JP4257980B2 - Countercurrent chromatography method and countercurrent chromatography apparatus - Google Patents

Countercurrent chromatography method and countercurrent chromatography apparatus Download PDF

Info

Publication number
JP4257980B2
JP4257980B2 JP2004100719A JP2004100719A JP4257980B2 JP 4257980 B2 JP4257980 B2 JP 4257980B2 JP 2004100719 A JP2004100719 A JP 2004100719A JP 2004100719 A JP2004100719 A JP 2004100719A JP 4257980 B2 JP4257980 B2 JP 4257980B2
Authority
JP
Japan
Prior art keywords
separation tube
separation
porous
chromatography
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004100719A
Other languages
Japanese (ja)
Other versions
JP2005283468A (en
Inventor
順一 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004100719A priority Critical patent/JP4257980B2/en
Publication of JP2005283468A publication Critical patent/JP2005283468A/en
Application granted granted Critical
Publication of JP4257980B2 publication Critical patent/JP4257980B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

本発明は、生体由来成分その他の分離精製などに適用することができる向流クロマトグラフィー法及び向流クロマトグラフィー装置に関する。   The present invention relates to a countercurrent chromatography method and a countercurrent chromatography apparatus that can be applied to separation and purification of biological components and the like.

液滴向流クロマトグラフィーは既に確立した技術であるが、向流クロマトグラフィー分野の世界的権威である米国・国立衛生研究所のIto博士他に確認した結果、関連分野を含め、本発明のような装置はこれまで存在しなかったことが判っている。   Droplet counter-current chromatography is a well-established technology, but as a result of confirmation with Dr. Ito et al. Of the US National Institutes of Health, the world authority in the counter-current chromatography field, It has been found that no such device has ever existed.

向流クロマトグラフィーは、互いに混ざらない2種の溶媒(固定相、移動相)に対する分配係数の差を利用し、不連続的に分離操作を繰り返して物質を分離しようとする向流分配法の原理を用いたものである。
従来の液滴向流クロマトグラフィーは、内部が空洞の分離管を用いるものであり、この分離管は比較的長い管長を有するものであって、原試料をパルス状に装置に注入し、原試料中の分離成分を移動相に溶解させて溶出させるものであって、溶出のタイミングが異なることを利用して分離、回収することができる。
Countercurrent chromatography is based on the principle of countercurrent distribution, which uses the difference in distribution coefficient for two types of solvents (stationary phase and mobile phase) that are not mixed with each other, and separates the material by discontinuous separation. Is used.
Conventional droplet countercurrent chromatography uses a hollow separation tube, which has a relatively long tube length, and injects the original sample into the apparatus in a pulsed manner. The components separated therein are dissolved in the mobile phase and eluted, and can be separated and recovered by utilizing the different elution timings.

前記従来の液滴向流クロマトグラフィーは、装置構造がシンプルで済むという大きな利点を有する反面、分離段数が大きくなく、試料処理容量も十分に大きくないという欠点を有していた。   The conventional droplet counter-current chromatography has the great advantage that the device structure is simple, but has the disadvantage that the number of separation stages is not large and the sample processing capacity is not sufficiently large.

本発明は上記実状に鑑み提案されたもので、請求項1及び2に記載の発明は、向流クロマトグラフィーにおいて、内部が空洞の分離管の代わりに、1以上の孔を有する隔壁を設けてその内部を仕切ることにより複数のセルが直列連結された分離管であって、固定相と移動相の間の界面張力に応じた分離管内径を用いて移動中の液滴径が分離管内径とほぼ等しくなるようにするか、多数の非孔性小球体を充填した分離管を用いることを特徴とする向流クロマトグラフィー法であり、請求項3からに記載の発明はその装置を提案するものである。 The present invention has been proposed in view of the above circumstances, and the invention according to claims 1 and 2 is provided with a partition wall having one or more holes instead of a hollow separation tube in countercurrent chromatography. A separation tube in which a plurality of cells are connected in series by partitioning the inside of the separation tube, and the droplet diameter during movement is determined by the separation tube inner diameter corresponding to the interfacial tension between the stationary phase and the mobile phase. It is a countercurrent chromatography method characterized by using a separation tube filled with a large number of non-porous spherules so as to be substantially equal, and the invention according to claims 3 to 7 proposes the apparatus. Is.

本発明の向流クロマトグラフィー法及び向流クロマトグラフィー装置によれば、従来の内部が空洞の分離管を用いる代わりに、同程度のサイズの分離管のままでも分離管1本あたりの分離段数を大幅に増大させることができ、しかも単位時間当たりの試料処理量も増加させることができる。
また、装置構造が色々の点で簡単であり、大容量化が容易である。
According to the countercurrent chromatography method and countercurrent chromatography apparatus of the present invention, instead of using a conventional hollow separation tube, the number of separation stages per separation tube can be reduced even if the separation tube is of the same size. The amount of sample processing per unit time can also be increased.
Further, the device structure is simple in various respects, and the capacity can be easily increased.

本発明の液滴向流クロマトグラフィーにおいては、直立分離管を管壁に垂直な隔壁により仕切ることにより、複数(通常の長さの直立管であれば数個から10個程度)のセルが直列連結されるようにする。各隔壁には、直立分離管の上端・下端と同様に孔を開けておく。この孔は1個に限定するものではなく複数形成してもよい。即ち本発明においては、従来における1本の直立分離管に代えて、長さが短い直立分離管(セル)を垂直方向に数個から10個程度直列連結した分離管を用いる。それにより、装置構造の空間効率が極めて向上する筈であるが、従来の直立分離管では、管1本あたり理想的には1段以上の分離段が実現されるとされていたところ、セルがそのように短いのでは、一つのセル内で分配平衡にとても到達できず、セル一つあたりの分離段が1段にとても届かないのではないか、という懸念(問題点)がある。その点の解決手段として、以下の(A),(B)二つの手段の何れか或いは両方を採用する。 In droplet countercurrent chromatography of the present invention, by dividing the vertical septum wall upstanding separation tube wall, the cell of the plurality (about 10 of several if normal length standpipe of) Be connected in series. Each partition is perforated in the same manner as the upper and lower ends of the upright separator tube. The number of holes is not limited to one, and a plurality of holes may be formed. That is, in the present invention, instead of the conventional single vertical separation tube, a vertical separation tube (cell) having a short length is connected in series in the vertical direction from several to about ten. As a result, the space efficiency of the device structure should be greatly improved. However, in the conventional upright separation pipe, one or more separation stages were ideally realized per one pipe. In such a short case, there is a concern (problem) that the distribution equilibrium cannot be reached in one cell and the separation stage per cell may not reach one stage. One or both of the following two methods (A) and (B) are adopted as means for solving this problem.

(A)固定相と移動相の間の界面張力に応じた分離管内径を用いて移動中の液滴径が分離管内径とほぼ等しくなるようにする。
2液相の間の界面張力に応じた分離管内径を用いるということは、例えば界面張力が大きいほど大きな内径を用いることであって、移動中の液滴径を直立分離管内径とほぼ等しくする。このように移動中の液滴径と等しい内径の分離管を用いる場合、分離管の断面形状は正円形とする。
そうすることにより、液滴の上昇又は下降に伴う各セル内での各液相内及び液相間の撹拌が一層促進され、結果として平衡到達が促進される。尚、液滴がセル内を上昇する場合は、2液相のうちの軽い方を移動相とした場合であり、液滴がセル内を下降する場合は、2液相のうちの重い方を移動相とした場合に相当する。
従来の直立分離管では、2液相間の分配平衡到達に時間を要するために、長い管長を要し、またその一方で、例え管長は長くても、分離管長軸方向の拡散や同じく長軸方向の擾乱により分離段数の低下が起きていた。
それに対し、本発明では、拡散や擾乱の分離管長軸方向の伝播が、分離管内に設けた隔壁等の存在により完全にブロックされるという点が本発明の大きな利点である。
また、本発明では、同じ内径の分離管なら、細かい液滴を用いる場合より流速をより速くできるるので、単位時間当たりの処理量が増大するという利点もある。
尚、2液相間の界面張力に応じた分離管内径を用いるということは、異なる組み合わせの2液相ではその間の界面張力に応じて分離管内径を変える必要があることを意味しており、2液相の組み合わせが決まっている系、例えば大きなシステムの一部としての廃液処理などにおいては大きな問題とならない。
(A) Using the inner diameter of the separation tube according to the interfacial tension between the stationary phase and the mobile phase, the diameter of the moving droplet is made substantially equal to the inner diameter of the separation tube.
The use of the inner diameter of the separation tube corresponding to the interfacial tension between the two liquid phases means that, for example, the larger the interfacial tension, the larger the inner diameter, and the moving droplet diameter is made substantially equal to the inner diameter of the upright separation pipe . When a separation tube having an inner diameter equal to the diameter of the moving droplet is used, the sectional shape of the separation tube is a perfect circle.
By doing so, stirring in each liquid phase and between liquid phases in each cell accompanying the rise or fall of the droplet is further promoted, and as a result, reaching of equilibrium is promoted. When the droplet rises in the cell, the lighter one of the two liquid phases is used as the mobile phase. When the droplet falls in the cell, the heavier one of the two liquid phases is taken. This corresponds to the case where a mobile phase is used.
In conventional upright separation tubes, it takes time to reach distribution equilibrium between the two liquid phases, so a long tube length is required. On the other hand, even if the tube length is long, diffusion in the longitudinal direction of the separation tube and The number of separation stages was reduced due to the direction disturbance.
On the other hand, in the present invention, it is a great advantage of the present invention that the propagation of diffusion and disturbance in the long axis direction of the separation tube is completely blocked by the presence of a partition wall or the like provided in the separation tube.
Further, in the present invention, if the separation tubes have the same inner diameter, the flow rate can be made faster than when fine droplets are used, so that there is an advantage that the processing amount per unit time increases.
In addition, using the inner diameter of the separation tube according to the interfacial tension between the two liquid phases means that the separation pipe inner diameter needs to be changed according to the interfacial tension between the two liquid phases in different combinations. In a system in which a combination of two liquid phases is determined, for example, in a waste liquid treatment as a part of a large system, there is no big problem.

(B)多数の非孔性小球体を充填した分離管を用いる。
直立分離管の内部に多数の非孔性小球体を充填(パッキング)すると、非孔性小球体の働きにより、非孔性小球体の径と同程度以下の小さな空間スケールでの撹拌は促進され、しかも非孔性小球体の径より大きな空間スケールでの擾乱は抑制される。
そうすることにより、平衡到達が促進され、太い分離管を用いた場合でも高い分離段数を実現でき、試料処理容量を増やすことができる。このように太い分離管を用いる場合、隔壁には原則として多数個の孔を形成する。また、分離管の断面形状は必ずしも正円形でなくてよく、楕円形など滑らかな曲線を外輪郭とするようにすればよい。
(B) A separation tube filled with a large number of non-porous small spheres is used.
When a large number of non-porous globules are packed in the upright separation tube, the non-porous globules work to promote agitation at a small space scale that is less than or equal to the diameter of the non-porous spheres. Moreover, disturbance on a spatial scale larger than the diameter of the non-porous microsphere is suppressed.
By doing so, the achievement of equilibrium is promoted, and even when a thick separation tube is used, a high number of separation stages can be realized, and the sample processing capacity can be increased. When such a thick separation tube is used, in principle, a large number of holes are formed in the partition wall. Further, the sectional shape of the separation tube is not necessarily a perfect circle, and a smooth curve such as an ellipse may be used as the outer contour.

図1は、直立分離管を管壁に垂直な隔壁により仕切っている状態を示すものであり、各隔壁には孔が形成され、複数のセルが直列連結されるように形成されている状態を示している。 Figure 1 shows a state in which partitioned by vertical septum wall upstanding separation tube wall, each partition wall holes are formed, a state in which a plurality of cells are formed to be coupled in series Is shown.

図2は、前記(A)の態様の一実施例を示すものであり、2液相のうち軽い方を移動相とする場合を示している。
この場合、移動中の液滴径は直立分離管の内径とほぼ等しく、液滴はセル内を上昇するものであり、その上昇に伴ってセル内での各液相内及び液相間の撹拌が一層促進され、結果として平衡到達が促進される。
原試料は、この場合は直立分離管の下端からパルス状に注入される。
FIG. 2 shows one embodiment of the aspect (A), and shows a case where the lighter of the two liquid phases is used as the mobile phase.
In this case, the moving droplet diameter is almost equal to the inner diameter of the upright separation tube, and the droplet rises in the cell, and as it rises, stirring in each liquid phase and between the liquid phases in the cell Is further promoted, and as a result, reaching equilibrium is promoted.
In this case, the original sample is injected in pulses from the lower end of the upright separation tube.

図3は、前記(A)の態様の一実施例を示すものであり、2液相のうち重い方を移動相とする場合を示している。
この場合、移動中の液滴径は直立分離管の内径とほぼ等しく、液滴はセル内を下降するものであり、その上昇に伴ってセル内での各液相内及び液相間の撹拌が一層促進され、結果として平衡到達が促進される。
原試料は、この場合は直立分離管の上端からパルス状に注入される。
FIG. 3 shows an embodiment of the mode (A), and shows a case where the heavier of the two liquid phases is used as the mobile phase.
In this case, the diameter of the moving droplet is almost equal to the inner diameter of the upright separation tube, and the droplet descends in the cell, and as it rises, stirring in each liquid phase and between the liquid phases in the cell Is further promoted, and as a result, reaching equilibrium is promoted.
In this case, the original sample is injected in pulses from the upper end of the upright separation tube.

は、前記(B)の態様の一実施例を示すものであり、内径の太い直立分離管の内部に多数の非孔性小球体を充填している。
この場合、高い分離段数を実現でき、試料処理容量を増やすことができる。
FIG. 4 shows an embodiment of the mode (B), in which a large number of non-porous small spheres are filled in an upright separation tube having a large inner diameter.
In this case, a high number of separation stages can be realized, and the sample processing capacity can be increased.

バイオ系産業等、製造工程における分離精製手段としての利用が見込まれる。   It is expected to be used as a separation and purification means in manufacturing processes such as bio-based industries.

本発明に用いる分離管の基本構成を模式的に示す断面図である。It is sectional drawing which shows typically the basic composition of the separation pipe used for this invention. 本発明の2液相のうち軽い方を移動相とする一実施例における分離管内部の状況を模式的に示す断面図である。It is sectional drawing which shows typically the condition inside the separation pipe in one Example which makes a lighter one of the two liquid phases of this invention a mobile phase. 本発明の2液相のうち重い方を移動相とする一実施例における分離管内部の状況を模式的に示す断面図である。It is sectional drawing which shows typically the condition inside the separation pipe in one Example which uses the heavier one of the two liquid phases of this invention as a mobile phase. 本発明の他の一実施例における分離管を模式的に示す断面図である。It is sectional drawing which shows typically the separation tube in other one Example of this invention.

Claims (7)

向流クロマトグラフィーにおいて、内部が空洞の分離管の代わりに、1以上の孔を有する隔壁を設けてその内部を仕切ることにより複数のセルが直列連結された分離管を用いることを特徴とする液滴型向流クロマトグラフィー法。   In counter-current chromatography, a liquid having a plurality of cells connected in series by providing a partition wall having one or more holes and partitioning the inside instead of a hollow separation tube. Drop-type countercurrent chromatography. 向流クロマトグラフィーにおいて、内部が空洞の分離管の代わりに、1以上の孔を有する隔壁を設けてその内部を仕切ることにより複数のセルが直列連結された分離管であって、多数の非孔性小球体を充填した分離管を用いることを特徴とする向流クロマトグラフィー法。   In counter-current chromatography, a separation tube in which a plurality of cells are connected in series by providing a partition wall having one or more holes in place of a separation tube having a hollow inside and partitioning the inside of the separation tube. Counterflow chromatography, characterized by using a separation tube filled with a small sphere. 向流クロマトグラフィー装置において、内部が空洞の分離管の代わりに、1以上の孔を有する隔壁を設けてその内部を仕切ることにより複数のセルが直列連結された分離管を用いることを特徴とする液滴型向流クロマトグラフィー装置。   In the countercurrent chromatography apparatus, a separation tube in which a plurality of cells are connected in series by using a partition wall having one or more holes and partitioning the inside instead of a separation tube having a hollow inside is used. Droplet type counter-current chromatography device. 向流クロマトグラフィー装置において、内部が空洞の分離管の代わりに、1以上の孔を有する隔壁を設けてその内部を仕切ることにより複数のセルが直列連結された分離管であって、多数の非孔性小球体を充填した分離管を用いることを特徴とする向流クロマトグラフィー装置。   In a counter-current chromatography apparatus, a separation tube in which a plurality of cells are connected in series by providing a partition wall having one or more holes instead of a separation tube having a hollow inside and partitioning the inside of the separation tube. A counter-current chromatography apparatus using a separation tube filled with porous small spheres. 移動中の液滴径が、分離管内径とほぼ等しくなるようにすることを特徴とする、請求項3に記載の向流クロマトグラフィー装置。 4. The countercurrent chromatography apparatus according to claim 3, wherein the droplet diameter during movement is made substantially equal to the inner diameter of the separation tube. 1以上の孔を有する隔壁を設けてその内部を仕切ることにより複数のセルが直列連結された分離管を用い、分離管内に多数の非孔性小球体を充填することによって得られる、非孔性小球体のサイズと同程度以下の小さな空間スケールでの撹拌は促進されて非孔性小球体のサイズより大きな空間スケールでの擾乱は抑制される効果を利用することを特徴とする向流クロマトグラフィー装置。   A non-porous structure obtained by using a separation tube in which a plurality of cells are connected in series by providing a partition wall having one or more holes and partitioning the inside thereof, and filling the separation tube with a large number of non-porous small spheres Countercurrent chromatography characterized by utilizing the effect that agitation at small spatial scales less than or equal to the size of small spheres is promoted and disturbances at spatial scales larger than the size of nonporous small spheres are suppressed apparatus. 分離管内に多数の非孔性小球体を充填することによって得られる、非孔性小球体のサイズと同程度以下の小さな空間スケールでの撹拌は促進されて非孔性小球体のサイズより大きな空間スケールでの擾乱は抑制される効果を利用することを特徴とする液滴型向流クロマトグラフィー装置。   A space obtained by filling a large number of non-porous globules in a separation tube and agitation in a small space scale that is less than or equal to the size of the non-porous globules is promoted and is larger than the size of the non-porous globules. A droplet type counter-current chromatography device using an effect of suppressing disturbance on a scale.
JP2004100719A 2004-03-30 2004-03-30 Countercurrent chromatography method and countercurrent chromatography apparatus Expired - Lifetime JP4257980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004100719A JP4257980B2 (en) 2004-03-30 2004-03-30 Countercurrent chromatography method and countercurrent chromatography apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100719A JP4257980B2 (en) 2004-03-30 2004-03-30 Countercurrent chromatography method and countercurrent chromatography apparatus

Publications (2)

Publication Number Publication Date
JP2005283468A JP2005283468A (en) 2005-10-13
JP4257980B2 true JP4257980B2 (en) 2009-04-30

Family

ID=35182002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100719A Expired - Lifetime JP4257980B2 (en) 2004-03-30 2004-03-30 Countercurrent chromatography method and countercurrent chromatography apparatus

Country Status (1)

Country Link
JP (1) JP4257980B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283263B2 (en) * 2008-10-31 2013-09-04 学校法人日本大学 High-speed counter-current chromatograph
FR2976500B1 (en) 2011-06-16 2013-05-31 IFP Energies Nouvelles METHOD AND DEVICE FOR SIMPLE COUNTERCURRENT CHROMATOGRAPHIC SEPATION WITH LOW LOAD LOSS AND NUMBER OF HIGH ZONES.

Also Published As

Publication number Publication date
JP2005283468A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
SU1748648A3 (en) Method for separation of fructose from fructose-glucose mixture
EP0074815B1 (en) Multiple zone fluid-solids contacting apparatus
US4966707A (en) Liquid/liquid extractions with microporous membranes
US2493265A (en) Extraction apparatus
US4035292A (en) Fluid solid contact process and apparatus
CN104245075B (en) Extraction column and process for use thereof
ES2826023T3 (en) A liquid-liquid extraction system and procedure for its use
JP4257980B2 (en) Countercurrent chromatography method and countercurrent chromatography apparatus
JPS6031521B2 (en) Material extraction and separation equipment
US8021554B2 (en) Method and apparatus for liquid-liquid extraction
US10675558B2 (en) Dispersed mobile-phase countercurrent chromatography
CN208390064U (en) A kind of isotopic separation purifying pylon of rotary adjustable pillar height
CN101829436B (en) Large liquid membrane continuous reaction device
Kostanyan Analysis of the three-step cyclic process of countercurrent extraction
CN115501649B (en) Single-column two-phase mixed mode monolithic column and preparation method and application thereof
CN103463834A (en) Constraint bed adsorption separation technology and method
US10265697B2 (en) Micro titre plate
Lavie Thin layer extraction—A novel liquid–liquid extraction method
US3220802A (en) Separation of solutes by liquid-liquid extraction
NO942721L (en) Process for separating components in a liquid mixture
JP4392496B2 (en) Liquid-liquid multistage extraction apparatus and liquid-liquid multistage extraction method
JPS63209704A (en) Flat-membrane type extractor
US2814553A (en) Apparatus for extraction or fractionation of various solutes
SU1366052A3 (en) Method of separating mixture of stearic palmitic acids or oleic and linoleic acids
Kubota et al. A study of a simulated moving bed adsorber based on the axial dispersion model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350