JP4254990B2 - Proton conductive membrane manufacturing method and proton conductive membrane - Google Patents

Proton conductive membrane manufacturing method and proton conductive membrane Download PDF

Info

Publication number
JP4254990B2
JP4254990B2 JP2001088086A JP2001088086A JP4254990B2 JP 4254990 B2 JP4254990 B2 JP 4254990B2 JP 2001088086 A JP2001088086 A JP 2001088086A JP 2001088086 A JP2001088086 A JP 2001088086A JP 4254990 B2 JP4254990 B2 JP 4254990B2
Authority
JP
Japan
Prior art keywords
oxide hydrate
electrolyte membrane
membrane
film
proton conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001088086A
Other languages
Japanese (ja)
Other versions
JP2002289051A (en
Inventor
賢史 山賀
友一 加茂
徹一 工藤
勝 宮山
優実 田中
格 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Original Assignee
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, National Institute of Advanced Industrial Science and Technology AIST, University of Tokyo NUC filed Critical Hitachi Ltd
Priority to JP2001088086A priority Critical patent/JP4254990B2/en
Publication of JP2002289051A publication Critical patent/JP2002289051A/en
Application granted granted Critical
Publication of JP4254990B2 publication Critical patent/JP4254990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池、水電解、湿度センサ、ガスセンサ等に用いられるプロトン伝導性電解質膜等に好適な耐酸化性等に優れた低コスト高耐久性の無機物と有機高分子の複合電解質膜に関するものである。
【0002】
【従来の技術】
固体高分子電解質は高分子鎖中にスルホン酸基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜、センサー用電解質膜など各種の用途に利用されているものである。
【0003】
固体高分子電解質型燃料電池はプロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、メタン、メタノールなどの低分子の炭化水素を改質することにより得られる水素ガスを燃料ガスとして一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として他方の電極(空気極)へ供給し、電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造する方法である。
【0004】
燃料電池や水電解においては、プロトン伝導性の固体高分子膜としてDuPont社、Dow社、旭化成や旭硝子社から提案されているパーフルオロカーボンスルホン酸膜に代表されるフッ素系電解質膜が化学的安定性に優れていることから、過酷な条件下で使用される電解質膜として使用されている。
【0005】
また、食塩電解は固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウムと、塩素と水素を製造する方法である。この場合、固体高分子電解質膜は塩素と高温、高濃度の水酸化ナトリウム水溶液にさらされるので、これらに対する耐性の乏しい炭化水素系電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素及び高温、高濃度の水酸化ナトリウム水溶液に対して耐久性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸膜が用いられている。
【0006】
ところで、パーフルオロスルホン酸膜に代表されるフッ素系電解質は、C−F結合を有しているために化学的安定性が非常に高く、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、さらにはプロトン伝導性を利用して、湿度センサ、ガスセンサ、酸素濃縮器等にも広く応用されているものである。
【0007】
しかしながら、フッ素系電解質は製造工程が複雑で、非常に高価であるという欠点がある。又、高耐熱性といっても耐熱限界は100℃を超えない。そのため、フッ素系電解質膜は、宇宙用あるいは軍用の固体高分子型燃料電池等、特殊な用途に用いられ、自動車用の低公害動力源としての固体高分子型燃料電池、民生用小型分散電源、携帯用電源等への応用など低分子の炭化水素を原燃料として水素ガスに改質して用いる場合には、改質ガスを冷却したり改質ガス中の一酸化炭素を除去する必要があるなどシステムを複雑にする要因になっていた。又、電解質膜の使用温度限界が低いためプロトン伝導性が低い、電極反応速度に起因する分極が大きくなる、水の2相領域で運転するために水分管理が複雑になるなどの問題点を持ちこの燃料電池の実現性を阻んできた。
【0008】
そこで、フッ素系電解質膜と同等以上の耐酸化劣化特性を有し、しかも低コストで製造可能な固体高分子電解質膜を得るために、従来から種々の試みがなされている。例えば、特開平9−102322号公報には、フッ化炭素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖と、スルホン酸基を有する炭化水素系側鎖とから構成される、スルホン酸型ポリスチレン−グラフト−エチレンテトラフルオロエチレン共重合体(ETFE)膜が提案されている。特開平9−102322号公報に開示されているスルホン酸型ポリスチレン−グラフト−ETFE膜は安価であり、燃料電池用の固体高分子電解質膜として十分な強度を有し、しかもスルホン酸基導入量を増やすことによって伝導率を向上させることが可能とされている。しかしながら、スルホン酸型ポリスチレン−グラフト−ETFE膜は、フッ化炭素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖部分の耐酸化劣化特性は高いが、スルホン酸基を導入した側鎖部分は、酸化劣化を受けやすい炭化水素系高分子である。従って、これを燃料電池に用いた場合には、膜全体の耐酸化劣化特性が不十分であり、耐久性に乏しいという問題がある。
【0009】
また、米国特許第4,012,303号及び米国特許第4,605,685号には、フッ化炭素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた膜に、α,β,β-トリフルオロスチレンをグラフト重合させ、これにスルホン酸基を導入して固体高分子電解質膜とした、スルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE膜が提案されている。これは、前記のスルホン酸基を導入したポリスチレン側鎖部の化学的安定性が十分ではないとの認識を前提に、スチレンの代わりに、部分的にフッ素化したα,β,β-トリフルオロスチレンを用いたものである。しかしながら、側鎖部分の原料となるα,β,β−トリフルオロスチレンは、合成が困難であるため、燃料電池用の固体高分子電解質膜として応用することを考えた場合には、前述のナフィオンの場合と同様に高いコストとなるという問題がある。また、α,β,β−トリフルオロスチレンは重合反応性が低いためグラフト側鎖として導入できる量が少なく、得られる膜の伝導率が低いという問題がある。また、上記した膜はガラス転移点が比較的低く、スルホン酸基がイオン伝導サイトであるために100℃を超えるような水蒸気圧の高い環境では相対湿度が低下すると膜のイオン伝導性が大幅に低下するために高温領域で作動するデバイスには本質的に使用できないという問題点があった。
【0010】
【発明が解決しようとする課題】
本発明が解決しようとする課題は従来のフッ素系電解質膜の耐熱限界である100℃以上の温度においても安定なプロトン伝導率と機械強度を維持し、かつ低コストであるプロトン伝導性膜を提供する。
【0011】
【課題を解決するための手段】
上記の目的を達成するために、発明者等は無機プロトン伝導性材料に着目し、これと耐熱性有機高分子材料を複合した電解質膜の研究を鋭意行った。その結果、プロトンキャリアとして酸化タングステンや酸化スズの水和物に代表される金属酸化物水和物と、膜を形成するマトリックス材料として耐熱性、耐酸性の高い有機高分子とを複合して電解質膜を形成することによって本発明の目的とするフッ素系電解質と同等以上、もしくは実用上十分な耐劣化特性を有し、しかも低コストで製造可能な高耐久性プロトン伝導性電解質膜を提供できることを見出した。更に電解質膜を製造するにあたり、無機プロトン伝導体の前駆体となる単一又は複数の化合物の溶液、有機物モノマー又はポリマーを少なくとも含有する液状混合物を膜状に成し、これを硬化又は架橋させた後、無機プロトン伝導体の前駆体をプロトン伝導体に転換させるための薬剤を含む溶液ないしガスを含む気体で処理し、膜中に無機固体プロトン伝導体を形成させる方法を見出した。このような方法を採用することにより、非相溶性の膜を形成するマトリックス材と無機固体プロトン伝導体を微少にかつ均一に分散でき、分散濃度を高めることが可能となり、100℃程度の高温領域でも十分に高いイオン伝導性を有する無機プロトン伝導体と有機高分子の複合電解質膜が実現できる事を発明するに至った。
【0012】
【発明の実施の形態】
本発明の実施態様は、以下に詳しく説明する。
【0013】
本発明によるプロトン伝導性膜は、無機プロトン伝導体の前駆体となる単一又は複数の化合物の溶液、有機物モノマー又はポリマーを少なくとも含む液状混合物を膜状に成し、これを硬化又は架橋させた後、該無機プロトン伝導体の前駆体をプロトン伝導体に転換させるための薬剤を含む溶液ないしガスを含む気体で処理し、膜中に無機固体プロトン伝導体を形成させて実現される。本発明において100℃以上で機能する無機プロトン伝導体としては酸化タングステン水和物、スズ酸化物水和物あるいは酸化タングステン水和物にニオブをドープした酸化タングステン水和物などを用いることができ、これらのプロトン伝導体の単一成分あるいは複数の成分を混合して用いることができる。有機高分子膜を形成する材料としては耐熱性、耐酸性、可撓性を有する材料であれば特に限定はないが、ポリイミド系材料、エポキシ系材料、ポリエーテルアクリレイト系材料は好ましい材料である。プロトン伝導膜を作成するにあたり、プロトン伝導体の前駆体としては塩化物、硫酸塩、各種アルコキシド、及び有機酸、アミン系錯体などの形態のものから前記した有機高分子膜前駆体との相溶性を持つものが選ばれる。プロトン伝導性電解質膜は1)マトリックスとなる有機高分子材料の溶液もしくは前駆体の溶液と、その溶液に対して相溶性を持つプロトン伝導体前駆体、また必要に応じて適当な分散剤とを混合して均一系を作製するステップ、2)均一混合系に硬化剤或いは重合触媒を添加するステップ、3)均一混合系を膜状にキャステイングし、膜化するステップ、4)作製された膜のプロトン伝導体前駆体を酸化物水和物に変換するステップを経て作製される。膜化するステップでは有機高分子膜が十分な強度と可撓性が与えられる方法であれば特に限定はなく有機高分子膜前駆体の特性に依存する熱硬化、架橋重合、光重合などの反応が選択される。又プロトン伝導体前駆体への変換は酸化タングステン水和物、スズ酸化物水和物あるいは酸化タングステン水和物にニオブをドープした酸化タングステン水和物など酸化物水和物を得ることが目的であり特定の反応に限定されることはないが、用いられた前駆体が塩化物、硫酸塩、各アルコキシド類の場合には酸性水溶液或いはアルカリ性水溶液による加水分解など、前駆体が有機酸錯体や過酸化水素錯体である場合には40〜100℃の比較的低温域で熱分解した後水溶液や蒸気に接触させて賦活する方法などが有効である。
【0014】
本発明によるプロトン伝導性電解質を燃料電池用として使用する際には、一般的には、膜の状態で使用されるが、これに限定されるものではなく筒状で用いることも可能である。すなわち、上記したプロトンキャリアとなる無機酸化物水和物と高分子マトリックス材の分散混合物を直接膜状にキャステイングする方法、あるいは該分散混合物を多孔質芯材、織布あるいは不織布などに含浸キャステイングするなどの方法を採る事ができる。特に芯材を用いる方法は、芯材に高強度のものを用いる事で得られる膜を薄くできることから電解質膜の実行抵抗を小さくする上で有利である。又、本発明により作製されたプロトン伝導性電解質膜を使用するにあたって、有機溶媒で表面の有機マトリックス材のみを溶解によって一部除去したり膜の表面を一部研磨するなどの表面処理を施すことは電極との接触抵抗を低減する上で有効な方法である。
【0015】
本発明によるプロトン伝導性電解質膜の厚みは、特に制限はないが実用に耐える膜の強度を得るには10μmより厚い方が好ましく、膜抵抗の低減のためには200μmより薄い方が好ましく、特に燃料電池電池の内部抵抗を小さくしたりセンサーとしての感度を高めるためには10〜30μmがより好ましい。膜厚は、均一混合系の粘度あるいは基板上へのキャスト厚みにより制御できる。又、本発明によるプロトン伝導性電解質を製造する際に、通常の高分子に使用される可塑剤、安定剤、離型剤、等の添加剤を本発明の目的に損なわない範囲内で使用することもできる。
【0016】
燃料電池用として用いる膜/電極接合体に使用されるガス拡散電極は、触媒金属の微粒子を担持した伝導材を電解質膜上に塗布又は予め膜状に成形した電極層を貼り合わせるなどにより構成されるものであり、必要に応じて撥水剤や結着剤が含まれていてもよい。また、触媒を担持していない伝導材と撥水剤や結着剤とからなる層が、触媒層の外側に形成してあるものでもよい。このガス拡散電極に使用される触媒金属としては、水素の酸化反応および酸素の還元反応を促進する金属であればいずれのものでもよく、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、あるいはそれらの合金が挙げられる。このような触媒の中で、特にカソードでは白金が、アノードでは白金とルテニウムの二元系が多くの場合用いられる。触媒となる金属の粒径は、通常は10〜300オングストロームである。触媒の担持量は、電極が成形された状態で例えば0.01〜10mg/cm2 が望ましい。
【0017】
伝導材としては、電子伝導性物質であればいずれのものでも良く、例えば各種金属や炭素材料などが挙げられる。炭素材料としては、例えば、ファーネスブラックおよびアセチレンブラック等のカーボンブラック、活性炭、黒鉛などが挙げられ、これらが単独あるいは混合して使用される。撥水剤としては、例えばフッ素化カーボンやポリテトラフルオロエチレン分散剤などが使用される。触媒層を形成するバインダーとしては本発明のプロトン伝導性電解質マトリックス高分子をそのまま用いることが好ましいが、他の各種樹脂を用いても差し支えない。その場合は撥水性を有する含フッ素樹脂が好ましく、特に耐熱性、耐酸化性の優れたものがより好ましく、例えばポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、およびテトラフルオロエチレン−ヘキサフルオロプロピレン共重合体が挙げられる。
【0018】
燃料電池用として用いる電解質膜と電極接合法についても特に制限はなく、公知の方法を適用することが可能である。膜/電極接合体の製作方法として、例えば、白金触媒紛をポリテトラフルオロエチレン懸濁液と混ぜ、カーボンペーパーに塗布、熱処理して触媒層を形成する。次いで、電解質膜と同一の電解質溶液又は前駆体溶液を触媒層に塗布、含浸し、電解質膜とホットプレスで一体化する方法がある。この他、 本発明になる電解質膜又は電解質膜前駆体の溶液を予め白金触媒紛にコーテイングしたものを電解質膜に塗布する方法、本発明になる電解質膜又は電解質膜前駆体の溶液と触媒とでペースト化して電解質膜に塗布する方法、電解質膜に電極を無電解鍍金する方法、電解質膜に白金族の金属錯イオンを吸着させた後、還元する方法等を選択することができる。
【0019】
燃料電池は、上記のように形成された電解質膜とガス拡散電極との接合体の外側に燃料流路と酸化剤流路を形成する溝付きの集電体としての燃料配流板と酸化剤配流板を配したものを単セルとし、構成の概略を図1に示す。単セルの電圧は外部負荷を与えた状態で作動温度によって異なるが概ね0.5〜0.8Vであり、単セルを必要とする電圧に対応して複数個、冷却板等を介して積層することによりスタックが構成される。燃料電池は、高い温度で作動させる方が電極触媒が高活性となって電極過電圧が減少し、電極の一酸化炭素による被毒も少ないため好ましい条件であるが、プロトン伝導性電解質膜は水和状態にないと十分に機能しないため、水分管理が可能な温度で作動させる必要がある。本発明によるプロトン伝導性電解質は従来の電解質膜に比較して高温での特性に優れており、燃料電池の作動温度が100℃以上であっても十分に機能するのが特徴である。
(実施例)
以下実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。
(実施例1)
本発明の実施例として酸化タングステン水和物/エポキシ樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。金属タングステン粉末10gを30%過酸化水素水に反応させながら溶解して前駆体となる過酸化ポリタングステン酸を作製する。得られた水溶液に5Nの苛性ソーダ(NaOH)水溶液を加えてポリ酸を完全に分解した後、6N塩酸を加えて黄色不透明沈殿物を得る。この沈殿物をろ過し、デシケ−タ中で乾燥させた。上記の方法で得られた乾燥粉末10gに400mlの純水を添加し30分間攪拌し24時間放置した。粉末が沈降し完全に分離状態となった溶液の上澄み液を捨て、新たに同量の純水を添加した。同様の洗浄操作を6回繰り返し、未反応原料に由来する不純物イオンを取り除いた。洗浄後の酸化タングステン水和物5gに新たに純水500mlを加えて溶液Aとし、溶液Aを攪拌した。攪拌を停止した5分後に溶液Aの液表面から溶液50mlをスポイトにて採取した。採取した溶液Aを500℃の噴霧式高温乾燥炉にて急速乾燥させた。噴霧式高温乾燥炉は上方から溶液を霧状に噴霧し、溶液粒子が下降する間に周囲に設置されたヒーターで溶媒を蒸発させる炉である。ここで得られた酸化タングステン水和物を電子顕微鏡で観察したところ、最大粒子直径が76nmの微細粒子であった。膜マトリックス材となるエポキシ系樹脂としてアラルダイト(昭和高分子製)を選択し、主剤1g、硬化剤1gに酸化タングステン水和物を2g加えて均一になるように混合し、スライドガラス上に硬化時の厚さが約70μmになるようにアプリケータでキャステイングした。室温で24時間硬化させた後研磨テープ(LT−C2000;富士写真フィルム製)で両面を均一に約20μm程度研磨して約30μm厚みに仕上げて酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜とした。
【0020】
次に、白金・ルテニウム担持炭素触媒に乾燥重量で電解質量が触媒量の60wt%に相当する5重量%のナフィオン117アルコール水溶液(水、イソプロパノール、ノルマルプロパノールが重量比で20:40:40の混合溶媒:Fluka Chemika社製)を添加してペースト状に混練したものを上記で得られた60mm×60mmサイズの酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズで塗布し60℃で3時間乾燥してアノードを形成した。得られたアノードの白金担持量は約0.5mg/cm2であり、ルテニウム担持量は約0.5mg/cm2であった。形成された電解質膜の反対側の面に、白金担持炭素粉末触媒に乾燥重量でナフィオン117が触媒量の60wt%相当の5重量%のナフィオン117アルコール水溶液を添加しペースト状に混練したものを乾燥時の厚さが15μmとなるようにアノードと重なるように塗布して60℃で3時間乾燥しカソードを形成し電解質膜/電極接合体を作製した。得られたカソードの白金担持量は約0.3mg/cm2であった。
(実施例2)
本発明のもう1つの実施例によるニオブをドープした酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。
金属タングステン粉末10gと金属ニオブ粉末500mgを30%過酸化水素水に反応させながら溶解して前駆体となる過酸化ポリタングステン酸と過酸化ポリニオブ酸水溶液をそれぞれに作製する。得られた水溶液を金属比が(Nb/(W+Nb))=0.005となるように混合し、これに5Nの苛性ソーダ(NaOH)水溶液を加えてポリ酸を完全に分解した後、6N塩酸を加えて黄色不透明沈殿物を得る。この沈殿物をろ過し、デシケ−タ中で乾燥させた。上記の方法で得られた乾燥粉末10gに400mlの純水を添加し30分間攪拌し24時間放置した。粉末が沈降し完全に分離状態となった溶液の上澄み液を捨て、新たに同量の純水を添加した。同様の洗浄操作を6回繰り返し、未反応原料に由来する不純物イオンを取り除いた。洗浄後のニオブをドープした酸化タングステン水和物5gに新たに純水500mlを加えて溶液Bとし、溶液Bを攪拌した。攪拌を停止した5分後に溶液Bの液表面から溶液50mlをスポイトにて採取した。採取した溶液Bを500℃の噴霧式高温乾燥炉にて急速乾燥させた。ここで得られたニオブをドープした酸化タングステン水和物を電子顕微鏡で観察したところ、最大粒子直径が73nmの微細粒子であった。膜マトリックス材となるエポキシ系樹脂としてアラルダイトを選択し、主剤1g、硬化剤1gにニオブをドープした酸化タングステン水和物を2g加えて均一になるように混合し、スライドガラス上に硬化時の厚さが約70μmになるようにアプリケータでキャステイングした。室温で24時間硬化させた後研磨テープで両面を均一に約20μm程度研磨して約30μm厚みに仕上げてニオブドープ酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜とした。
次に、上記で得られた60mm×60mmサイズのニオブドープ酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(実施例3)
本発明のもう1つの実施例による酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。塩化第二スズ(SnCl4・5H2O)17.5gを50mlの水に溶解して60℃に加熱して加水分解した。これにアンモニア水を加えて100℃で1時間加熱、熟成し、得られた沈殿物をろ過し、乾燥させてプロトン伝導性のスズ酸化物水和物(SnO2・nH2O)を得た。熱重量変化測定からnは約1.7であった。
【0021】
作製した酸化スズ水和物10gに400mlの純水を添加し30分間攪拌し24時間放置した。沈降、分離した酸化スズ水和物の上澄み液を採取して捨て、新たに同量の純水を添加した。同様の洗浄操作を6回繰り返し、未反応原料に由来する不純物イオンを取り除いた。洗浄後の酸化スズ水和物5gに新たに純水500mlを加えて溶液Cとし、溶液Cを攪拌した。攪拌を停止した5分後に溶液Cの液表面近傍から溶液50mlをスポイトにて採取した。採取した溶液Cを500℃の噴霧式高温乾燥炉にて急速乾燥させた。ここで得られた酸化スズ水和物を電子顕微鏡で観察したところ、最大粒子直径が75nmの微細粒子であることが分かった。膜マトリックス材となるエポキシ系樹脂としてアラルダイトを選択し、主剤1g、硬化剤1gに酸化スズ水和物を2g加えて均一になるように混合し、スライドガラス上に硬化時の厚さが約70μmになるようにアプリケータでキャステイングした。室温で24時間硬化させた後研磨テープで両面を均一に約20μm程度研磨して約30μm厚みに仕上げて酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜とした。
【0022】
次に、上記で得られた60mm×60mmサイズの酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(実施例4)
本発明のもう1つの実施例による酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。金属タングステン粉末1gを30%過酸化水素水に反応させながら溶解して前駆体となる過酸化ポリタングステン酸を作製する。得られた水溶液に5Nの苛性ソーダ(NaOH)水溶液を加えてポリ酸を完全に分解した後、6N塩酸を加えて黄色不透明沈殿物を得る。この沈殿物をろ過し、デシケ−タ中で乾燥させた。上記の方法で得られた乾燥粉末1.2gを5Nの苛性ソーダ水溶液1.2mlに加えて前駆体溶液とした。次に、膜マトリックス材となるエポキシ系樹脂としてアラルダイトを選択し、主剤2g、硬化剤2gに上記した前駆体溶液0.6mlとアセトン0.3mlを加えて均一になるように混合し、スライドガラス上に硬化時の厚さが約70μmになるようにアプリケータでキャステイングした。キャステイング後室温で24時間静置しスライドガラスから剥離させて前駆体膜とした。この膜を3N塩酸水溶液中に約24時間浸漬した後蒸留水で洗浄を繰り返して黄色不透明の酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜を得た。得られた厚さ約70μmのプロトン伝導性電解質膜を研磨テープで両面を均一に約20μm程度研磨して約30μmの厚みとした。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は71nmであった。
【0023】
次に、上記で得られた60mm×60mmサイズの酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(実施例5)
本発明のもう1つの実施例によるニオブをドープした酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。金属タングステン粉末1gと金属ニオブ粉末50mgを30%過酸化水素水に反応させながら溶解して前駆体となる過酸化ポリタングステン酸と過酸化ポリニオブ酸水溶液をそれぞれに作製する。得られた水溶液を金属比が(Nb/(W+Nb))=0.005となるように混合し、これに5Nの苛性ソーダ(NaOH)水溶液を加えてポリ酸を完全に分解した後、6N塩酸を加えて黄色不透明沈殿物を得る。この沈殿物をろ過し、デシケ−タ中で乾燥させた。上記の方法で得られた乾燥粉末1.2gを5Nの苛性ソーダ水溶液1.2mlに加えて前駆体溶液とした。次に、膜マトリックス材となるエポキシ系樹脂としてアラルダイトを選択し、主剤2g、硬化剤2gに上記した前駆体溶液0.6mlとアセトン0.3mlを加えて均一になるように混合し、スライドガラス上に硬化時の厚さが約70μmになるようにアプリケータでキャステイングした。キャステイング後室温で24時間静置しスライドガラスから剥離させて前駆体膜とした。この膜を3N塩酸水溶液中に約24時間浸漬した後蒸留水で洗浄を繰り返して黄色不透明のニオブをドープした酸化タングステン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜を得た。得られた厚さ約70μmのプロトン伝導性電解質膜を研磨テープで両面を均一に約20μm程度研磨して約30μmの厚みとした。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は70nmであった。
【0024】
次に、上記で得られた60mm×60mmサイズのニオブをドープした酸化タングステン水和物/エポキシ系樹脂プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(実施例6)
本発明のもう1つの実施例による酸化スズ水和物/ポリアミド複合プロトン伝導性電解質膜の作製方法を以下に説明する。ジメチルアセトアミド0.3mlに酸化物水和物の前駆体として塩化第二スズ(SnCl4・5H2O)1.0gを添加、攪拌して透明な粘性液体を作製する。この液体と、ポリアミド酸ワニス(ポリアミド酸の20wt%N−メチルピロリドン溶液;宇部興産製)4.0gを混合、攪拌して薄い褐色透明の粘性溶液を作製する。この溶液をガラス基板上にキャステイングし、空気雰囲気、80℃で1時間熱処理をした。その空気雰囲気下、130℃、160℃、200℃で各1時間ずつキャステイング膜の熱処理を行い、さらに完全な溶媒除去、脱水イミド化を進めるため、200℃のまま真空状態として10時間ほど保持し、半透明黄色のプロトン伝導性電解質前駆体膜を作製した。得られた前駆体膜を研磨テープで両面を均一に約10μm程度研磨した後、25wt%アンモニア水溶液に20分浸漬した。前駆体膜が白濁したところで取り出し、蒸留水で4〜5回洗浄して厚さ約30μmの酸化スズ水和物/ポリアミド複合プロトン伝導性電解質膜を得た。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は74nmであった。
【0025】
次に、上記で得られた60mm×60mmサイズの酸化スズ水和物/ポリアミド複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(実施例7)
本発明のもう1つの実施例による酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。膜マトリックス材となるエポキシ系樹脂としてアラルダイト(昭和高分子製)を選択し、この硬化剤である変性ポリチオール370mgに酸化スズ水和物の前駆体となるトリ-N-ブチルスズトリメトキサイド370mgを添加し攪拌すると粘性のある透明液体が生成する。これをアラルダイトの主材である変性エポキシ樹脂に添加、混合して粘性のある均一液体し、平滑なポリテトラフルオロエチレン板上に硬化時の厚さが約70μmとなるようにアプリケーターでキャステイングする。このキャステイング膜を空気中60℃で3時間硬化反応を進める。得られた前駆体膜を25wt%アンモニア水溶液に1時間浸漬し、その後取り出して蒸留水で4〜5回洗浄して厚さ約70μmの酸化スズ水和物/エポキシ系マトリックス複合プロトン伝導性電解質膜を得た。このプロトン伝導性電解質膜を研磨テープで両面を均一に約20μm程度研磨して約30μm厚みに仕上げた。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は72nmであった。
【0026】
次に、上記で得られた60mm×60mmサイズの酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(実施例8)
本発明のもう1つの実施例による酸化スズ水和物/ポリエーテルアクリレート系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。ポリエーテルアクリレートはエチレンオキサイドとプロピレンオキサイドをモル比で4:1の比率でランダムに共重合させたオリゴマーの末端をアクリル酸で変成したものである。このポリエーテルアクリレート1gに酸化スズ水和物の前駆体となるトリ−N−ブチルスズトリメトキサイド1gを添加し攪拌すると粘性のある液体が調製する。この液体にベンゾイルパーオキサイドを重合開始剤として添加、混合して平滑なポリテトラフルオロエチレン基板上にアプリケーターでキャステイングし、加熱処理して厚さ50μmの前駆体膜を得た。この前駆体膜を25wt%アンモニア水溶液に20分浸漬し、白濁していた前駆体膜が黄色に変化したところで取り出して蒸留水で4〜5回洗浄して厚さ約50μmの酸化スズ水和物/ポリエーテルアクリレート系樹脂複合プロトン伝導性電解質膜を得た。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は75nmであった。
【0027】
次に、上記で得られた60mm×60mmサイズの酸化スズ水和物/ポリエーテルアクリレート系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は実施例1と同様である。
(比較例1)
本発明の1つの比較例として酸化スズ水和物/ポリエーテルアクリレート系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。プロトン伝導体の原料として塩化第二スズ(SnCl4・5H2O)17.5gを50mlの水に溶解して60℃に加熱して加水分解する。これにアンモニア水を加えて100℃で1時間加熱、熟成する。得られた沈殿物をろ過し、乾燥させてプロトン伝導性のスズ酸化物水和物(SnO2・nH2O)を得た。熱重量変化測定からnは約1.7であった。
【0028】
次に、エーテルアクリレートオリゴマー10gに上記で得られたスズ酸化物水和物(SnO2・nH2O)粉末を5g加えて高速回転混合機で約2分間混合した。これに重合開始剤としてベンゾイルパーオキサイドを加え更に高速回転混合機で混合し、その後に約0.1wt%のセチルトリメチルアンモニウムブロマイドを界面活性剤として加えてスライドガラス上にキャステイングした。キャスティング膜を加熱処理し、酸化スズ水和物/ポリエーテルアクリレート系樹脂複合プロトン伝導性電解質膜とした。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は1.1μmであった。
【0029】
次に、白金・ルテニウム担持炭素触媒に乾燥重量で電解質量が触媒量の60wt%に相当する5重量%のナフィオン117アルコール水溶液を添加してペースト状に混練したものを上記で得られた60mm×60mmサイズの酸化スズ水和物/ポリエーテルアクリレート系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズで塗布し60℃で3時間乾燥してアノードを形成した。得られたアノードの白金担持量は約0.5mg/cm2であり、ルテニウム担持量は約0.5mg/cm2であった。形成された電解質膜の反対側の面に、白金担持炭素粉末触媒に乾燥重量でナフィオン117が触媒量の60wt%相当の5重量%のナフィオン117アルコール水溶液を添加しペースト状に混練したものを乾燥時の厚さが15μmとなるようにアノードと重なるように塗布して60℃で3時間乾燥しカソードを形成し電解質膜/電極接合体を作製した。得られたカソードの白金担持量は約0.3mg/cm2であった。
(比較例2)
本発明のもう1つの比較例として酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の作製方法を以下に説明する。膜マトリックス材となるエポキシ系樹脂としてアラルダイト(昭和高分子製)を選択し、主剤1g、硬化剤1gに比較例2の方法で合成したプロトン伝導性のスズ酸化物水和物(SnO2・nH2O;n〜1.7)を2g加えて均一になるように混合し、スライドガラス上に硬化時の厚さが約70μmになるようにアプリケータでキャステイングした。室温で24時間硬化させた後研磨テープで両面を均一に約20μm程度研磨して約30μm厚みに仕上げて酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜とした。膜断面を電子顕微鏡にて確認したところ、膜中に存在する粒子の最大直径は1.0μmであった。
【0030】
次に、上記で得られた60mm×60mmサイズの酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電解質膜上に30mm×30mmのサイズの電極を形成した。形成手法、電極組成は比較例1と同様である。
【0031】
上記の手法で作製した各実施例および比較例にPTFEで撥水処理したカーボンペーパをアノード、カソード電極面に配置し、ガス流路溝を加工した高密度カーボン製で挟み所定の締付け圧力を加えた状態でボルトを用いて全体を固定し、試験用セルを作製した。この試験セルを恒温槽にセットし、加熱のためのヒーター機能を有するガス供給ラインと、出口圧力調整弁と温度保温用ヒーターを有するガス出口ラインをそれぞれ接続し、液体用マスフローコントローラでセルに水を供給した。供給された水を加熱ヒーターにより昇温しさらに出口ラインのヒーターおよび恒温槽の温度と圧力調整弁を調整することにより、水蒸気圧・温度を試験設定値に保ち、その状態でセルの伝導率を交流測定法にて評価した。この場合の測定値にはカーボンセパレータ、カーボンペーパー、電極などの伝導率や各材料の接触抵抗が含まれているためブランクセルを別に作製し、同条件で評価しリファレンスとした。
【0032】
図2に実施例および比較例における飽和蒸気圧下での電解質膜伝導性の温度依存性を示した。さらに図3は150℃におけるイオン伝導率の水蒸気圧依存性を示した。
【0033】
50℃から150℃における測定温度領域では比較例1および2のイオン伝導率は150℃において最も高い値を示したが10-3S/cm程度にとどまった。さらにその水蒸気圧依存性は大きく、水蒸気分圧0.2の条件ではイオン伝導率が10-4S/cm以下へ大幅に低下した。これは、比較例1および2を高伝導率の状態に維持するためには水蒸気分圧を高く保たねばならず、その結果高圧力に耐えるシステムが必要になることを示している。
【0034】
図1に示される通り実施例1の150℃におけるイオン伝導率は10-2S/cmで比較例よりも一桁程度の向上が確認できた。これは膜中のイオン伝導体を小粒径化し高分散させた効果と考えられる。一方実施例2は150℃で2×10-2S/cmとなり実施例1を上回るイオン伝導率が確認された。実施例1と2はイオン伝導体のベース材料が同じ酸化タングステン酸化物であるが、実施例2ではニオブのドーピング処理を施している。ニオブを添加することで酸化タングステン水和物系のプロトン伝導膜特性に好ましい影響を与えることが示唆された。
【0035】
さらに実施例3の飽和水蒸気圧下150℃におけるイオン伝導率は2×10-2S/cm以上であった。また150℃未満の温度領域においても実施例3は実施例1および2よりも高い伝導率で推移している。一方図3より、実施例3はイオン伝導率の水蒸気圧依存性が小さく、水蒸気圧分圧が0.2の条件でも3×10-3S/cm以上の伝導率を維持している。これは実施例3に用いた酸化スズ水和物がプロトンを伝導させやすいという性質とともに、水和水が脱離しにくい特性を有するため水蒸気分圧が低い環境でも高伝導率を示すと考えられる。
【0036】
実施例4および5はそれぞれ実施例1および2と用いたプロトン伝導体が同一であり、膜中の分散粒子径も80nm以下でほぼ等しい。図2および図3よりそのイオン伝導率、伝導率の水蒸気圧依存性もほぼ同じ結果が得られている。しかし実施例4は、用いた出発物質に含まれるタングステンの92.3%が最終的に作製したプロトン伝導膜中に含まれるのに対し、実施例1の作製法では原料に用いたタングステンの2.04%しかプロトン伝導膜に使用できず、残りは作製途中で廃棄されている。さらに実施例1は実施例4に比較し、粒径80nm 以下の酸化タングステン水和物を作成する過程での酸化タングステン水和物溶液からの上澄み液分取や、噴霧式高温乾燥炉を用いる乾燥処理などの工程が加わっている。いいかえれば実施例4は実施例1と比較し、同様の特性を有するイオン伝導性膜をより効率的にかつ大幅に低コスト工程で作製した材料といえる。上記はイオン伝導体のタングステンにニオブをドープした実施例5についても該当する。
【0037】
実施例6,7,8は図2および3に示される通り、実施例3とほぼ同様の伝導率特性を示している。これらの実施例はイオン伝導体に酸化スズ水和物を用いており、膜中の粒径も80nm以下である。しかし実施例3は原料に用いたスズの3.45%しかプロトン伝導膜に使用できず、残りは作製途中で廃棄されている。ここで実施例6,7,8はそれぞれ出発物質に含有されるスズの92.3,91.5,93.2%が最終的に得られたプロトン伝導膜に含まれている。さらに実施例3はスズ水和酸化物を作成する過程で塩化スズ水溶液の作製、加熱、アンモニア水の添加、その後の濾過、洗浄および乾燥の工程が必要であるのに対し、実施例6,7,8では膜を形成してからの加水分解反応が必要となるものの原料となるスズ化合物を溶液状態で有機材料中に直接分散させることが可能で上記の複数の工程を省略できる。すなわち実施例6,7,8は実施例3に比較して同等の特性を有するプロトン伝導性膜でありながらその原料・作製コストを大幅に低減できる。
【0038】
以上より本実施例はプロトン伝導体である金属酸化物水和物と膜の有機高分子材料の耐熱性が良好であるため150℃で安定した伝導性が確保できることが分かった。さらに酸化物水和物前駆体の形で均一膜を作製しその後加水分解で金属酸化物水和物を生成させることにより、膜中のプロトン伝導体の分散が大幅に高まる。よってプロトン伝導性を従来よりも向上させることができる。さらにはスズ水和酸化物を用いることにより伝導性の水蒸気圧依存性を減少させることが可能となる。また、本製造方法と本材料を用いるプロトン伝導性膜は製造コストを従来よりも大幅に低減できる。
【0039】
【発明の効果】
本発明に係るプロトン伝導性を有する金属酸化物水和物と有機高分子の複合電解質は従来のそれより高温でも十分高いイオン伝導性を有する。また本発明に係る方法によれば、従来のそれよりも低コストでかつ高温でも十分高いイオン伝導性を有するプロトン伝導体膜を製造できる。
【図面の簡単な説明】
【図1】本発明に関わる固体高分子型積層燃料電池の単位構成を示す図である。
【図2】本発明に関わる電解質膜の飽和水蒸気圧でのイオン伝導率の温度依存性を示す実験結果である。
【図3】本発明に関わる電解質膜の150℃におけるイオン伝導率の水蒸気圧分圧依存性を示す実験結果である。
【符号の説明】
1,2…セパレータ、3…カソード側カーボンペーパー、4…アノード側カーボンペーパー、5…電解質膜、6…カソードガス流路、7…アノードガス流路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-cost, high-durability inorganic and organic polymer composite electrolyte membrane excellent in oxidation resistance, etc. suitable for a proton conductive electrolyte membrane used in fuel cells, water electrolysis, humidity sensors, gas sensors, etc. It is.
[0002]
[Prior art]
A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group in the polymer chain, and has a property of binding firmly to a specific ion or selectively transmitting a cation or an anion. Therefore, it is formed into particles, fibers, or membranes, and is used for various applications such as electrodialysis, diffusion dialysis, battery membranes, and electrolyte membranes for sensors.
[0003]
A solid polymer electrolyte fuel cell is provided with a pair of electrodes on both sides of a proton-conducting solid polymer electrolyte membrane, and hydrogen gas obtained by reforming low-molecular hydrocarbons such as methane and methanol as fuel gas Supplying to one electrode (fuel electrode), supplying oxygen gas or air to the other electrode (air electrode) using oxidant as an oxidizing agent, and obtaining electric power. Water electrolysis is a method for producing hydrogen and oxygen by electrolyzing water using a solid polymer electrolyte membrane.
[0004]
In fuel cells and water electrolysis, fluorine-based electrolyte membranes represented by perfluorocarbon sulfonic acid membranes proposed by DuPont, Dow, Asahi Kasei and Asahi Glass as proton conductive solid polymer membranes are chemically stable. Therefore, it is used as an electrolyte membrane used under severe conditions.
[0005]
Sodium chloride electrolysis is a method for producing sodium hydroxide, chlorine and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine, high temperature, and high concentration sodium hydroxide aqueous solution, it is not possible to use a hydrocarbon electrolyte membrane having poor resistance to these. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally durable against chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition, a partial surface is formed to prevent back diffusion of generated ions. A perfluorosulfonic acid film into which a carboxylic acid group is introduced is used.
[0006]
By the way, the fluorine-based electrolyte typified by the perfluorosulfonic acid membrane has a very high chemical stability because it has a C—F bond. For the above-described fuel cell, water electrolysis, or salt electrolysis In addition to these solid polymer electrolyte membranes, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and further widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using proton conductivity. It is what.
[0007]
However, the fluorine-based electrolyte has a drawback that the manufacturing process is complicated and it is very expensive. Moreover, even if it says high heat resistance, the heat-resistant limit does not exceed 100 degreeC. Therefore, fluorine-based electrolyte membranes are used for special applications such as space or military solid polymer fuel cells, solid polymer fuel cells as low-pollution power sources for automobiles, consumer compact distributed power supplies, When using low molecular weight hydrocarbons as raw fuel to reform hydrogen gas, such as for applications in portable power sources, it is necessary to cool the reformed gas or remove carbon monoxide in the reformed gas It has become a factor that complicates the system. In addition, there are problems such as low proton conductivity due to the low operating temperature limit of the electrolyte membrane, large polarization due to electrode reaction rate, and complicated water management due to operation in the two-phase region of water. The feasibility of this fuel cell has been hindered.
[0008]
Therefore, various attempts have been made in the past to obtain a solid polymer electrolyte membrane having oxidation-deterioration degradation characteristics equivalent to or better than those of a fluorine-based electrolyte membrane and capable of being manufactured at low cost. For example, JP-A-9-102322 discloses a main chain made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and a hydrocarbon side chain having a sulfonic acid group. A sulfonic acid type polystyrene-graft-ethylenetetrafluoroethylene copolymer (ETFE) membrane has been proposed. The sulfonic acid type polystyrene-graft-ETFE membrane disclosed in JP-A-9-102322 is inexpensive, has sufficient strength as a solid polymer electrolyte membrane for fuel cells, and has a sulfonic acid group introduction amount. By increasing the conductivity, it is possible to improve the conductivity. However, the sulfonic acid-type polystyrene-graft-ETFE membrane has a high oxidation resistance degradation property of the main chain portion formed by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, but the side where the sulfonic acid group is introduced. The chain portion is a hydrocarbon polymer that is susceptible to oxidative degradation. Therefore, when this is used for a fuel cell, there is a problem that the oxidation resistance deterioration characteristic of the entire membrane is insufficient and the durability is poor.
[0009]
In US Pat. No. 4,012,303 and US Pat. No. 4,605,685, α, β, β-trifluorostyrene is graft-polymerized on a film made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. A sulfonic acid type poly (trifluorostyrene) -graft-ETFE membrane has been proposed in which a sulfonic acid group is introduced into this to form a solid polymer electrolyte membrane. This is based on the recognition that the chemical stability of the polystyrene side chain introduced with the sulfonic acid group is not sufficient, instead of styrene, partially fluorinated α, β, β-trifluoro. Styrene is used. However, since α, β, β-trifluorostyrene, which is a raw material for the side chain portion, is difficult to synthesize, when considering application as a solid polymer electrolyte membrane for a fuel cell, the aforementioned Nafion There is a problem that the cost is high as in the case of. In addition, α, β, β-trifluorostyrene has a low polymerization reactivity, so that the amount of α, β, β-trifluorostyrene introduced as a graft side chain is small, and there is a problem that the conductivity of the resulting film is low. In addition, the above-mentioned membrane has a relatively low glass transition point, and since the sulfonic acid group is an ion conduction site, the ionic conductivity of the membrane is greatly reduced when the relative humidity decreases in an environment where the water vapor pressure exceeds 100 ° C. There is a problem that it cannot be used essentially for a device operating in a high temperature region due to the decrease.
[0010]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a proton conductive membrane that maintains stable proton conductivity and mechanical strength even at a temperature of 100 ° C. or more, which is the heat resistance limit of conventional fluorine electrolyte membranes, and is low in cost. To do.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors paid attention to an inorganic proton conductive material and intensively researched an electrolyte membrane in which this is combined with a heat-resistant organic polymer material. As a result, a composite of a metal oxide hydrate typified by tungsten oxide or tin oxide hydrate as a proton carrier and an organic polymer having high heat resistance and acid resistance as a matrix material for forming a film is used as an electrolyte. By forming a membrane, it is possible to provide a highly durable proton-conductive electrolyte membrane that has the same or better deterioration-resistant characteristics as the objective of the present invention, or that can be manufactured at low cost. I found it. Further, in the production of the electrolyte membrane, a liquid mixture containing at least a solution of a single compound or a plurality of compounds serving as a precursor of an inorganic proton conductor, an organic monomer, or a polymer was formed into a film shape, and this was cured or crosslinked. Thereafter, a method for forming an inorganic solid proton conductor in a membrane by treating the precursor of the inorganic proton conductor with a gas containing a solution or gas containing an agent for converting to a proton conductor was found. By adopting such a method, the matrix material forming the incompatible film and the inorganic solid proton conductor can be finely and uniformly dispersed, and the dispersion concentration can be increased, and a high temperature region of about 100 ° C. However, the inventors have invented that a composite electrolyte membrane of an inorganic proton conductor and an organic polymer having sufficiently high ionic conductivity can be realized.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described in detail below.
[0013]
The proton conducting membrane according to the present invention is formed into a film form of a liquid mixture containing at least a solution of a single compound or a plurality of compounds that are precursors of an inorganic proton conductor, an organic monomer, or a polymer, and is cured or crosslinked. Thereafter, the inorganic proton conductor precursor is treated with a gas containing a solution or gas containing a chemical for converting the proton conductor into a proton conductor to form an inorganic solid proton conductor in the membrane. As the inorganic proton conductor functioning at 100 ° C. or higher in the present invention, tungsten oxide hydrate, tin oxide hydrate, tungsten oxide hydrate doped with niobium or the like can be used. A single component of these proton conductors or a mixture of a plurality of components can be used. The material for forming the organic polymer film is not particularly limited as long as it is a material having heat resistance, acid resistance, and flexibility, but polyimide materials, epoxy materials, and polyether acrylate materials are preferable materials. . In preparing the proton conducting membrane, the proton conductor precursor is compatible with the organic polymer membrane precursor as described above in the form of chloride, sulfate, various alkoxides, organic acids, amine complexes and the like. The one with is selected. The proton-conducting electrolyte membrane comprises 1) a solution of an organic polymer material or a precursor solution as a matrix, a proton conductor precursor having compatibility with the solution, and an appropriate dispersant as required. A step of mixing to produce a homogeneous system, 2) a step of adding a curing agent or a polymerization catalyst to the homogeneous mixed system, 3) a step of casting the uniform mixed system into a film and forming a film, and 4) of the produced film. Produced through a step of converting the proton conductor precursor to oxide hydrate. There is no particular limitation in the step of forming the film as long as the organic polymer film can provide sufficient strength and flexibility. Reactions such as thermosetting, cross-linking polymerization, and photopolymerization depending on the characteristics of the organic polymer film precursor. Is selected. The conversion to proton conductor precursor is to obtain oxide hydrate such as tungsten oxide hydrate, tin oxide hydrate or tungsten oxide hydrate doped with niobium in tungsten oxide hydrate. There are no specific reactions, but when the precursor used is chloride, sulfate, or each alkoxide, the precursor may be an organic acid complex or peroxide such as hydrolysis with an acidic aqueous solution or alkaline aqueous solution. In the case of a hydrogen oxide complex, a method in which it is thermally decomposed at a relatively low temperature range of 40 to 100 ° C. and then activated by contact with an aqueous solution or steam is effective.
[0014]
When the proton conductive electrolyte according to the present invention is used for a fuel cell, it is generally used in the form of a membrane, but is not limited to this and can be used in a cylindrical shape. That is, a method of directly casting a dispersion mixture of an inorganic oxide hydrate serving as a proton carrier and a polymer matrix material into a film shape, or impregnating the dispersion mixture into a porous core material, a woven fabric or a non-woven fabric. You can take the following methods. In particular, the method using the core material is advantageous in reducing the effective resistance of the electrolyte membrane because the film obtained by using a high strength core material can be thinned. In addition, when using the proton conductive electrolyte membrane prepared according to the present invention, surface treatment such as partial removal of the organic matrix material on the surface with an organic solvent or partial polishing of the membrane surface is performed. Is an effective method for reducing the contact resistance with the electrode.
[0015]
The thickness of the proton conductive electrolyte membrane according to the present invention is not particularly limited, but it is preferably thicker than 10 μm in order to obtain a membrane strength that can withstand practical use, and is preferably thinner than 200 μm in order to reduce membrane resistance. In order to reduce the internal resistance of the fuel cell or increase the sensitivity as a sensor, 10 to 30 μm is more preferable. The film thickness can be controlled by the viscosity of the uniform mixed system or the cast thickness on the substrate. In addition, when producing the proton conductive electrolyte according to the present invention, additives such as plasticizers, stabilizers, mold release agents, etc., used in ordinary polymers are used within the range not impairing the object of the present invention. You can also
[0016]
A gas diffusion electrode used for a membrane / electrode assembly used for a fuel cell is configured by applying a conductive material carrying fine particles of a catalytic metal on an electrolyte membrane or pasting an electrode layer formed in advance into a film shape. It may contain a water repellent and a binder as necessary. Moreover, the layer which consists of a conductive material which does not carry | support a catalyst, a water repellent, and a binder may be formed in the outer side of a catalyst layer. The catalyst metal used for the gas diffusion electrode may be any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen, such as platinum, gold, silver, palladium, iridium, rhodium, ruthenium. , Iron, cobalt, nickel, chromium, tungsten, manganese, vanadium, or alloys thereof. Of these catalysts, platinum is often used at the cathode, and a binary system of platinum and ruthenium is used at the anode. The particle size of the metal used as the catalyst is usually 10 to 300 angstroms. The supported amount of the catalyst is, for example, 0.01 to 10 mg / cm with the electrode formed. 2 Is desirable.
[0017]
The conductive material may be any material as long as it is an electron conductive material, and examples thereof include various metals and carbon materials. Examples of the carbon material include carbon black such as furnace black and acetylene black, activated carbon, graphite and the like, and these are used alone or in combination. As the water repellent, for example, fluorinated carbon or polytetrafluoroethylene dispersant is used. As the binder for forming the catalyst layer, the proton conductive electrolyte matrix polymer of the present invention is preferably used as it is, but other various resins may be used. In that case, a fluorine-containing resin having water repellency is preferred, and those having excellent heat resistance and oxidation resistance are particularly preferred. For example, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and tetrafluoroethylene -A hexafluoropropylene copolymer is mentioned.
[0018]
There are no particular limitations on the electrolyte membrane used for the fuel cell and the electrode joining method, and a known method can be applied. As a method for producing a membrane / electrode assembly, for example, platinum catalyst powder is mixed with a polytetrafluoroethylene suspension, applied to carbon paper, and heat-treated to form a catalyst layer. Next, there is a method in which the same electrolyte solution or precursor solution as the electrolyte membrane is applied and impregnated on the catalyst layer and integrated with the electrolyte membrane by hot pressing. In addition, a method of applying a solution of an electrolyte membrane or an electrolyte membrane precursor according to the present invention previously coated on platinum catalyst powder to the electrolyte membrane, an electrolyte membrane or an electrolyte membrane precursor solution according to the present invention and a catalyst A method of pasting and applying it to the electrolyte membrane, a method of electrolessly plating an electrode on the electrolyte membrane, a method of reducing the platinum group metal complex ions after adsorbing them to the electrolyte membrane, and the like can be selected.
[0019]
The fuel cell includes a fuel flow distribution plate and an oxidant flow distribution as a grooved current collector that forms a fuel flow path and an oxidant flow path outside the joined body of the electrolyte membrane and the gas diffusion electrode formed as described above. A plate is provided as a single cell, and a schematic configuration is shown in FIG. The voltage of a single cell varies depending on the operating temperature with an external load applied, but is generally 0.5 to 0.8 V. Stacking is performed by stacking a plurality of single cells via a cooling plate or the like corresponding to the voltage that requires a single cell. Is configured. It is preferable to operate the fuel cell at a high temperature because the electrode catalyst is highly active, the electrode overvoltage is reduced, and the electrode is less poisoned by carbon monoxide. However, the proton conductive electrolyte membrane is hydrated. Since it does not function sufficiently if it is not in a state, it must be operated at a temperature that allows moisture management. The proton conducting electrolyte according to the present invention is superior in characteristics at high temperatures as compared with conventional electrolyte membranes, and is characterized by functioning sufficiently even when the operating temperature of the fuel cell is 100 ° C. or higher.
(Example)
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In addition, the measurement conditions of each physical property are as follows.
Example 1
As a working example of the present invention, a method for producing a tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane will be described below. Polytungstic peroxide, which is a precursor, is prepared by dissolving 10 g of metal tungsten powder while reacting with 30% hydrogen peroxide solution. A 5N aqueous solution of sodium hydroxide (NaOH) is added to the resulting aqueous solution to completely decompose the polyacid, and then 6N hydrochloric acid is added to obtain a yellow opaque precipitate. The precipitate was filtered and dried in a desiccator. 400 ml of pure water was added to 10 g of the dry powder obtained by the above method, stirred for 30 minutes and allowed to stand for 24 hours. The supernatant of the solution in which the powder settled and was completely separated was discarded, and the same amount of pure water was newly added. The same washing operation was repeated 6 times to remove impurity ions derived from unreacted raw materials. To 5 g of the washed tungsten oxide hydrate, 500 ml of pure water was newly added to obtain a solution A, and the solution A was stirred. Five minutes after the stirring was stopped, 50 ml of the solution was collected from the surface of the solution A with a dropper. The collected solution A was rapidly dried in a spray type high temperature drying furnace at 500 ° C. The spray-type high-temperature drying furnace is a furnace that sprays the solution in a mist form from above and evaporates the solvent with a heater installed around the solution particles as they descend. When the tungsten oxide hydrate obtained here was observed with an electron microscope, it was a fine particle having a maximum particle diameter of 76 nm. Araldite (manufactured by Showa High Polymer) is selected as the epoxy resin for the membrane matrix material, and 2 g of tungsten oxide hydrate is added to 1 g of the main agent and 1 g of the curing agent, and mixed uniformly. When cured on the slide glass The film was cast with an applicator so that the thickness of the film became about 70 μm. After curing at room temperature for 24 hours, both sides are uniformly polished by about 20μm with polishing tape (LT-C2000; manufactured by Fuji Photo Film) and finished to a thickness of about 30μm. Tungsten oxide hydrate / epoxy resin composite proton conductivity An electrolyte membrane was obtained.
[0020]
Next, a 5% by weight Nafion 117 alcohol aqueous solution (water, isopropanol, and normal propanol are mixed in a weight ratio of 20:40:40 by dry weight to a platinum / ruthenium-supported carbon catalyst corresponding to 60% by weight of the electrolytic mass by dry weight. Solvent: Fluka Chemika Co., Ltd.) and kneaded into a paste, 30 mm x 30 mm size on the 60 mm x 60 mm tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above And dried at 60 ° C. for 3 hours to form an anode. The obtained anode has a platinum loading of about 0.5 mg / cm. 2 Ruthenium loading is about 0.5mg / cm 2 Met. On the opposite side of the formed electrolyte membrane, a platinum-supported carbon powder catalyst with a Nafion 117 aqueous solution containing 5% by weight of Nafion 117 equivalent to 60% by weight of the catalyst in dry weight and kneaded into a paste is dried. It was applied so as to overlap with the anode so that the thickness was 15 μm, and dried at 60 ° C. for 3 hours to form a cathode, thereby preparing an electrolyte membrane / electrode assembly. The obtained cathode has a platinum loading of about 0.3 mg / cm. 2 Met.
(Example 2)
A method for fabricating a niobium-doped tungsten oxide hydrate / epoxy resin composite proton conducting electrolyte membrane according to another embodiment of the present invention will be described below.
10 g of metallic tungsten powder and 500 mg of metallic niobium powder are dissolved while reacting with 30% hydrogen peroxide water to prepare polytungstic peroxide and aqueous polyniobic acid solution as precursors. The obtained aqueous solution was mixed so that the metal ratio was (Nb / (W + Nb)) = 0.005, and 5N sodium hydroxide (NaOH) aqueous solution was added thereto to completely decompose the polyacid, and then 6N hydrochloric acid was added. A yellow opaque precipitate is obtained. The precipitate was filtered and dried in a desiccator. 400 ml of pure water was added to 10 g of the dry powder obtained by the above method, stirred for 30 minutes and allowed to stand for 24 hours. The supernatant of the solution in which the powder settled and was completely separated was discarded, and the same amount of pure water was newly added. The same washing operation was repeated 6 times to remove impurity ions derived from unreacted raw materials. To 5 g of the tungsten oxide hydrate doped with niobium after washing, 500 ml of pure water was newly added to obtain a solution B, and the solution B was stirred. Five minutes after the stirring was stopped, 50 ml of the solution was collected from the surface of the solution B with a dropper. The collected solution B was rapidly dried in a spray type high temperature drying furnace at 500 ° C. The obtained niobium-doped tungsten oxide hydrate was observed with an electron microscope and found to be fine particles having a maximum particle diameter of 73 nm. Araldite is selected as the epoxy resin to be used as the membrane matrix material, 1 g of the main agent and 2 g of tungsten oxide hydrate doped with niobium are added to 1 g of the curing agent, and mixed uniformly to form a thickness on the slide glass when cured. The film was cast with an applicator so that the thickness was about 70 μm. After curing at room temperature for 24 hours, both surfaces were uniformly polished by about 20 μm with a polishing tape and finished to a thickness of about 30 μm to obtain a niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane.
Next, an electrode having a size of 30 mm × 30 mm was formed on the niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The formation method and electrode composition are the same as in Example 1.
(Example 3)
A method for producing a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Stannic chloride (SnCl Four ・ 5H 2 O) 17.5 g was dissolved in 50 ml of water and hydrolyzed by heating to 60 ° C. Aqueous ammonia was added thereto, and the mixture was heated and matured at 100 ° C. for 1 hour. The resulting precipitate was filtered and dried to produce proton-conductive tin oxide hydrate (SnO 2 ・ NH 2 O) was obtained. From the thermogravimetric change measurement, n was about 1.7.
[0021]
400 ml of pure water was added to 10 g of the prepared tin oxide hydrate, stirred for 30 minutes and allowed to stand for 24 hours. The supernatant of precipitated and separated tin oxide hydrate was collected and discarded, and the same amount of pure water was newly added. The same washing operation was repeated 6 times to remove impurity ions derived from unreacted raw materials. 500 ml of pure water was newly added to 5 g of washed tin oxide hydrate to obtain a solution C, and the solution C was stirred. Five minutes after the stirring was stopped, 50 ml of the solution was collected from the vicinity of the surface of the solution C with a dropper. The collected solution C was rapidly dried in a spray type high temperature drying furnace at 500 ° C. When the tin oxide hydrate obtained here was observed with an electron microscope, it was found to be fine particles having a maximum particle diameter of 75 nm. Araldite is selected as an epoxy resin to be used as a membrane matrix material, and 2 g of tin oxide hydrate is added to 1 g of the main agent and 1 g of the curing agent and mixed uniformly. The thickness upon curing on the slide glass is about 70 μm. Cast with an applicator. After curing at room temperature for 24 hours, both surfaces were uniformly polished with a polishing tape to a thickness of about 20 μm and finished to a thickness of about 30 μm to obtain a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane.
[0022]
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm size tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The formation method and electrode composition are the same as in Example 1.
(Example 4)
A method for producing a tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. 1 g of metallic tungsten powder is dissolved while reacting with 30% hydrogen peroxide solution to prepare polytungstic peroxide as a precursor. A 5N aqueous solution of sodium hydroxide (NaOH) is added to the resulting aqueous solution to completely decompose the polyacid, and then 6N hydrochloric acid is added to obtain a yellow opaque precipitate. The precipitate was filtered and dried in a desiccator. 1.2 g of the dry powder obtained by the above method was added to 1.2 ml of 5N aqueous sodium hydroxide solution to prepare a precursor solution. Next, Araldite is selected as an epoxy resin to be used as a membrane matrix material, and 0.6 g of the above precursor solution and 0.3 ml of acetone are added to 2 g of the main agent and 2 g of the curing agent, and mixed uniformly to form a glass slide. Casting was carried out with an applicator so that the thickness at the time of curing was about 70 μm. After casting, it was allowed to stand at room temperature for 24 hours and peeled off from the slide glass to obtain a precursor film. This membrane was immersed in a 3N hydrochloric acid aqueous solution for about 24 hours and then washed with distilled water repeatedly to obtain a yellow opaque tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane. The obtained proton conductive electrolyte membrane having a thickness of about 70 μm was uniformly polished by about 20 μm on both sides with a polishing tape to a thickness of about 30 μm. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 71 nm.
[0023]
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm size tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The formation method and electrode composition are the same as in Example 1.
(Example 5)
A method for fabricating a niobium-doped tungsten oxide hydrate / epoxy resin composite proton conducting electrolyte membrane according to another embodiment of the present invention will be described below. 1 g of metal tungsten powder and 50 mg of metal niobium powder are dissolved while reacting with 30% hydrogen peroxide solution to prepare polytungstic peroxide and aqueous polyniobic acid solution as precursors. The obtained aqueous solution was mixed so that the metal ratio was (Nb / (W + Nb)) = 0.005, and 5N sodium hydroxide (NaOH) aqueous solution was added thereto to completely decompose the polyacid, and then 6N hydrochloric acid was added. A yellow opaque precipitate is obtained. The precipitate was filtered and dried in a desiccator. 1.2 g of the dry powder obtained by the above method was added to 1.2 ml of 5N aqueous sodium hydroxide solution to prepare a precursor solution. Next, Araldite is selected as an epoxy resin to be used as a membrane matrix material, and 0.6 g of the above precursor solution and 0.3 ml of acetone are added to 2 g of the main agent and 2 g of the curing agent, and mixed uniformly to form a glass slide. Casting was carried out with an applicator so that the thickness at the time of curing was about 70 μm. After casting, it was allowed to stand at room temperature for 24 hours and peeled off from the slide glass to obtain a precursor film. This membrane was immersed in a 3N hydrochloric acid aqueous solution for about 24 hours and then washed repeatedly with distilled water to obtain a tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane doped with yellow opaque niobium. The obtained proton conductive electrolyte membrane having a thickness of about 70 μm was uniformly polished by about 20 μm on both sides with a polishing tape to a thickness of about 30 μm. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of particles present in the film was 70 nm.
[0024]
Next, an electrode having a size of 30 mm × 30 mm was formed on the tungsten oxide hydrate / epoxy resin proton conductive electrolyte membrane doped with niobium having a size of 60 mm × 60 mm obtained above. The formation method and electrode composition are the same as in Example 1.
(Example 6)
A method for preparing a tin oxide hydrate / polyamide composite proton conducting electrolyte membrane according to another embodiment of the present invention will be described below. Stannic chloride (SnCl) as precursor of oxide hydrate in 0.3 ml of dimethylacetamide Four ・ 5H 2 O) Add 1.0 g and stir to make a clear viscous liquid. This liquid and polyamic acid varnish (20 wt% N-methylpyrrolidone solution of polyamic acid; manufactured by Ube Industries) are mixed and stirred to prepare a thin brown transparent viscous solution. This solution was cast on a glass substrate and heat-treated at 80 ° C. for 1 hour in an air atmosphere. In the air atmosphere, the casting film is heat-treated at 130 ° C., 160 ° C., and 200 ° C. for 1 hour each, and in order to further complete solvent removal and dehydration imidization, the vacuum state is maintained at 200 ° C. for about 10 hours. A semitransparent yellow proton conductive electrolyte precursor membrane was prepared. The obtained precursor film was uniformly polished about 10 μm on both sides with a polishing tape, and then immersed in a 25 wt% aqueous ammonia solution for 20 minutes. When the precursor membrane became cloudy, the precursor membrane was taken out and washed with distilled water 4 to 5 times to obtain a tin oxide hydrate / polyamide composite proton conductive electrolyte membrane having a thickness of about 30 μm. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of particles present in the film was 74 nm.
[0025]
Next, an electrode having a size of 30 mm × 30 mm was formed on the tin oxide hydrate / polyamide composite proton conductive electrolyte membrane having a size of 60 mm × 60 mm obtained above. The formation method and electrode composition are the same as in Example 1.
(Example 7)
A method for producing a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Araldite (manufactured by Showa Polymer) is selected as the epoxy resin for the membrane matrix material, and 370 mg of tri-N-butyltin trimethoxide, which is the precursor of tin oxide hydrate, is added to 370 mg of the modified polythiol that is the curing agent. When stirred, a viscous transparent liquid is produced. This is added to a modified epoxy resin which is the main material of Araldite and mixed to form a viscous uniform liquid, which is cast on a smooth polytetrafluoroethylene plate with an applicator so that the thickness upon curing is about 70 μm. The casting film is allowed to undergo a curing reaction in air at 60 ° C. for 3 hours. The obtained precursor membrane was immersed in a 25 wt% aqueous ammonia solution for 1 hour, then taken out and washed 4-5 times with distilled water, and a tin oxide hydrate / epoxy matrix composite proton conducting electrolyte membrane having a thickness of about 70 μm. Got. The proton conductive electrolyte membrane was uniformly polished with a polishing tape on both sides by about 20 μm to a thickness of about 30 μm. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 72 nm.
[0026]
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm size tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The formation method and electrode composition are the same as in Example 1.
(Example 8)
A method for preparing a tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Polyether acrylate is obtained by modifying the end of an oligomer obtained by randomly copolymerizing ethylene oxide and propylene oxide at a molar ratio of 4: 1 with acrylic acid. When 1 g of tri-N-butyltin trimethoxide as a precursor of tin oxide hydrate is added to 1 g of this polyether acrylate and stirred, a viscous liquid is prepared. Benzoyl peroxide was added to the liquid as a polymerization initiator, mixed, cast on a smooth polytetrafluoroethylene substrate with an applicator, and heat-treated to obtain a precursor film having a thickness of 50 μm. This precursor film is immersed in a 25 wt% aqueous ammonia solution for 20 minutes, taken out when the cloudy precursor film turns yellow, washed with distilled water 4-5 times, and about 50 μm thick tin oxide hydrate / Polyether acrylate resin composite proton conductive electrolyte membrane was obtained. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 75 nm.
[0027]
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm size tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane obtained above. The formation method and electrode composition are the same as in Example 1.
(Comparative Example 1)
As one comparative example of the present invention, a method for producing a tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane will be described below. As a raw material for proton conductors, stannic chloride (SnCl Four ・ 5H 2 O) 17.5 g is dissolved in 50 ml of water and hydrolyzed by heating to 60 ° C. Aqueous ammonia is added thereto, and the mixture is heated and aged at 100 ° C. for 1 hour. The resulting precipitate was filtered and dried to produce proton conductive tin oxide hydrate (SnO 2 ・ NH 2 O) was obtained. From the thermogravimetric change measurement, n was about 1.7.
[0028]
Next, the tin oxide hydrate (SnO) obtained above was added to 10 g of the ether acrylate oligomer. 2 ・ NH 2 O) 5 g of powder was added and mixed for about 2 minutes with a high-speed rotary mixer. To this was added benzoyl peroxide as a polymerization initiator, and further mixed with a high-speed rotary mixer. Thereafter, about 0.1 wt% of cetyltrimethylammonium bromide was added as a surfactant and cast on a slide glass. The casting membrane was heat treated to obtain a tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 1.1 μm.
[0029]
Next, a platinum / ruthenium-supported carbon catalyst was kneaded into a paste by adding 5% by weight of Nafion 117 alcohol aqueous solution corresponding to 60% by weight of the electrolysis mass by dry weight, and the above obtained 60 mm × An anode was formed by applying a 30 mm × 30 mm size on a 60 mm sized tin oxide hydrate / polyether acrylate resin composite proton conducting electrolyte membrane and drying at 60 ° C. for 3 hours. The obtained anode has a platinum loading of about 0.5 mg / cm. 2 Ruthenium loading is about 0.5mg / cm 2 Met. On the opposite side of the formed electrolyte membrane, a platinum-supported carbon powder catalyst with a Nafion 117 aqueous solution containing 5% by weight of Nafion 117 equivalent to 60% by weight of the catalyst in dry weight and kneaded into a paste is dried. It was applied so as to overlap with the anode so that the thickness was 15 μm, and dried at 60 ° C. for 3 hours to form a cathode, thereby preparing an electrolyte membrane / electrode assembly. The obtained cathode has a platinum loading of about 0.3 mg / cm. 2 Met.
(Comparative Example 2)
As another comparative example of the present invention, a method for producing a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane will be described below. Proton conductive tin oxide hydrate (SnO) synthesized by the method of Comparative Example 2 using Araldite (manufactured by Showa High Polymer) as the epoxy resin for the membrane matrix material and synthesized in 1 g of the main agent and 1 g of the curing agent. 2 ・ NH 2 2 g of O; n to 1.7) was added and mixed to be uniform, and cast on a slide glass with an applicator so that the thickness when cured was about 70 μm. After curing at room temperature for 24 hours, both surfaces were uniformly polished with a polishing tape to a thickness of about 20 μm and finished to a thickness of about 30 μm to obtain a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 1.0 μm.
[0030]
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm size tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The formation method and electrode composition are the same as in Comparative Example 1.
[0031]
Carbon paper treated with PTFE for water repellency treatment is placed on the anode and cathode electrode surfaces in each of the examples and comparative examples produced by the above method, sandwiched with high-density carbon with gas channel grooves processed, and a predetermined tightening pressure is applied. In this state, the whole was fixed using a bolt to prepare a test cell. This test cell is set in a thermostatic chamber, and a gas supply line having a heater function for heating and a gas outlet line having an outlet pressure regulating valve and a temperature insulation heater are connected to each other, and water is supplied to the cell by a liquid mass flow controller. Supplied. By heating the supplied water with a heater and adjusting the outlet line heater and the temperature of the thermostat and the pressure control valve, the water vapor pressure and temperature are maintained at the test set values, and the conductivity of the cell is maintained in that state. It evaluated by the alternating current measuring method. Since the measured values in this case included the conductivity of carbon separator, carbon paper, electrodes, etc. and the contact resistance of each material, a blank cell was prepared separately and evaluated under the same conditions as a reference.
[0032]
FIG. 2 shows the temperature dependence of the electrolyte membrane conductivity under saturated vapor pressure in Examples and Comparative Examples. Further, FIG. 3 shows the water vapor pressure dependence of the ionic conductivity at 150 ° C.
[0033]
In the measurement temperature range from 50 ° C. to 150 ° C., the ionic conductivity of Comparative Examples 1 and 2 showed the highest value at 150 ° C. -3 It stayed at about S / cm. Furthermore, its water vapor pressure dependency is large, and the ionic conductivity is 10 under the condition of water vapor partial pressure 0.2. -Four Significantly reduced to below S / cm. This indicates that in order to maintain Comparative Examples 1 and 2 in a high conductivity state, the water vapor partial pressure must be kept high, and as a result, a system that can withstand the high pressure is required.
[0034]
As shown in FIG. 1, the ionic conductivity of Example 1 at 150 ° C. is 10 -2 An improvement of about an order of magnitude was confirmed at S / cm over the comparative example. This is considered to be an effect of reducing the particle size of the ionic conductor in the film and highly dispersing it. On the other hand, Example 2 is 2 × 10 at 150 ° C. -2 S / cm was obtained, and the ionic conductivity exceeding Example 1 was confirmed. In Examples 1 and 2, the base material of the ionic conductor is tungsten oxide, but in Example 2, niobium doping is performed. It was suggested that the addition of niobium has a favorable effect on the properties of proton conducting membrane of tungsten oxide hydrate.
[0035]
Furthermore, the ionic conductivity at 150 ° C. under saturated water vapor pressure in Example 3 is 2 × 10. -2 S / cm or more. In the temperature range below 150 ° C., Example 3 has a higher conductivity than Examples 1 and 2. On the other hand, FIG. 3 shows that Example 3 has a small dependence of the ionic conductivity on the water vapor pressure, and the water vapor pressure partial pressure is 0.2 × 3 × 10. -3 The conductivity of S / cm or more is maintained. This is considered that the tin oxide hydrate used in Example 3 has a property of easily conducting protons and also has a characteristic that hydration water is difficult to desorb, and thus exhibits high conductivity even in an environment where the partial pressure of water vapor is low.
[0036]
In Examples 4 and 5, the proton conductor used in Examples 1 and 2 is the same, and the dispersed particle diameter in the membrane is almost equal to 80 nm or less. From FIG. 2 and FIG. 3, the ionic conductivity and the water vapor pressure dependency of the conductivity are almost the same. However, in Example 4, 92.3% of tungsten contained in the used starting material is contained in the finally produced proton conducting membrane, whereas in the production method of Example 1, only 2.04% of tungsten used as a raw material is used. It cannot be used as a proton conducting membrane, and the rest is discarded during production. Furthermore, compared with Example 4, Example 1 separates the supernatant liquid from the tungsten oxide hydrate solution in the process of preparing tungsten oxide hydrate having a particle size of 80 nm or less, and drying using a spray-type high-temperature drying furnace. Processes such as processing are added. In other words, compared to Example 1, Example 4 can be said to be a material in which an ion conductive film having similar characteristics is produced more efficiently and at a significantly lower cost. The above also applies to Example 5, in which niobium is doped into the ionic conductor tungsten.
[0037]
Examples 6, 7, and 8 show substantially the same conductivity characteristics as Example 3 as shown in FIGS. In these examples, tin oxide hydrate is used for the ion conductor, and the particle size in the film is 80 nm or less. However, in Example 3, only 3.45% of tin used as a raw material can be used for the proton conductive membrane, and the rest is discarded during the production. Here, in Examples 6, 7, and 8, 92.3, 91.5, and 93.2% of tin contained in the starting material is included in the finally obtained proton conducting membrane. Further, Example 3 requires preparation of an aqueous tin chloride solution, heating, addition of aqueous ammonia, and subsequent filtration, washing, and drying in the course of preparing tin hydrated oxide, whereas Examples 6 and 7 , 8, although a hydrolysis reaction after forming a film is required, a tin compound as a raw material can be directly dispersed in an organic material in a solution state, and the plurality of steps described above can be omitted. That is, although Examples 6, 7, and 8 are proton conductive membranes having the same characteristics as those of Example 3, their raw materials and production costs can be greatly reduced.
[0038]
From the above, it was found that the present Example can secure stable conductivity at 150 ° C. because the heat resistance of the metal oxide hydrate as a proton conductor and the organic polymer material of the membrane is good. Further, by producing a uniform film in the form of an oxide hydrate precursor and then generating a metal oxide hydrate by hydrolysis, the dispersion of proton conductors in the film is greatly increased. Therefore, proton conductivity can be improved as compared with the conventional case. Furthermore, the use of tin hydrated oxide makes it possible to reduce the dependence of conductivity on water vapor pressure. In addition, the production cost and the proton conductive membrane using the material can significantly reduce the production cost compared to the conventional method.
[0039]
【The invention's effect】
The composite electrolyte of metal oxide hydrate having proton conductivity and organic polymer according to the present invention has sufficiently high ionic conductivity even at a higher temperature than the conventional one. In addition, according to the method of the present invention, a proton conductor membrane having a sufficiently high ion conductivity can be produced at a lower cost than that of the prior art and at a high temperature.
[Brief description of the drawings]
FIG. 1 is a diagram showing a unit configuration of a polymer electrolyte layered fuel cell according to the present invention.
FIG. 2 is an experimental result showing temperature dependence of ion conductivity at a saturated water vapor pressure of an electrolyte membrane according to the present invention.
FIG. 3 is an experimental result showing dependence of ion conductivity at 150 ° C. on the water vapor pressure partial pressure of the electrolyte membrane according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 2 ... Separator, 3 ... Cathode side carbon paper, 4 ... Anode side carbon paper, 5 ... Electrolyte membrane, 6 ... Cathode gas flow path, 7 ... Anode gas flow path.

Claims (1)

プロトン伝導性膜の製造方法において、少なくとも、酸化タングステン水和物若しくは酸化スズ水和物又はニオブをドープした酸化タングステン水和物を含む無機プロトン伝導体の前駆体となる単一又は複数の化合物の溶液、有機物モノマー又はポリマーを含む液状混合物を膜状に成し、これを硬化又は架橋させた後、該無機プロトン伝導体の前駆体を酸性水溶液若しくはアルカリ性水溶液又は蒸気で処理し、膜中に無機固体プロトン伝導体を形成させることを特徴とするプロトン伝導性膜の製造方法。In the method for producing a proton conductive membrane, at least a single compound or a plurality of compounds serving as a precursor of an inorganic proton conductor containing tungsten oxide hydrate or tin oxide hydrate or niobium-doped tungsten oxide hydrate . A liquid mixture containing a solution, an organic monomer, or a polymer is formed into a film and cured or cross-linked. Then, the precursor of the inorganic proton conductor is treated with an acidic aqueous solution, an alkaline aqueous solution, or steam , and an inorganic substance is contained in the film. A method for producing a proton conductive membrane, comprising forming a solid proton conductor.
JP2001088086A 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane Expired - Lifetime JP4254990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088086A JP4254990B2 (en) 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088086A JP4254990B2 (en) 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane

Publications (2)

Publication Number Publication Date
JP2002289051A JP2002289051A (en) 2002-10-04
JP4254990B2 true JP4254990B2 (en) 2009-04-15

Family

ID=18943228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088086A Expired - Lifetime JP4254990B2 (en) 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane

Country Status (1)

Country Link
JP (1) JP4254990B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856699B2 (en) * 2002-01-11 2006-12-13 ニッポン高度紙工業株式会社 High ion conductive solid electrolyte and electrochemical system using the solid electrolyte
KR100486728B1 (en) * 2002-12-12 2005-05-03 삼성에스디아이 주식회사 Nanocomposite electrolyte membrane and fuel cell employing the same
CN101080835A (en) * 2004-12-14 2007-11-28 株式会社日立制作所 Electrolyte membrane for fuel cell, process for producing the same, membrane/electrode union, and fuel cell
JP4809753B2 (en) * 2006-11-06 2011-11-09 ニッポン高度紙工業株式会社 Method for producing composite compound solid electrolyte
JP5194448B2 (en) * 2006-12-22 2013-05-08 株式会社豊田中央研究所 Polymer electrolyte fuel cell
JP5322145B2 (en) * 2007-05-30 2013-10-23 株式会社日立製作所 Composite electrolyte membrane for fuel cell and production method thereof, membrane electrode assembly and fuel cell
FR2916653B1 (en) * 2007-06-01 2011-05-06 Areva Np METHOD FOR OPTIMIZING THE IONIC CONDUCTIVITY OF A CONDUCTIVE ION MEMBRANE
JP4604076B2 (en) 2007-11-07 2010-12-22 国立大学法人静岡大学 Electrolyte membrane for fuel cell
JP5523965B2 (en) * 2010-07-23 2014-06-18 三井化学株式会社 POLYMER ELECTROLYTE PARTICLE, PROCESS FOR PRODUCING THE SAME, AND SOLID POLYMER ELECTROLYTE

Also Published As

Publication number Publication date
JP2002289051A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
CN111164810B (en) Radical scavenger, method of preparing the same, membrane-electrode assembly including the radical scavenger, and fuel cell including the same
CN110870118B (en) Membrane electrode assembly, method of manufacturing the same, and fuel cell including the same
JP3607862B2 (en) Fuel cell
US6602630B1 (en) Membrane electrode assemblies for electrochemical cells
US7803495B2 (en) Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
JP4390558B2 (en) Electrocatalyst layer for fuel cells
KR100684836B1 (en) Catalyst complex for fuel cell, method for preparing the same, membrane-electrode assembly comporising the same, and fuel cell system comprising the same
EP1946400A2 (en) High durability fuel cell components with cerium oxide additives
JP2006142293A (en) Metal catalyst, manufacturing method of metal catalyst, electrode, manufacturing method of electrode and fuel cell
JP7181404B2 (en) Catalyst, method for producing same, electrode containing same, membrane-electrode assembly containing same, and fuel cell containing same
EP3408885A1 (en) Catalyst
US7179560B2 (en) Composite electrolyte membrane and fuel cell containing the same
US8173712B2 (en) Modified inorganic material with ion exchange capacity, composite electolyte membrane comprising the same, and fuel cell comprising the composite electrolyte membrane
JP4254990B2 (en) Proton conductive membrane manufacturing method and proton conductive membrane
JP5669201B2 (en) Composition for forming catalyst layer and method for producing catalyst layer
TW200919813A (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP2003142124A (en) Electrolyte film and solid high polymer type fuel cell using the same
JP2002198067A (en) High-temperature operating solid polymer composite electrolyte membrane, membrane/electrode bonded body and fuel cell
JP2007520852A (en) High-temperature proton conducting polymer membrane, method for producing the same, membrane-electrode assembly using the same, and fuel cell including the same
JP2005317238A (en) Solid polymer fuel cell, hybrid membrane, and membrane-electrode junction
CN1180249A (en) Gas diffusion electrodes based on polyethersulfone carbon blends
JP2002305007A (en) Solid polymer type fuel cell
JP3911120B2 (en) Solid polymer electrolyte, membrane thereof, electrode catalyst coating solution, membrane / electrode assembly using the same, and fuel cell
EP4235876A1 (en) Catalyst layer for fuel cell, manufacturing method therefor, and membrane-electrode assembly and fuel cell which comprise same
JP2005285511A (en) Electrode catalyst ink for fuel cell and manufacturing method of electrode catalyst ink for fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term