JP4258590B2 - Method for producing halogen-substituted quinoline derivative - Google Patents

Method for producing halogen-substituted quinoline derivative Download PDF

Info

Publication number
JP4258590B2
JP4258590B2 JP31903599A JP31903599A JP4258590B2 JP 4258590 B2 JP4258590 B2 JP 4258590B2 JP 31903599 A JP31903599 A JP 31903599A JP 31903599 A JP31903599 A JP 31903599A JP 4258590 B2 JP4258590 B2 JP 4258590B2
Authority
JP
Japan
Prior art keywords
general formula
derivative represented
halogen
reaction
substituted quinoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31903599A
Other languages
Japanese (ja)
Other versions
JP2001139554A (en
Inventor
真人 松儀
純一 南川
不二男 田房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Pharmaceutical Co Ltd
Original Assignee
Otsuka Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Pharmaceutical Co Ltd filed Critical Otsuka Pharmaceutical Co Ltd
Priority to JP31903599A priority Critical patent/JP4258590B2/en
Publication of JP2001139554A publication Critical patent/JP2001139554A/en
Application granted granted Critical
Publication of JP4258590B2 publication Critical patent/JP4258590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Quinoline Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン置換キノリン誘導体の製造方法に関する。
【0002】
【従来の技術】
一般式
【0003】
【化3】

Figure 0004258590
【0004】
〔式中、X1、X2及びX3は、各々ハロゲン原子を示す。R1は水素原子又は低級アルキル基を示す。〕
で表されるハロゲン置換キノリン誘導体は、例えば抗菌剤等の医薬品を合成するための中間体として有用な化合物である。
【0005】
従来、デーブナー・ミラー(Doebner-Miller)反応は、2−アルキルキノリンを合成するための方法として広く利用されている。ところが、この反応を適用して、上記一般式(1)のハロゲン置換キノリン誘導体を製造する場合、反応後の反応混合物がコールタール状のものとなり、目的とする一般式(1)のハロゲン置換キノリン誘導体と反応副生物との沸点が近いこと等の理由から、目的化合物を低収率、低純度でしか製造し得なかった。
【0006】
このような欠点を解消するために、一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応を、m−ニトロベンゼンスルホン酸のアルカリ金属塩、硫酸鉄及びホウ酸の存在下に行う方法が開発されている(特開平2−188570号公報)。この方法に従えば、目的とする一般式(1)のハロゲン置換キノリン誘導体を比較的高い収率で得られるようになったものの、反応混合物がタール状となって目的化合物が着色する等の不都合があり、純度の高い目的化合物を得ようとすれば煩雑な精製工程が必要となり、その場合には収率が低下するのが避けられない。このため、特開平2−188570号公報に記載の方法は目的化合物の収率及び純度の点で尚不充分であった。更に特開平2−188570号公報に記載の方法では、一般式(3)で表されるアルデヒド誘導体を反応系内に徐々に添加する必要があり、しかもその滴下条件により目的化合物の収率が左右され、目的化合物を再現性よく同レベルの収率で製造するのが困難であった。
【0007】
【発明が解決しようとする課題】
本発明は、反応混合物がタール状となって目的化合物が着色するという不都合がなく、そのため煩雑な精製工程を経ることなく、簡便な操作で、目的とする一般式(1)のハロゲン置換キノリン誘導体を高収率且つ高純度で製造する方法を提供することを課題とする。
【0008】
本発明は、目的とする一般式(1)のハロゲン置換キノリン誘導体を再現性よく高収率で製造する方法を提供することを課題とする。
【0009】
本発明は、目的とする一般式(1)のハロゲン置換キノリン誘導体の工業的に有利に製造する方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明者は、上記課題を達成するために鋭意研究を重ねた結果、溶媒として水と非水系溶媒との二相系溶媒を使用した場合に上記課題が解決できることを見い出した。本発明は、斯かる知見に基づき完成されたものである。
【0011】
即ち、本発明は、一般式
【0012】
【化4】
Figure 0004258590
【0013】
〔式中、X1、X2及びX3は、各々ハロゲン原子を示す。〕
で表されるアニリン誘導体に一般式
1CH=CHCHO (3)
〔式中、R1は水素原子又は低級アルキル基を示す。〕
で表されるアルデヒド誘導体を反応させて一般式(1)で表されるハロゲン置換キノリン誘導体を製造する方法において、一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応を、酸の存在下、水と非水系溶媒と界面で行うことを特徴とする一般式(1)で表されるハロゲン置換キノリン誘導体の製造方法に係る。
【0014】
本発明の方法によれば、反応混合物がタール状となって目的化合物が着色するという不都合がなく、そのため煩雑な精製工程を経ることなく、簡便な操作で、目的とする一般式(1)のハロゲン置換キノリン誘導体を高収率且つ高純度で製造し得る。
【0015】
また、本発明の方法によれば、一般式(3)で表されるアルデヒド誘導体の反応系内への滴下条件により目的化合物の収率が左右されることはなく、目的とする一般式(1)のハロゲン置換キノリン誘導体を再現性よく高収率で製造し得る。
【0016】
更に、本発明の方法によれば、m−ニトロベンゼンスルホン酸のアルカリ金属塩や硫酸鉄を反応系内に添加する必要はなく、経済的な面からも有利な方法である。
【0017】
【発明の実施の形態】
本明細書において示される各基は、より具体的には次の通りである。
【0018】
1で示される低級アルキル基としては、例えばメチル、エチル、プロピル、イソプロピル、ブチル、tert−ブチル、ペンチル、ヘキシル基等の炭素数1〜6の直鎖又は分枝鎖状アルキル基を例示できる。R1で示される低級アルキル基としては、メチル基が好ましい。
【0019】
1、X2及びX3で示されるハロゲン原子としては、弗素原子、塩素原子、臭素原子、沃素原子等を例示できる。X1及びX2で示されるハロゲン原子としては弗素原子が好ましく、X3で示されるハロゲン原子としては臭素原子が好ましい。
【0020】
本発明においては、一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応は、酸の存在下、水と非水系溶媒との二相系溶媒中にて行われる。
【0021】
酸としては、従来公知の鉱酸を広く使用でき、例えば塩酸、硫酸、臭化水素酸等を挙げることができる。これらの中でも、塩酸が特に好ましい。
【0022】
非水系溶媒としては、反応に悪影響を及ぼさず、水と混じり合わずに二相になるものである限り、従来公知のものを広く使用でき、例えばジエチルエーテル、ジイソプロピルエーテル等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類等を挙げることができる。これらの中でも、ベンゼン、トルエン、キシレン等の芳香族炭化水素類が好ましく、トルエンが特に好ましい。
【0023】
非水系溶媒の使用量としては、特に制限されるものではないが、通常一般式(2)で表されるアニリン誘導体に対して少なくとも3倍体積量(V/V)、好ましくは3〜5倍体積量(V/V)とするのがよい。また、水の使用量としても、特に制限されるものではないが、通常一般式(2)で表されるアニリン誘導体に対して少なくとも13倍体積量(V/V)、好ましくは13〜20倍体積量(V/V)とするのがよい。
【0024】
また、本発明においては、一般式(3)で表されるアルデヒド誘導体は、非水系溶媒に溶解させるのがよい。
【0025】
本発明では、水と非水系溶媒との界面で、一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応が進行する。
【0026】
本発明の方法においては、反応系内にホウ酸を存在させてもよい。反応系内にホウ酸を存在させることにより、一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応がより一層有利に進行し、収率が一段と向上する場合がある。ホウ酸の使用量としては、通常一般式(2)で表されるアニリン誘導体に対して少なくとも等モル量、好ましくは等モル〜2倍モル量とするのがよい。ホウ酸は、水及び非水系溶媒のどちらの系に存在させておいてもよい。
【0027】
一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応において、両者の使用割合としては、特に制限されるものではなく、広い範囲内から適宜選択され得るが、通常前者に対して後者を少なくとも等モル量、好ましくは等モル〜3倍モル量とするのがよい。
【0028】
本発明の反応は、室温下及び加温下のいずれでも進行するが、通常室温〜150℃程度、好ましくは80〜120℃程度で反応を行うのがよく、一般に1〜3時間程度で該反応は完結する。
【0029】
斯くして得られる本発明の一般式(1)で表されるハロゲン置換キノリン誘導体は、通常の分離手段により反応混合物から容易に単離精製される。該分離手段としては、例えば溶媒抽出法、希釈法、再結晶法、カラムクロマトグラフィー、プレパラティブ薄層クロマトグラフィー等を挙げることができる。
【0030】
本発明において出発原料として用いられる一般式(2)で表されるアニリン誘導体は、従来公知の各種の方法により製造される。例えば一般式(2)で表されるアニリン誘導体は、一般式(4)
【0031】
【化5】
Figure 0004258590
【0032】
〔式中、X1、X2及びX3は、前記に同じ。R2は低級アルカノイル基を示す。〕で表されるアニリド誘導体を酸により加水分解することにより製造される。
【0033】
一般式(4)において、R2で示される低級アルカノイル基としては、例えばアセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、tert−ブチルカルボニル、へキサノイル基等の炭素数2〜6の直鎖又は分枝鎖状アルカノイル基を例示できる。
【0034】
【実施例】
以下に実施例を掲げて、本発明をより一層明らかにする。
【0035】
実施例1
5,6−ジフルオロ−8−ブロモキナルジンの製造
2−ブロモ−4,5−ジフルオロアセトアニリド4.02gを懸濁させた6N塩酸水溶液64.3mlを30分間還流し、2−ブロモ−4,5−ジフルオロアニリンを得た後、トルエン16.1mlを反応液に加え、クロトンアルデヒド2.66mlを約10分かけて滴下した。滴下後、更に2時間還流下に攪拌し、次いで反応混合物を室温まで冷却し、水層を25%水酸化ナトリウム水溶液及び50%酢酸ナトリウム水溶液にて中和した後、結晶を濾取し、5,6−ジフルオロ−8−ブロモキナルジンを3.24g(収率:78.2%)得た。
融点:107〜108℃、白色結晶。
【0036】
実施例2
5,6−ジフルオロ−8−ブロモキナルジンの製造
2−ブロモ−4,5−ジフルオロアセトアニリド5.60g及び無水ホウ酸1.38gを懸濁させた6N塩酸水溶液112mlを30分間還流し、2−ブロモ−4,5−ジフルオロアニリンを得た後、トルエン28mlを反応液に加え、クロトンアルデヒド3.71mlを約10分かけて滴下した。滴下後、更に2時間還流下に攪拌し、次いで反応混合物を室温まで冷却し、水層を25%水酸化ナトリウム水溶液にて中和した後、結晶を濾取し、5,6−ジフルオロ−8−ブロモキナルジンを4.67g(収率:81.4%)得た。
融点:107〜108℃、白色結晶。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a halogen-substituted quinoline derivative.
[0002]
[Prior art]
General formula
[Chemical 3]
Figure 0004258590
[0004]
[Wherein, X 1 , X 2 and X 3 each represent a halogen atom. R 1 represents a hydrogen atom or a lower alkyl group. ]
Is a compound useful as an intermediate for synthesizing pharmaceuticals such as antibacterial agents.
[0005]
Conventionally, the Doebner-Miller reaction is widely used as a method for synthesizing 2-alkylquinolines. However, when this reaction is applied to produce a halogen-substituted quinoline derivative of the above general formula (1), the reaction mixture after the reaction becomes coal tar-like, and the desired halogen-substituted quinoline of the general formula (1) For the reason that the boiling point of the derivative and the reaction by-product is close, the target compound could be produced only in low yield and low purity.
[0006]
In order to eliminate such drawbacks, the reaction between the aniline derivative represented by the general formula (2) and the aldehyde derivative represented by the general formula (3) is carried out by reacting an alkali metal salt of m-nitrobenzenesulfonic acid, iron sulfate. And a method in the presence of boric acid has been developed (Japanese Patent Laid-Open No. 2-188570). According to this method, the desired halogen-substituted quinoline derivative of the general formula (1) can be obtained in a relatively high yield, but the reaction mixture becomes tar and the target compound is colored. In order to obtain a target compound with high purity, a complicated purification step is required, and in this case, the yield is inevitably lowered. For this reason, the method described in JP-A-2-188570 is still insufficient in terms of the yield and purity of the target compound. Furthermore, in the method described in JP-A-2-188570, it is necessary to gradually add the aldehyde derivative represented by the general formula (3) into the reaction system, and the yield of the target compound depends on the dropping conditions. Therefore, it was difficult to produce the target compound with the same level of yield with good reproducibility.
[0007]
[Problems to be solved by the invention]
The present invention does not have the disadvantage that the reaction mixture becomes tar and the target compound is colored, and therefore, the target halogen-substituted quinoline derivative of the general formula (1) can be obtained by a simple operation without going through complicated purification steps. It is an object of the present invention to provide a method for producing a compound with high yield and high purity.
[0008]
An object of the present invention is to provide a method for producing a target halogen-substituted quinoline derivative of the general formula (1) with high reproducibility and high yield.
[0009]
An object of the present invention is to provide a method for industrially advantageously producing a target halogen-substituted quinoline derivative of the general formula (1).
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that the above problems can be solved when a two-phase solvent of water and a non-aqueous solvent is used as a solvent. The present invention has been completed based on such findings.
[0011]
That is, the present invention has the general formula
[Formula 4]
Figure 0004258590
[0013]
[Wherein, X 1 , X 2 and X 3 each represent a halogen atom. ]
An aniline derivative represented by the general formula R 1 CH═CHCHO (3)
[Wherein, R 1 represents a hydrogen atom or a lower alkyl group. ]
In the method for producing the halogen-substituted quinoline derivative represented by the general formula (1) by reacting the aldehyde derivative represented by the general formula (1), the aniline derivative represented by the general formula (2) and the general formula (3) The present invention relates to a method for producing a halogen-substituted quinoline derivative represented by the general formula (1), wherein the reaction with an aldehyde derivative is carried out at the interface between water and a non-aqueous solvent in the presence of an acid.
[0014]
According to the method of the present invention, there is no inconvenience that the reaction mixture becomes tar and the target compound is colored, and therefore, without the complicated purification step, the target of the general formula (1) can be obtained by a simple operation. Halogen-substituted quinoline derivatives can be produced in high yield and purity.
[0015]
Further, according to the method of the present invention, the yield of the target compound is not affected by the dropping conditions of the aldehyde derivative represented by the general formula (3) into the reaction system, and the target general formula (1 Can be produced with high reproducibility and high yield.
[0016]
Furthermore, according to the method of the present invention, there is no need to add an alkali metal salt of m-nitrobenzenesulfonic acid or iron sulfate to the reaction system, which is advantageous from the economical viewpoint.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
More specifically, each group shown in the present specification is as follows.
[0018]
Examples of the lower alkyl group represented by R 1 include linear or branched alkyl groups having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, and hexyl groups. . The lower alkyl group represented by R 1 is preferably a methyl group.
[0019]
Examples of the halogen atom represented by X 1 , X 2 and X 3 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. The halogen atom represented by X 1 and X 2 is preferably a fluorine atom, and the halogen atom represented by X 3 is preferably a bromine atom.
[0020]
In the present invention, the reaction between the aniline derivative represented by the general formula (2) and the aldehyde derivative represented by the general formula (3) is carried out in a two-phase solvent of water and a non-aqueous solvent in the presence of an acid. It is done at.
[0021]
As the acid, conventionally known mineral acids can be widely used, and examples thereof include hydrochloric acid, sulfuric acid, hydrobromic acid and the like. Among these, hydrochloric acid is particularly preferable.
[0022]
As the non-aqueous solvent, conventionally known ones can be widely used as long as they do not adversely affect the reaction and become two-phase without being mixed with water, for example, ethers such as diethyl ether and diisopropyl ether, benzene, Aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform and carbon tetrachloride, esters such as methyl acetate, ethyl acetate and butyl acetate can be used. Among these, aromatic hydrocarbons such as benzene, toluene and xylene are preferable, and toluene is particularly preferable.
[0023]
The amount of the non-aqueous solvent used is not particularly limited, but is usually at least 3 times volume (V / V), preferably 3 to 5 times that of the aniline derivative represented by the general formula (2). The volume (V / V) is preferable. Also, the amount of water used is not particularly limited, but is usually at least 13 times volume (V / V), preferably 13 to 20 times that of the aniline derivative represented by the general formula (2). The volume (V / V) is preferable.
[0024]
In the present invention, the aldehyde derivative represented by the general formula (3) is preferably dissolved in a non-aqueous solvent.
[0025]
In the present invention, the reaction between the aniline derivative represented by the general formula (2) and the aldehyde derivative represented by the general formula (3) proceeds at the interface between water and the non-aqueous solvent.
[0026]
In the method of the present invention, boric acid may be present in the reaction system. By making boric acid present in the reaction system, the reaction between the aniline derivative represented by the general formula (2) and the aldehyde derivative represented by the general formula (3) proceeds more advantageously, and the yield is further improved. May improve. The amount of boric acid used is usually at least an equimolar amount, preferably an equimolar to double molar amount with respect to the aniline derivative represented by the general formula (2). Boric acid may be present in either water or non-aqueous solvent.
[0027]
In the reaction of the aniline derivative represented by the general formula (2) and the aldehyde derivative represented by the general formula (3), the use ratio of both is not particularly limited and is appropriately selected from a wide range. Usually, the latter should be at least equimolar, preferably equimolar to 3-fold molar relative to the former.
[0028]
The reaction of the present invention proceeds at both room temperature and under heating, but the reaction is usually carried out at room temperature to about 150 ° C, preferably about 80 to 120 ° C, and generally the reaction takes about 1 to 3 hours. Is completed.
[0029]
The halogen-substituted quinoline derivative represented by the general formula (1) of the present invention thus obtained is easily isolated and purified from the reaction mixture by a usual separation means. Examples of the separation means include a solvent extraction method, a dilution method, a recrystallization method, column chromatography, and preparative thin layer chromatography.
[0030]
The aniline derivative represented by the general formula (2) used as a starting material in the present invention is produced by various conventionally known methods. For example, the aniline derivative represented by the general formula (2) is represented by the general formula (4)
[0031]
[Chemical formula 5]
Figure 0004258590
[0032]
[Wherein, X 1 , X 2 and X 3 are the same as above. R 2 represents a lower alkanoyl group. It is manufactured by hydrolyzing the anilide derivative represented by this with an acid.
[0033]
In the general formula (4), the lower alkanoyl group represented by R 2 is, for example, a straight chain or branched chain having 2 to 6 carbon atoms such as acetyl, propionyl, butyryl, isobutyryl, pentanoyl, tert-butylcarbonyl, hexanoyl group, etc. A chain alkanoyl group can be exemplified.
[0034]
【Example】
The present invention will be further clarified by the following examples.
[0035]
Example 1
Preparation of 5,6-difluoro-8-bromoquinaldine 64.3 ml of 6N aqueous hydrochloric acid in which 4.02 g of 2-bromo-4,5-difluoroacetanilide was suspended was refluxed for 30 minutes, and 2-bromo-4,5-difluoro After obtaining aniline, 16.1 ml of toluene was added to the reaction solution, and 2.66 ml of crotonaldehyde was added dropwise over about 10 minutes. After the dropwise addition, the mixture was further stirred for 2 hours under reflux, then the reaction mixture was cooled to room temperature, the aqueous layer was neutralized with 25% aqueous sodium hydroxide and 50% aqueous sodium acetate, and the crystals were collected by filtration. , 6-difluoro-8-bromoquinaldine was obtained (yield: 78.2%).
Melting point: 107-108 ° C., white crystals.
[0036]
Example 2
Preparation of 5,6-difluoro-8-bromoquinaldine 112 ml of 6N aqueous hydrochloric acid suspension of 5.60 g of 2-bromo-4,5-difluoroacetanilide and 1.38 g of boric anhydride was refluxed for 30 minutes. After obtaining 4,5-difluoroaniline, 28 ml of toluene was added to the reaction solution, and 3.71 ml of crotonaldehyde was added dropwise over about 10 minutes. After the dropwise addition, the mixture was further stirred under reflux for 2 hours, and then the reaction mixture was cooled to room temperature. The aqueous layer was neutralized with 25% aqueous sodium hydroxide solution, and then the crystals were collected by filtration to give 5,6-difluoro-8. -4.67 g (yield: 81.4%) of bromoquinaldine was obtained.
Melting point: 107-108 ° C., white crystals.

Claims (2)

一般式
Figure 0004258590
〔式中、X、X及びXは、各々ハロゲン原子を示す。〕で表されるアニリン誘導体に一般式
CH=CHCHO (3)
〔式中、Rは水素原子又は低級アルキル基を示す。〕で表されるアルデヒド誘導体を反応させて一般式
Figure 0004258590
〔式中、X、X、X及びRは前記に同じ。〕で表されるハロゲン置換キノリン誘導体を製造する方法において、一般式(2)で表されるアニリン誘導体と一般式(3)で表されるアルデヒド誘導体との反応を、酸の存在下、水と芳香族炭化水素溶媒との界面で行うことを特徴とする一般式(1)で表されるハロゲン置換キノリン誘導体の製造方法。
General formula
Figure 0004258590
[Wherein, X 1 , X 2 and X 3 each represent a halogen atom. The aniline derivative represented by the general formula R 1 CH═CHCHO (3)
[Wherein, R 1 represents a hydrogen atom or a lower alkyl group. ] Is reacted with an aldehyde derivative represented by the general formula
Figure 0004258590
[Wherein, X 1 , X 2 , X 3 and R 1 are the same as above. In the method for producing the halogen-substituted quinoline derivative represented by the general formula (2), the reaction between the aniline derivative represented by the general formula (2) and the aldehyde derivative represented by the general formula (3) A method for producing a halogen-substituted quinoline derivative represented by the general formula (1), which is performed at an interface with an aromatic hydrocarbon solvent.
酸及び一般式(2)で表されるアニリン誘導体を溶解乃至分散させた水と一般式(3)で表されるアルデヒド誘導体を溶解させた芳香族炭化水素溶媒との界面でアニリン誘導体とアルデヒド誘導体との反応を行う請求項1に記載のハロゲン置換キノリン誘導体の製造方法。An aniline derivative and an aldehyde derivative at the interface between an acid and water in which the aniline derivative represented by the general formula (2) is dissolved or dispersed and an aromatic hydrocarbon solvent in which the aldehyde derivative represented by the general formula (3) is dissolved The method for producing a halogen-substituted quinoline derivative according to claim 1, wherein the reaction is performed with.
JP31903599A 1999-11-10 1999-11-10 Method for producing halogen-substituted quinoline derivative Expired - Lifetime JP4258590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31903599A JP4258590B2 (en) 1999-11-10 1999-11-10 Method for producing halogen-substituted quinoline derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31903599A JP4258590B2 (en) 1999-11-10 1999-11-10 Method for producing halogen-substituted quinoline derivative

Publications (2)

Publication Number Publication Date
JP2001139554A JP2001139554A (en) 2001-05-22
JP4258590B2 true JP4258590B2 (en) 2009-04-30

Family

ID=18105796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31903599A Expired - Lifetime JP4258590B2 (en) 1999-11-10 1999-11-10 Method for producing halogen-substituted quinoline derivative

Country Status (1)

Country Link
JP (1) JP4258590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890945B (en) * 2022-04-06 2023-09-05 大连万福制药有限公司 Method for synthesizing nadifloxacin intermediate

Also Published As

Publication number Publication date
JP2001139554A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US6156925A (en) Process for the preparation of halogenated phenylmaloates
KR100283066B1 (en) How to prepare biphenyl derivative
US20040176614A1 (en) Process for the preparation of indole derivatives and intermediates of the process
JP2688712B2 (en) Method for producing halogen-substituted quinoline derivative
JP4538114B2 (en) Novel process for the preparation of derivatives of 4-phenyl-1,2,3,6-tetrahydropyridine and intermediates used
JP4258590B2 (en) Method for producing halogen-substituted quinoline derivative
HU205915B (en) Process for producing herbicide ortho-carboxy-aryl-imidazolinone derivatives
JP2820739B2 (en) Method for producing carbostyril derivatives
HU196582B (en) Process for separating racem mixtures of optically active alpha-naphthyl-propionic acids
JP2826646B2 (en) 3-substituted-5-halogenopyridine derivatives
NO20025652L (en) Process for the preparation of trifluoroethoxy-substituted benzoic acids
JP2688712C (en)
JP3880883B2 (en) Pyridine derivatives, methods for producing the same, and uses as herbicide intermediates
US5578728A (en) Process for the preparation of a benzo(a)quinolizione derivative
JP2000095730A (en) Production of halogenated phenylmalonic ester
US4927945A (en) Process for preparing diphenyl ethers
JPH0623168B2 (en) Process for producing benzenesulfonyl chloride derivative
JP4663105B2 (en) Method for producing 2-sulfonyl-4-oxypyridine derivative
JP2000229930A (en) Production of cyanoacetate ester
JP3573249B2 (en) 2,3,4-trifluoro-5-iodobenzoic acid, esters thereof and process for producing the same
JPS644508B2 (en)
JP2522926B2 (en) Method for producing 2'-deoxy-5-trifluoromethyluridine derivative
JP2520298B2 (en) Method for producing thiophene dicarboxylic acid diester
JPH06135937A (en) Production of 5,5-disubstituted hydantoin
KR910003635B1 (en) Process for the preparation of 2-(2-naphthyloxy)propion anilide derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4258590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160220

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term