JP4257782B2 - Measurement and evaluation method for high frequency characteristics of coaxial cable - Google Patents

Measurement and evaluation method for high frequency characteristics of coaxial cable Download PDF

Info

Publication number
JP4257782B2
JP4257782B2 JP2003355072A JP2003355072A JP4257782B2 JP 4257782 B2 JP4257782 B2 JP 4257782B2 JP 2003355072 A JP2003355072 A JP 2003355072A JP 2003355072 A JP2003355072 A JP 2003355072A JP 4257782 B2 JP4257782 B2 JP 4257782B2
Authority
JP
Japan
Prior art keywords
coaxial cable
measurement
cut
frequency characteristics
evaluation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003355072A
Other languages
Japanese (ja)
Other versions
JP2005121423A (en
Inventor
晴士 田中
大樹 海野
和憲 渡辺
繁宏 松野
昌宏 青柳
博 仲川
克弥 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ube Exsymo Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ube Nitto Kasei Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003355072A priority Critical patent/JP4257782B2/en
Publication of JP2005121423A publication Critical patent/JP2005121423A/en
Application granted granted Critical
Publication of JP4257782B2 publication Critical patent/JP4257782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、同軸ケーブルの高周波特性測定評価方法に関し、特に、ネットワークアナライザ、TDR(Time Domain Reflectometry)などの高周波特性測定評価装置を用いる同軸ケーブルの高周波特性測定評価方法に関するものである。   The present invention relates to a method for measuring and evaluating high-frequency characteristics of a coaxial cable, and more particularly to a method for measuring and evaluating high-frequency characteristics of a coaxial cable using a high-frequency characteristic measuring and evaluating apparatus such as a network analyzer and TDR (Time Domain Reflectometry).

情報量の増大化や高速伝送化の流れを受けて、携帯情報端末のアンテナ配線や、LCDとCPUを結ぶ配線等に、最近同軸ケーブルが使われつつある。また、情報機器端末やノートパソコンの小型化、薄型化により、同軸ケーブルにも高性能化とともに、細径化が要求され、種々の改良の検討がなされている。   Recently, coaxial cables are being used for antenna wiring of personal digital assistants, wiring for connecting an LCD and a CPU, etc. in response to an increase in information amount and high-speed transmission. In addition, due to the downsizing and thinning of information equipment terminals and notebook computers, coaxial cables are required to have higher performance and smaller diameters, and various improvements have been studied.

ここで、この種の同軸ケーブルの高周波特性を測定評価する際には、公知文献の存在は確認していないが、実際の製造現場では、同軸ケーブルの両端又は片端にコネクタを接続し、コネクタを介してネットワークアナライザ、TDRなどの高周波特性測定評価装置と接続して高周波特性の測定評価を行っている。   Here, when measuring and evaluating the high-frequency characteristics of this type of coaxial cable, the existence of known literature has not been confirmed, but at the actual manufacturing site, connectors are connected to both ends or one end of the coaxial cable, and the connectors are connected. The high frequency characteristics are measured and evaluated by connecting to a high frequency characteristic measuring and evaluating apparatus such as a network analyzer and TDR.

このような用途に用いられるコネクタは、通常、雄,雌構造の一対から構成され、例えば、一方の雄コネクタが高周波特性測定評価装置に接続され、他方の雌コネクタが特性を測定評価する同軸ケーブルに接続される。   A connector used for such an application is usually composed of a pair of male and female structures. For example, a coaxial cable in which one male connector is connected to a high-frequency characteristic measurement and evaluation device and the other female connector measures and evaluates the characteristic. Connected to.

この場合、同軸ケーブルは、中心導体とシールド導体とを露出させ、これをコネクタのハウジングに、そのまま挿入することで、ハウジングに嵌着されているカップリングナットとシールド導体とが電気的に接続するようにし、中心導体は、カップリングナットの中心に突出させるようにしていた。   In this case, the coaxial cable exposes the central conductor and the shield conductor and inserts them into the connector housing as they are, so that the coupling nut and the shield conductor that are fitted in the housing are electrically connected. In this way, the center conductor is projected to the center of the coupling nut.

しかしながら、このような従来の高周波特性の測定評価方法には、以下に説明する課題があった。   However, such a conventional method for measuring and evaluating high frequency characteristics has the following problems.

前述した従来の高周波特性の測定評価方法では、同軸ケーブルに装着するコネクタは、同軸ケーブルの径に合わせたものが用いられており、例えば、小型情報端末機器などに組み込まれる細径同軸ケーブルの場合には、専用のコネクタを設計及び製作し、これを取り付けた上で測定評価することがこれまでの常であった。   In the conventional high-frequency characteristic measurement and evaluation method described above, the connector to be attached to the coaxial cable is used in accordance with the diameter of the coaxial cable. For example, in the case of a thin coaxial cable incorporated in a small information terminal device or the like In the past, it was usual to design and manufacture a dedicated connector, attach it, and then measure and evaluate it.

このような測定評価方法では、専用のコネクタが無ければ、同軸ケーブルの高周波特性の正確な測定評価ができなかった。ところが、専用コネクタの開発には、多くの費用と時間がかかるため、同軸ケーブルの開発段階における特性評価などでは、現存する径の異なるコネクタを流用することで対処せざるを得なかった。   In such a measurement evaluation method, accurate measurement and evaluation of the high frequency characteristics of the coaxial cable could not be performed without a dedicated connector. However, the development of a dedicated connector requires a lot of cost and time, so in the characteristic evaluation at the development stage of the coaxial cable, it has been necessary to deal with existing connectors with different diameters.

径の異なるコネクタを用いた場合は、そのままの状態ではインピーダンス整合がとりづらく、正確なケーブルの特性評価を行うことができなかった。また、そのコネクターのグランド部分に金属製スリーブを挿入して、そうした不整合を改善することができるが、スリーブの加工、取り付け、ハンダ付けなど熟練工による手作業で行うため、コストと時間がかかる欠点があった。   When connectors with different diameters were used, impedance matching was difficult to achieve in the same state, and accurate cable characteristic evaluation could not be performed. In addition, a metal sleeve can be inserted into the ground portion of the connector to improve such inconsistencies, but it is a costly and time consuming process because it is performed manually by skilled workers such as sleeve processing, mounting, and soldering. was there.

本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、専用のコネクタを用いることなく、正確な測定評価ができる同軸ケーブルの高周波特性の測定評価方法を提供することにある。   The present invention has been made in view of such conventional problems, and its purpose is to measure and evaluate the high-frequency characteristics of a coaxial cable that can be accurately measured and evaluated without using a dedicated connector. It is to provide a method.

上記目的を達成するために、本発明は、中心導体と、絶縁被覆層と、シールド導体とを備えた同軸ケーブルの高周波特性測定評価方法において、前記同軸ケーブルの一方の端部、あるいは、両端部を長手方向に対し直角に切断した後、前記同軸ケーブルの切断端面に露出する前記中心導体とシールド導体とに、コンタクトプローブの一方の端部に設けられた測定端子をそれぞれ接触させるとともに、前記コンタクトプローブの他方の端部に、ネットワークアナライザ,TDR測定機などの高周波特性測定評価装置を接続して、前記同軸ケーブルの高周波特性を測定評価する方法であって、前記同軸ケーブルは、垂直に切断する前に、前記端部の周辺に熱硬化性、または、熱可塑性樹脂などの固化性樹脂を充填,固化させた固化体を形成し、前記固化体ごと長手方向に対して直角に切断し、切断端面が上面側に露出するように固定治具に保持させ、前記固定治具を位置調整可能な測定テーブルに載置するようにした。 In order to achieve the above object, the present invention provides a method for measuring and evaluating a high-frequency characteristic of a coaxial cable including a center conductor, an insulating coating layer, and a shield conductor. Is cut at right angles to the longitudinal direction, and then the measurement conductor provided at one end of the contact probe is brought into contact with the center conductor and the shield conductor exposed at the cut end face of the coaxial cable, and the contact A method for measuring and evaluating the high-frequency characteristics of the coaxial cable by connecting a high-frequency characteristic measurement and evaluation device such as a network analyzer or a TDR measuring device to the other end of the probe , wherein the coaxial cable is cut vertically. Before, a solidified body is formed by filling and solidifying a thermosetting or solidifying resin such as a thermoplastic resin around the end portion. Cut at right angles to the solidified body by a longitudinal cut end face is held by the fixture so as to be exposed on the upper surface and adapted to mount the fixture in a position adjustable measuring table.

このように構成した同軸ケーブルの高周波特性測定評価方法では、半導体ウエハーや、実装基板上のデバイスなどの微小な部分の特性を測定するために用いるコンタクトプローブを使用することで、同軸ケーブルの正確な高周波特性を、専用のコネクタを用いることなく、測定評価することができる。   In the coaxial cable high-frequency characteristic measurement and evaluation method configured in this way, the contact cable used to measure the characteristics of a minute portion such as a semiconductor wafer or a device on a mounting substrate is used to accurately measure the coaxial cable. High frequency characteristics can be measured and evaluated without using a dedicated connector.

本発明の測定評価方法は、直径が2mm以下の細径同軸ケーブル、とりわけ、直径が1mm以下の細径同軸ケーブルにおける高周波特性の測定評価方法として、好適なものである。   The measurement and evaluation method of the present invention is suitable as a measurement and evaluation method for high-frequency characteristics in a thin coaxial cable having a diameter of 2 mm or less, particularly a thin coaxial cable having a diameter of 1 mm or less.

上述した同軸ケーブルにおいては、特に、細径の場合に切断端面は、単に、切断しただけでは、コンタクトプローブを精度良く接触させることが困難になるが、固化性樹脂で固化させ、固化した固化性樹脂ごと長手方向に対し直角に切断すると、同軸ケーブル端面を垂直(角度90゜±5゜)に調整することができ、測定評価精度を向上させることができる。   In the above-described coaxial cable, in particular, in the case of a small diameter, it is difficult to accurately contact the contact probe by simply cutting, but it is hardened by a solidifying resin and solidified by solidifying. When the resin is cut at right angles to the longitudinal direction, the end face of the coaxial cable can be adjusted to be vertical (angle 90 ° ± 5 °), and the measurement evaluation accuracy can be improved.

この場合、使用する固化性樹脂は、熱硬化性樹脂では、加熱を必須としない常温硬化型のエポキシ樹脂、紫外線硬化樹脂等が好ましい。このような硬化性樹脂を硬化させて同軸ケーブルを固定した後、硬化性樹脂ごと直角に切断して端面を作成した後、より正確な高周波特性を測定するために、端面をシリカ粒子等の研磨材で研磨してフラットにすることが望ましい。   In this case, the solidifying resin to be used is preferably a thermosetting resin such as a room temperature curable epoxy resin or an ultraviolet curable resin which does not require heating. After fixing such a curable resin and fixing the coaxial cable, after cutting the curable resin at a right angle and creating an end face, the end face is polished with silica particles or the like in order to measure more accurate high-frequency characteristics. It is desirable to make it flat by polishing with a material.

また、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)などの熱可塑性樹脂を固化性樹脂として用い、これらの樹脂を溶融成形して、冷却固化させても良い。この様な柔軟な熱可塑性樹脂を使用すると端面の切断処理が容易に行える。   Further, a thermoplastic resin such as polyethylene resin (PE) or polypropylene resin (PP) may be used as the solidifying resin, and these resins may be melt-molded and cooled and solidified. When such a flexible thermoplastic resin is used, the end face can be easily cut.

本発明にかかる同軸ケーブルの高周波特性測定評価方法によれば、専用のコネクタを用いることなく、同軸ケーブルの高周波特性を測定評価することができる。   According to the coaxial cable high-frequency characteristic measurement and evaluation method according to the present invention, the high-frequency characteristic of the coaxial cable can be measured and evaluated without using a dedicated connector.

以下に、本発明の好適な実施形態について、実施例に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail based on examples.

図1から図4は、本発明に係る同軸ケーブルの高周波特性の測定評価方法の一実施例を示している。これらの図に示した測定評価方法では、例えば、直径が2mm以下の細径同軸ケーブル10の高周波特性を測定評価する方法であって、細径同軸ケーブル10は、その断面を図3に示すように、中心導体10aと、絶縁被覆層10bと、シールド導体10cと、保護被覆層10dとを備えている。   1 to 4 show an embodiment of a method for measuring and evaluating high frequency characteristics of a coaxial cable according to the present invention. In the measurement evaluation methods shown in these drawings, for example, the high-frequency characteristics of a thin coaxial cable 10 having a diameter of 2 mm or less are measured and evaluated. The thin coaxial cable 10 has a cross section as shown in FIG. In addition, a central conductor 10a, an insulating coating layer 10b, a shield conductor 10c, and a protective coating layer 10d are provided.

中心導体10aは、銅、スチールなどの単線または撚り線から構成され、その外周に、合成樹脂製の絶縁被覆層10bが所定の厚みになるように形成されている。シールド導体10bは、銅線などを編み組したものであって、絶縁被覆層10bの外周面を覆うように形成されている。保護被覆層10dは、例えば、熱可塑性樹脂から構成され、シールド導体10bの外周を覆うように形成されている。   The center conductor 10a is composed of a single wire or a stranded wire such as copper or steel, and an insulating coating layer 10b made of synthetic resin is formed on the outer periphery thereof to have a predetermined thickness. The shield conductor 10b is a braided copper wire or the like, and is formed so as to cover the outer peripheral surface of the insulating coating layer 10b. The protective coating layer 10d is made of, for example, a thermoplastic resin and is formed so as to cover the outer periphery of the shield conductor 10b.

このような構成の細径同軸ケーブル10の高周波特性、マイクロ波の伝送および反射特性などを測定評価する際には、まず、同軸ケーブル10の端部に、図4に示すように、固化性樹脂の固化体12を形成する。   When measuring and evaluating the high frequency characteristics, microwave transmission and reflection characteristics, etc. of the thin coaxial cable 10 having such a configuration, first, as shown in FIG. The solidified body 12 is formed.

図4には、同軸ケーブル10の両方の端部にそれぞれ固化体12を形成しているが、測定する高周波特性の種類に応じて、一方の端部だけに固化体12を形成することもある。   In FIG. 4, the solidified bodies 12 are formed at both ends of the coaxial cable 10, but the solidified bodies 12 may be formed only at one end depending on the type of high-frequency characteristics to be measured. .

本実施例の場合、固化体12は、所定長さの中空円筒体の中心に同軸ケーブル10の端部を挿入した状態で、円筒体の内部に熱硬化性、または、熱可塑性樹脂などの固化性樹脂を充填,固化させた後に、円筒体を除去することで形成される。   In the case of the present embodiment, the solidified body 12 is solidified such as thermosetting or thermoplastic resin inside the cylindrical body with the end of the coaxial cable 10 inserted into the center of the hollow cylindrical body of a predetermined length. It is formed by removing the cylindrical body after filling and solidifying the functional resin.

固化体12が形成されると、次に、同軸ケーブル10の端部と固化した固化性樹脂とを含めて、同軸ケーブル10の長手方向に対して、直角に切断して直角切断端面14を形成する。   When the solidified body 12 is formed, next, including the end portion of the coaxial cable 10 and the solidified solidified resin, it is cut at a right angle with respect to the longitudinal direction of the coaxial cable 10 to form a right-angle cut end face 14. To do.

このようにして形成された直角切断端面14は、必要に応じて、端面をシリカ粒子等の研磨材で研磨して、よりフラットな直角切断面とする。このような切断端面14が形成されると、次に、同軸ケーブル10は、図1,2に示すように、固定治具16に着脱可能に挟持固定し、測定テーブル18上に載置する。測定テーブル18は、2次元方向で位置調整が可能になっている。   The right-angle cut end face 14 formed in this way is polished with an abrasive such as silica particles as necessary to form a flatter right-angle cut face. When such a cut end face 14 is formed, the coaxial cable 10 is then detachably clamped and fixed to the fixing jig 16 and placed on the measurement table 18 as shown in FIGS. The position of the measurement table 18 can be adjusted in a two-dimensional direction.

そして、同軸ケーブル10の切断端面14に露出する中心導体10aとシールド導体10cとに、コンタクトプローブ20の一方の端部に設けられた測定端子22をそれぞれ接触させる。   Then, the measurement terminal 22 provided at one end of the contact probe 20 is brought into contact with the central conductor 10a and the shield conductor 10c exposed on the cut end surface 14 of the coaxial cable 10, respectively.

この場合、測定端子22には、図3に拡大して示すように、分岐した一対のコンタクト22a,22bを有しているので、これらをそれぞれ中心導体10aとシールド導体10cとに接触させる。   In this case, as shown in an enlarged view in FIG. 3, the measurement terminal 22 has a pair of branched contacts 22a and 22b, which are brought into contact with the central conductor 10a and the shield conductor 10c, respectively.

コンタクトプローブ20は、3次元方向で位置決め可能なポジショナー24に保持されていて、コンタクトプローブ20の後端に延設されたケーブル26は、一端が測定端子22に接続され、他端側には、ネットワークアナライザ,TDR測定機などの高周波特性測定評価装置(図示省略)が接続されているので、この測定評価装置を作動させて、プローブ20が接続されている同軸ケーブル10の高周波特性を測定評価することになる。   The contact probe 20 is held by a positioner 24 that can be positioned in a three-dimensional direction, and a cable 26 extended to the rear end of the contact probe 20 has one end connected to the measurement terminal 22 and the other end side Since a high-frequency characteristic measurement / evaluation apparatus (not shown) such as a network analyzer or a TDR measuring device is connected, the measurement / evaluation apparatus is operated to measure and evaluate the high-frequency characteristic of the coaxial cable 10 to which the probe 20 is connected. It will be.

さて、以上のように構成した同軸ケーブルの高周波特性測定評価方法によれば、専用のコネクタを用いることなく、同軸ケーブル10の正確な高周波特性を測定評価することができる。   Now, according to the coaxial cable high frequency characteristic measurement and evaluation method configured as described above, the accurate high frequency characteristic of the coaxial cable 10 can be measured and evaluated without using a dedicated connector.

以下に、本発明のより具体的な実施例について、比較例とともに説明する。   Hereinafter, more specific examples of the present invention will be described together with comparative examples.

具体例1Example 1

潤工社製細径同軸ケーブルDFS241(中心導体銀メッキ銅線0.05mm×7撚り、絶縁被覆層0.42mmシールド0.05mm錫めっき銅線×3×16編組、特性インピーダンス 公称 50Ω)、1mの両端末を、太さφ10mm、端末からの長さ20mmの中空円筒型の中央に入れて、紫外線硬化樹脂(スリーボンド製 UVcuring 3042)をその型内に流し込み、紫外線露光装置(ウシオ電機製:モデル:ML−251D/M)にて20分間かけて硬化させ、ケーブルと垂直になるように水切りカッターにてカットした。   Junkosha Co., Ltd., small-diameter coaxial cable DFS241 (central conductor silver-plated copper wire 0.05 mm x 7 twist, insulation coating layer 0.42 mm shield 0.05 mm tin-plated copper wire x 3 x 16 braid, characteristic impedance nominal 50Ω), both 1 m The terminal is placed in the center of a hollow cylindrical mold having a thickness of 10 mm and a length of 20 mm from the terminal, and an ultraviolet curable resin (UVcuring 3042 manufactured by ThreeBond) is poured into the mold, and an ultraviolet exposure apparatus (manufactured by Ushio: model: ML) -251D / M) for 20 minutes and cut with a draining cutter so as to be perpendicular to the cable.

次いで、固化性樹脂で固めた端末部分を、株式会社ナノファクター社の研磨機(モデルFACT200)で、シリカ微粒子を研磨材として用い、端面の凹凸がなくなるように端面研磨処理を行った。   Next, the end portion polished with the solidifying resin was subjected to an end surface polishing treatment with a nano-factor polishing machine (model FACT200) using silica fine particles as an abrasive so as to eliminate end surface irregularities.

高周波特性の測定は、研磨された両端面を水平となるよう両端末を測定テーブル上に固定し、コンタクトプローブ(GGB社製ピコプローブ)の先端のグランドを同軸ケーブルのシールド導体に、プローブのシグナルを同軸ケーブルの中心導体に、それぞれにX−Y−Zポジショナーを介して両端末とも接触させた。   For measurement of high-frequency characteristics, both ends are fixed on the measurement table so that both polished end faces are horizontal, the ground at the tip of the contact probe (pico probe made by GGB) is used as the shield conductor of the coaxial cable, and the probe signal Were brought into contact with the central conductor of the coaxial cable through the XYZ positioners.

コンタクトプローブには、APC3.5mm互換コネクタが装備されており、デジタルサンプリングオシロスコープ(日本テクトロニクス株式会社製、Tektronix 11801B Digital Sampling Oscilloscope)およびベクトルネットワークアナライザ(アジレントテクノロジー社製、モデル8722ES)とAPC3.5mmコネクタ付きケーブルを介して任意に接続できるようにした。   The contact probe is equipped with an APC 3.5mm compatible connector, a digital sampling oscilloscope (Tektronix 11801B Digital Sampling Oscilloscope, manufactured by Tektronix Japan, Inc.) and a vector network analyzer (model 8722ES, manufactured by Agilent Technologies) and an APC 3.5mm connector. Arbitrary connection via a cable attached.

TDR測定の場合は、片端の接続のみで測定することができるが、ベクトルネットワークアナライザの測定を同時に行うときは、両端接続する必要がある。今回はネットワークアナライザについても測定を行うため、両端をコンタクトプローブと接続した。   In the case of TDR measurement, the measurement can be performed with only one end connection. However, when the measurement of the vector network analyzer is performed simultaneously, it is necessary to connect both ends. This time, both ends were connected to a contact probe to measure the network analyzer.

次に、デジタルサンプリングオシロスコープによるTDR測定方法および結果について述べる。デジタルサンプリングオシロスコープのTDRヘッドとコンタクトプローブのコネクタとを接続して測定を行った。   Next, a TDR measurement method and result using a digital sampling oscilloscope will be described. Measurement was performed by connecting a TDR head of a digital sampling oscilloscope and a contact probe connector.

この場合、同軸ケーブルの両端は、コンタクトプローブ先端と接続されており、どちらのコンタクトプローブとTDRヘッドを接続してもデータを得ることができる。   In this case, both ends of the coaxial cable are connected to the tip of the contact probe, and data can be obtained regardless of which contact probe is connected to the TDR head.

結果としては、コンタクトプローブと端面処理された同軸ケーブルの接続地点におけるインピーダンスの不整合(ディップス)が存在しないことが確認された。 次に、ベクトルネットワークアナライザによるマイクロ波の伝送特性(S21)および反射特性(S11)の測定を行った。   As a result, it was confirmed that there was no impedance mismatch (dips) at the connection point between the contact probe and the end face treated coaxial cable. Next, microwave transmission characteristics (S21) and reflection characteristics (S11) were measured using a vector network analyzer.

TDRの測定時と同様、ケーブルの両端はコンタクトプローブと接続されており、片方のプローブをネットワークアナライザポート1に、もう片方をポート2に接続し(同軸ケーブルの両端末のうち、どちらの端末をポート1につないでもよい)、周波数500MHzから10GHzまでの範囲で、マイクロ波を挿入、縦軸を減衰量、横軸を周波数とした波形データを得た。図5、6に測定結果を示示している。   As with the TDR measurement, both ends of the cable are connected to contact probes, with one probe connected to network analyzer port 1 and the other connected to port 2 (whichever of the two ends of the coaxial cable is connected). (It may be connected to port 1), and in the frequency range from 500 MHz to 10 GHz, a microwave was inserted, the vertical axis represents attenuation, and the horizontal axis represents frequency data. 5 and 6 show the measurement results.

同図に示した測定結果から判るように、伝送特性の波形データにリップルが存在せず滑らかな波形であり、反射特性についてもリップルが少なく減衰量が大きい、良好な結果となった。   As can be seen from the measurement results shown in the figure, the waveform data of the transmission characteristic is a smooth waveform with no ripple, and the reflection characteristic is also good with a small amount of ripple and a large amount of attenuation.

比較例1Comparative Example 1

実施例1で使用した潤工社製細径同軸ケーブルDFS241、ケーブル長さ1mの両端末を太さφ10mm、端末からの長さ20mmの型の中央に入れて、紫外線硬化樹脂(スリーボンド製 UVcuring 3042)をその型に流し込み、紫外線露光装置(ウシオ電機製:モデル:ML−251D/M)にて20分間かけて硬化させ、ケーブルと40°の角度になるように、水切りカッターにてカットしたサンプルを作製した。   A small coaxial cable DFS241 manufactured by Junkosha Co., Ltd. used in Example 1 and both terminals having a cable length of 1 m are placed in the center of a mold having a thickness of 10 mm and a length of 20 mm from the terminal, and an ultraviolet curable resin (UVcuring 3042 manufactured by ThreeBond) is used. Pour into the mold, cure for 20 minutes with an ultraviolet exposure device (USHIO ELECTRIC: Model: ML-251D / M), and make a sample cut with a draining cutter so that it is at an angle of 40 ° with the cable did.

更に樹脂で固めた端末部分を株式会社ナノファクター社の研磨機(モデルFACT200)でシリカ微粒子を研磨材として用い、端面の凹凸がなくなるように端面研磨処理を行った。(この際の端面のカットの角度を40°とした以外は、具体例1と同様の方法でサンプルを作成した。)   Furthermore, the terminal portion hardened with resin was subjected to an end surface polishing treatment using a silica fine particle as an abrasive with a polishing machine (model FACT200) manufactured by Nano Factor Co., Ltd. so as to eliminate the unevenness of the end surface. (A sample was prepared in the same manner as in Example 1 except that the cut angle of the end face at this time was 40 °.)

高周波特性の測定は、研磨された両端面が水平となるよう測定台上に固定した上、GGB社(米国)製ピコプローブ先端のグランドを同軸ケーブルのシールド導体に、プローブのシグナルを同軸ケーブルの中心導体に、それぞれX−Y−Zポジショナーを介して接触させた。   For measurement of high-frequency characteristics, the polished ends are fixed on a measurement table so that they are horizontal, the ground at the tip of the GGB (USA) pico probe is used as the shield conductor of the coaxial cable, and the probe signal is sent to the coaxial cable. The center conductor was brought into contact with each other via an XYZ positioner.

コンタクトプローブには、APC3.5mm互換コネクタが装備されており、デジタルサンプリングオシロスコープ(日本テクトロニクス株式会社製、Tektronix 11801B Digital Sampling Oscilloscope)やベクトルネットワークアナライザ(アジレントテクノロジー社製、モデル8722ES)などとAPC3.5mmコネクタ付きケーブルを介して接続する事で、高周波特性測定が可能となる。   The contact probe is equipped with an APC 3.5 mm compatible connector, such as a digital sampling oscilloscope (Tektronix 11801B Digital Sampling Oscilloscope, manufactured by Tektronix Japan, Inc.), a vector network analyzer (model 8722ES, manufactured by Agilent Technologies), and APC 3.5 mm. By connecting via a cable with a connector, high frequency characteristics can be measured.

具体例1と同様の測定方法のデジタルサンプリングオシロスコープによるTDR測定の結果、コンタクトプローブと端面処理された同軸ケーブルの接続地点におけるインピーダンスが70Ω程度であり、インピーダンスの不整合(ディップス)が存在することが分かった。これは端面部分を斜めにカットしたことでシグナル線が半オープン状態になったためと考えられる。   As a result of TDR measurement using a digital sampling oscilloscope with the same measurement method as in Example 1, the impedance at the connection point between the contact probe and the end-face treated coaxial cable is about 70Ω, and there is an impedance mismatch (dips). I understood. This is thought to be because the signal line was in a semi-open state by cutting the end face portion obliquely.

次に、具体例1と同様の測定方法のベクトルネットワークアナライザによるマイクロ波の伝送特性(S21)、反射特性(S11)の測定評価を行った。周波数は500MHzから10GHzまでスキャンを行い、縦軸を減衰量、横軸を周波数とした測定データを得た。図5、6に測定結果を示す。伝送特性および反射特性の波形データに大きなリップルが存在し、正確な高周波特性測定評価が不可能であった。   Next, measurement and evaluation of microwave transmission characteristics (S21) and reflection characteristics (S11) were performed using a vector network analyzer in the same measurement method as in the first specific example. The frequency was scanned from 500 MHz to 10 GHz, and measurement data with the vertical axis representing attenuation and the horizontal axis representing frequency were obtained. 5 and 6 show the measurement results. Large ripples exist in the waveform data of transmission characteristics and reflection characteristics, and accurate measurement and evaluation of high frequency characteristics is impossible.

比較例2Comparative Example 2

具体例1で使用したケーブル両端の被覆の一部を剥ぎ取り、中心導体、絶縁被覆をむき出した後、セミリジット用SMAコネクタを接続した。両端のSMAコネクタを、デジタルサンプリングオシロスコープ、ベクトルネットワークアナライザなどの機器のAPC3.5mmコネクタと直接接続し(コネクタの互換性があるため直接接続が可能)ケーブルの高周波特性測定を行った。   Part of the coating on both ends of the cable used in Example 1 was peeled off to expose the central conductor and insulation coating, and then a semi-rigid SMA connector was connected. The SMA connectors at both ends were directly connected to the APC 3.5 mm connector of equipment such as a digital sampling oscilloscope and a vector network analyzer (direct connection is possible because of connector compatibility), and the high frequency characteristics of the cable were measured.

デジタルサンプリングオシロスコープによるTDR測定の結果、接続地点から1ナノ秒程度にわたって53から47Ω程度のインピーダンス変動が存在した。詳しい原因についてはわからないがコネクタ取り付け時の加熱によるインピーダンスの不整合が原因であると考えられる。   As a result of TDR measurement using a digital sampling oscilloscope, there was an impedance fluctuation of about 53 to 47Ω for about 1 nanosecond from the connection point. Although I do not know the detailed cause, it is thought that it is caused by impedance mismatch due to heating when the connector is attached.

次に、ベクトルネットワークアナライザによる伝送特性、反射特性の測定評価を行った。片方のコネクタ加工された端末をネットワークアナライザポート1に、もう片方をポート2に接続し(同軸ケーブルの両端末のうち、どちらの端末をポート1に接続してもよい)、周波数は500MHzから10GHzまでスキャンを行い、縦軸を減衰量、横軸を周波数とした測定データを得た。図5、6に測定結果を示す。その結果コネクタ部のインピーダンス不整合が存在するため、伝送特性の波形にリップルが確認された。また反射特性も実施例と比較し大きな値となった。   Next, measurement and evaluation of transmission characteristics and reflection characteristics were performed using a vector network analyzer. Connect one end of the connector to the network analyzer port 1 and the other end to the port 2 (whichever of the two ends of the coaxial cable may be connected to the port 1). The frequency ranges from 500 MHz to 10 GHz. The measurement data was obtained with the vertical axis representing attenuation and the horizontal axis representing frequency. 5 and 6 show the measurement results. As a result, there was an impedance mismatch in the connector part, so ripples were confirmed in the waveform of the transmission characteristics. Also, the reflection characteristic was larger than that of the example.

なお、上記具体例では、市販のフレキシブルな細径同軸ケーブルの高周波特性を測定評価したが、本発明では、リジッドタイプ、セミミリジッドタイプ、セミフレキシブルタイプ、或いはこれ以外の、種々の同軸ケーブルの高周波特性測定評価に適用することができる。   In the above specific example, the high-frequency characteristics of a commercially available flexible small-diameter coaxial cable were measured and evaluated. However, in the present invention, the rigid type, semi-rigid type, semi-flexible type, or other various coaxial cables can be used. It can be applied to high frequency characteristic measurement evaluation.

本発明にかかる同軸ケーブルの高周波特性測定評価方法によれば、専用に設計製造されたコネクタを用いることなく同軸ケーブルの高周波特性の測定評価が可能になるので、特に、いままで製造されていなかった細径の同軸ケーブルを製造した際の測定評価に有効に活用することができる。   According to the coaxial cable high-frequency characteristic measurement and evaluation method according to the present invention, it is possible to measure and evaluate the high-frequency characteristic of the coaxial cable without using a specially designed and manufactured connector. It can be effectively used for measurement evaluation when a thin coaxial cable is manufactured.

また、プリント回路基板、パッケージ、電子部品などと同軸ケーブルの接続には、コネクタを用いないで、ハンダ付け、溶接、導電性接着材などにより直接接続することが可能である。このような応用を考えた場合、本発明の方法は、必要不可欠な重要技術である。   In addition, a printed circuit board, a package, an electronic component, and the like can be directly connected by soldering, welding, conductive adhesive, or the like without using a connector. When considering such applications, the method of the present invention is an indispensable important technology.

本発明にかかる同軸ケーブルにおける高周波特性測定評価方法の実施状態の説明図である。It is explanatory drawing of the implementation state of the high frequency characteristic measurement evaluation method in the coaxial cable concerning this invention. 図1の要部拡大図である。It is a principal part enlarged view of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 図1に示した測定評価方法における評価対象同軸ケーブルの外観説明図である。It is an external appearance explanatory view of the coaxial cable for evaluation in the measurement evaluation method shown in FIG. 本発明にかかる細径同軸ケーブルの測定評価方法と比較例方法とで測定した伝送特性のグラフである。It is a graph of the transmission characteristic measured with the measurement evaluation method and comparative example method of the thin coaxial cable concerning the present invention. 本発明にかかる細径同軸ケーブルの測定評価方法と比較例方法とで測定した反射特性のグラフである。It is a graph of the reflective characteristic measured with the measurement evaluation method and comparative example method of the thin coaxial cable concerning this invention.

符号の説明Explanation of symbols

10 同軸ケーブル
10a 中心導体
10b 絶縁被覆層
10c シールド導体
12 固化体
14 切断端面
16 固定治具
18 測定テーブル
20 コンタクトプローブ
22 測定端子
DESCRIPTION OF SYMBOLS 10 Coaxial cable 10a Center conductor 10b Insulation coating layer 10c Shield conductor 12 Solidified body 14 Cutting end surface 16 Fixing jig 18 Measurement table 20 Contact probe 22 Measurement terminal

Claims (2)

中心導体と、絶縁被覆層と、シールド導体とを備えた同軸ケーブルの高周波特性測定評価方法において、
前記同軸ケーブルの一方の端部、あるいは、両端部を長手方向に対し直角に切断した後、
前記同軸ケーブルの切断端面に露出する前記中心導体とシールド導体とに、コンタクトプローブの一方の端部に設けられた測定端子をそれぞれ接触させるとともに、
前記コンタクトプローブの他方の端部に、ネットワークアナライザ,TDR測定機などの高周波特性測定評価装置を接続して、
前記同軸ケーブルの高周波特性を測定評価する方法であって、
前記同軸ケーブルは、垂直に切断する前に、前記端部の周辺に熱硬化性、または、熱可塑性樹脂などの固化性樹脂を充填,固化させた固化体を形成し、
前記固化体ごと長手方向に対して直角に切断し、切断端面が上面側に露出するように固定治具に保持させ、前記固定治具を位置調整可能な測定テーブルに載置することを特徴とする同軸ケーブルの高周波特性測定評価方法。
In the high-frequency characteristic measurement evaluation method of a coaxial cable provided with a center conductor, an insulation coating layer, and a shield conductor,
After cutting one end of the coaxial cable, or both ends perpendicular to the longitudinal direction,
With the center conductor and the shield conductor exposed at the cut end surface of the coaxial cable, the measurement terminals provided at one end of the contact probe are brought into contact with each other,
Connect the other end of the contact probe to a high-frequency characteristic measurement / evaluation device such as a network analyzer or a TDR measuring machine,
A method for measuring and evaluating high-frequency characteristics of the coaxial cable ,
Before the coaxial cable is cut vertically, a solidified body is formed by filling and solidifying a thermosetting or solidifying resin such as a thermoplastic resin around the end portion,
The solidified body is cut at right angles to the longitudinal direction, held on a fixing jig so that the cut end face is exposed on the upper surface side, and the fixing jig is placed on a measurement table whose position can be adjusted. To measure and evaluate high-frequency characteristics of coaxial cables.
前記切断端面は、シリカ粒子などの研磨剤で研磨することを特徴とする請求項1記載の同軸ケーブルの高周波特性測定評価方法。 2. The coaxial cable high-frequency characteristic measurement and evaluation method according to claim 1, wherein the cut end face is polished with an abrasive such as silica particles .
JP2003355072A 2003-10-15 2003-10-15 Measurement and evaluation method for high frequency characteristics of coaxial cable Expired - Lifetime JP4257782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355072A JP4257782B2 (en) 2003-10-15 2003-10-15 Measurement and evaluation method for high frequency characteristics of coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355072A JP4257782B2 (en) 2003-10-15 2003-10-15 Measurement and evaluation method for high frequency characteristics of coaxial cable

Publications (2)

Publication Number Publication Date
JP2005121423A JP2005121423A (en) 2005-05-12
JP4257782B2 true JP4257782B2 (en) 2009-04-22

Family

ID=34612794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355072A Expired - Lifetime JP4257782B2 (en) 2003-10-15 2003-10-15 Measurement and evaluation method for high frequency characteristics of coaxial cable

Country Status (1)

Country Link
JP (1) JP4257782B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200458604Y1 (en) 2007-03-30 2012-03-07 (주)기가레인 Calibration kit for vector network analyzer
US8319502B2 (en) * 2008-06-26 2012-11-27 Dune Medical Devices Ltd. RF calibration device and method
JP6115499B2 (en) * 2014-03-12 2017-04-19 中国電力株式会社 Strain measuring device
CN118448951B (en) * 2024-07-08 2024-10-08 嘉兴翼波电子有限公司 Quick installation method of radio frequency coaxial cable connector

Also Published As

Publication number Publication date
JP2005121423A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
Narayanan Microstrip transmission line method for broadband permittivity measurement of dielectric substrates
JP2008523411A (en) Reflection reduction signal module
US20170179653A1 (en) Printed circuit board having high-speed or high-frequency signal connector
US20150137912A1 (en) Millimeter Wave Connector and Band Conductor
US9041414B2 (en) Differential signal transmission cable property evaluating mechanism and evaluating method therefor
JP4257782B2 (en) Measurement and evaluation method for high frequency characteristics of coaxial cable
CN114113704B (en) Device and method for measuring performance of finished aircraft harness part based on de-embedding technology
JP2007078675A (en) Probe assembly and device using same
US6717398B2 (en) Signal launch connecting techniques
US11543434B1 (en) High-frequency data differential testing probe
JP2001324522A (en) Method for measuring of dielectric constant or magnetic permeability
TWI515438B (en) High frequency probe module
US11175311B1 (en) High-frequency layered testing probe
JPH0799220A (en) Probe card, coaxial probe needle for probe card and their production
CN203216942U (en) Testing clamp for surface acoustic wave device
JP2003178826A (en) Terminal connecting part and terminal connecting method of ultra-fine multi-core cable
JP2005116295A (en) Connector connection structure
JPS63122141A (en) Semiconductor element inspecting device
US20110043192A1 (en) Coaxial-cable probe structure
JP3176297U (en) Jig for measuring high frequency characteristics
JP2001291565A (en) Coaxial cable for substrate connection
JP7336390B2 (en) Evaluation method and evaluation device for electromagnetic interference suppressor
WO2023079866A1 (en) Antenna and communication device
US6753676B1 (en) RF test probe
US11698390B1 (en) High-frequency data differential testing probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

R150 Certificate of patent or registration of utility model

Ref document number: 4257782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term