JP4258561B2 - Fuel cell and method for aligning membrane-electrode assembly thereof - Google Patents

Fuel cell and method for aligning membrane-electrode assembly thereof Download PDF

Info

Publication number
JP4258561B2
JP4258561B2 JP2007195998A JP2007195998A JP4258561B2 JP 4258561 B2 JP4258561 B2 JP 4258561B2 JP 2007195998 A JP2007195998 A JP 2007195998A JP 2007195998 A JP2007195998 A JP 2007195998A JP 4258561 B2 JP4258561 B2 JP 4258561B2
Authority
JP
Japan
Prior art keywords
fuel cell
membrane
metal
electrode assembly
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007195998A
Other languages
Japanese (ja)
Other versions
JP2009032561A (en
Inventor
和孝 飯塚
伸夫 金井
千智 加藤
三喜男 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007195998A priority Critical patent/JP4258561B2/en
Priority to PCT/JP2008/063805 priority patent/WO2009017208A1/en
Publication of JP2009032561A publication Critical patent/JP2009032561A/en
Application granted granted Critical
Publication of JP4258561B2 publication Critical patent/JP4258561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、燃料電池、およびその膜−電極接合体の位置合わせ方法に関する。さらに詳述すると、本発明は、燃料電池の内部構造の改良に関する。   The present invention relates to a fuel cell and a method for aligning a membrane-electrode assembly thereof. More specifically, the present invention relates to an improvement in the internal structure of a fuel cell.

一般に、燃料電池(例えば固体高分子型燃料電池)は電解質膜およびその両面に配した一対の電極からなる接合体(例えばMEGA)と、該接合体を挟持する一対のセパレータとで構成されている。また、このような燃料電池として、MEGAの両面に例えばラスカットメタル(エキスパンドメタル)のような導電性多孔体からなるアノード(多孔体アノード)やカソード(多孔体カソード)を配した構造のものがある(例えば特許文献1参照)。
特開2004−087318号公報
In general, a fuel cell (for example, a polymer electrolyte fuel cell) includes an electrolyte membrane and a joined body (for example, MEGA) that includes a pair of electrodes disposed on both surfaces thereof, and a pair of separators that sandwich the joined body. . In addition, as such a fuel cell, there is a structure in which an anode (porous anode) and a cathode (porous cathode) made of a conductive porous material such as Lascut metal (expanded metal) are arranged on both sides of MEGA. (For example, refer to Patent Document 1).
JP 2004-087318 A

しかしながら、上述のような構造の燃料電池においては、多孔体カソードと多孔体アノードの間に挟持されるMEGAの位置ずれが生じることがある。一方で、位置ずれを抑えようとすると導電性多孔体の強度が確保し難くなるという問題もある。   However, in the fuel cell having the above structure, the MEGA sandwiched between the porous cathode and the porous anode may be displaced. On the other hand, there is also a problem that it is difficult to secure the strength of the conductive porous body when trying to suppress the positional deviation.

そこで、本発明は、導電性多孔体の強度を確保しつつ接合体(例えばMEGA)の位置ずれを効果的に抑止しうる燃料電池、およびその膜−電極接合体の位置合わせ方法を提供することを目的とする。   Therefore, the present invention provides a fuel cell that can effectively prevent misalignment of a joined body (for example, MEGA) while securing the strength of the conductive porous body, and a method for aligning the membrane-electrode assembly. With the goal.

上述のように多孔体アノードと多孔体カソードとで接合体(例えばMEGA)を挟み込む従来構造の場合、両多孔体の間に位置するMEGAには拘束がない。この点、MEGAの構成部品である膜に例えば位置決め用の孔を設けることも考えられるが、成形時の熱により膜が収縮して位置が正確に決まらないおそれがある。これらの点に着目してさらに検討を重ねた本発明者は、かかる課題の解決に結び付く新たな知見を得るに至った。   As described above, in the case of a conventional structure in which a joined body (for example, MEGA) is sandwiched between a porous anode and a porous cathode, there is no restriction on the MEGA located between the porous bodies. In this regard, for example, a positioning hole may be provided in the film that is a component of the MEGA. However, the film may contract due to heat during molding, and the position may not be determined accurately. The present inventor, who has made further studies focusing on these points, has come to obtain new knowledge that leads to the solution of such problems.

本発明はかかる知見に基づくもので、電解質膜の両面に電極が設けられてなる膜−電極接合体と、該膜−電極接合体の一方側に設けられたアノード側導電性多孔体および他方側に設けられたカソード側導電性多孔体と、膜−電極接合体、アノード側導電性多孔体およびカソード側導電性多孔体を挟持するセパレータと、を有する燃料電池において、アノード側導電性多孔体およびカソード側導電性多孔体の一方に凹部が形成され、該凹部に膜−電極接合体の一部が収容されているというものである。   The present invention is based on such knowledge, and includes a membrane-electrode assembly in which electrodes are provided on both surfaces of an electrolyte membrane, an anode-side conductive porous body provided on one side of the membrane-electrode assembly, and the other side. And a separator sandwiching the membrane-electrode assembly, the anode-side conductive porous body and the cathode-side conductive porous body, the anode-side conductive porous body and A recess is formed in one of the cathode side conductive porous bodies, and a part of the membrane-electrode assembly is accommodated in the recess.

また、本発明にかかる膜−電極接合体の位置合わせ方法は、膜−電極接合体と、該膜−電極接合体の一方側に設けられたアノード側導電性多孔体および他方側に設けられたカソード側導電性多孔体と、膜−電極接合体、アノード側導電性多孔体およびカソード側導電性多孔体を挟持するセパレータと、を有する燃料電池におけるアノード側導電性多孔体およびカソード側導電性多孔体の一方に凹部を形成しておき、該凹部に膜−電極接合体の一部を収容した状態とするものである。   The membrane-electrode assembly alignment method according to the present invention includes a membrane-electrode assembly, an anode-side conductive porous body provided on one side of the membrane-electrode assembly, and the other side. Anode-side conductive porous body and cathode-side conductive porous body in a fuel cell having a cathode-side conductive porous body, and a membrane-electrode assembly, an anode-side conductive porous body, and a separator sandwiching the cathode-side conductive porous body A recess is formed in one side of the body, and a part of the membrane-electrode assembly is accommodated in the recess.

このように膜−電極接合体の一部を凹部に収容した状態とする本発明の場合、かかる凹部が膜−電極接合体の位置ずれを抑止する拘束部材として機能する。   Thus, in the case of this invention which makes the state which accommodated a part of membrane-electrode assembly in the recessed part, this recessed part functions as a restraining member which suppresses the position shift of a membrane-electrode assembly.

また本発明の燃料電池においては、アノード側導電性多孔体およびカソード側導電性多孔体の一方に凹部が形成され、他方は平面状である。このように一方の導電性多孔体にのみ凹部を形成する構造とした場合、もう一方の導電性多孔体は平板状に形成すればよいという利点がある。   In the fuel cell of the present invention, a recess is formed in one of the anode side conductive porous body and the cathode side conductive porous body, and the other is planar. Thus, when it is set as the structure which forms a recessed part only in one electroconductive porous body, there exists an advantage that the other electroconductive porous body should just be formed in flat form.

また、かかる燃料電池においては、平面状である導電性多孔体が膜−電極接合体よりも小さく形成されていることが好ましい。こうした場合、小さく形成された当該平面状導電性多孔体を膜−電極接合体の内側に収まるように配置しやすく、これによって集電性多孔体どうしの短絡を抑止することが容易となる。   In such a fuel cell, the planar conductive porous body is preferably formed smaller than the membrane-electrode assembly. In such a case, it is easy to arrange the planar conductive porous body formed small so as to be accommodated inside the membrane-electrode assembly, and this makes it easy to suppress short circuit between the current collecting porous bodies.

さらに、本発明にかかる燃料電池において、膜−電極接合体は、電解質膜と、この電解質膜よりも外周が小さく該電解質膜の外周内に収まる電極とが積層されてなり、平面状の導電性多孔体は、電極よりも外周が小さく当該電極の外周内に収まる形状に形成されている。この場合、平面状の導電性多孔体を平面視で目視確認しやすく、位置合わせしやすい。   Furthermore, in the fuel cell according to the present invention, the membrane-electrode assembly is formed by laminating an electrolyte membrane and an electrode whose outer periphery is smaller than that of the electrolyte membrane and fits in the outer periphery of the electrolyte membrane. The porous body has a smaller outer periphery than the electrode and is formed in a shape that fits within the outer periphery of the electrode. In this case, it is easy to visually confirm and align the planar conductive porous body in plan view.

また、膜−電極接合体、アノード側導電性多孔体、カソード側導電性多孔体およびセパレータを有する燃料電池セルが複数積層された構造の燃料電池であって、発電用の反応ガスを各燃料電池セルに供給しまたは各燃料電池セルから排出するためのマニホールドを備えるとともに、凹部が形成された導電性多孔体の外周付近は、電解質膜の平面方向に延長してマニホールドの付近まで延びる形状となっていることも好ましい。   Also, a fuel cell having a structure in which a plurality of fuel cells each having a membrane-electrode assembly, an anode-side conductive porous body, a cathode-side conductive porous body, and a separator are stacked, and a reaction gas for power generation is supplied to each fuel cell. A manifold for supplying to the cell or discharging from each fuel cell is provided, and the vicinity of the outer periphery of the conductive porous body in which the recess is formed has a shape extending in the planar direction of the electrolyte membrane to the vicinity of the manifold. It is also preferable.

さらに、本発明にかかる燃料電池は、導電性多孔体のうち凹部以外の部分の少なくとも一部の金属密度が他の部分よりも高くなっている。当該密度が高くされた部分は強度が向上する。また、導電性多孔体のうち凹部以外の部分の少なくとも一部は、加圧されて潰されることによって金属密度が高められている。   Furthermore, in the fuel cell according to the present invention, the metal density of at least a part of the conductive porous body other than the recess is higher than that of the other part. The strength is improved in the portion where the density is increased. Further, at least a part of the conductive porous body other than the recesses is pressurized and crushed to increase the metal density.

また、燃料電池は、発電用の反応ガスを各燃料電池セルに供給しまたは各燃料電池セルから排出するためのマニホールドを備えるとともに、導電性多孔体のうちマニホールドの周辺に該当する部分が、燃料電池セルの積層方向に関して当該燃料電池セルの厚みの略中央に形成されているものであることが好ましい。導電性多孔体のうち当該部分が厚み方向のいずれかに偏っていると荷重のバランスが崩れやすくなるが、このように厚み方向の略中央に形成すれば荷重バランスを確保しやすい。   In addition, the fuel cell includes a manifold for supplying or discharging the reaction gas for power generation to each fuel cell, and a portion corresponding to the periphery of the manifold in the conductive porous body is a fuel. It is preferable that the fuel cell is formed approximately at the center of the thickness in the stacking direction of the battery cells. If the portion of the conductive porous body is biased in any of the thickness directions, the load balance tends to be lost. However, if the portion is formed in the approximate center in the thickness direction, it is easy to ensure the load balance.

本発明によれば、導電性多孔体の強度を確保しつつ接合体(例えばMEGA)の位置ずれを効果的に抑止することができる。   ADVANTAGE OF THE INVENTION According to this invention, the position shift of a joined body (for example, MEGA) can be suppressed effectively, ensuring the intensity | strength of a conductive porous body.

以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on an example of an embodiment shown in the drawings.

図1〜図5に本発明の実施形態を示す。本発明にかかる燃料電池1は、電解質膜21の両面に電極が設けられてなる膜−電極接合体11と、該膜−電極接合体11の一方側に設けられたアノード側導電性多孔体24および他方側に設けられたカソード側導電性多孔体25と、膜−電極接合体11および導電性多孔体24,25を挟持するセパレータ12,13と、を有するものである。   1 to 5 show an embodiment of the present invention. The fuel cell 1 according to the present invention includes a membrane-electrode assembly 11 in which electrodes are provided on both surfaces of an electrolyte membrane 21 and an anode-side conductive porous body 24 provided on one side of the membrane-electrode assembly 11. And a cathode-side conductive porous body 25 provided on the other side, and separators 12 and 13 sandwiching the membrane-electrode assembly 11 and the conductive porous bodies 24 and 25.

なお、以下に説明する燃料電池1は例えば燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして利用可能なものであるが特にこれに限られることはなく、各種移動体(例えば船舶や飛行機など)やロボットなどといった自走可能なものに搭載される発電システム、さらには定置の発電システムにおいても利用することが可能である。   The fuel cell 1 described below can be used as, for example, an in-vehicle power generation system of a fuel cell vehicle (FCHV; Fuel Cell Hybrid Vehicle). It can also be used in power generation systems mounted on self-propelled devices such as airplanes) and robots, and even stationary power generation systems.

ここで、まず本実施形態における燃料電池1の全体について概略的に示しておく(図5参照)。燃料電池1は、複数のセル2が積層されてなるセル積層体(セルスタック)3と、該セル積層体3の両端のセル2,2の外側に順次配置された出力端子5a付きの集電板(ターミナルプレート)5、絶縁板(インシュレータ)6およびエンドプレート(図示省略)とを有する構造となっている。さらに、燃料電池1は、例えば両エンドプレート間を架け渡すようにして設けられたテンションプレート(図示省略)により、セル2の積層方向に所定の圧縮力がかけられた状態となっている。   Here, first, the entire fuel cell 1 in the present embodiment is schematically shown (see FIG. 5). The fuel cell 1 includes a cell stack (cell stack) 3 in which a plurality of cells 2 are stacked, and a current collector with an output terminal 5 a that is sequentially arranged outside the cells 2 and 2 at both ends of the cell stack 3. It has a structure having a plate (terminal plate) 5, an insulating plate (insulator) 6, and an end plate (not shown). Further, the fuel cell 1 is in a state in which a predetermined compressive force is applied in the stacking direction of the cells 2 by, for example, a tension plate (not shown) provided so as to bridge between both end plates.

また、各セル2は、膜−電極接合体11と、その両面に配置された導電性多孔体24,25と、さらにこれらを両側から挟持する一対のセパレータとが積層された構造となっている(図2等参照)。さらに、膜−電極接合体11の周囲にはガスケット14が設けられている。   Each cell 2 has a structure in which a membrane-electrode assembly 11, conductive porous bodies 24 and 25 disposed on both sides thereof, and a pair of separators sandwiching them from both sides are laminated. (See FIG. 2 etc.). Further, a gasket 14 is provided around the membrane-electrode assembly 11.

膜−電極接合体11は、高分子材料のイオン交換膜(例えばフッ素系膜、HC膜など)からなる電解質膜21と、この電解質膜21の両面に設けられた一対の電極(カソードおよびアノード)とを含む構成となっている。膜−電極接合体11としては例えばMEA(Membrane Electrode Assembly)、あるいはさらに拡散層を含むMEGA(Membrane Electrode & Gas Diffusion Layer Assembly:膜−電極−拡散層接合体)のいずれをも用いることができる。例えば本実施形態では膜−電極接合体11としてMEGAを用いている(以下、MEGA11とも表現する)。   The membrane-electrode assembly 11 includes an electrolyte membrane 21 made of a polymer material ion exchange membrane (for example, a fluorine-based membrane, an HC membrane, etc.) and a pair of electrodes (cathode and anode) provided on both surfaces of the electrolyte membrane 21. It is configured to include. As the membrane-electrode assembly 11, for example, any of MEA (Membrane Electrode Assembly) or MEGA (Membrane Electrode & Gas Diffusion Layer Assembly) including a diffusion layer can be used. For example, in this embodiment, MEGA is used as the membrane-electrode assembly 11 (hereinafter also referred to as MEGA 11).

MEGA11を構成する拡散層22,23は、白金などの触媒を担持した多孔質(ポーラス)な素材で構成されている。一方のアノード側拡散層22には燃料ガスとしての水素ガスが供給され、他方のカソード側拡散層23には空気や酸化剤などの酸化ガスが供給される(図2等参照)。それぞれの拡散層22,23に供給されたこれら2種類の反応ガスにより発電部としてのMEGA30内で電気化学反応が生じ、セル2の起電力が得られるようになっている。なお、拡散層22,23としては例えばペーパー、クロス、高クッションペーパー等の多孔質素材が利用されうる。   The diffusion layers 22 and 23 constituting the MEGA 11 are made of a porous material carrying a catalyst such as platinum. One anode side diffusion layer 22 is supplied with hydrogen gas as a fuel gas, and the other cathode side diffusion layer 23 is supplied with an oxidizing gas such as air or an oxidizing agent (see FIG. 2 and the like). Electrochemical reaction occurs in the MEGA 30 as the power generation unit by these two kinds of reaction gases supplied to the respective diffusion layers 22 and 23, and the electromotive force of the cell 2 can be obtained. As the diffusion layers 22 and 23, for example, a porous material such as paper, cloth, high cushion paper or the like can be used.

導電性多孔体24,25はMEGA11の両面に配置された例えば略板状の多孔性部材からなる。本実施形態の場合、アノード側導電性多孔体24、カソード側導電性多孔体25ともラスカットメタル(エキスパンドメタル)からなる多孔性材料(ラスメタル多孔体)によって構成されている。   The conductive porous bodies 24 and 25 are made of, for example, a substantially plate-like porous member disposed on both surfaces of the MEGA 11. In the case of this embodiment, both the anode side conductive porous body 24 and the cathode side conductive porous body 25 are made of a porous material (lasth metal porous body) made of a lath cut metal (expanded metal).

セパレータ12,13は、ガス不透過の導電性材料で構成されている。導電性材料としては、例えばカーボンや導電性を有する硬質樹脂のほか、アルミニウムやステンレス等の金属(メタル)が挙げられる。また、セパレータ12,13の端部付近には、反応ガスおよび冷却水の流通用のマニホールドが形成されている。なお、セパレータ12,13のうち拡散層22,23に面する部分の表裏各面には、複数の凹凸が例えばプレス成形によって形成されていてもよい。これら複数の凸部および凹部は、それぞれ一方向(あるいはサーペンタイン状であってもよい)に延在しており、酸化ガスのガス流路、水素ガスのガス流路、または冷却水流路を画定している。   The separators 12 and 13 are made of a gas impermeable conductive material. Examples of the conductive material include carbon and a hard resin having conductivity, and metals such as aluminum and stainless steel. Further, a manifold for circulation of reaction gas and cooling water is formed in the vicinity of the end portions of the separators 12 and 13. In addition, a plurality of irregularities may be formed on the front and back surfaces of the portions facing the diffusion layers 22 and 23 of the separators 12 and 13 by, for example, press molding. The plurality of convex portions and concave portions each extend in one direction (or may be serpentine-like), and define an oxidizing gas flow channel, a hydrogen gas flow channel, or a cooling water flow channel. ing.

ガスケット14は、MEGA11の周囲であって上述したセパレータ12,13のマニホールドに対応した位置にシール部材として設けられている。例えば本実施形態のガスケット14は、射出成形により、セパレータ12,13に向かって突出する凸状のリップ部を備えた形状に形成されている。また、ガスケット14には例えば熱硬化型シリコン系や熱可塑性樹脂などの材料が利用されうる。   The gasket 14 is provided as a seal member around the MEGA 11 and at a position corresponding to the manifold of the separators 12 and 13 described above. For example, the gasket 14 of the present embodiment is formed into a shape having a convex lip portion protruding toward the separators 12 and 13 by injection molding. The gasket 14 may be made of a material such as a thermosetting silicone or a thermoplastic resin.

ここで、本実施形態においては上述した導電性多孔体24,25の一方、例えばカソード側の導電性多孔体25に、MEGA11の一部を収容可能な凹部25dを形成している(図4等参照)。この場合の凹部25dの形状や深さは特に限定されるものではないが、例えば本実施形態では、MEGA11の形状に合わせた略矩形の凹部25dを当該カソード側導電性多孔体25の中央に形成している(図1等参照)。もう一方の導電性多孔体であるアノード側多孔体24はこのような凹部のない平板状に形成されている(図4等参照)。   Here, in the present embodiment, one of the conductive porous bodies 24, 25 described above, for example, the conductive porous body 25 on the cathode side is formed with a recess 25d that can accommodate a part of the MEGA 11 (FIG. 4 and the like). reference). In this case, the shape and depth of the recess 25 d are not particularly limited. For example, in this embodiment, a substantially rectangular recess 25 d that matches the shape of the MEGA 11 is formed in the center of the cathode-side conductive porous body 25. (Refer to FIG. 1 etc.). The anode-side porous body 24, which is the other conductive porous body, is formed in a flat plate shape without such a recess (see FIG. 4 and the like).

また、カソード側導電性多孔体25は、上述したマニホールド部分まで拡がる大きさと形状に形成されていることが好ましい。例えば本実施形態では、このカソード側導電性多孔体25を、セパレータ12,13よりも小さく尚かつセパレータ12,13に形成されているマニホールド位置よりは大きくなるよう、電解質膜21の平面方向に延長して形成している(図1、図3参照)。このようなカソード側導電性多孔体25の縁付近(発電体たるMEGA11よりも外側の部分)には、セパレータ12,13のマニホールドと対応するように水素ガス用マニホールド25a、酸化ガス用マニホールド25b、そして冷媒用マニホールド25cがそれぞれ形成されている(図1等参照)。   The cathode-side conductive porous body 25 is preferably formed in a size and shape that extends to the manifold portion described above. For example, in this embodiment, the cathode-side conductive porous body 25 is extended in the plane direction of the electrolyte membrane 21 so as to be smaller than the separators 12 and 13 and larger than the manifold positions formed in the separators 12 and 13. (See FIGS. 1 and 3). In the vicinity of the edge of the cathode-side conductive porous body 25 (portion outside the MEGA 11 serving as the power generation body), a hydrogen gas manifold 25a, an oxidizing gas manifold 25b, A refrigerant manifold 25c is formed (see FIG. 1 and the like).

このような構造のカソード側導電性多孔体25は、当該多孔体25の全域をラスカット処理することによって形成されうる。具体的一例を挙げれば、金属板の全域に千鳥状に切れ目を入れると同時に押し広げ、菱形あるいは亀甲形の三次元的な網目(メッシュ)構造とすることにより、厚さ方向にも面方向に優れた多孔性の部材を形成することができる。このような、いわゆるラスカット処理により形成されたエキスパンドメタルは変形可能である点で焼結体よりも有利であり、尚かつ導電性にも優れる。また、このような加工品(エキスパンドメタルないしはラスメタル)をさらにプレス加工(絞り加工)することによって中央部に略矩形の凹部25dを有する導電性多孔体25を形成することができる。   The cathode-side conductive porous body 25 having such a structure can be formed by subjecting the entire area of the porous body 25 to a lath cut process. To give a specific example, by making a zigzag cut across the entire area of the metal plate and spreading it out, a rhombus-shaped or turtle-shaped three-dimensional mesh (mesh) structure is used in both the thickness direction and the surface direction. An excellent porous member can be formed. Such an expanded metal formed by so-called lath cut treatment is more advantageous than a sintered body in that it can be deformed, and also has excellent conductivity. Further, by further pressing (drawing) such a processed product (expanded metal or lath metal), the conductive porous body 25 having a substantially rectangular recess 25d at the center can be formed.

さらに本実施形態では、凹部25dが形成されたカソード側導電性多孔体25のうちの当該凹部25d以外の外周寄り部分(図中符号25eで示す)が、セル形成時に当該セル2の厚みの略中央に位置するようにしている(図2参照)。また、上述したガスケット14がかかる外周寄り部分25eの両面に配置されている。導電性多孔体25の当該部分が厚み方向のいずれかに偏っていると荷重のバランスが崩れやすくなるが、このように厚み方向の略中央に配置されていれば荷重バランスを確保しやすい。   Furthermore, in the present embodiment, a portion near the outer periphery (indicated by reference numeral 25e in the figure) other than the concave portion 25d of the cathode-side conductive porous body 25 in which the concave portion 25d is formed is approximately the thickness of the cell 2 at the time of cell formation. It is located at the center (see FIG. 2). Moreover, the gasket 14 mentioned above is arrange | positioned on both surfaces of the outer peripheral part 25e. If the portion of the conductive porous body 25 is biased in any of the thickness directions, the load balance tends to be lost. However, if the portion is arranged in the approximate center in the thickness direction, it is easy to ensure the load balance.

加えて、本実施形態では、カソード側導電性多孔体25のうち凹部25d以外の外周寄り部分25eについて、その一部または全部の部分の金属密度が高くなるように加工している。例えば、マニホールド25a〜25cの周辺部分の金属密度を、MEGA11と重なる部分(凹部25dが形成されている部分)の金属密度よりも高くすれば、当該密度が高くなった部分の強度を相対的に向上させることができる。金属密度を高くするいわゆる圧密化は、例えばカソード導電性多孔体25の対象となる部分を加圧して潰すことによって実施することが可能である。   In addition, in the present embodiment, the cathode-side conductive porous body 25 is processed so that the metal density of part or all of the outer peripheral portion 25e other than the recess 25d is increased. For example, if the metal density of the peripheral portions of the manifolds 25a to 25c is made higher than the metal density of the portion overlapping the MEGA 11 (the portion where the concave portion 25d is formed), the strength of the portion where the density has increased is relatively increased. Can be improved. So-called consolidation for increasing the metal density can be performed, for example, by pressing and crushing a target portion of the cathode conductive porous body 25.

以上のような構造の本実施形態における燃料電池1の利点を従来技術の参考例と対比しながら以下に説明する(図6〜図21参照)。   Advantages of the fuel cell 1 in the present embodiment having the above-described structure will be described below in comparison with a reference example of the prior art (see FIGS. 6 to 21).

(A)まず、本実施形態においては、上述のように導電性多孔体25に凹部25dを形成し、MEGA11の一部を当該凹部25dに収容する構造としたことから、MEGA11の位置ずれを抑制しうるという点で好適である。すなわち、このように凹部25dが一体的に成形された導電性多孔体25を利用することにより、成形前のMEGA11の位置合わせを可能とし、燃料電池1(ないしはセル2)の成形時に位置ずれが生じるのを抑制することが可能である。換言すれば、導電性多孔体25に一体的に成形された凹部25dはMEGA11の位置ずれを抑止する拘束部材として機能しうる。 (A) First, in the present embodiment, the concave portion 25d is formed in the conductive porous body 25 as described above, and a part of the MEGA 11 is accommodated in the concave portion 25d. This is preferable in that it is possible. That is, by using the conductive porous body 25 in which the concave portion 25d is integrally molded in this way, the MEGA 11 before molding can be aligned, and the misalignment occurs when the fuel cell 1 (or cell 2) is molded. It is possible to suppress the occurrence. In other words, the concave portion 25d formed integrally with the conductive porous body 25 can function as a restraining member that suppresses the displacement of the MEGA 11.

この点、従来構造の燃料電池1においてはMEGA11の位置ずれを抑制するのが困難である。例示して説明すると、マニホールドの周辺部分に非多孔質の平板部材(図中ではクロスハッチングを付して表示)を用いた場合(図6、図7参照)、導電性多孔体において当該マニホールド周辺部分の強度を確保しやすい反面、製造可能条件が限られるという問題が生じる。すなわち、形成しようとする凹部25dにのみラスカット処理を施すとすると(図8参照)、処理対象部分はカットにより延びるのに対してそれ以外の部分(カットされない部分)は延びないことから、伸び率の違いが生じて変形してしまい、端部付近(図8において一点鎖線で囲んだ部分参照)において皺が生じてしまう。このため、図8に示すような略矩形の凹部を中央に有する導電性多孔体を製造することが不可能であった。   In this regard, it is difficult to suppress the displacement of the MEGA 11 in the conventional fuel cell 1. For example, when a non-porous flat plate member (shown with cross-hatching in the figure) is used in the peripheral part of the manifold (see FIGS. 6 and 7), the periphery of the manifold in the conductive porous body While it is easy to ensure the strength of the part, there arises a problem that the manufacturable conditions are limited. That is, if the lath cutting process is performed only on the recess 25d to be formed (see FIG. 8), the processing target part extends by cutting, while the other part (the part that is not cut) does not extend. This causes a difference and deformation, and wrinkles are generated near the end (see the portion surrounded by the alternate long and short dash line in FIG. 8). For this reason, it was impossible to manufacture a conductive porous body having a substantially rectangular recess as shown in FIG.

したがって、従来は、一対の導電性多孔体の一方24’を横長形状、もう一方25’を縦長形状とし、ラスカット時の送り方向の始端付近と終端付近にはラスカット処理を行わない(刻まない)という製法を採っている。この場合、加工品の送り方向に垂直な断面は平坦状にしかならず、シルクハット形状(ないしはお椀形状)の凹部は成形され得ない。従来は、このような横長の導電性多孔体24’と縦長の導電性多孔体25’とを十字状に組み合わせるいわば互い違い構造としていたため、導電性多孔体24’、MEGA11’、そして導電性多孔体25’とを一体成形する際、中央に位置すべきMEGA11’を十分に拘束することができずに位置ずれが生じることがあった。   Accordingly, conventionally, one of the pair of conductive porous bodies has a horizontally long shape and the other 25 'has a vertically long shape, and the lath cut process is not performed near the start end and near the end of the feed direction during the lath cut (not engraved). The manufacturing method is adopted. In this case, the cross section perpendicular to the feed direction of the processed product is only flat, and a top hat-shaped (or bowl-shaped) concave portion cannot be formed. Conventionally, such a horizontally long conductive porous body 24 ′ and a vertically long conductive porous body 25 ′ are combined in a cross shape so as to form a staggered structure, so that the conductive porous body 24 ′, MEGA 11 ′, and conductive porous body When the body 25 ′ is integrally formed with the body 25 ′, the MEGA 11 ′ that should be positioned at the center cannot be sufficiently restrained, resulting in a displacement.

これに対し、一方の導電性多孔体(例えばカソード側導電性多孔体25)に一体的な凹部25dを成形する本実施形態の燃料電池1においては、かかる凹部25dを拘束部材として機能させることによってMEGA11の位置ずれを抑止できるという点で好適である。   On the other hand, in the fuel cell 1 of this embodiment in which the concave portion 25d integral with one conductive porous body (for example, the cathode-side conductive porous body 25) is formed, the concave portion 25d functions as a restraining member. This is preferable in that the displacement of the MEGA 11 can be suppressed.

(B)本実施形態の燃料電池1においては、導電性多孔体24,25における反応ガスの分配・拡散性能、排出性能を確保して燃料電池1の高い性能を実現しやすい。 (B) In the fuel cell 1 of the present embodiment, it is easy to achieve high performance of the fuel cell 1 by securing the reaction gas distribution / diffusion performance and discharge performance in the conductive porous bodies 24 and 25.

この点、上述のように横長の導電性多孔体24’と縦長の導電性多孔体25’とを十字状に組み合わせると、反応ガスの分配・拡散性能、排出性能が劣る場合がある。すなわち、ラスカット処理が施された多孔部分において孔(例えばパンチ孔)がラスカット送り方向に傾斜した状態となっている場合、当該方向とガスの流れ方向とが一致していれば問題はないが(図10参照)、一致していない(直交している)と性能が低下してしまう(図9参照)。この場合、反応ガスの一方(例えばアノード側での水素ガス)において流れの低下が生じる。   In this regard, when the horizontally long conductive porous body 24 ′ and the vertically long conductive porous body 25 ′ are combined in a cross shape as described above, the reaction gas distribution / diffusion performance and discharge performance may be inferior. That is, in the case where the holes (for example, punch holes) are inclined in the lath cut feed direction in the porous portion subjected to the lath cut process, there is no problem if the direction and the gas flow direction match ( If they do not match (or are orthogonal), the performance is degraded (see FIG. 9). In this case, the flow is reduced in one of the reaction gases (for example, hydrogen gas on the anode side).

これに対し、本実施形態の場合には、アノード側導電性多孔体24およびカソード側導電性多孔体25のラスカット送り方向を適宜変え、ガス流れ方向と一致させることができる。このため、これら導電性多孔体24,25における反応ガスの分配・拡散性能、排出性能を確保しやすい。   On the other hand, in the case of the present embodiment, the lath-cut feed direction of the anode side conductive porous body 24 and the cathode side conductive porous body 25 can be appropriately changed to match the gas flow direction. For this reason, it is easy to ensure the distribution / diffusion performance and discharge performance of the reaction gas in the conductive porous bodies 24 and 25.

(C)本実施形態の燃料電池1においては、ガスケット14の機能を維持しやすい。 (C) In the fuel cell 1 of the present embodiment, the function of the gasket 14 is easily maintained.

この点、上述のように横長の導電性多孔体24’と縦長の導電性多孔体25’とを十字状に組み合わせると(互い違い構造)、ブラケット14中へのインサート材料(例えば導電性多孔体24’の両縁付近の部分)が、セル厚み方向の中央に位置し得ない場合がある(図11、図12参照)。この場合、かかるインサート材料の表側と裏側とでガスケット14に作用する応力に差が生じ、荷重バランスが崩れやすくなってしまう。また、いわば土手の薄い方(図12であれば上側)でより強い応力が生じ、ゴム等の材料の破断に至りやすい。一方で、インサート材料がセル厚み方向中央に位置するよう導電性多孔体を加工するとすれば、導電性多孔体24’,25’の両方にて加工が必要であり、そのぶん工程が増す。また、これら導電性多孔体とガスケット14との密着度を十分に確保しないとガスリークが生じるという問題もある。   In this regard, when the horizontally long conductive porous body 24 ′ and the vertically long conductive porous body 25 ′ are combined in a cross shape (alternate structure) as described above, the insert material into the bracket 14 (for example, the conductive porous body 24). There are cases where the portions in the vicinity of both edges of 'cannot be located at the center in the cell thickness direction (see FIGS. 11 and 12). In this case, a difference occurs in the stress acting on the gasket 14 between the front side and the back side of the insert material, and the load balance is easily lost. In other words, a stronger stress is generated in the thinner bank (upper side in FIG. 12), and the material such as rubber tends to break. On the other hand, if the conductive porous body is processed so that the insert material is located in the center in the cell thickness direction, both the conductive porous bodies 24 'and 25' need to be processed, and the number of steps is increased. In addition, there is a problem in that gas leakage occurs unless sufficient adhesion between the conductive porous body and the gasket 14 is secured.

これに対し、本実施形態の場合には、凹部25dが形成されたカソード側導電性多孔体25のうちの当該凹部25d以外の外周寄り部分(インサート部分)25eを、セル2の厚みの略中央に位置するようにしている(図2参照)。このため荷重バランスを確保しやすく、ひいてはガスケット14の機能を維持しやすい。   On the other hand, in the case of the present embodiment, a portion near the outer periphery (insert portion) 25e other than the concave portion 25d of the cathode-side conductive porous body 25 in which the concave portion 25d is formed is approximately the center of the thickness of the cell 2. (Refer to FIG. 2). For this reason, it is easy to ensure a load balance, and it is easy to maintain the function of the gasket 14.

(D)本実施形態の燃料電池1においては、マニホールド付近における導電性多孔体25の金属密度を上げて強度を向上させることができる。 (D) In the fuel cell 1 of the present embodiment, the strength can be improved by increasing the metal density of the conductive porous body 25 in the vicinity of the manifold.

上述のように横長の導電性多孔体24’と縦長の導電性多孔体25’とを十字状に組み合わせる互い違い構造において、これら導電性多孔体24’,25’のすべてを多孔体にする(非多孔質部分を形成しない)とすれば(図14参照)、ラスカット送り方向を適宜変え、導電性多孔体24’と導電性多孔体25’とでガス流れ方向を一致させることが可能となる(図15参照)。ところが、こうした場合にはマニホールド周辺におけるブラケット4へのインサート部分までもが多孔質材料となり、十分な強度が確保できないおそれが生じる(図16、図17参照)。   In the staggered structure in which the horizontally long conductive porous body 24 ′ and the vertically long conductive porous body 25 ′ are combined in a cross shape as described above, all of these conductive porous bodies 24 ′ and 25 ′ are made porous (non-porous). If the porous portion is not formed) (see FIG. 14), the gas flow direction can be matched between the conductive porous body 24 ′ and the conductive porous body 25 ′ by appropriately changing the lath cut feed direction (see FIG. 14). FIG. 15). However, in such a case, even the insert part to the bracket 4 around the manifold becomes a porous material, and there is a possibility that sufficient strength cannot be secured (see FIGS. 16 and 17).

これに対し、本実施形態の場合には、カソード側導電性多孔体25のうち凹部25d以外の外周寄り部分25eについて、その一部または全部の部分の金属密度が高くなるように加工しているため、当該部分の強度を相対的に向上させることができる。   On the other hand, in the present embodiment, the outer peripheral portion 25e other than the recess 25d in the cathode-side conductive porous body 25 is processed so that the metal density of a part or all of the portion is increased. Therefore, the strength of the part can be relatively improved.

(E)本実施形態の燃料電池1においては、シールの反力不足によるガスリークを抑制できる。さらに、電気的短絡を抑制することもできる。 (E) In the fuel cell 1 of the present embodiment, gas leakage due to insufficient reaction force of the seal can be suppressed. Furthermore, an electrical short circuit can be suppressed.

この点、上述のように横長の導電性多孔体24’と縦長の導電性多孔体25’とを十字状に組み合わせ(互い違い構造)、破線に沿ってシールラインを形成した場合(図18参照)、発電部の四隅において電解質膜21のみがバックアップ部材となり(図19参照)、剛体によるバックアップが十分でなく、シールの半力不足によってガスリークが生じるおそれがある。また、図20や図21に示すいずれの構成においても、MEGAの拘束が十分でなく位置ずれが生じるおそれがある(図20、図21参照)。さらには、成形時に導電性多孔体24’,25’が電解質膜21にダメージを与え、電気的な短絡を生じる可能性もある(図22参照)。   In this regard, as described above, when the horizontally long conductive porous body 24 ′ and the vertically long conductive porous body 25 ′ are combined in a cross shape (alternate structure) and a seal line is formed along the broken line (see FIG. 18). Only the electrolyte membrane 21 serves as a backup member at the four corners of the power generation unit (see FIG. 19), and the backup by the rigid body is not sufficient, and there is a possibility that gas leakage may occur due to insufficient half power of the seal. Further, in any of the configurations shown in FIGS. 20 and 21, the MEGA is not sufficiently restrained, and there is a risk of displacement (see FIGS. 20 and 21). Furthermore, the conductive porous bodies 24 ′ and 25 ′ may damage the electrolyte membrane 21 during molding, which may cause an electrical short circuit (see FIG. 22).

これに対し、本実施形態の場合には、発電部(MEGA11)の四隅において剛体(導電性多孔体24,25)がバックアップする構造であり、当該四隅のシール反力不足によるガスリークを抑制することができる。また、カソード側導電性多孔体25のうち凹部25d以外の外周寄り部分25eについて、金属密度が高くして当該部分の強度を相対的に向上させており、導電性多孔体24,25どうしの接触による短絡をも抑制することができる。さらに、四方に壁部を有する形状の凹部25dを形成しているため、MEGA11の位置ずれを縦横両方向にて抑制する点も好適である。加えて、本実施形態の場合には導電性多孔体24,25の一方にのみ凹部25dを形成すれば足りるため、そのぶん工程が少なく効率がよいという利点もある。   On the other hand, in the case of this embodiment, the rigid bodies (conductive porous bodies 24, 25) are backed up at the four corners of the power generation unit (MEGA11), and gas leakage due to insufficient seal reaction force at the four corners is suppressed. Can do. Further, in the cathode-side conductive porous body 25, the outer peripheral portion 25e other than the concave portion 25d has a high metal density to relatively improve the strength of the portion, and the conductive porous bodies 24 and 25 are in contact with each other. It is possible to suppress a short circuit due to. Furthermore, since the concave portion 25d having a shape having wall portions on all sides is formed, it is also preferable that the displacement of the MEGA 11 is suppressed in both the vertical and horizontal directions. In addition, in the case of the present embodiment, it is sufficient to form the recess 25d only in one of the conductive porous bodies 24 and 25, so that there is an advantage that the number of steps is small and the efficiency is high.

以上、ここまで本実施形態における燃料電池1の利点を従来技術との対比にて説明したが、さらに他方の導電性多孔体(アノード側導電性多孔体24)について以下のように構成することも好ましい。   As described above, the advantages of the fuel cell 1 in the present embodiment have been described in comparison with the prior art. However, the other conductive porous body (the anode-side conductive porous body 24) may be configured as follows. preferable.

すなわち、アノード側導電性多孔体24を板状とし、尚かつMEGA11の拡散層22よりも小さくなるように形成することが好ましい(図4等参照)。こうした場合、小さく形成された当該平面状のアノード側導電性多孔体24をMEGA11の内側に収まるように配置しやすく、これによって集電性多孔体24,25どうしの短絡をさらに抑制することが容易となる。加えて、MEGA11を、電解質膜21と、この電解質膜21よりも外周が小さく該電解質膜の外周内に収まるアノード電極(拡散層22)とを積層して構成することがさらに好ましい。こうした場合、平面状のアノード側導電性多孔体24は、アノード電極よりも外周が小さく当該電極の外周内に収まるから、成形時に当該平面状の導電性多孔体24を平面視で目視確認しやすく、位置合わせしやすくなる。これによれば導電性多孔体24,25どうしの相対的な位置合わせが容易となり、燃料電池1におけるMEGA11や導電性多孔体24,25の位置合わせにさらに好適な構造を実現できる。   That is, it is preferable to form the anode-side conductive porous body 24 in a plate shape so as to be smaller than the diffusion layer 22 of the MEGA 11 (see FIG. 4 and the like). In such a case, it is easy to arrange the planar anode-side conductive porous body 24 that is formed in a small size so as to be accommodated inside the MEGA 11, and thereby it is easy to further suppress a short circuit between the current collecting porous bodies 24 and 25. It becomes. In addition, the MEGA 11 is more preferably configured by laminating an electrolyte membrane 21 and an anode electrode (diffusion layer 22) that has a smaller outer circumference than the electrolyte membrane 21 and fits in the outer circumference of the electrolyte membrane. In such a case, since the planar anode-side conductive porous body 24 has a smaller outer periphery than the anode electrode and fits within the outer periphery of the electrode, it is easy to visually confirm the planar conductive porous body 24 in a plan view during molding. , Easy to align. According to this, the relative positioning of the conductive porous bodies 24 and 25 is facilitated, and a structure more suitable for the alignment of the MEGA 11 and the conductive porous bodies 24 and 25 in the fuel cell 1 can be realized.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本実施形態ではカソード側導電性多孔体25に凹部25dを形成した場合について例示したが、これとは逆の構成、すなわちアノード側導電性多孔体24に凹部を形成しても構わない。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the present embodiment, the case where the concave portion 25d is formed in the cathode-side conductive porous body 25 has been illustrated, but the reverse configuration, that is, the concave portion may be formed in the anode-side conductive porous body 24.

また、上述した実施形態では膜−電極接合体としてMEGA(膜−電極−拡散層接合体)11が用いられている場合を例示して説明したが、これがMEA(膜−電極接合体)であっても同様の作用効果を実現しうる。   In the above-described embodiment, the case where MEGA (membrane-electrode-diffusion layer assembly) 11 is used as the membrane-electrode assembly has been described as an example, but this is MEA (membrane-electrode assembly). However, the same effect can be realized.

本発明の一実施形態を示すカソード側導電性多孔体、MEGA、アノード側導電性多孔体を積層した状態の平面図である。It is a top view of the state which laminated | stacked the cathode side electroconductive porous body which shows one Embodiment of this invention, MEGA, and the anode side electroconductive porous body. 図1のII-II線における断面図である。It is sectional drawing in the II-II line of FIG. 導電性多孔体およびMEGAの構成例を示す図である。It is a figure which shows the structural example of a conductive porous body and MEGA. 積層された導電性多孔体およびMEGAの側面図である。It is a side view of the laminated | stacked electroconductive porous body and MEGA. 燃料電池の構成例を示す斜視図である。It is a perspective view which shows the structural example of a fuel cell. 従来技術の参考例として示す導電性多孔体およびMEGAの平面図である。It is a top view of the electroconductive porous body and MEGA shown as a reference example of a prior art. ラスカット時の板状部材の送り方向と製造可能な形状との関係を示す図であり、(A)は板状部材の幅方向、(B)は板状部材の長手方向に送る場合である。It is a figure which shows the relationship between the feed direction of the plate-shaped member at the time of a lath cut, and the shape which can be manufactured, (A) is the case where it feeds in the width direction of a plate-shaped member, (B) is the longitudinal direction of a plate-shaped member. 従来のラスカット処理によっては製造不可能な形状の一例を示す図である。It is a figure which shows an example of the shape which cannot be manufactured by the conventional lath cut process. ラスカットの送り方向と反応ガスの流れ方向との関係が電池性性能に及ぼす影響を示すための図で、(A)はアノード側導電性多孔体の平面図、(B)はラスカット処理された部分の拡大図である。It is a figure for demonstrating the influence which the relationship of the flow direction of a last cut and the flow direction of a reactive gas has on battery performance, (A) is a top view of an anode side electroconductive porous body, (B) is the part which carried out the last cut process FIG. ラスカットの送り方向と反応ガスの流れ方向との関係が電池性性能に及ぼす影響を示すための図で、(A)はカソード側導電性多孔体の平面図、(B)はラスカット処理された部分の拡大図である。It is a figure for demonstrating the influence which the relationship between the flow direction of a last cut and the flow direction of a reactive gas has on battery performance, (A) is a top view of a cathode side electroconductive porous body, (B) is the part by which the last cut process was carried out FIG. 横長の導電性多孔体と縦長の導電性多孔体とを十字状に組み合わせた場合の構造例を示す平面図である。It is a top view which shows the structural example at the time of combining a horizontally long electroconductive porous body and a vertically long electroconductive porous body in the shape of a cross. 図11のXII-XII線における断面図である。It is sectional drawing in the XII-XII line | wire of FIG. 図12におけるインサート材料がセル厚み方向中央に位置するよう導電性多孔体を加工した場合の構造例を示す断面図である。It is sectional drawing which shows the structural example at the time of processing a conductive porous body so that the insert material in FIG. 12 may be located in the cell thickness direction center. 横長の導電性多孔体と縦長の導電性多孔体とを十字状に組み合わせる互い違い構造の一例を示す平面図である。It is a top view which shows an example of the staggered structure which combines a horizontally long electroconductive porous body and a vertically long electroconductive porous body in a cross shape. 図14に示した互い違い構造において、複数の導電性多孔体におけるガス流れ方向を一致させた様子を示す(A)一方の導電性多孔体、(B)他方の導電性多孔体、(C)ラスカット処理された部分の拡大図である。In the staggered structure shown in FIG. 14, (A) one conductive porous body, (B) the other conductive porous body, and (C) Lascut showing a state in which the gas flow directions in the plurality of conductive porous bodies are matched. It is an enlarged view of the processed part. マニホールド周辺におけるブラケットへのインサート部分まで多孔質材料である導電性多孔体の一例を示す平面図である。It is a top view which shows an example of the electroconductive porous body which is a porous material to the insert part to the bracket in the manifold periphery. 図16のXVII-XVII線における導電性多孔体の断面図である。It is sectional drawing of the electroconductive porous body in the XVII-XVII line of FIG. マニホールド周辺におけるブラケットへのインサート部分まで多孔質材料である互い違い構造の導電性多孔体の一例を示す平面図である。It is a top view which shows an example of the electroconductive porous body of the staggered structure which is a porous material to the insert part to the bracket in the manifold periphery. ガスケット中におけるバックアップ部材が電解質膜のみである様子を示す断面図である。It is sectional drawing which shows a mode that the backup member in a gasket is only an electrolyte membrane. 図18のXX-XX線における断面図である。It is sectional drawing in the XX-XX line of FIG. 図20におけるインサート材料がセル厚み方向中央に位置するよう導電性多孔体を加工した場合の構造例を示す断面図である。It is sectional drawing which shows the structural example at the time of processing a conductive porous body so that the insert material in FIG. 20 may be located in the cell thickness direction center. 導電性多孔体が電解質膜にダメージを与え、電気的な短絡を生じる場合の様子を示す断面図である。It is sectional drawing which shows a mode when an electroconductive porous body damages an electrolyte membrane and produces an electrical short circuit.

符号の説明Explanation of symbols

1…燃料電池、2…セル(燃料電池セル)、11…MEGA(膜−電極接合体)、12…セパレータ、13…セパレータ、21…電解質膜、24…アノード側導電性多孔体、25…カソード側導電性多孔体、25d…(導電性多孔体の)凹部、25e…(導電性多孔体の)外周寄り部分(凹部が形成された導電性多孔体の外周付近) DESCRIPTION OF SYMBOLS 1 ... Fuel cell, 2 ... Cell (fuel cell), 11 ... MEGA (membrane-electrode assembly), 12 ... Separator, 13 ... Separator, 21 ... Electrolyte membrane, 24 ... Anode side conductive porous body, 25 ... Cathode Side conductive porous body, 25d ... (conducting porous body) recess, 25e ... (conducting porous body) outer peripheral portion (near the outer periphery of the conductive porous body where the recess is formed)

Claims (10)

膜−電極接合体と、該膜−電極接合体の一方側に設けられたアノード側導電性ラスカットメタルおよび他方側に設けられたカソード側導電性ラスカットメタルと、前記膜−電極接合体、アノード側導電性ラスカットメタルおよびカソード側導電性ラスカットメタルを挟持するセパレータと、を有する燃料電池において、
前記アノード側導電性ラスカットメタルおよびカソード側導電性ラスカットメタルの一方に四方に壁部を有する形状の凹部が形成され、該凹部に前記膜−電極接合体の厚み方向の一部が収容されていることを特徴とする燃料電池。
Membrane-electrode assembly, anode side conductive lascut metal provided on one side of the membrane-electrode assembly, cathode side conductive lascut metal provided on the other side, and the membrane-electrode assembly, anode side In a fuel cell having a separator that sandwiches a conductive Lascut metal and a cathode side conductive Lascut metal ,
One of the anode side conductive lascut metal and the cathode side conductive lascut metal is formed with a concave portion having wall portions in four directions, and a part of the membrane-electrode assembly in the thickness direction is accommodated in the concave portion. A fuel cell characterized by the above.
前記アノード側導電性ラスカットメタルおよびカソード側導電性ラスカットメタルの一方に凹部が形成され、他方は平面状である請求項1に記載の燃料電池。 Said anode-side conductive lath cut metal and one recess on the cathode side conductive lath cut metal is formed, the fuel cell according to claim 1 and the other is planar. 前記平面状である導電性ラスカットメタルが前記膜−電極接合体よりも小さく形成されている請求項2に記載の燃料電池。 The fuel cell according to claim 2 which is smaller than the electrode assembly - the planar and is conductive lath cut metal is the membrane. 前記膜−電極接合体は、電解質膜と、この電解質膜よりも外周が小さく該電解質膜の外周内に収まる電極とが積層されてなり、
前記平面状の導電性ラスカットメタルは、前記電極よりも外周が小さく当該電極の外周内に収まる形状に形成されている
請求項3に記載の燃料電池。
The membrane-electrode assembly is formed by laminating an electrolyte membrane and an electrode having a smaller outer circumference than the electrolyte membrane and fit within the outer circumference of the electrolyte membrane,
4. The fuel cell according to claim 3, wherein the planar conductive Lascut metal has a smaller outer periphery than the electrode and is formed in a shape that fits within the outer periphery of the electrode.
前記膜−電極接合体、アノード側導電性ラスカットメタル、カソード側導電性ラスカットメタルおよびセパレータを有する燃料電池セルが複数積層された構造の燃料電池であって、
発電用の反応ガスを各燃料電池セルに供給しまたは各燃料電池セルから排出するためのマニホールドを備えるとともに、
前記凹部が形成された前記導電性ラスカットメタルの外周付近は、前記電解質膜の平面方向に延長して前記マニホールドの付近まで延びる形状となっている請求項4に記載の燃料電池。
A fuel cell having a structure in which a plurality of fuel cells each having the membrane-electrode assembly, the anode-side conductive Lascut metal , the cathode-side conductive Lascut metal, and a separator are laminated,
Provided with a manifold for supplying or discharging reaction gas for power generation to or from each fuel cell,
5. The fuel cell according to claim 4, wherein the vicinity of the outer periphery of the conductive Lascut metal in which the recess is formed has a shape that extends in the planar direction of the electrolyte membrane and extends to the vicinity of the manifold.
前記導電性ラスカットメタルのうち前記凹部以外の部分の少なくとも一部の金属密度が前記凹部が形成された部分よりも高い請求項1から5のいずれか一項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 5, wherein a metal density of at least a part of the conductive lath cut metal other than the recess is higher than that of a portion where the recess is formed . 前記導電性ラスカットメタルのうち前記凹部以外の部分の少なくとも一部が加圧されて潰されることによって金属密度が高められている請求項6に記載の燃料電池。 The fuel cell according to claim 6, wherein the metal density is increased by pressurizing and crushing at least a part of the conductive lath cut metal other than the recess. 発電用の反応ガスを各燃料電池セルに供給しまたは各燃料電池セルから排出するためのマニホールドを備えるとともに、前記導電性ラスカットメタルのうち前記マニホールドの周辺に該当する部分が、前記燃料電池セルの積層方向に関して当該燃料電池セルの厚みの略中央に形成されている請求項1から7のいずれか一項に記載の燃料電池。 A manifold for supplying reaction gas for power generation to each fuel battery cell or discharging it from each fuel battery cell is provided, and a portion corresponding to the periphery of the manifold of the conductive lascut metal is a part of the fuel battery cell. The fuel cell according to any one of claims 1 to 7, wherein the fuel cell is formed at substantially the center of the thickness of the fuel cell in the stacking direction. 膜−電極接合体と、該膜−電極接合体の一方側に設けられたアノード側導電性ラスカットメタルおよび他方側に設けられたカソード側導電性ラスカットメタルと、前記膜−電極接合体、アノード側導電性ラスカットメタルおよびカソード側導電性ラスカットメタルを挟持するセパレータと、を有する燃料電池における前記アノード側導電性ラスカットメタルおよびカソード側導電性ラスカットメタルの一方に四方に壁部を有する形状の凹部を形成しておき、
該凹部に前記膜−電極接合体の厚み方向の一部を収容した状態とすることを特徴とする燃料電池における膜−電極接合体の位置合わせ方法。
Membrane-electrode assembly, anode side conductive lascut metal provided on one side of the membrane-electrode assembly, cathode side conductive lascut metal provided on the other side, and the membrane-electrode assembly, anode side forming a recess shape with a separator that sandwich the conductive lath cut metal and the cathode conductive lath cut metal, the wall portion in four directions to one of the anode-side conductive lath cut metal and the cathode conductive lath cut metal in a fuel cell having Aside,
A method of aligning a membrane-electrode assembly in a fuel cell, characterized in that a part of the membrane-electrode assembly in the thickness direction is accommodated in the recess.
請求項9に記載の膜−電極接合体の位置合わせ方法を用いた燃料電池の製造方法。   A method for producing a fuel cell using the method for aligning a membrane-electrode assembly according to claim 9.
JP2007195998A 2007-07-27 2007-07-27 Fuel cell and method for aligning membrane-electrode assembly thereof Expired - Fee Related JP4258561B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007195998A JP4258561B2 (en) 2007-07-27 2007-07-27 Fuel cell and method for aligning membrane-electrode assembly thereof
PCT/JP2008/063805 WO2009017208A1 (en) 2007-07-27 2008-07-25 Fuel cell and method for aligning its membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195998A JP4258561B2 (en) 2007-07-27 2007-07-27 Fuel cell and method for aligning membrane-electrode assembly thereof

Publications (2)

Publication Number Publication Date
JP2009032561A JP2009032561A (en) 2009-02-12
JP4258561B2 true JP4258561B2 (en) 2009-04-30

Family

ID=40304436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195998A Expired - Fee Related JP4258561B2 (en) 2007-07-27 2007-07-27 Fuel cell and method for aligning membrane-electrode assembly thereof

Country Status (2)

Country Link
JP (1) JP4258561B2 (en)
WO (1) WO2009017208A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136546B2 (en) 2010-05-26 2015-09-15 Toyota Jidosha Kabushiki Kaisha Fuel cell stack, manufacturing method of fuel cell stack and replacement method of module as constituent of fuel cell stack

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031681B2 (en) * 2002-08-27 2008-01-09 本田技研工業株式会社 Fuel cell
JP2004303508A (en) * 2003-03-31 2004-10-28 Nissan Motor Co Ltd Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JP4630029B2 (en) * 2004-09-16 2011-02-09 アクアフェアリー株式会社 Fuel cell manufacturing method and manufacturing equipment
JP2007087865A (en) * 2005-09-26 2007-04-05 Equos Research Co Ltd Stack of fuel cell

Also Published As

Publication number Publication date
JP2009032561A (en) 2009-02-12
WO2009017208A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP6368807B2 (en) Manufacturing method of fuel cell stack and manufacturing method of metal separator for fuel cell
JP5412804B2 (en) Fuel cell stack
US20090004540A1 (en) Fuel Cell and Laminate
CN110224154B (en) Frame-equipped membrane electrode assembly, method for producing same, and fuel cell
US20110236786A1 (en) Fuel cell
JP4828841B2 (en) Fuel cell
JP6607411B2 (en) Fuel cell single cell structure and fuel cell stack structure in which the fuel cell single cells are stacked
US10038202B2 (en) Fuel cell separator, fuel cell, and fuel cell battery
JP2004087311A (en) Fuel cell stack and metallic separator for for fuel cell stack
CN110277581B (en) Fuel cell stack, dummy cell for fuel cell stack, and method for manufacturing dummy cell
KR101491349B1 (en) Fuel cell stack
JP6090091B2 (en) Fuel cell
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
US10826097B2 (en) Fuel cell
JP4258561B2 (en) Fuel cell and method for aligning membrane-electrode assembly thereof
JP4947337B2 (en) Fuel cell separator
JP2006147258A (en) Separator and fuel battery stack
JP5261948B2 (en) Fuel cell and fuel cell stack
JP2006127948A (en) Fuel cell stack
JP5398338B2 (en) Fuel cell stack
JP2008243499A (en) Fuel cell
JP2004296199A (en) Separator for fuel cell, fuel cell using it, fuel cell vehicle with it mounted thereon, and manufacturing method of separator for fuel cell
JP5920594B2 (en) Fuel cell
JP2006120547A (en) Fuel cell
JP2004311155A (en) Fuel cell stack

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees