囲であると硬度、引張強度、摩損度のバランスが取れるため好ましい。   When the cellulose powder of the present application is blended into a molded product, preferably a tablet, the hardness, tensile strength, and friability are as described above, and the molded product in acetone, preferably the tablet has a diameter swelling ratio of 0 to 3.3%. It can be a shaped body, preferably a tablet. Preferably, it exceeds 2.0 and is 3.3%. It is preferable that the diameter swelling rate of the molded body in acetone, preferably the tablet is in the range of 0 to 3.3%, since the balance of hardness, tensile strength and friability can be obtained.

アセトン中での成形体、好ましくは錠剤の直径膨潤率は、成形体、好ましくは錠剤をアセトン(25℃)に60秒浸漬する前後での、成形体(錠剤)直径(mm)の変化率で定義され、次式により算出する。

成形体(錠剤)直径膨潤率(%)=[(アセトン浸漬後の成形体(錠剤)直径−アセトン浸漬前の成形体(錠剤)直径)/アセトン浸漬前の成形体(錠剤)直径]×100
The diameter swelling rate of the molded body, preferably the tablet, in acetone is the rate of change of the molded body (tablet) diameter (mm) before and after the molded body, preferably the tablet is immersed in acetone (25 ° C.) for 60 seconds. Defined and calculated by the following formula.

Molded body (tablet) diameter swelling ratio (%) = [(molded body (tablet) diameter after acetone immersion−molded body (tablet) diameter before acetone immersion) / molded body (tablet) diameter before acetone immersion] × 100

アセトン中での成形体、好ましくは錠剤の直径膨潤率が0〜3.3%であれば、速やかな崩壊性、溶出性を成形体、好ましくは錠剤に付与できる。日本薬局方規定の崩壊時間が20分以下、好ましくは10分以下、さらに好ましくは1分以下、特に好ましくは30秒以下である。また、成形体、好ましくは錠剤をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量又はセルロース粉末中の残留不純物由来の全有機炭素量は、0.002〜0.060%であることが好ましい。0.002〜0.060%の範囲であると異物、薬物との反応性、崩壊性の点から好ましい。   If the diameter swelling rate of the molded body in acetone, preferably the tablet is 0 to 3.3%, rapid disintegration and dissolution can be imparted to the molded body, preferably the tablet. The disintegration time specified by the Japanese Pharmacopoeia is 20 minutes or less, preferably 10 minutes or less, more preferably 1 minute or less, and particularly preferably 30 seconds or less. Further, the amount of the total organic carbon derived from the residual impurities in the molded product residue extracted from the molded product, preferably the tablet through acetone washing, ethanol washing, pure water washing, and ethanol washing, or the total organic carbon derived from residual impurities in the cellulose powder. The amount is preferably 0.002 to 0.060%. A range of 0.002 to 0.060% is preferable in terms of reactivity with foreign substances and drugs and disintegration.

成形体(好ましくは錠剤)残渣の残留不純物由来の全有機炭素量は、成形体残渣中から純水(80mL)により抽出される、成形体残渣に対する全有機炭素(TOC)量と、成形体残渣中から1%水酸化ナトリウム水溶液(80mL)により抽出される、成形体残渣に対するTOC量との差(%)で定義する。成形体残渣がセルロース粉末である場合には、成形体残渣は純水で十分に洗浄されているため、成形体残渣の純水抽出時の全有機炭素量(%)はゼロに近くなり、成形体残渣の残留不純物由来の全有機炭素量は、1%NaOH抽出時の全有機炭素量(%)にほぼ等しくなる。純水抽出時の全有機炭素量(%)が検出される場合は、純水洗浄による不純物の除去が不十分であるか、乾燥による残留アセトン及びエタノールの除去が不十分であることが考えられるため、抽出する純水量を1.3〜2倍の範囲で増やすか、乾燥温度を100〜120℃、乾燥時間を3〜5hrの範囲で調整する。成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量は、次の手順で確認が可能である。
(i)成形体120gを500mlビーカーに入れ、アセトン300gを加え、成形体片が認められなくなるまでスターラーで攪拌した後、吸引ろ過(ブフナー漏斗、定量分析用ろ紙、5C、直径110mmを使用)する。成形体片を認める場合には、10分間、超音波処理をした後に30分間攪拌する。成形体片が認められなくなるまで繰り返す。
(ii)ろ紙上の残渣にエタノール100mLを加え、残渣をスパチュラで良くかき混ぜ、吸引ろ過する(この操作を3回繰り返す)。(i)、(ii)の操作により、水難溶性成分を除去する。
(iii)純水1000mL中に(ii)の残渣を入れ、10分間スターラーで攪拌した後、吸引ろ過する。
(iv)(iii)の残渣を、純水600ml中に入れ、10分間スターラーで攪拌した後、吸引ろ過する。
(v)純水1000mL中に(iv)の残渣を入れ、スターラーで攪拌しながら、80〜100℃で30分間加熱する。20〜30℃に冷却した後、α−アミラーゼを5μg/L加え、37℃で30分間攪拌した後、吸引ろ過する。
(vi)(v)の残渣にエタノール150mLを加え、残渣をスパチュラで良くかき混ぜ、吸引ろ過する(この操作を3回繰り返す)。(iii)〜(vi)の操作により、水溶性成分とデンプン類を除去する。水溶性成分には糖類、糖アルコール類が含まれ、公知の方法で定量できる。
(vii)ろ紙上の残渣を濾紙から掻き落とし、シャーレに入れ、室温(20〜30℃)でエタノール臭がなくなるまで乾燥後、100℃で3時間乾燥し測定用試料とする。
(viii)乾燥残渣約2gを測定用セルに入れ、近赤外分光法にて吸収スペクトルを測定する(装置名:InfraAlyzer500、メーカー名:BRAN+LUBBE)。1692nmにNIR吸収スペクトルの2次微分値のピークを検出する場合は、下式により、成形体残渣中のセルロース粉末含有率(C;%)を計算する。
・C(%)=NIR2次微分スペクトル強度の値×316583+95.588
1692nmにNIR吸収スペクトルの2次微分値のピークがある場合は、セルロース粉末以外にクロスポビドンの残渣が含まれている。乾燥残渣中のセルロース粉末の含有率を特定するため、上記の式を用いる。(i)の成形体の代わりに、セルロース粉末/クロスポビドン=100/0、50/50、0/100の3つの組成粉末を調製し、(i)〜(vii)の操作を経て乾燥残渣を得、InfraAlyzer500(メーカー名:BRAN+LUBBE)を用いてNIR2次微分スペクトル強度を測定し、3点の検量線から上記式の係数を求めることができる。
1692nmにNIR吸収スペクトルの2次微分値のピークを検出しない場合は、乾燥残渣から純水(80mL)により抽出される、乾燥残渣に対する全有機炭素(TOC)量が0.0%である場合には、乾燥残渣はセルロース粉末のみからなる。0.0%を超えるときは、デンプン、クロスポビドン以外の崩壊剤を含有している場合があるため、それらを除去するため、乾燥残渣を純水50mLで分散し、目開き10μmの篩を通し、セルロース粉末以外の粒子を除去した後、ろ液を蒸発乾固して(ix)の乾燥残渣とする。それでもなお、残渣の純水抽出時の全有機炭素量(%)が0.0%を超える場合は、純水50mLで分散(必要に応じて超音波処理、ホモジナイザー処理をしても良い)し、2000Gで遠心分離した上澄みを蒸発乾固して(ix)の乾燥残渣とする。
(ix)<(viii)で1692nmにNIR吸収スペクトルの2次微分値のピークを検出する場合>
乾燥残渣(A;g、4〜4.5gが目安)を秤量し、80mlの1%NaOH中に入れ、スターラーで5分間攪拌後、吸引ろ過する。ろ液を採取し体積(X;mL)を測定する。ろ液は塩酸で酸性(pH2−3)とし、全有機炭素計(島津製作所製、TOC−VCSH、TC−IC法を使用)で全有機炭素量(TOC1%NaOH;mg/L)を測定する。残渣は純水で十分に洗浄されていることから、純水抽出時の全有機炭素量(%)はゼロと見なせるため、残渣に含まれるセルロース粉末中の残留不純物由来の有機炭素量は1%NaOH抽出時の全有機炭素量(%)に等しくなる。以下に従い算出する。
・成形体から抽出した残渣中のセルロース粉末残渣量(B;g)=A×C/100
・セルロース粉末残渣中の全有機炭素量(Y;mg)=(TOC1%NaOH/1000)×X−0.4/100×(A−B)×1000
上記の係数0.4は、(i)の成形体をクロスポビドンの粉末2.5gとし、(vii)までの処理を経て得た乾燥残渣を用い、80mlの1%NaOHで抽出した時の全有機炭素量(%)である。
・成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量(%)
=Y/(1000×B)×100=Y/(10×B)
<(viii)で1692nmにNIR吸収スペクトルの2次微分値のピークを検出しない場合>
乾燥残渣(純水で抽出する場合はAH2O;g、1%NaOH水溶液で抽出する場合はA1%NaOH;g)を秤量し、純水又は1%NaOH水溶液80mLを加えて、ビーカー中で5分間攪拌(スターラー使用)後、吸引ろ過(定量分析用ろ紙、5C、直径110mmを使用)により乾燥残渣を除去しろ液を得る。ろ液全量の体積を測定(純水を用いた場合の全量をVH2O、1%NaOHを用いた場合の全量をV1%NaOH;mL)後、塩酸で酸性(pH2−3)とし、全有機炭素計(島津製作所製、TOC−VCSH、TC−IC法を使用)で全有機炭素量(TOC;mg/L)を測定した。純水を用いた場合のTOCをTOCH2O、1%NaOHを用いた場合のTOCをTOC1%NaOHとする。成形体残渣の残留不純物由来の有機炭素量は下式により算出する。
・成形体残渣の残留不純物由来の全有機炭素量(%)=1%NaOH抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)
・1%NaOH抽出時の全有機炭素量(%):
=[(TOC1%NaOH(mg/L)/1000)×V1%NaOH(mL)]/A1%NaOH×1000(mg)×100
・純水抽出時の全有機炭素量(%):
=[(TOCH2O(mg/L)/1000)×VH2O(mL)]/AH2O×1000(mg)×100
The total amount of organic carbon derived from residual impurities in the molded product (preferably tablet) residue is extracted from the molded product residue with pure water (80 mL), and the total organic carbon (TOC) content of the molded product residue and the molded product residue It is defined as the difference (%) from the amount of TOC with respect to the molded product residue extracted from the inside with 1% aqueous sodium hydroxide solution (80 mL). When the molded product residue is cellulose powder, the molded product residue is sufficiently washed with pure water, so the total organic carbon content (%) at the time of extraction of the molded product residue with pure water is close to zero. The total amount of organic carbon derived from the residual impurities of the body residue is approximately equal to the total amount of organic carbon (%) during 1% NaOH extraction. If the total amount of organic carbon (%) during extraction with pure water is detected, it is considered that impurities are not sufficiently removed by washing with pure water, or residual acetone and ethanol are not sufficiently removed by drying. Therefore, the amount of pure water to be extracted is increased within a range of 1.3 to 2 times, or the drying temperature is adjusted within a range of 100 to 120 ° C. and the drying time is adjusted within a range of 3 to 5 hours. The total amount of organic carbon derived from residual impurities in the molded product residue extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing can be confirmed by the following procedure.
(I) Put 120 g of the molded body into a 500 ml beaker, add 300 g of acetone, and stir with a stirrer until the molded body piece is not recognized, and then suction filter (use Buchner funnel, filter paper for quantitative analysis, 5C, 110 mm in diameter). . In the case where the molded piece is recognized, the mixture is subjected to ultrasonic treatment for 10 minutes and then stirred for 30 minutes. Repeat until no shaped pieces are found.
(Ii) Add 100 mL of ethanol to the residue on the filter paper, stir the residue well with a spatula and suction filter (repeat this operation three times). The poorly water-soluble component is removed by the operations (i) and (ii).
(Iii) Put the residue of (ii) in 1000 mL of pure water, and stir with a stirrer for 10 minutes, followed by suction filtration.
(Iv) The residue of (iii) is put into 600 ml of pure water, stirred with a stirrer for 10 minutes, and then suction filtered.
(V) Put the residue of (iv) in 1000 mL of pure water and heat at 80 to 100 ° C. for 30 minutes while stirring with a stirrer. After cooling to 20-30 ° C., 5 μg / L of α-amylase is added and stirred at 37 ° C. for 30 minutes, followed by suction filtration.
(Vi) Add 150 mL of ethanol to the residue of (v), stir the residue well with a spatula and suction filter (repeat this operation 3 times). Water-soluble components and starches are removed by the operations (iii) to (vi). The water-soluble components include saccharides and sugar alcohols and can be quantified by a known method.
(Vii) The residue on the filter paper is scraped off from the filter paper, put in a petri dish, dried at room temperature (20-30 ° C.) until the ethanol odor disappears, and then dried at 100 ° C. for 3 hours to obtain a measurement sample.
(Viii) About 2 g of dried residue is put into a measurement cell, and an absorption spectrum is measured by near infrared spectroscopy (device name: InfraAlyzer 500, manufacturer name: BRAN + LUBBE). When the peak of the second derivative value of the NIR absorption spectrum is detected at 1692 nm, the cellulose powder content (C;%) in the molded product residue is calculated according to the following equation.
C (%) = NIR second derivative spectrum intensity value × 316583 + 95.588
When there is a peak of the second derivative value of the NIR absorption spectrum at 1692 nm, a residue of crospovidone is contained in addition to the cellulose powder. The above formula is used to specify the content of cellulose powder in the dry residue. Instead of the shaped body of (i), three composition powders of cellulose powder / crospovidone = 100/0, 50/50, 0/100 are prepared, and the dry residue is removed through the operations (i) to (vii). The NIR second-order differential spectrum intensity is measured using InfraAlyzer 500 (manufacturer name: BRAN + LUBBE), and the coefficient of the above equation can be obtained from a three-point calibration curve.
When the peak of the second derivative value of the NIR absorption spectrum is not detected at 1692 nm, the total organic carbon (TOC) amount extracted from the dry residue with pure water (80 mL) is 0.0% with respect to the dry residue. The dry residue consists only of cellulose powder. When it exceeds 0.0%, disintegrants other than starch and crospovidone may be contained. Therefore, in order to remove them, the dry residue is dispersed with 50 mL of pure water and passed through a sieve having an opening of 10 μm. After removing particles other than cellulose powder, the filtrate is evaporated to dryness to obtain a dry residue (ix). Nevertheless, if the total organic carbon content (%) at the time of extraction of the residue with pure water exceeds 0.0%, it is dispersed with 50 mL of pure water (sonication or homogenizer treatment may be performed if necessary). The supernatant centrifuged at 2000 G is evaporated to dryness to give a dry residue (ix).
(Ix) <When the peak of the second derivative value of the NIR absorption spectrum is detected at 1692 nm in (viii)>
Weigh the dry residue (A; g, 4 to 4.5 g as a guide), put it in 80 ml of 1% NaOH, stir with a stirrer for 5 minutes, and filter with suction. Collect the filtrate and measure the volume (X; mL). The filtrate was acidified with hydrochloric acid (pH 2-3), and the total organic carbon content (TOC 1% NaOH ; mg / L) was measured with a total organic carbon meter (manufactured by Shimadzu Corporation, using TOC-VCSH, TC-IC method). To do. Since the residue is thoroughly washed with pure water, the total amount of organic carbon (%) at the time of extraction with pure water can be regarded as zero. Therefore, the amount of organic carbon derived from residual impurities in the cellulose powder contained in the residue is 1%. It becomes equal to the total organic carbon amount (%) at the time of NaOH extraction. Calculate according to the following.
-Cellulose powder residue amount (B; g) in the residue extracted from the molded product = A x C / 100
-Total organic carbon amount (Y; mg) in cellulose powder residue = (TOC 1% NaOH / 1000) x X-0.4 / 100 x (AB) x 1000
The above coefficient 0.4 is obtained when 2.5 g of crospovidone powder is formed from the molded product of (i), and the dry residue obtained through the processing up to (vii) is used to extract all of the extracted product with 80 ml of 1% NaOH. The amount of organic carbon (%).
・ Total organic carbon content (%) derived from residual impurities in the molded product residue extracted through acetone cleaning, ethanol cleaning, pure water cleaning, and ethanol cleaning.
= Y / (1000 × B) × 100 = Y / (10 × B)
<When the peak of the second derivative value of the NIR absorption spectrum is not detected at 1692 nm in (viii)>
Weigh the dry residue (A H2O for extraction with pure water; g, A 1% NaOH for extraction with 1% aqueous NaOH ; g), add 80 mL of pure water or 1% aqueous NaOH, and add in a beaker. After stirring for 5 minutes (using a stirrer), the dry residue is removed by suction filtration (using quantitative analysis filter paper, 5C, diameter 110 mm) to obtain a filtrate. The volume of the total amount of the filtrate was measured (the total amount when pure water was used was V H2O , the total amount when 1% NaOH was used was V 1% NaOH ; mL), then acidified (pH 2-3) with hydrochloric acid, Total organic carbon content (TOC; mg / L) was measured with an organic carbon meter (manufactured by Shimadzu Corporation, using TOC-VCSH, TC-IC method). The TOC when pure water is used is TOC H2O , and the TOC when 1% NaOH is used is TOC 1% NaOH . The amount of organic carbon derived from residual impurities in the molded product residue is calculated by the following equation.
-Total organic carbon amount (%) derived from residual impurities in molded product residue = 1% Total organic carbon amount during NaOH extraction (%)-Total organic carbon amount during pure water extraction (%)
-Total organic carbon content (%) during 1% NaOH extraction:
= [(TOC 1% NaOH (mg / L) / 1000) × V 1% NaOH (mL)] / A 1% NaOH × 1000 (mg) × 100
・ Total organic carbon content during pure water extraction (%):
= [(TOC H 2 O (mg / L) / 1000) × V H 2 O (mL)] / A H 2 O × 1000 (mg) × 100

また本発明のセルロース粉末は、糖衣錠においては糖衣の補強剤、押出造粒における押出性改善剤、破砕造粒、流動層造粒、高速攪拌造粒、転動流動造粒等における造粒助剤等の目的で湿式造粒においても使用することができ、顆粒剤や打錠用の顆粒を調製することが可能である。打錠用顆粒の調製には乾式造粒法を用いてもよい。さらにこのように公知の方法で得られた打錠用顆粒に本発明のセルロース粉末を添加して圧縮成型する方法(後末法)で錠剤化することも可能である。本発明のセルロース粉末は吸水性が高く、水溶解度の高い医薬品活性成分を造粒する場合にも造粒速度を遅くできるために粗大粒子の発生を低減して造粒収率を高めることに寄与する。また本発明のセルロース粉末は粒子密度が低いため造粒物が嵩高く、圧縮成形性の高い打錠用顆粒を得ることにも寄与する。またブロッキング防止、流動性改善等の目的で散剤に配合したり、充填性改善の目的等でカプセル剤に配合することも可能である。   In the case of sugar-coated tablets, the cellulose powder of the present invention is a sugar-coating reinforcing agent, an extrudability improving agent in extrusion granulation, crushing granulation, fluidized bed granulation, high-speed agitation granulation, granulation aid in rolling fluid granulation, etc. It can also be used in wet granulation for the purpose, etc., and it is possible to prepare granules and granules for tableting. A dry granulation method may be used for preparing the granules for tableting. Further, the tableting granules obtained by a known method can be tableted by adding the cellulose powder of the present invention and compression molding (late method). The cellulose powder of the present invention has high water absorption and contributes to increase the granulation yield by reducing the generation of coarse particles because the granulation rate can be slowed even when granulating a pharmaceutical active ingredient with high water solubility. To do. Further, since the cellulose powder of the present invention has a low particle density, the granulated product is bulky and contributes to obtaining granules for tableting with high compression moldability. Further, it can be blended into a powder for the purpose of preventing blocking and improving fluidity, or blended into a capsule for the purpose of improving fillability.

以下、実施例により本発明を詳細に説明するが、これらは本発明の範囲を制限しない。なお、実施例、比較例における各物性の測定方法は以下の通りである。
1)平均重合度(−)
第15改正日本薬局方、結晶セルロースの確認試験(3)に記載された銅エチレンジアミン溶液粘度法により測定した値。
2)乾燥減量(%)
粉末1gを105℃、3時間乾燥し、重量減少量を重量百分率で表した。
3)セルロース分散液中のセルロース粒子の体積平均粒子径(μm)
加水分解後のセルロース分散液又は、乾燥前のセルロース分散液の粒子径は以下の手順で求めた。セルロース分散液を鏡検台上に滴下し、スライドガラスを載せて乾燥させた後、マイクロスコープを用いて光学顕微鏡像を撮影した。光学顕微鏡増は画像解析処理し((株)インタークエスト製、装置:Hyper700,ソフトウエア:Imagehyper)、粒子に外接する長方形のうち面積が最小となる長方形の長辺を求め、累積個数50%粒子径を平均粒子径とした。少なくとも100個以上の粒子について画像解析処理した。
4)セルロース粉末の重量平均粒子径(μm)
粉体試料の重量平均粒径はロータップ式篩振盪機(平工作所製シーブシェーカーA型)、JIS標準篩(Z8801−1987)を用いて、試料10gを10分間篩分することにより粒度分布を測定し、累積重量50%粒径として表した。
5)見掛け比容積(cm3 /g)
100cm3 のガラス製メスシリンダーに、粉体試料を定量フィーダーなどを用い、2−3分かけて粗充填し、粉体層上面を筆のような軟らかい刷毛で水平にならしその容積を読みとりこれを粉体試料の重量で除して求めた。粉体の重量は容積が70−100cm3程度になるように適宜決定した。
6)見掛けタッピング密度(g/cm3
市販粉体物性測定機(ホソカワミクロン製、パウダーテスターPT−R型)を用い、100cm3カップに粉体を充填し、180回タッピングした後、カップの体積を、カップに充填されて残る粉体層の重量で除して求めた。
7)残留不純物由来の有機炭素量(%)
セルロース粉末(W;mg、5000mgを目安)に純水又は1%NaOH水溶液80mLを加えて、ビーカー中で5分間攪拌(スターラー使用)後、吸引ろ過(定量分析用ろ紙、5C、直径110mmを使用)によりセルロース粉末を除去しろ液を得た。ろ液全量の体積を測定(水を用いた場合の全量をVH2O、1%NaOHを用いた場合の全量をV1%NaOH;mL)後、塩酸で酸性(pH2−3)とし、全有機炭素計(島津製作所製、TOC−VCSH、TC−IC法を使用)で全有機炭素量(TOC;mg/L)を測定した。純水を用いた場合のTOCをTOCH2O、1%NaOHを用いた場合のTOCをTOC1%NaOHとする。残留不純物由来の有機炭素量は下式により算出した。
・残留不純物由来の有機炭素量(%)=1%NaOH抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)
・1%NaOH抽出時の全有機炭素量(%):
=[(TOC1%NaOH(mg/L)/1000)×V1%NaOH(mL)]/W(mg)×100
・純水抽出時の全有機炭素量(%):
=[(TOCH2O(mg/L)/1000)×VH2O(mL)]/W(mg)×100
8)吸水能(cm/g)
セルロース粉末2g(乾燥物換算)に純水を滴下し、必要に応じて、セルロース粉末が滴下した水となじむようにヘラ等で練りながら、表面に水が染み出る点を終点として滴下した純水量(V)を求めた。吸水能は下式により算出した。3回測定値の平均値を用いた。
吸水能(cm/g)=V/2
9)安息角(゜)
杉原式安息角測定器(スリットサイズ奥行10×幅50×高さ140mm、幅50mmの位置に分度器を設置)を使用し、セルロース粉末を定量フィーダーにて3g/分の速度でスリットに投下した際の動的自流動性を測定した。装置底部とセルロース粉末の形成層との角度が安息角である。
10)異物量(個/50g)
本発明のセルロース粉末50gを5分間、ハンドで篩過し、75μm篩に残留する全量を、青色の画用紙上に薄く広げ、ルーペを用い目視にて15分間黒色異物数をカウントした。
11)セルロース粉末と末端にアミノ基を有する薬物との反応性
セルロース粉末とアミノフィリンの等量混合物を60℃・密栓瓶(50cm3)中に30日保存した。保存後の上記等量混合物について、分光式色彩計(SE−2000、日本電色工業製)によりL、a、bの値を求め以下の式により算出した。白色度の低下が少ないほど反応性が低いと考えられる。
白色度=100−[(100−L)+(a+b)]0.5
L:明るさ a:彩度(緑〜赤) b:彩度(青〜黄)
12)粒子内細孔容積 (cm/g)
島津製作所(株)製、オートポア9520型(商品名)を用い、水銀ポロシメトリーにより細孔分布を求めた。測定に用いた各試料粉体は、室温で15時間減圧乾燥したものを使用した。初期圧20kPaの測定により、得られた細孔分布から、細孔径0.1〜15μmの範囲の合計容積を粒子内細孔容積とした。
13)硬度[N]
円柱状成形体或いは錠剤をシュロインゲル硬度計(フロイント産業(株)製、6D型)を用いて、円柱状成形体或いは錠剤の直径方向に荷重を加え、破壊したときの荷重を測定した。試料5個の数平均で示した。セルロース粉末100%の円柱状成形体は以下のようにして作製した。試料0.5gを、臼(菊水製作所製、材質SUK2,3を使用)に入れ、直径1.13cm(底面積が1cm2)の平面杵(菊水製作所製、材質SUK2,3を使用)で10MPaで圧縮し、その応力を10秒間保持し円柱状成形体を作製した(圧縮機はアイコーエンジニアリング製、PCM−1Aを使用し、圧縮速度は10cm/min程度とした)。実用的な硬度は直径8mmの錠剤の場合は、50N以上、直径9mm以上の錠剤の場合は、70N以上である。
14)引張強度[MPa]
錠剤の硬度:H[N]、錠剤の直径(カプレット錠などは最大径を用いる):D[mm]、錠剤の厚み:T[mm]を求め、下式で算出した。
引張強度[MPa]=2×H÷(3.14×D×T)
15)錠剤の摩損度[%]
錠剤20個の重量(Wa)を測定し、これを錠剤摩損度試験器(PTFR−A、PHARMA TEST製)に入れ、25rpm、4分間回転した後、錠剤に付着している微粉を取り除き、再度重量を測定し(Wb)、(7)式より計算した。
摩損度 = 100×(Wa−Wb)/Wa
実用上の使用に耐える錠剤とするには摩損度が0.5%以下である必要がある。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, these do not restrict | limit the scope of the present invention. In addition, the measuring method of each physical property in an Example and a comparative example is as follows.
1) Average degree of polymerization (-)
Value measured by the copper ethylenediamine solution viscosity method described in the 15th revised Japanese Pharmacopoeia, confirmation test (3) for crystalline cellulose.
2) Loss on drying (%)
1 g of the powder was dried at 105 ° C. for 3 hours, and the weight loss was expressed as a percentage by weight.
3) Volume average particle diameter of cellulose particles in cellulose dispersion (μm)
The particle size of the cellulose dispersion after hydrolysis or the cellulose dispersion before drying was determined by the following procedure. The cellulose dispersion was dropped on a microscope table, placed on a slide glass and dried, and then an optical microscope image was taken using a microscope. The optical microscope was subjected to image analysis processing (manufactured by Interquest Co., Ltd., apparatus: Hyper700, software: Imagehyper), and the long side of the rectangle with the smallest area among the rectangles circumscribing the particles was determined, and the cumulative number of particles was 50%. The diameter was defined as the average particle diameter. Image analysis processing was performed on at least 100 particles.
4) Weight average particle diameter (μm) of cellulose powder
The weight average particle size of the powder sample is determined by sieving 10 g of the sample for 10 minutes using a low-tap type sieve shaker (Sieve Shaker A type manufactured by Hira Kogakusho) or JIS standard sieve (Z8801-1987). Measured and expressed as 50% cumulative weight particle size.
5) Apparent specific volume (cm 3 / g)
A powder sample is roughly packed in a 100 cm 3 glass graduated cylinder over 2-3 minutes using a quantitative feeder, etc., and the upper surface of the powder layer is leveled with a soft brush like a brush and the volume is read. Was divided by the weight of the powder sample. The weight of the powder was appropriately determined so that the volume was about 70-100 cm 3 .
6) Apparent tapping density (g / cm 3 )
Using a commercially available powder property measuring machine (made by Hosokawa Micron, powder tester PT-R type), 100cm 3 cup is filled with powder, tapped 180 times, and then the volume of the cup is filled into the cup and the remaining powder layer Divided by the weight of
7) Amount of organic carbon derived from residual impurities (%)
Add pure water or 80% 1% NaOH aqueous solution to cellulose powder (W; mg, 5000 mg as a guide), stir for 5 minutes in a beaker (use stirrer), and then suction filtration (quantitative analysis filter paper, 5C, 110 mm diameter) ) To remove the cellulose powder to obtain a filtrate. The volume of the total amount of the filtrate was measured (the total amount when using water was V H2O , the total amount when using 1% NaOH was V 1% NaOH ; mL), then acidified (pH 2-3) with hydrochloric acid, The total organic carbon content (TOC; mg / L) was measured with a carbon meter (manufactured by Shimadzu Corporation, using TOC-VCSH, TC-IC method). The TOC when pure water is used is TOC H2O , and the TOC when 1% NaOH is used is TOC 1% NaOH . The amount of organic carbon derived from residual impurities was calculated by the following equation.
・ Residual impurity-derived organic carbon amount (%) = 1% Total organic carbon amount during NaOH extraction (%) − Total organic carbon amount during pure water extraction (%)
-Total organic carbon content (%) during 1% NaOH extraction:
= [(TOC 1% NaOH (mg / L) / 1000) × V 1% NaOH (mL)] / W (mg) × 100
・ Total organic carbon content during pure water extraction (%):
= [(TOC H2O (mg / L) / 1000) x VH2O (mL)] / W (mg) x 100
8) Water absorption capacity (cm 3 / g)
Pure water is added dropwise to 2 g of cellulose powder (in terms of dry matter), and if necessary, the amount of pure water dropped from the point where water oozes out on the surface while kneading with a spatula so that the cellulose powder blends with the dropped water. (V) was determined. The water absorption capacity was calculated by the following formula. The average value of triplicate measurements was used.
The water absorption capacity (cm 3 / g) = V / 2
9) Angle of repose (°)
When using a Sugihara-type angle of repose measuring instrument (slit size depth 10 x width 50 x height 140 mm, protractor installed at a position of 50 mm width) and dropping cellulose powder into the slit at a rate of 3 g / min with a quantitative feeder The dynamic self-fluidity of was measured. The angle of repose is the angle between the bottom of the apparatus and the cellulose powder forming layer.
10) Foreign substance amount (pieces / 50g)
50 g of the cellulose powder of the present invention was sieved by hand for 5 minutes, and the entire amount remaining on the 75 μm sieve was spread thinly on blue drawing paper, and the number of black foreign matters was counted visually for 15 minutes using a loupe.
11) Reactivity of cellulose powder and drug having amino group at its terminal A mixture of equal amounts of cellulose powder and aminophylline was stored in a sealed bottle (50 cm 3 ) at 60 ° C. for 30 days. About the said equal amount mixture after a preservation | save, the value of L, a, and b was calculated | required with the following formula | equation by the spectroscopic colorimeter (SE-2000, Nippon Denshoku Industries). It is considered that the lower the whiteness decrease, the lower the reactivity.
Whiteness = 100 − [(100−L) 2 + (a 2 + b 2 )] 0.5
L: Brightness a: Saturation (green to red) b: Saturation (blue to yellow)
12) Intraparticle pore volume (cm 3 / g)
The pore distribution was determined by mercury porosimetry using an Autopore 9520 type (trade name) manufactured by Shimadzu Corporation. Each sample powder used for the measurement was dried under reduced pressure at room temperature for 15 hours. From the obtained pore distribution, the total volume in the range of pore diameters of 0.1 to 15 μm was defined as the intraparticle pore volume based on the measurement at an initial pressure of 20 kPa.
13) Hardness [N]
Using a Schleingel hardness meter (Freund Sangyo Co., Ltd., 6D type), a cylindrical shaped product or tablet was loaded in the diameter direction of the cylindrical shaped product or tablet, and the load when it was broken was measured. The number average of five samples is shown. A cylindrical molded body of 100% cellulose powder was produced as follows. 0.5 g of a sample is put in a mortar (manufactured by Kikusui Seisakusho, using material SUK2, 3), and is 10 MPa with a flat paddle (manufactured by Kikusui Seisakusho, using material SUK2, 3) with a diameter of 1.13 cm (bottom area is 1 cm2). Compressed and held the stress for 10 seconds to produce a cylindrical molded body (the compressor used was PCM-1A manufactured by Aiko Engineering, and the compression speed was about 10 cm / min). The practical hardness is 50 N or more for a tablet having a diameter of 8 mm, and 70 N or more for a tablet having a diameter of 9 mm or more.
14) Tensile strength [MPa]
Tablet hardness: H [N], tablet diameter (maximum diameter for caplet tablets, etc.): D [mm], tablet thickness: T [mm] were obtained and calculated according to the following formula.
Tensile strength [MPa] = 2 × H ÷ (3.14 × D × T)
15) Tablet friability [%]
Measure the weight (Wa) of 20 tablets, put it in a tablet friability tester (PTFR-A, manufactured by PHARMA TEST), rotate at 25 rpm for 4 minutes, remove fine powder adhering to the tablets, and again The weight was measured (Wb) and calculated from equation (7).
Friction = 100 × (Wa−Wb) / Wa
In order to make a tablet that can withstand practical use, the friability needs to be 0.5% or less.

(実施例1)
市販KPパルプ(重合度840、レベルオフ重合度145)2kgを細断し、0.05%塩酸水溶液30L中に入れ、低速型攪拌機(池袋琺瑯工業(株)製、30LGL反応器、翼径約30cm)で攪拌(攪拌速度234rpm)しながら、145℃で115分加水分解した。得られた酸不溶解残渣はヌッチェを使用して濾過し、ろ過残渣をさらに70Lの純水で4回洗浄し、アンモニア水で中和後、90Lのポリバケツに入れ純水を加え、スリーワンモーター(HEIDON製、タイプBLh1200、8M/M、翼径約10cm)で攪拌(攪拌速度500rpm)しながら濃度19%のセルロース分散液とした(pH;7.5、IC;54μS/cm)。
Example 1
2 kg of commercially available KP pulp (polymerization degree 840, level-off polymerization degree 145) is shredded and placed in 30 L of 0.05% aqueous hydrochloric acid solution, and a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., 30 LGL reactor, blade diameter of about The mixture was hydrolyzed at 145 ° C. for 115 minutes with stirring (stirring speed: 234 rpm). The obtained acid-insoluble residue was filtered using a Nutsche, the filter residue was further washed four times with 70 L of pure water, neutralized with ammonia water, added to a 90 L plastic bucket, pure water was added, and three-one motor ( A cellulose dispersion with a concentration of 19% was prepared (pH: 7.5, IC; 54 μS / cm) while stirring (stirring speed: 500 rpm) with HEIDON, type BLh1200, 8 M / M, blade diameter of about 10 cm.

これを噴霧乾燥(液供給速度6L/hr、入口温度180〜220℃、出口温度50〜70℃)してセルロース粉末A(乾燥減量3.5%)を得た。セルロース粉末Aの物性を表1に示す。   This was spray-dried (liquid supply rate 6 L / hr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose powder A (loss on drying: 3.5%). Table 1 shows the physical properties of the cellulose powder A.

(実施例2)
市販KPパルプ(重合度840、レベルオフ重合度145)2kgを細断し、0.10%塩酸水溶液30L中に入れ、低速型攪拌機(池袋琺瑯工業(株)製、30LGL反応器、翼径約30cm)で攪拌(攪拌速度234rpm)しながら、135℃で120分加水分解した。得られた酸不溶解残渣はヌッチェを使用して濾過し、ろ過残渣をさらに70Lの純水で4回洗浄し、アンモニア水で中和後、90Lのポリバケツに入れ純水を加え、スリーワンモーター(HEIDON製、タイプBLh1200、8M/M、翼径約10cm)で攪拌(攪拌速度500rpm)しながら濃度20%のセルロース分散液とした(pH;7.1、IC;45μS/cm)。
(Example 2)
2 kg of commercially available KP pulp (polymerization degree 840, level-off polymerization degree 145) is shredded and placed in 30 L of a 0.10% hydrochloric acid aqueous solution, and a low speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., 30 LGL reactor, blade diameter of about The mixture was hydrolyzed at 135 ° C. for 120 minutes with stirring (stirring speed: 234 rpm). The obtained acid-insoluble residue was filtered using a Nutsche, the filter residue was further washed four times with 70 L of pure water, neutralized with ammonia water, added to a 90 L plastic bucket, pure water was added, and three-one motor ( A cellulose dispersion with a concentration of 20% was prepared (pH: 7.1, IC; 45 μS / cm) while stirring (stirring speed: 500 rpm) with HEIDON, type BLh1200, 8 M / M, blade diameter of about 10 cm.

これを噴霧乾燥(液供給速度6L/hr、入口温度180〜220℃、出口温度50〜70℃)してセルロース粉末B(乾燥減量3.0%)を得た。セルロース粉末Bの物性を表1に示す。   This was spray-dried (liquid supply rate: 6 L / hr, inlet temperature: 180 to 220 ° C., outlet temperature: 50 to 70 ° C.) to obtain cellulose powder B (loss on drying: 3.0%). Table 1 shows the physical properties of the cellulose powder B.

(実施例3)
市販KPパルプ(重合度840、レベルオフ重合度145)2kgを細断し、0.39%塩酸水溶液30L中に入れ、低速型攪拌機(池袋琺瑯工業(株)製、30LGL反応器、翼径約30cm)で攪拌(攪拌速度234rpm)しながら、128℃で145分加水分解した。得られた酸不溶解残渣はヌッチェを使用して濾過し、ろ過残渣をさらに70Lの純水で4回洗浄し、アンモニア水で中和後、90Lのポリバケツに入れ純水を加え、スリーワンモーター(HEIDON製、タイプBLh1200、8M/M、翼径約10cm)で攪拌(攪拌速度500rpm)しながら濃度18%のセルロース分散液とした(pH;7.5、IC;40μS/cm)。
(Example 3)
2 kg of commercially available KP pulp (polymerization degree 840, level-off polymerization degree 145) is shredded and placed in 30 L of a 0.39% hydrochloric acid aqueous solution, and a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., 30 LGL reactor, blade diameter of about The mixture was hydrolyzed at 128 ° C. for 145 minutes with stirring (stirring speed: 234 rpm). The obtained acid-insoluble residue was filtered using a Nutsche, the filter residue was further washed four times with 70 L of pure water, neutralized with ammonia water, added to a 90 L plastic bucket, pure water was added, and three-one motor ( A cellulose dispersion having a concentration of 18% was prepared (pH: 7.5, IC; 40 μS / cm) while stirring (stirring speed: 500 rpm) with HEIDON, type BLh1200, 8 M / M, blade diameter of about 10 cm.

これを噴霧乾燥(液供給速度6L/hr、入口温度180〜220℃、出口温度50〜70℃)してセルロース粉末C(乾燥減量3.3%)を得た。セルロース粉末Cの物性を表1に示す。
(実施例4)
市販KPパルプ(重合度840、レベルオフ重合度145)2kgを細断し、0.39%塩酸水溶液30L中に入れ、低速型攪拌機(池袋琺瑯工業(株)製、30LGL反応器、翼径約30cm)で攪拌(攪拌速度234rpm)しながら、126℃で55分加水分解した。得られた酸不溶解残渣はヌッチェを使用して濾過し、ろ過残渣をさらに70Lの純水で4回洗浄し、アンモニア水で中和後、90Lのポリバケツに入れ純水を加え、スリーワンモーター(HEIDON製、タイプBLh1200、8M/M、翼径約10cm)で攪拌(攪拌速度500rpm)しながら濃度19%のセルロース分散液とした(pH;7.8、IC;35μS/cm)。
This was spray-dried (liquid supply speed 6 L / hr, inlet temperature 180 to 220 ° C., outlet temperature 50 to 70 ° C.) to obtain cellulose powder C (loss on drying 3.3%). Table 1 shows the physical properties of the cellulose powder C.
Example 4
2 kg of commercially available KP pulp (polymerization degree 840, level-off polymerization degree 145) is shredded and placed in 30 L of a 0.39% hydrochloric acid aqueous solution, and a low-speed stirrer (Ikebukuro Sakai Kogyo Co., Ltd., 30 LGL reactor, blade diameter of about The mixture was hydrolyzed at 126 ° C. for 55 minutes with stirring (stirring speed: 234 rpm). The obtained acid-insoluble residue was filtered using a Nutsche, the filter residue was further washed four times with 70 L of pure water, neutralized with ammonia water, added to a 90 L plastic bucket, pure water was added, and three-one motor ( A cellulose dispersion with a concentration of 19% was prepared (pH: 7.8, IC: 35 μS / cm) while stirring (stirring speed: 500 rpm) with HEIDON, type BLh1200, 8 M / M, blade diameter of about 10 cm.

これを噴霧乾燥(液供給速度6L/hr、入口温度180〜220℃、出口温度50〜70℃)してセルロース粉末D(乾燥減量3.5%)を得た。セルロース粉末Dの物性を表1に示す。   This was spray-dried (liquid supply rate: 6 L / hr, inlet temperature: 180 to 220 ° C., outlet temperature: 50 to 70 ° C.) to obtain cellulose powder D (loss on drying: 3.5%). Table 1 shows the physical properties of the cellulose powder D.

実施例1〜4のセルロース粉末は、残留不純物由来の有機炭素量が特定範囲のため、異物数が劇的に減少した。また、アミノフィリン等量混合物の60℃密栓30日保存後の白色度が95%以上であり、比較例より高い値を示した。   In the cellulose powders of Examples 1 to 4, since the amount of organic carbon derived from residual impurities was in a specific range, the number of foreign matters was dramatically reduced. In addition, the whiteness of the aminophylline equivalent mixture after storage at 60 ° C. for 30 days was 95% or more, which was higher than the comparative example.

(比較例1)
市販SPパルプ(重合度1030、レベルオフ重合度は220)2kgを細断し、0.14N(0.49%)塩酸水溶液30L、121℃、1時間の条件で加水分解した。得られた酸不溶解残渣はヌッチェを使用して濾過し、ろ過残渣をさらに70Lの純水で4回洗浄し、アンモニア水で中和後、90Lのポリバケツに入れ、スリーワンモーターで攪拌しながら濃度17%のセルロース分散液を得た(pH;6.4、IC;64μS/cm)。
これを噴霧乾燥(液供給速度6L/hr、入口温度180〜220℃、出口温度70℃)後、325メッシュ篩で粗大粒子を除きセルロース粉末E(乾燥減量4.1%、特公昭40−26274号公報の実施例1に相当)を得た。セルロース粉末Eの物性を表1に示す。
(Comparative Example 1)
2 kg of commercially available SP pulp (polymerization degree 1030, level-off polymerization degree 220) was shredded and hydrolyzed under the conditions of 30 L of 0.14N (0.49%) hydrochloric acid aqueous solution at 121 ° C. for 1 hour. The obtained acid-insoluble residue was filtered using a Nutsche, and the filter residue was further washed with 70 L of pure water four times, neutralized with ammonia water, put into a 90 L plastic bucket, and stirred with a three-one motor. A 17% cellulose dispersion was obtained (pH; 6.4, IC; 64 μS / cm).
After spray drying (liquid supply rate 6 L / hr, inlet temperature 180 to 220 ° C., outlet temperature 70 ° C.), coarse particles were removed with a 325 mesh sieve to remove cellulose powder E (loss on drying 4.1%, JP-B 40-26274). Equivalent to Example 1). Table 1 shows the physical properties of the cellulose powder E.

(比較例2)
市販KPパルプ(重合度840、レベルオフ重合度145)を0.7%塩酸水溶液中で、125℃、150分間加水分解した後、加水分解残渣を中和、洗浄、濾過して湿ケークとし、ニーダー中で十分磨砕した後、容積比で1倍のエタノールを加え、圧搾濾過した後風乾した。乾燥粉末はハンマーミルで粉砕し40メッシュ篩で粗大粒子を除きセルロース粉末F(乾燥重量3.0%、特開昭56−2047号公報の実施例1に相当)を得た。セルロース粉末Fの物性を表1に示す。
(Comparative Example 2)
A commercially available KP pulp (polymerization degree 840, level-off polymerization degree 145) was hydrolyzed in a 0.7% aqueous hydrochloric acid solution at 125 ° C. for 150 minutes, and then the hydrolysis residue was neutralized, washed and filtered to obtain a wet cake. After sufficiently grinding in a kneader, ethanol having a volume ratio of 1 was added, and the mixture was squeezed and filtered and then air-dried. The dry powder was pulverized with a hammer mill, and coarse particles were removed with a 40 mesh sieve to obtain cellulose powder F (dry weight 3.0%, corresponding to Example 1 of JP-A-56-2047). Table 1 shows the physical properties of the cellulose powder F.

(比較例3)
塩酸濃度を0.49%とした以外は、実施例2と同様に操作し、セルロース粉末Gを得た。セルロース粉末Gの物性を表1に示す。
(Comparative Example 3)
A cellulose powder G was obtained in the same manner as in Example 2 except that the hydrochloric acid concentration was 0.49%. Table 1 shows the physical properties of the cellulose powder G.

(比較例4)
加水分解時間を160分とした以外は、実施例2と同様に操作し、セルロース粉末Hを得た。セルロース粉末Hの物性を表1に示す。
(Comparative Example 4)
A cellulose powder H was obtained in the same manner as in Example 2 except that the hydrolysis time was 160 minutes. Table 1 shows the physical properties of the cellulose powder H.

(比較例5)
加水分解時間を100分とした以外は、実施例2と同様に操作し、セルロース粉末Iを得た。セルロース粉末Iの物性を表1に示す。
(Comparative Example 5)
A cellulose powder I was obtained in the same manner as in Example 2 except that the hydrolysis time was 100 minutes. Table 1 shows the physical properties of the cellulose powder I.

(比較例6)
加水分解温度を90℃とした以外は、実施例2と同様に操作し、セルロース粉末Jを得た。セルロース粉末Jの物性を表1に示す。
(Comparative Example 6)
Cellulose powder J was obtained in the same manner as in Example 2 except that the hydrolysis temperature was 90 ° C. Table 1 shows the physical properties of the cellulose powder J.

(比較例7)
加水分解温度を160℃とした以外は、実施例2と同様に操作し、セルロース粉末Kを得た。セルロース粉末Kの物性を表1に示す。

Figure 2017165972

(実施例5)
エテンザミド:250g、セルロース粉末B:500g、噴霧乾燥乳糖:220g(スーパータブ、DMV製)、アルファー化デンプン「Swelstar」PD−1(旭化成ケミカルズ製):30gを3分間ポリ袋中で混合し、植物性ステアリン酸マグネシウム(太平化学産業):10gを加え、さらにポリ袋中にて30秒混合した。ロータリー打錠機(「クリーンプレス・コレクト12HUK」(商品名)菊水製作所製)で打錠し、打錠圧12kNで重量200mg、直径8mm、12Rの錠剤をオープンフィーダー、ターンテーブル回転数54rpmにて作製した。得られた錠剤の物性を表2に示す。
(実施例6)
セルロース粉末Bをセルロース粉末Cとする以外は、実施例5と同様に操作した。得られた錠剤の物性を表2に示す。
(比較例8〜9)
セルロース粉末Bをセルロース粉末F又はGとする以外は、実施例5と同様に操作した。得られた錠剤の物性を表2に示す。
Figure 2017165972
(Comparative Example 7)
Cellulose powder K was obtained in the same manner as in Example 2 except that the hydrolysis temperature was 160 ° C. Table 1 shows the physical properties of the cellulose powder K.
Figure 2017165972

(Example 5)
Ethenzamid: 250 g, cellulose powder B: 500 g, spray-dried lactose: 220 g (Supertub, manufactured by DMV), pregelatinized starch “Swelstar” PD-1 (manufactured by Asahi Kasei Chemicals): 30 g are mixed in a plastic bag for 3 minutes, Magnesium stearate (Taihei Chemical Industry): 10 g was added and further mixed in a plastic bag for 30 seconds. Tableting with a rotary tableting machine ("Clean Press Collect 12HUK" (trade name) manufactured by Kikusui Seisakusho), tableting pressure 12kN, weight 200mg, diameter 8mm, 12R tablets open feeder, turntable rotation speed 54rpm Produced. Table 2 shows the physical properties of the obtained tablets.
(Example 6)
The same operation as in Example 5 was performed except that the cellulose powder B was changed to the cellulose powder C. Table 2 shows the physical properties of the obtained tablets.
(Comparative Examples 8-9)
The same operation as in Example 5 was performed except that the cellulose powder B was changed to the cellulose powder F or G. Table 2 shows the physical properties of the obtained tablets.
Figure 2017165972

本発明のセルロース粉末は、乾燥時の焦げが抑制され、黒色異物が少なく、その結果錠剤の不良率低減に寄与でき、さらには末端にアミノ基を有する薬物との着色性を低減することができる。
The cellulose powder of the present invention is suppressed in scorching at the time of drying, has few black foreign matters, and as a result, can contribute to reducing the defective rate of tablets, and further can reduce coloring with a drug having an amino group at the terminal. .

本発明者らは上述した現状に鑑み鋭意検討した結果、セルロース粉末を製造する際、特定の製造条件にすることで、乾燥時の焦げを抑制され、黒色異物が少なく、その結果錠剤の不良率低減に寄与でき、さらには末端にアミノ基を有する薬物との着色性を低減することができることを見出し、本発明を達成したものである。即ち本発明は、下記の通りである。
(1)平均重合度が100〜300、重量平均粒子径が30μmより大きく、250μm以下、見掛け比容積が2.0cm3/g以上〜4.0cm3/g未満、及び1%NaOH水溶液抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)で定義される残留不純物由来の有機炭素量が0.002〜0.060%であるセルロース粉末、
(2)粒子内細孔容積が0.1cm/g以上、0.265cm/g未満である(1)のセルロース粉末、
(3)セルロース粉末50g中に含まれる黒色の目視異物が0〜20個である(1)のセルロース粉末、
(4)(1)又は(3)のセルロース粉末を含む成形体、
(5)成形体が1つ以上の活性成分を含む錠剤である(4)の成形体、
(6)天然セルロース質物質を塩酸濃度0.05〜0.15%、加水分解温度125〜150℃、及び加水分解時間110分を超え、150分以下の条件で、又は塩酸濃度0.15%を超え〜0.4%、加水分解温度125〜150℃、及び加水分解時間50〜150分の条件で加水分解し、次いで得られた分散液を入口温度150〜300℃で噴霧乾燥することにより、平均重合度100−300、重量平均粒子径30μmより大きく、250μm以下、見掛け比容積2.0cm3/g以上〜4.0cm3/g未満、及び1%NaOH水溶液抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)で定義される残留不純物由来の有機炭素量が0.002〜0.060%のセルロース粉末を得る、該セルロース粉末の製造方法、
(7)1つ以上の活性成分と、糖類、糖アルコール類、デンプン類、崩壊剤から選ばれる1つ以上の添加剤と、セルロース粉末とを含む成形体であって、硬度が50〜100N、引張強度が0.1〜5.5MPa、摩損度が0〜0.5%、アセトン中での成形体直径膨潤率が0〜3.3%である成形体、
(8)セルロース粉末を5〜90重量%含む(7)の成形体、
(9)成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量が0.002〜0.060%である(7)又は(8)の成形体。
(10)成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出されるセルロース粉末中の残留不純物由来の全有機炭素量が0.002〜0.060%である(7)又は(8)の成形体。
As a result of intensive studies in view of the above-mentioned present situation, the present inventors have made specific production conditions when producing cellulose powder, so that scorching during drying is suppressed and there are few black foreign substances, resulting in a defective rate of tablets. The present invention has been achieved by finding that it can contribute to reduction, and that coloration with a drug having an amino group at the terminal can be reduced. That is, the present invention is as follows.
(1) When the average degree of polymerization is 100 to 300, the weight average particle size is larger than 30 μm, 250 μm or less, the apparent specific volume is 2.0 cm 3 / g to less than 4.0 cm 3 / g, and 1% NaOH aqueous solution is extracted Total organic carbon amount (%)-cellulose powder having an organic carbon amount derived from residual impurities defined by total organic carbon amount (%) at the time of extraction with pure water of 0.002 to 0.060%,
(2) pore volume within a particle is 0.1 cm 3 / g or more, the cellulose powder of less than 0.265 cm 3 / g (1),
(3) The cellulose powder according to (1), wherein 0 to 20 black visual foreign matters are contained in 50 g of the cellulose powder.
(4) A molded article containing the cellulose powder of (1) or (3),
(5) The molded body according to (4), wherein the molded body is a tablet containing one or more active ingredients.
(6) Natural cellulosic material with a hydrochloric acid concentration of 0.05 to 0.15%, a hydrolysis temperature of 125 to 150 ° C., and a hydrolysis time exceeding 110 minutes and 150 minutes or less, or a hydrochloric acid concentration of 0.15% To 0.4%, a hydrolysis temperature of 125 to 150 ° C., and a hydrolysis time of 50 to 150 minutes, and then the resulting dispersion is spray dried at an inlet temperature of 150 to 300 ° C. , Average polymerization degree 100-300, weight average particle diameter larger than 30 μm, 250 μm or less, apparent specific volume 2.0 cm 3 / g to less than 4.0 cm 3 / g, and total organic carbon amount during extraction with 1% NaOH aqueous solution (%)-A method for producing a cellulose powder, wherein the amount of organic carbon derived from residual impurities defined by the total amount of organic carbon (%) during extraction with pure water is 0.002 to 0.060%.
(7) A molded article comprising one or more active ingredients, one or more additives selected from sugars, sugar alcohols, starches, and disintegrants, and cellulose powder, having a hardness of 50 to 100 N, A molded article having a tensile strength of 0.1 to 5.5 MPa, a friability of 0 to 0.5%, and a molded article diameter swelling ratio in acetone of 0 to 3.3%;
(8) A molded article according to (7) containing 5 to 90% by weight of cellulose powder,
(9) The total organic carbon content derived from residual impurities in the molded product residue extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing is 0.002 to 0.060% (7) or The molded article of (8).
(10) The total organic carbon amount derived from residual impurities in the cellulose powder extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing of the molded body is 0.002 to 0.060% (7) or The molded article of (8).

成形体(好ましくは錠剤)残渣の残留不純物由来の全有機炭素量は、成形体残渣中から純水(80mL)により抽出される、成形体残渣に対する全有機炭素(TOC)量と、成形体残渣中から1%水酸化ナトリウム水溶液(80mL)により抽出される、成形体残渣に対するTOC量との差(%)で定義する。成形体残渣がセルロース粉末である場合には、成形体残渣は純水で十分に洗浄されているため、成形体残渣の純水抽出時の全有機炭素量(%)はゼロに近くなり、成形体残渣の残留不純物由来の全有機炭素量は、1%NaOH水溶液抽出時の全有機炭素量(%)にほぼ等しくなる。純水抽出時の全有機炭素量(%)が検出される場合は、純水洗浄による不純物の除去が不十分であるか、乾燥による残留アセトン及びエタノールの除去が不十分であることが考えられるため、抽出する純水量を1.3〜2倍の範囲で増やすか、乾燥温度を100〜120℃、乾燥時間を3〜5hrの範囲で調整する。成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量は、次の手順で確認が可能である。
(i)成形体120gを500mlビーカーに入れ、アセトン300gを加え、成形体片が認められなくなるまでスターラーで攪拌した後、吸引ろ過(ブフナー漏斗、定量分析用ろ紙、5C、直径110mmを使用)する。成形体片を認める場合には、10分間、超音波処理をした後に30分間攪拌する。成形体片が認められなくなるまで繰り返す。
(ii)ろ紙上の残渣にエタノール100mLを加え、残渣をスパチュラで良くかき混ぜ、吸引ろ過する(この操作を3回繰り返す)。(i)、(ii)の操作により、水難溶性成分を除去する。
(iii)純水1000mL中に(ii)の残渣を入れ、10分間スターラーで攪拌した後、吸引ろ過する。
(iv)(iii)の残渣を、純水600ml中に入れ、10分間スターラーで攪拌した後、吸引ろ過する。
(v)純水1000mL中に(iv)の残渣を入れ、スターラーで攪拌しながら、80〜100℃で30分間加熱する。20〜30℃に冷却した後、α−アミラーゼを5μg/L加え、37℃で30分間攪拌した後、吸引ろ過する。
(vi)(v)の残渣にエタノール150mLを加え、残渣をスパチュラで良くかき混ぜ、吸引ろ過する(この操作を3回繰り返す)。(iii)〜(vi)の操作により、水溶性成分とデンプン類を除去する。水溶性成分には糖類、糖アルコール類が含まれ、公知の方法で定量できる。
(vii)ろ紙上の残渣を濾紙から掻き落とし、シャーレに入れ、室温(20〜30℃)でエタノール臭がなくなるまで乾燥後、100℃で3時間乾燥し測定用試料とする。
(viii)乾燥残渣約2gを測定用セルに入れ、近赤外分光法にて吸収スペクトルを測定する(装置名:InfraAlyzer500、メーカー名:BRAN+LUBBE)。1692nmにNIR吸収スペクトルの2次微分値のピークを検出する場合は、下式により、成形体残渣中のセルロース粉末含有率(C;%)を計算する。
・C(%)=NIR2次微分スペクトル強度の値×316583+95.588
1692nmにNIR吸収スペクトルの2次微分値のピークがある場合は、セルロース粉末以外にクロスポビドンの残渣が含まれている。乾燥残渣中のセルロース粉末の含有率を特定するため、上記の式を用いる。(i)の成形体の代わりに、セルロース粉末/クロスポビドン=100/0、50/50、0/100の3つの組成粉末を調製し、(i)〜(vii)の操作を経て乾燥残渣を得、InfraAlyzer500(メーカー名:BRAN+LUBBE)を用いてNIR2次微分スペクトル強度を測定し、3点の検量線から上記式の係数を求めることができる。
1692nmにNIR吸収スペクトルの2次微分値のピークを検出しない場合は、乾燥残渣から純水(80mL)により抽出される、乾燥残渣に対する全有機炭素(TOC)量が0.0%である場合には、乾燥残渣はセルロース粉末のみからなる。0.0%を超えるときは、デンプン、クロスポビドン以外の崩壊剤を含有している場合があるため、それらを除去するため、乾燥残渣を純水50mLで分散し、目開き10μmの篩を通し、セルロース粉末以外の粒子を除去した後、ろ液を蒸発乾固して(ix)の乾燥残渣とする。それでもなお、残渣の純水抽出時の全有機炭素量(%)が0.0%を超える場合は、純水50mLで分散(必要に応じて超音波処理、ホモジナイザー処理をしても良い)し、2000Gで遠心分離した上澄みを蒸発乾固して(ix)の乾燥残渣とする。
(ix)<(viii)で1692nmにNIR吸収スペクトルの2次微分値のピークを検出する場合>
乾燥残渣(A;g、4〜4.5gが目安)を秤量し、80mlの1%NaOH水溶液中に入れ、スターラーで5分間攪拌後、吸引ろ過する。ろ液を採取し体積(X;mL)を測定する。ろ液は塩酸で酸性(pH2−3)とし、全有機炭素計(島津製作所製、TOC−VCSH、TC−IC法を使用)で全有機炭素量(TOC1%NaOH;mg/L)を測定する。残渣は純水で十分に洗浄されていることから、純水抽出時の全有機炭素量(%)はゼロと見なせるため、残渣に含まれるセルロース粉末中の残留不純物由来の有機炭素量は1%NaOH水溶液抽出時の全有機炭素量(%)に等しくなる。以下に従い算出する。
・成形体から抽出した残渣中のセルロース粉末残渣量(B;g)=A×C/100
・セルロース粉末残渣中の全有機炭素量(Y;mg)=(TOC1%NaOH/1000)×X−0.4/100×(A−B)×1000
上記の係数0.4は、(i)の成形体をクロスポビドンの粉末2.5gとし、(vii)までの処理を経て得た乾燥残渣を用い、80mlの1%NaOH水溶液で抽出した時の全有機炭素量(%)である。
・成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量(%)
=Y/(1000×B)×100=Y/(10×B)
<(viii)で1692nmにNIR吸収スペクトルの2次微分値のピークを検出しない場合>
乾燥残渣(純水で抽出する場合はAH2O;g、1%NaOH水溶液で抽出する場合はA1%NaOH;g)を秤量し、純水又は1%NaOH水溶液80mLを加えて、ビーカー中で5分間攪拌(スターラー使用)後、吸引ろ過(定量分析用ろ紙、5C、直径110mmを使用)により乾燥残渣を除去しろ液を得る。ろ液全量の体積を測定(純水を用いた場合の全量をVH2O、1%NaOH水溶液を用いた場合の全量をV1%NaOH;mL)後、塩酸で酸性(pH2−3)とし、全有機炭素計(島津製作所製、TOC−VCSH、TC−IC法を使用)で全有機炭素量(TOC;mg/L)を測定した。純水を用いた場合のTOCをTOCH2O、1%NaOH水溶液を用いた場合のTOCをTOC1%NaOHとする。成形体残渣の残留不純物由来の有機炭素量は下式により算出する。
・成形体残渣の残留不純物由来の全有機炭素量(%)=1%NaOH水溶液抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)
・1%NaOH水溶液抽出時の全有機炭素量(%):
=[(TOC1%NaOH(mg/L)/1000)×V1%NaOH(mL)]/A1%NaOH×1000(mg)×100
・純水抽出時の全有機炭素量(%):
=[(TOCH2O(mg/L)/1000)×VH2O(mL)]/AH2O×1000(mg)×100
The total amount of organic carbon derived from residual impurities in the molded product (preferably tablet) residue is extracted from the molded product residue with pure water (80 mL), and the total organic carbon (TOC) content of the molded product residue and the molded product residue It is defined as the difference (%) from the amount of TOC with respect to the molded product residue extracted from the inside with 1% aqueous sodium hydroxide solution (80 mL). When the molded product residue is cellulose powder, the molded product residue is sufficiently washed with pure water, so the total organic carbon content (%) at the time of extraction of the molded product residue with pure water is close to zero. The total organic carbon amount derived from the residual impurities of the body residue is approximately equal to the total organic carbon amount (%) at the time of 1% NaOH aqueous solution extraction. If the total amount of organic carbon (%) during extraction with pure water is detected, it is considered that impurities are not sufficiently removed by washing with pure water, or residual acetone and ethanol are not sufficiently removed by drying. Therefore, the amount of pure water to be extracted is increased within a range of 1.3 to 2 times, or the drying temperature is adjusted within a range of 100 to 120 ° C. and the drying time is adjusted within a range of 3 to 5 hours. The total amount of organic carbon derived from residual impurities in the molded product residue extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing can be confirmed by the following procedure.
(I) Put 120 g of the molded body into a 500 ml beaker, add 300 g of acetone, and stir with a stirrer until the molded body piece is not recognized, and then suction filter (use Buchner funnel, filter paper for quantitative analysis, 5C, 110 mm in diameter). . In the case where the molded piece is recognized, the mixture is subjected to ultrasonic treatment for 10 minutes and then stirred for 30 minutes. Repeat until no shaped pieces are found.
(Ii) Add 100 mL of ethanol to the residue on the filter paper, stir the residue well with a spatula and suction filter (repeat this operation three times). The poorly water-soluble component is removed by the operations (i) and (ii).
(Iii) Put the residue of (ii) in 1000 mL of pure water, and stir with a stirrer for 10 minutes, followed by suction filtration.
(Iv) The residue of (iii) is put into 600 ml of pure water, stirred with a stirrer for 10 minutes, and then suction filtered.
(V) Put the residue of (iv) in 1000 mL of pure water and heat at 80 to 100 ° C. for 30 minutes while stirring with a stirrer. After cooling to 20-30 ° C., 5 μg / L of α-amylase is added and stirred at 37 ° C. for 30 minutes, followed by suction filtration.
(Vi) Add 150 mL of ethanol to the residue of (v), stir the residue well with a spatula and suction filter (repeat this operation 3 times). Water-soluble components and starches are removed by the operations (iii) to (vi). The water-soluble components include saccharides and sugar alcohols and can be quantified by a known method.
(Vii) The residue on the filter paper is scraped off from the filter paper, put in a petri dish, dried at room temperature (20-30 ° C.) until the ethanol odor disappears, and then dried at 100 ° C. for 3 hours to obtain a measurement sample.
(Viii) About 2 g of dried residue is put into a measurement cell, and an absorption spectrum is measured by near infrared spectroscopy (device name: InfraAlyzer 500, manufacturer name: BRAN + LUBBE). When the peak of the second derivative value of the NIR absorption spectrum is detected at 1692 nm, the cellulose powder content (C;%) in the molded product residue is calculated according to the following equation.
C (%) = NIR second derivative spectrum intensity value × 316583 + 95.588
When there is a peak of the second derivative value of the NIR absorption spectrum at 1692 nm, a residue of crospovidone is contained in addition to the cellulose powder. The above formula is used to specify the content of cellulose powder in the dry residue. Instead of the shaped body of (i), three composition powders of cellulose powder / crospovidone = 100/0, 50/50, 0/100 are prepared, and the dry residue is removed through the operations (i) to (vii). The NIR second-order differential spectrum intensity is measured using InfraAlyzer 500 (manufacturer name: BRAN + LUBBE), and the coefficient of the above equation can be obtained from a three-point calibration curve.
When the peak of the second derivative value of the NIR absorption spectrum is not detected at 1692 nm, the total organic carbon (TOC) amount extracted from the dry residue with pure water (80 mL) is 0.0% with respect to the dry residue. The dry residue consists only of cellulose powder. When it exceeds 0.0%, disintegrants other than starch and crospovidone may be contained. Therefore, in order to remove them, the dry residue is dispersed with 50 mL of pure water and passed through a sieve having an opening of 10 μm. After removing particles other than cellulose powder, the filtrate is evaporated to dryness to obtain a dry residue (ix). Nevertheless, if the total organic carbon content (%) at the time of extraction of the residue with pure water exceeds 0.0%, it is dispersed with 50 mL of pure water (sonication or homogenizer treatment may be performed if necessary). The supernatant centrifuged at 2000 G is evaporated to dryness to give a dry residue (ix).
(Ix) <When the peak of the second derivative value of the NIR absorption spectrum is detected at 1692 nm in (viii)>
Weigh the dried residue (A; g, 4 to 4.5 g as a guide), put it in 80 ml of 1% NaOH aqueous solution , stir with a stirrer for 5 minutes, and then suction filter. Collect the filtrate and measure the volume (X; mL). The filtrate was acidified with hydrochloric acid (pH 2-3), and the total organic carbon content (TOC 1% NaOH ; mg / L) was measured with a total organic carbon meter (manufactured by Shimadzu Corporation, using TOC-VCSH, TC-IC method). To do. Since the residue is thoroughly washed with pure water, the total amount of organic carbon (%) at the time of extraction with pure water can be regarded as zero. Therefore, the amount of organic carbon derived from residual impurities in the cellulose powder contained in the residue is 1%. It becomes equal to the total organic carbon amount (%) at the time of NaOH aqueous solution extraction. Calculate according to the following.
-Cellulose powder residue amount (B; g) in the residue extracted from the molded product = A x C / 100
-Total organic carbon amount (Y; mg) in cellulose powder residue = (TOC 1% NaOH / 1000) x X-0.4 / 100 x (AB) x 1000
The above coefficient 0.4 is obtained when the molded product of (i) is 2.5 g of crospovidone powder, and the dry residue obtained through the treatment up to (vii) is used and extracted with 80 ml of 1% NaOH aqueous solution . Total organic carbon content (%).
・ Total organic carbon content (%) derived from residual impurities in the molded product residue extracted through acetone cleaning, ethanol cleaning, pure water cleaning, and ethanol cleaning.
= Y / (1000 × B) × 100 = Y / (10 × B)
<When the peak of the second derivative value of the NIR absorption spectrum is not detected at 1692 nm in (viii)>
Weigh the dry residue (A H2O for extraction with pure water; g, A 1% NaOH for extraction with 1% aqueous NaOH ; g), add 80 mL of pure water or 1% aqueous NaOH, and add in a beaker. After stirring for 5 minutes (using a stirrer), the dry residue is removed by suction filtration (using quantitative analysis filter paper, 5C, diameter 110 mm) to obtain a filtrate. After measuring the volume of the total amount of the filtrate (total amount when using pure water is V H2O , total amount when using 1% NaOH aqueous solution is V 1% NaOH ; mL), acidify with hydrochloric acid (pH 2-3), The total organic carbon amount (TOC; mg / L) was measured with a total organic carbon meter (manufactured by Shimadzu Corporation, using TOC-VCSH, TC-IC method). The TOC when pure water is used is TOC H2O , and the TOC when 1% NaOH aqueous solution is used is TOC 1% NaOH . The amount of organic carbon derived from residual impurities in the molded product residue is calculated by the following equation.
-Total organic carbon derived from residual impurities in molded product residue (%) = Total organic carbon (%) during extraction with 1% NaOH aqueous solution- Total organic carbon (%) during extraction with pure water
-Total organic carbon content (%) during extraction with 1% NaOH aqueous solution :
= [(TOC 1% NaOH (mg / L) / 1000) × V 1% NaOH (mL)] / A 1% NaOH × 1000 (mg) × 100
・ Total organic carbon content during pure water extraction (%):
= [(TOC H 2 O (mg / L) / 1000) × V H 2 O (mL)] / A H 2 O × 1000 (mg) × 100

以下、実施例により本発明を詳細に説明するが、これらは本発明の範囲を制限しない。なお、実施例、比較例における各物性の測定方法は以下の通りである。
1)平均重合度(−)
第15改正日本薬局方、結晶セルロースの確認試験(3)に記載された銅エチレンジアミン溶液粘度法により測定した値。
2)乾燥減量(%)
粉末1gを105℃、3時間乾燥し、重量減少量を重量百分率で表した。
3)セルロース分散液中のセルロース粒子の体積平均粒子径(μm)
加水分解後のセルロース分散液又は、乾燥前のセルロース分散液の粒子径は以下の手順で求めた。セルロース分散液を鏡検台上に滴下し、スライドガラスを載せて乾燥させた後、マイクロスコープを用いて光学顕微鏡像を撮影した。光学顕微鏡増は画像解析処理し((株)インタークエスト製、装置:Hyper700,ソフトウエア:Imagehyper)、粒子に外接する長方形のうち面積が最小となる長方形の長辺を求め、累積個数50%粒子径を平均粒子径とした。少なくとも100個以上の粒子について画像解析処理した。
4)セルロース粉末の重量平均粒子径(μm)
粉体試料の重量平均粒径はロータップ式篩振盪機(平工作所製シーブシェーカーA型)、JIS標準篩(Z8801−1987)を用いて、試料10gを10分間篩分することにより粒度分布を測定し、累積重量50%粒径として表した。
5)見掛け比容積(cm3 /g)
100cm3 のガラス製メスシリンダーに、粉体試料を定量フィーダーなどを用い、2−3分かけて粗充填し、粉体層上面を筆のような軟らかい刷毛で水平にならしその容積を読みとりこれを粉体試料の重量で除して求めた。粉体の重量は容積が70−100cm3程度になるように適宜決定した。
6)見掛けタッピング密度(g/cm3
市販粉体物性測定機(ホソカワミクロン製、パウダーテスターPT−R型)を用い、100cm3カップに粉体を充填し、180回タッピングした後、カップの体積を、カップに充填されて残る粉体層の重量で除して求めた。
7)残留不純物由来の有機炭素量(%)
セルロース粉末(W;mg、5000mgを目安)に純水又は1%NaOH水溶液80mLを加えて、ビーカー中で5分間攪拌(スターラー使用)後、吸引ろ過(定量分析用ろ紙、5C、直径110mmを使用)によりセルロース粉末を除去しろ液を得た。ろ液全量の体積を測定(水を用いた場合の全量をVH2O、1%NaOH水溶液を用いた場合の全量をV1%NaOH;mL)後、塩酸で酸性(pH2−3)とし、全有機炭素計(島津製作所製、TOC−VCSH、TC−IC法を使用)で全有機炭素量(TOC;mg/L)を測定した。純水を用いた場合のTOCをTOCH2O、1%NaOH水溶液を用いた場合のTOCをTOC1%NaOHとする。残留不純物由来の有機炭素量は下式により算出した。
・残留不純物由来の有機炭素量(%)=1%NaOH水溶液抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)
・1%NaOH水溶液抽出時の全有機炭素量(%):
=[(TOC1%NaOH(mg/L)/1000)×V1%NaOH(mL)]/W(mg)×100
・純水抽出時の全有機炭素量(%):
=[(TOCH2O(mg/L)/1000)×VH2O(mL)]/W(mg)×100
8)吸水能(cm/g)
セルロース粉末2g(乾燥物換算)に純水を滴下し、必要に応じて、セルロース粉末が滴下した水となじむようにヘラ等で練りながら、表面に水が染み出る点を終点として滴下した純水量(V)を求めた。吸水能は下式により算出した。3回測定値の平均値を用いた。
吸水能(cm/g)=V/2
9)安息角(゜)
杉原式安息角測定器(スリットサイズ奥行10×幅50×高さ140mm、幅50mmの位置に分度器を設置)を使用し、セルロース粉末を定量フィーダーにて3g/分の速度でスリットに投下した際の動的自流動性を測定した。装置底部とセルロース粉末の形成層との角度が安息角である。
10)異物量(個/50g)
本発明のセルロース粉末50gを5分間、ハンドで篩過し、75μm篩に残留する全量を、青色の画用紙上に薄く広げ、ルーペを用い目視にて15分間黒色異物数をカウントした。
11)セルロース粉末と末端にアミノ基を有する薬物との反応性
セルロース粉末とアミノフィリンの等量混合物を60℃・密栓瓶(50cm3)中に30日保存した。保存後の上記等量混合物について、分光式色彩計(SE−2000、日本電色工業製)によりL、a、bの値を求め以下の式により算出した。白色度の低下が少ないほど反応性が低いと考えられる。
白色度=100−[(100−L)+(a+b)]0.5
L:明るさ a:彩度(緑〜赤) b:彩度(青〜黄)
12)粒子内細孔容積 (cm/g)
島津製作所(株)製、オートポア9520型(商品名)を用い、水銀ポロシメトリーにより細孔分布を求めた。測定に用いた各試料粉体は、室温で15時間減圧乾燥したものを使用した。初期圧20kPaの測定により、得られた細孔分布から、細孔径0.1〜15μmの範囲の合計容積を粒子内細孔容積とした。
13)硬度[N]
円柱状成形体或いは錠剤をシュロインゲル硬度計(フロイント産業(株)製、6D型)を用いて、円柱状成形体或いは錠剤の直径方向に荷重を加え、破壊したときの荷重を測定した。試料5個の数平均で示した。セルロース粉末100%の円柱状成形体は以下のようにして作製した。試料0.5gを、臼(菊水製作所製、材質SUK2,3を使用)に入れ、直径1.13cm(底面積が1cm2)の平面杵(菊水製作所製、材質SUK2,3を使用)で10MPaで圧縮し、その応力を10秒間保持し円柱状成形体を作製した(圧縮機はアイコーエンジニアリング製、PCM−1Aを使用し、圧縮速度は10cm/min程度とした)。実用的な硬度は直径8mmの錠剤の場合は、50N以上、直径9mm以上の錠剤の場合は、70N以上である。
14)引張強度[MPa]
錠剤の硬度:H[N]、錠剤の直径(カプレット錠などは最大径を用いる):D[mm]、錠剤の厚み:T[mm]を求め、下式で算出した。
引張強度[MPa]=2×H÷(3.14×D×T)
15)錠剤の摩損度[%]
錠剤20個の重量(Wa)を測定し、これを錠剤摩損度試験器(PTFR−A、PHARMA TEST製)に入れ、25rpm、4分間回転した後、錠剤に付着している微粉を取り除き、再度重量を測定し(Wb)、(7)式より計算した。
摩損度 = 100×(Wa−Wb)/Wa
実用上の使用に耐える錠剤とするには摩損度が0.5%以下である必要がある。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, these do not restrict | limit the scope of the present invention. In addition, the measuring method of each physical property in an Example and a comparative example is as follows.
1) Average degree of polymerization (-)
Value measured by the copper ethylenediamine solution viscosity method described in the 15th revised Japanese Pharmacopoeia, confirmation test (3) for crystalline cellulose.
2) Loss on drying (%)
1 g of the powder was dried at 105 ° C. for 3 hours, and the weight loss was expressed as a percentage by weight.
3) Volume average particle diameter of cellulose particles in cellulose dispersion (μm)
The particle size of the cellulose dispersion after hydrolysis or the cellulose dispersion before drying was determined by the following procedure. The cellulose dispersion was dropped on a microscope table, placed on a slide glass and dried, and then an optical microscope image was taken using a microscope. The optical microscope was subjected to image analysis processing (manufactured by Interquest Co., Ltd., apparatus: Hyper700, software: Imagehyper), and the long side of the rectangle with the smallest area among the rectangles circumscribing the particles was determined, and the cumulative number of particles was 50%. The diameter was defined as the average particle diameter. Image analysis processing was performed on at least 100 particles.
4) Weight average particle diameter (μm) of cellulose powder
The weight average particle size of the powder sample is determined by sieving 10 g of the sample for 10 minutes using a low-tap type sieve shaker (Sieve Shaker A type manufactured by Hira Kogakusho) or JIS standard sieve (Z8801-1987). Measured and expressed as 50% cumulative weight particle size.
5) Apparent specific volume (cm 3 / g)
A powder sample is roughly packed in a 100 cm 3 glass graduated cylinder over 2-3 minutes using a quantitative feeder, etc., and the upper surface of the powder layer is leveled with a soft brush like a brush and the volume is read. Was divided by the weight of the powder sample. The weight of the powder was appropriately determined so that the volume was about 70-100 cm 3 .
6) Apparent tapping density (g / cm 3 )
Using a commercially available powder property measuring machine (made by Hosokawa Micron, powder tester PT-R type), 100cm 3 cup is filled with powder, tapped 180 times, and then the volume of the cup is filled into the cup and the remaining powder layer Divided by the weight of
7) Amount of organic carbon derived from residual impurities (%)
Add pure water or 80% 1% NaOH aqueous solution to cellulose powder (W; mg, 5000 mg as a guide), stir for 5 minutes in a beaker (use stirrer), and then suction filtration (quantitative analysis filter paper, 5C, 110 mm diameter) ) To remove the cellulose powder to obtain a filtrate. The volume of the total amount of the filtrate was measured (the total amount when using water was V H2O , the total amount when using 1% NaOH aqueous solution was V 1% NaOH ; mL), then acidified (pH 2-3) with hydrochloric acid, Total organic carbon content (TOC; mg / L) was measured with an organic carbon meter (manufactured by Shimadzu Corporation, using TOC-VCSH, TC-IC method). The TOC when pure water is used is TOC H2O , and the TOC when 1% NaOH aqueous solution is used is TOC 1% NaOH . The amount of organic carbon derived from residual impurities was calculated by the following equation.
-Organic carbon amount (%) derived from residual impurities = Total organic carbon amount (%) during 1% NaOH aqueous solution extraction-Total organic carbon amount (%) during pure water extraction
-Total organic carbon content (%) during extraction with 1% NaOH aqueous solution :
= [(TOC 1% NaOH (mg / L) / 1000) × V 1% NaOH (mL)] / W (mg) × 100
・ Total organic carbon content during pure water extraction (%):
= [(TOC H2O (mg / L) / 1000) x VH2O (mL)] / W (mg) x 100
8) Water absorption capacity (cm 3 / g)
Pure water is added dropwise to 2 g of cellulose powder (in terms of dry matter), and if necessary, the amount of pure water dropped from the point where water oozes out on the surface while kneading with a spatula so that the cellulose powder blends with the dropped water. (V) was determined. The water absorption capacity was calculated by the following formula. The average value of triplicate measurements was used.
Water absorption capacity (cm 3 / g) = V / 2
9) Angle of repose (°)
When using a Sugihara-type angle of repose measuring instrument (slit size depth 10 x width 50 x height 140 mm, protractor installed at a position of 50 mm width) and dropping cellulose powder into the slit at a rate of 3 g / min with a quantitative feeder The dynamic self-fluidity of was measured. The angle of repose is the angle between the bottom of the apparatus and the cellulose powder forming layer.
10) Foreign substance amount (pieces / 50g)
50 g of the cellulose powder of the present invention was sieved by hand for 5 minutes, and the entire amount remaining on the 75 μm sieve was spread thinly on blue drawing paper, and the number of black foreign matters was counted visually for 15 minutes using a loupe.
11) Reactivity of cellulose powder and drug having amino group at its terminal A mixture of equal amounts of cellulose powder and aminophylline was stored in a sealed bottle (50 cm 3 ) at 60 ° C. for 30 days. About the said equal amount mixture after a preservation | save, the value of L, a, and b was calculated | required with the following formula | equation by the spectroscopic colorimeter (SE-2000, Nippon Denshoku Industries). It is considered that the lower the whiteness decrease, the lower the reactivity.
Whiteness = 100 − [(100−L) 2 + (a 2 + b 2 )] 0.5
L: Brightness a: Saturation (green to red) b: Saturation (blue to yellow)
12) Intraparticle pore volume (cm 3 / g)
The pore distribution was determined by mercury porosimetry using an Autopore 9520 type (trade name) manufactured by Shimadzu Corporation. Each sample powder used for the measurement was dried under reduced pressure at room temperature for 15 hours. From the obtained pore distribution, the total volume in the range of pore diameters of 0.1 to 15 μm was defined as the intraparticle pore volume based on the measurement at an initial pressure of 20 kPa.
13) Hardness [N]
Using a Schleingel hardness meter (Freund Sangyo Co., Ltd., 6D type), a cylindrical shaped product or tablet was loaded in the diameter direction of the cylindrical shaped product or tablet, and the load when it was broken was measured. The number average of five samples is shown. A cylindrical molded body of 100% cellulose powder was produced as follows. 0.5 g of a sample is put in a mortar (manufactured by Kikusui Seisakusho, using material SUK2, 3), and is 10 MPa with a flat paddle (manufactured by Kikusui Seisakusho, using material SUK2, 3) with a diameter of 1.13 cm (bottom area is 1 cm2). Compressed and held the stress for 10 seconds to produce a cylindrical molded body (the compressor used was PCM-1A manufactured by Aiko Engineering, and the compression speed was about 10 cm / min). The practical hardness is 50 N or more for a tablet having a diameter of 8 mm, and 70 N or more for a tablet having a diameter of 9 mm or more.
14) Tensile strength [MPa]
Tablet hardness: H [N], tablet diameter (maximum diameter for caplet tablets, etc.): D [mm], tablet thickness: T [mm] were obtained and calculated according to the following formula.
Tensile strength [MPa] = 2 × H ÷ (3.14 × D × T)
15) Tablet friability [%]
Measure the weight (Wa) of 20 tablets, put it in a tablet friability tester (PTFR-A, manufactured by PHARMA TEST), rotate at 25 rpm for 4 minutes, remove fine powder adhering to the tablets, and again The weight was measured (Wb) and calculated from equation (7).
Friction = 100 × (Wa−Wb) / Wa
In order to make a tablet that can withstand practical use, the friability needs to be 0.5% or less.

(比較例2)
市販KPパルプ(重合度840、レベルオフ重合度145)を0.7%塩酸水溶液中で、125℃、150分間加水分解した後、加水分解残渣を中和、洗浄、濾過して湿ケークとし、ニーダー中で十分磨砕した後、容積比で1倍のエタノールを加え、圧搾濾過した後風乾した。乾燥粉末はハンマーミルで粉砕し40メッシュ篩で粗大粒子を除きセルロース粉末F(乾燥重量3.0%、特昭56−2047号公報の実施例1に相当)を得た。セルロース粉末Fの物性を表1に示す。
(Comparative Example 2)
A commercially available KP pulp (polymerization degree 840, level-off polymerization degree 145) was hydrolyzed in a 0.7% aqueous hydrochloric acid solution at 125 ° C. for 150 minutes, and then the hydrolysis residue was neutralized, washed and filtered to obtain a wet cake. After sufficiently grinding in a kneader, ethanol having a volume ratio of 1 was added, and the mixture was squeezed and filtered and then air-dried. The dry powder was obtained cellulose powder F to remove coarse particles crushed 40 mesh screen in a hammer mill (dry weight 3.0%, corresponding to Example 1 of Japanese official Akira 56-2047 JP). Table 1 shows the physical properties of the cellulose powder F.

(比較例7)
加水分解温度を160℃とした以外は、実施例2と同様に操作し、セルロース粉末Kを得た。セルロース粉末Kの物性を表1に示す。

Figure 2017165972

(実施例5)
エテンザミド:250g、セルロース粉末B:500g、噴霧乾燥乳糖:220g(スーパータブ、DMV製)、アルファー化デンプン「Swelstar」PD−1(旭化成ケミカルズ製):30gを3分間ポリ袋中で混合し、植物性ステアリン酸マグネシウム(太平化学産業):10gを加え、さらにポリ袋中にて30秒混合した。ロータリー打錠機(「クリーンプレス・コレクト12HUK」(商品名)菊水製作所製)で打錠し、打錠圧12kNで重量200mg、直径8mm、12Rの錠剤をオープンフィーダー、ターンテーブル回転数54rpmにて作製した。得られた錠剤の物性を表2に示す。
(実施例6)
セルロース粉末Bをセルロース粉末Cとする以外は、実施例5と同様に操作した。得られた錠剤の物性を表2に示す。
(比較例8〜9)
セルロース粉末Bをセルロース粉末F又はGとする以外は、実施例5と同様に操作した。得られた錠剤の物性を表2に示す。
Figure 2017165972
(Comparative Example 7)
Cellulose powder K was obtained in the same manner as in Example 2 except that the hydrolysis temperature was 160 ° C. Table 1 shows the physical properties of the cellulose powder K.
Figure 2017165972

(Example 5)
Ethenzamid: 250 g, cellulose powder B: 500 g, spray-dried lactose: 220 g (Supertub, manufactured by DMV), pregelatinized starch “Swelstar” PD-1 (manufactured by Asahi Kasei Chemicals): 30 g are mixed in a plastic bag for 3 minutes, Magnesium stearate (Taihei Chemical Industry): 10 g was added and further mixed in a plastic bag for 30 seconds. Tableting with a rotary tableting machine ("Clean Press Collect 12HUK" (trade name) manufactured by Kikusui Seisakusho), tableting pressure 12kN, weight 200mg, diameter 8mm, 12R tablets open feeder, turntable rotation speed 54rpm Produced. Table 2 shows the physical properties of the obtained tablets.
(Example 6)
The same operation as in Example 5 was performed except that the cellulose powder B was changed to the cellulose powder C. Table 2 shows the physical properties of the obtained tablets.
(Comparative Examples 8-9)
The same operation as in Example 5 was performed except that the cellulose powder B was changed to the cellulose powder F or G. Table 2 shows the physical properties of the obtained tablets.
Figure 2017165972

Claims (10)

平均重合度が100〜300、重量平均粒子径が30μmより大きく、250μm以下、見掛け比容積が2.0cm3/g以上〜4.0cm3/g未満、及び1%NaOH抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)で定義される残留不純物由来の有機炭素量が0.002〜0.060%であるセルロース粉末。 The average degree of polymerization is 100 to 300, the weight average particle size is more than 30 μm, 250 μm or less, the apparent specific volume is 2.0 cm 3 / g to less than 4.0 cm 3 / g, and the total organic carbon during 1% NaOH extraction Cellulosic powder having an amount of organic carbon derived from residual impurities defined by the amount (%)-total organic carbon amount (%) during extraction with pure water of 0.002 to 0.060%. 粒子内細孔容積が0.1cm/g以上、0.265cm/g未満である請求項1に記載のセルロース粉末。 Is 0.1 cm 3 / g or more pore volume within a particle, cellulose powder according to claim 1 is less than 0.265 cm 3 / g. セルロース粉末50g中に含まれる黒色の目視異物が0〜20個である請求項1に記載のセルロース粉末。   The cellulose powder according to claim 1, wherein 0 to 20 black visual foreign matters are contained in 50 g of the cellulose powder. 請求項1又は3に記載のセルロース粉末を含む成形体。   The molded object containing the cellulose powder of Claim 1 or 3. 成形体が1つ以上の活性成分を含む錠剤である請求項4に記載の成形体。   The shaped body according to claim 4, wherein the shaped body is a tablet containing one or more active ingredients. 天然セルロース質物質を塩酸濃度0.05〜0.15%、加水分解温度125〜150℃、及び加水分解時間110分を超え〜150分以下の条件で、又は塩酸濃度0.15%を超え〜0.4%、加水分解温度125〜150℃、及び加水分解時間50〜150分の条件で加水分解し、次いで得られた分散液を入口温度150〜300℃で噴霧乾燥することにより、平均重合度100−300、重量平均粒子径30μmより大きく、250μm以下、見掛け比容積2.0cm3/g以上〜4.0cm3/g未満、及び1%NaOH抽出時の全有機炭素量(%)−純水抽出時の全有機炭素量(%)で定義される残留不純物由来の有機炭素量が0.002〜0.060%のセルロース粉末を得る、該セルロース粉末の製造方法。 Natural cellulosic material with a hydrochloric acid concentration of 0.05 to 0.15%, a hydrolysis temperature of 125 to 150 ° C., and a hydrolysis time of more than 110 minutes to 150 minutes or less, or a hydrochloric acid concentration of more than 0.15% Hydrolysis under conditions of 0.4%, hydrolysis temperature 125-150 ° C., and hydrolysis time 50-150 minutes, and then spray-drying the resulting dispersion at an inlet temperature of 150-300 ° C. to average polymerization degrees 100-300, greater than the weight average particle diameter of 30 [mu] m, 250 [mu] m or less, an apparent specific volume of 2.0 cm 3 / g or more ~4.0cm 3 / under g, and total organic carbon at 1% NaOH extraction (%) - A method for producing a cellulose powder, wherein a cellulose powder having a residual impurity-derived organic carbon content of 0.002 to 0.060% defined by the total organic carbon content (%) at the time of extraction with pure water is obtained. 1つ以上の活性成分と、糖類、糖アルコール類、デンプン類、崩壊剤から選ばれる1つ以上の添加剤と、セルロース粉末とを含む成形体であって、硬度が50〜100N、引張強度が0.1〜5.5MPa、摩損度が0〜0.5%、アセトン中での錠剤直径膨潤率が0〜3.3%である成形体。 A molded body comprising one or more active ingredients, one or more additives selected from sugars, sugar alcohols, starches, and disintegrants, and cellulose powder, having a hardness of 50 to 100 N and a tensile strength of A molded article having 0.1 to 5.5 MPa, a friability of 0 to 0.5%, and a tablet diameter swelling ratio in acetone of 0 to 3.3%. セルロース粉末を5〜90重量%含む請求項7に記載の成形体。 The molded product according to claim 7, comprising 5 to 90% by weight of cellulose powder. 成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出される成形体残渣の残留不純物由来の全有機炭素量が0.002〜0.060%である請求項7又は8に記載の成形体。   9. The total organic carbon content derived from residual impurities in a molded product residue extracted through acetone cleaning, ethanol cleaning, pure water cleaning, and ethanol cleaning of the molded product is 0.002 to 0.060%. Molded body. 成形体をアセトン洗浄、エタノール洗浄、純水洗浄、エタノール洗浄を経て抽出されるセルロース粉末中の残留不純物由来の全有機炭素量が0.002〜0.060%である請求項7又は8に記載の成形体。
The total organic carbon content derived from residual impurities in cellulose powder extracted through acetone washing, ethanol washing, pure water washing, and ethanol washing of the molded body is 0.002 to 0.060%. Molded body.
JP2017090401A 2012-05-31 2017-04-28 Cellulose powder Active JP6383835B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012124016 2012-05-31
JP2012124016 2012-05-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014518741A Division JP6210981B2 (en) 2012-05-31 2013-05-30 Cellulose powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018146056A Division JP2018172699A (en) 2012-05-31 2018-08-02 Cellulose powder

Publications (2)

Publication Number Publication Date
JP2017165972A true JP2017165972A (en) 2017-09-21
JP6383835B2 JP6383835B2 (en) 2018-08-29

Family

ID=49673433

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014518741A Active JP6210981B2 (en) 2012-05-31 2013-05-30 Cellulose powder
JP2017090401A Active JP6383835B2 (en) 2012-05-31 2017-04-28 Cellulose powder
JP2018146056A Pending JP2018172699A (en) 2012-05-31 2018-08-02 Cellulose powder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014518741A Active JP6210981B2 (en) 2012-05-31 2013-05-30 Cellulose powder

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018146056A Pending JP2018172699A (en) 2012-05-31 2018-08-02 Cellulose powder

Country Status (3)

Country Link
JP (3) JP6210981B2 (en)
IN (1) IN2014DN10077A (en)
WO (1) WO2013180246A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210981B2 (en) * 2012-05-31 2017-10-11 旭化成株式会社 Cellulose powder
JP5950012B1 (en) * 2015-09-17 2016-07-13 王子ホールディングス株式会社 Method for producing fine fibrous cellulose-containing material
JP6638290B2 (en) * 2015-09-30 2020-01-29 日本製紙株式会社 Powdered cellulose
US20220062182A1 (en) * 2018-12-27 2022-03-03 Asahi Kasei Kabushiki Kaisha Cellulose powder, use thereof, and tablets
JP6884920B2 (en) * 2019-04-02 2021-06-09 旭化成株式会社 How to improve the storage stability of tablets

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562047B2 (en) * 1977-07-12 1981-01-17
JPH08104650A (en) * 1994-03-01 1996-04-23 Asahi Chem Ind Co Ltd Medicine component
WO2002002643A1 (en) * 2000-07-05 2002-01-10 Asahi Kasei Kabushiki Kaisha Cellulose powder
WO2004106416A1 (en) * 2003-05-30 2004-12-09 Asahi Kasei Chemicals Corporation Cellulose powder
JP2005232260A (en) * 2004-02-18 2005-09-02 Asahi Kasei Chemicals Corp Porous composite particle of cellulose inorganic compound
WO2006115198A1 (en) * 2005-04-22 2006-11-02 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
WO2009157564A1 (en) * 2008-06-26 2009-12-30 旭化成ケミカルズ株式会社 Cellulose composition
JP2010018670A (en) * 2008-07-09 2010-01-28 Asahi Kasei Fibers Corp Highly water-absorbing resin and method for producing the same
WO2012002253A1 (en) * 2010-06-29 2012-01-05 旭化成ケミカルズ株式会社 Composite particles which contain both cellulose and inorganic compound
WO2013180248A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
WO2013180249A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
JP2017004307A (en) * 2015-06-11 2017-01-05 株式会社デンソー Driving assist device
JP6210981B2 (en) * 2012-05-31 2017-10-11 旭化成株式会社 Cellulose powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9358417B2 (en) * 2011-06-06 2016-06-07 Trudell Medical International Oscillating positive expiratory pressure device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562047B2 (en) * 1977-07-12 1981-01-17
JPH08104650A (en) * 1994-03-01 1996-04-23 Asahi Chem Ind Co Ltd Medicine component
WO2002002643A1 (en) * 2000-07-05 2002-01-10 Asahi Kasei Kabushiki Kaisha Cellulose powder
WO2004106416A1 (en) * 2003-05-30 2004-12-09 Asahi Kasei Chemicals Corporation Cellulose powder
JP2005232260A (en) * 2004-02-18 2005-09-02 Asahi Kasei Chemicals Corp Porous composite particle of cellulose inorganic compound
WO2006115198A1 (en) * 2005-04-22 2006-11-02 Asahi Kasei Chemicals Corporation Porous cellulose aggregate and molding composition thereof
WO2009157564A1 (en) * 2008-06-26 2009-12-30 旭化成ケミカルズ株式会社 Cellulose composition
JP2010018670A (en) * 2008-07-09 2010-01-28 Asahi Kasei Fibers Corp Highly water-absorbing resin and method for producing the same
WO2012002253A1 (en) * 2010-06-29 2012-01-05 旭化成ケミカルズ株式会社 Composite particles which contain both cellulose and inorganic compound
WO2013180248A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
WO2013180249A1 (en) * 2012-05-31 2013-12-05 旭化成ケミカルズ株式会社 Cellulose powder
JP6210981B2 (en) * 2012-05-31 2017-10-11 旭化成株式会社 Cellulose powder
JP2017004307A (en) * 2015-06-11 2017-01-05 株式会社デンソー Driving assist device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
粉末セルロース KCフロック, JPN6017003777, 2006, ISSN: 0003707489 *
粉末セルロース KCフロック, JPN6017003778, 2010, ISSN: 0003707490 *

Also Published As

Publication number Publication date
JP2018172699A (en) 2018-11-08
JP6383835B2 (en) 2018-08-29
WO2013180246A1 (en) 2013-12-05
IN2014DN10077A (en) 2015-08-21
JPWO2013180246A1 (en) 2016-01-21
JP6210981B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
JP6383835B2 (en) Cellulose powder
JP6462827B2 (en) Cellulose powder
JP6449410B2 (en) Cellulose powder
JP5110757B2 (en) Cellulose powder
JP4737754B2 (en) Cellulose powder
JP5577241B2 (en) Processed starch powder with excellent disintegration and process for producing the same
JP5753661B2 (en) Wet granulation tableting method using low-substituted hydroxypropylcellulose aqueous dispersion
EP3228324B1 (en) Hypromellose acetate succinate powder
JP6928530B2 (en) Hydroxyalkylalkylcellulose and its production method and solid preparation
JP5745399B2 (en) Pharmaceutical solid formulation
JP7332549B2 (en) How to suppress mount occurrence
JP2018083923A (en) Cellulose dispersion, method for producing cellulose dispersion, molded body composition, molded body, and method for producing molded body composition
Eraga et al. Superdisintegrant activity of acid-modified millet starch in diclofenac tablet formulations
JP6832753B2 (en) Cellulose complex
US10696751B2 (en) Solid preparation containing alkyl cellulose and method for producing the same
JP2005255617A (en) Solid pharmaceutical preparation composition comprising fine particulate active ingredient and porous cellulose aggregate
JP2020094023A (en) Excipient granules, tablet and method for producing tablet
CN116782888A (en) Pharmaceutical composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20171222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6383835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350