JP2002289051A - Manufacturing method for proton conductive membrane and proton conductive membrane - Google Patents

Manufacturing method for proton conductive membrane and proton conductive membrane

Info

Publication number
JP2002289051A
JP2002289051A JP2001088086A JP2001088086A JP2002289051A JP 2002289051 A JP2002289051 A JP 2002289051A JP 2001088086 A JP2001088086 A JP 2001088086A JP 2001088086 A JP2001088086 A JP 2001088086A JP 2002289051 A JP2002289051 A JP 2002289051A
Authority
JP
Japan
Prior art keywords
membrane
oxide hydrate
electrolyte membrane
proton conductive
proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001088086A
Other languages
Japanese (ja)
Other versions
JP4254990B2 (en
Inventor
Masashi Yamaga
賢史 山賀
Yuichi Kamo
友一 加茂
Tetsuichi Kudo
徹一 工藤
Masaru Miyayama
勝 宮山
Yuujitsu Tanaka
優実 田中
Itaru Honma
格 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Original Assignee
Hitachi Ltd
National Institute of Advanced Industrial Science and Technology AIST
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, National Institute of Advanced Industrial Science and Technology AIST, University of Tokyo NUC filed Critical Hitachi Ltd
Priority to JP2001088086A priority Critical patent/JP4254990B2/en
Publication of JP2002289051A publication Critical patent/JP2002289051A/en
Application granted granted Critical
Publication of JP4254990B2 publication Critical patent/JP4254990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a high-temperature-activated solid polymer complex electrolyte membrane, a membrane/electrode junction, and a fuel cell, which have superior durability and are low cost. SOLUTION: A hydrated metal oxide represented by hydrated tungstic oxide, tin oxide, etc., is employed as a proton carrier, and a heat resistant polymer membrane obtained by chemically modifying organic polymer, or organic molecule and inorganic molecule, at nano-level is employed as a matrix material for forming a membrane. The hydrated metal oxide is made to complex the heat resistant polymer membrane to form an electrolyte membrane. Thus, as the purpose of this invention, the solid polymer electrolyte with conductivity and durability sufficient for practical use and producible in low cost can be provided, and the complex electrolyte membrane retaining sufficiently high ion conductivity even in a high temperature range of approximately 150 deg. can be achieved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池、水電解、
湿度センサ、ガスセンサ等に用いられるプロトン伝導性
電解質膜等に好適な耐酸化性等に優れた低コスト高耐久
性の無機物と有機高分子の複合電解質膜に関するもので
ある。
TECHNICAL FIELD The present invention relates to a fuel cell, water electrolysis,
The present invention relates to a low-cost, high-durability composite electrolyte membrane of an inorganic substance and an organic polymer having excellent oxidation resistance and the like, which is suitable for a proton-conductive electrolyte membrane used for a humidity sensor, a gas sensor, and the like.

【0002】[0002]

【従来の技術】固体高分子電解質は高分子鎖中にスルホ
ン酸基等の電解質基を有する固体高分子材料であり、特
定のイオンと強固に結合したり、陽イオン又は陰イオン
を選択的に透過する性質を有していることから、粒子、
繊維、あるいは膜状に成形し、電気透析、拡散透析、電
池隔膜、センサー用電解質膜など各種の用途に利用され
ているものである。
2. Description of the Related Art A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group in a polymer chain, and is capable of firmly binding to a specific ion or selectively forming a cation or anion. Because it has the property of transmitting, particles,
It is formed into fibers or membranes and is used for various applications such as electrodialysis, diffusion dialysis, battery membranes, and electrolyte membranes for sensors.

【0003】固体高分子電解質型燃料電池はプロトン伝
導性の固体高分子電解質膜の両面に一対の電極を設け、
メタン、メタノールなどの低分子の炭化水素を改質する
ことにより得られる水素ガスを燃料ガスとして一方の電
極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤
として他方の電極(空気極)へ供給し、電力を得るもの
である。また、水電解は、固体高分子電解質膜を用いて
水を電気分解することにより水素と酸素を製造する方法
である。
A solid polymer electrolyte fuel cell is provided with a pair of electrodes on both sides of a proton conductive solid polymer electrolyte membrane,
Hydrogen gas obtained by reforming low molecular hydrocarbons such as methane and methanol is supplied as fuel gas to one electrode (fuel electrode), and oxygen gas or air is used as an oxidant to the other electrode (air electrode). To obtain power. Water electrolysis is a method for producing hydrogen and oxygen by electrolyzing water using a solid polymer electrolyte membrane.

【0004】燃料電池や水電解においては、プロトン伝
導性の固体高分子膜としてDuPont社、Dow社、
旭化成や旭硝子社から提案されているパーフルオロカー
ボンスルホン酸膜に代表されるフッ素系電解質膜が化学
的安定性に優れていることから、過酷な条件下で使用さ
れる電解質膜として使用されている。
[0004] In fuel cells and water electrolysis, DuPont, Dow and
Fluoride-based electrolyte membranes represented by perfluorocarbon sulfonic acid membranes proposed by Asahi Kasei and Asahi Glass have excellent chemical stability, and are therefore used as electrolyte membranes used under severe conditions.

【0005】また、食塩電解は固体高分子電解質膜を用
いて塩化ナトリウム水溶液を電気分解することにより、
水酸化ナトリウムと、塩素と水素を製造する方法であ
る。この場合、固体高分子電解質膜は塩素と高温、高濃
度の水酸化ナトリウム水溶液にさらされるので、これら
に対する耐性の乏しい炭化水素系電解質膜を使用するこ
とができない。そのため、食塩電解用の固体高分子電解
質膜には、一般に、塩素及び高温、高濃度の水酸化ナト
リウム水溶液に対して耐久性があり、さらに、発生する
イオンの逆拡散を防ぐために表面に部分的にカルボン酸
基を導入したパーフルオロスルホン酸膜が用いられてい
る。
[0005] Salt electrolysis is performed by electrolyzing an aqueous sodium chloride solution using a solid polymer electrolyte membrane.
This is a method for producing sodium hydroxide, chlorine and hydrogen. In this case, since the solid polymer electrolyte membrane is exposed to chlorine and a high-temperature, high-concentration aqueous sodium hydroxide solution, it is not possible to use a hydrocarbon-based electrolyte membrane having poor resistance to these. Therefore, the solid polymer electrolyte membrane for salt electrolysis is generally durable against chlorine and high-temperature, high-concentration aqueous sodium hydroxide, and is partially applied to the surface to prevent back diffusion of generated ions. A perfluorosulfonic acid membrane having a carboxylic acid group introduced thereinto is used.

【0006】ところで、パーフルオロスルホン酸膜に代
表されるフッ素系電解質は、C−F結合を有しているた
めに化学的安定性が非常に高く、上述した燃料電池用、
水電解用、あるいは食塩電解用の固体高分子電解質膜の
他、ハロゲン化水素酸電解用の固体高分子電解質膜とし
ても用いられ、さらにはプロトン伝導性を利用して、湿
度センサ、ガスセンサ、酸素濃縮器等にも広く応用され
ているものである。
Meanwhile, a fluorine-based electrolyte typified by a perfluorosulfonic acid membrane has a very high chemical stability due to having a C—F bond, and is used for the above-mentioned fuel cell.
In addition to solid polymer electrolyte membranes for water electrolysis or salt electrolysis, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis.Furthermore, utilizing proton conductivity, humidity sensors, gas sensors, oxygen sensors It is widely applied to concentrators and the like.

【0007】しかしながら、フッ素系電解質は製造工程
が複雑で、非常に高価であるという欠点がある。又、高
耐熱性といっても耐熱限界は100℃を超えない。その
ため、フッ素系電解質膜は、宇宙用あるいは軍用の固体
高分子型燃料電池等、特殊な用途に用いられ、自動車用
の低公害動力源としての固体高分子型燃料電池、民生用
小型分散電源、携帯用電源等への応用など低分子の炭化
水素を原燃料として水素ガスに改質して用いる場合に
は、改質ガスを冷却したり改質ガス中の一酸化炭素を除
去する必要があるなどシステムを複雑にする要因になっ
ていた。又、電解質膜の使用温度限界が低いためプロト
ン伝導性が低い、電極反応速度に起因する分極が大きく
なる、水の2相領域で運転するために水分管理が複雑に
なるなどの問題点を持ちこの燃料電池の実現性を阻んで
きた。
However, the fluorine-based electrolyte has a drawback that the production process is complicated and very expensive. Further, even if it is said that it has high heat resistance, the heat resistance limit does not exceed 100 ° C. For this reason, fluorine-based electrolyte membranes are used for special applications such as solid-state or military solid-state polymer fuel cells, and are used as low-pollution power sources for automobiles. When reforming low-molecular hydrocarbons into hydrogen gas as a raw fuel for use in portable power sources, etc., it is necessary to cool the reformed gas or remove carbon monoxide in the reformed gas This was a factor that complicated the system. In addition, there are problems such as low proton conductivity due to low operating temperature limit of the electrolyte membrane, large polarization caused by the electrode reaction rate, and complicated water management due to operation in the two-phase region of water. This has hindered the feasibility of this fuel cell.

【0008】そこで、フッ素系電解質膜と同等以上の耐
酸化劣化特性を有し、しかも低コストで製造可能な固体
高分子電解質膜を得るために、従来から種々の試みがな
されている。例えば、特開平9−102322号公報には、フ
ッ化炭素系ビニルモノマと炭化水素系ビニルモノマとの
共重合によって作られた主鎖と、スルホン酸基を有する
炭化水素系側鎖とから構成される、スルホン酸型ポリス
チレン−グラフト−エチレンテトラフルオロエチレン共
重合体(ETFE)膜が提案されている。特開平9−102322
号公報に開示されているスルホン酸型ポリスチレン−グ
ラフト−ETFE膜は安価であり、燃料電池用の固体高分子
電解質膜として十分な強度を有し、しかもスルホン酸基
導入量を増やすことによって伝導率を向上させることが
可能とされている。しかしながら、スルホン酸型ポリス
チレン−グラフト−ETFE膜は、フッ化炭素系ビニル
モノマと炭化水素系ビニルモノマとの共重合によって作
られた主鎖部分の耐酸化劣化特性は高いが、スルホン酸
基を導入した側鎖部分は、酸化劣化を受けやすい炭化水
素系高分子である。従って、これを燃料電池に用いた場
合には、膜全体の耐酸化劣化特性が不十分であり、耐久
性に乏しいという問題がある。
Therefore, various attempts have hitherto been made to obtain a solid polymer electrolyte membrane having oxidation resistance deterioration characteristics equal to or higher than that of the fluorine-based electrolyte membrane and which can be manufactured at low cost. For example, JP-A-9-102322 discloses a main chain made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and a hydrocarbon side chain having a sulfonic acid group. Sulfonic acid type polystyrene-graft-ethylenetetrafluoroethylene copolymer (ETFE) membranes have been proposed. JP-A-9-102322
The sulfonic acid type polystyrene-graft-ETFE membrane disclosed in Japanese Patent Application Publication No. H06-27139 is inexpensive, has sufficient strength as a solid polymer electrolyte membrane for fuel cells, and has a conductivity by increasing the amount of sulfonic acid groups introduced. It is possible to improve. However, the sulfonic acid type polystyrene-graft-ETFE membrane has a high oxidation resistance property of a main chain portion formed by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. The chain portion is a hydrocarbon polymer that is susceptible to oxidative degradation. Therefore, when this is used for a fuel cell, there is a problem that the oxidation deterioration resistance of the whole membrane is insufficient and the durability is poor.

【0009】また、米国特許第4,012,303号及び米国特
許第4,605,685号には、フッ化炭素系ビニルモノマと炭
化水素系ビニルモノマとの共重合によって作られた膜
に、α,β,β-トリフルオロスチレンをグラフト重合
させ、これにスルホン酸基を導入して固体高分子電解質
膜とした、スルホン酸型ポリ(トリフルオロスチレン)
−グラフト−ETFE膜が提案されている。これは、前記の
スルホン酸基を導入したポリスチレン側鎖部の化学的安
定性が十分ではないとの認識を前提に、スチレンの代わ
りに、部分的にフッ素化したα,β,β-トリフルオロ
スチレンを用いたものである。しかしながら、側鎖部分
の原料となるα,β,β−トリフルオロスチレンは、合
成が困難であるため、燃料電池用の固体高分子電解質膜
として応用することを考えた場合には、前述のナフィオ
ンの場合と同様に高いコストとなるという問題がある。
また、α,β,β−トリフルオロスチレンは重合反応性
が低いためグラフト側鎖として導入できる量が少なく、
得られる膜の伝導率が低いという問題がある。また、上
記した膜はガラス転移点が比較的低く、スルホン酸基が
イオン伝導サイトであるために100℃を超えるような
水蒸気圧の高い環境では相対湿度が低下すると膜のイオ
ン伝導性が大幅に低下するために高温領域で作動するデ
バイスには本質的に使用できないという問題点があっ
た。
Further, US Pat. No. 4,012,303 and US Pat. No. 4,605,685 disclose that α, β, β-trifluorostyrene is added to a film formed by copolymerizing a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer. Sulfonic acid type poly (trifluorostyrene) obtained by graft polymerization and introducing a sulfonic acid group into a solid polymer electrolyte membrane
-Graft-ETFE membranes have been proposed. This is based on the premise that the chemical stability of the polystyrene side chain into which the sulfonic acid group is introduced is not sufficient, and instead of styrene, partially fluorinated α, β, β-trifluoro is used. It uses styrene. However, since α, β, β-trifluorostyrene, which is a raw material for the side chain portion, is difficult to synthesize, when considering application as a solid polymer electrolyte membrane for a fuel cell, the aforementioned Nafion There is a problem that the cost is high as in the case of (1).
Further, α, β, β-trifluorostyrene has a low polymerization reactivity, so that a small amount can be introduced as a graft side chain,
There is a problem that the conductivity of the obtained film is low. In addition, the above-mentioned membrane has a relatively low glass transition point, and since the sulfonic acid group is an ion-conducting site, the ionic conductivity of the membrane is greatly reduced when the relative humidity is reduced in an environment having a high water vapor pressure exceeding 100 ° C. There is a problem that the device cannot be used essentially in a device operating in a high temperature region because of its lowering.

【0010】[0010]

【発明が解決しようとする課題】本発明が解決しようと
する課題は従来のフッ素系電解質膜の耐熱限界である1
00℃以上の温度においても安定なプロトン伝導率と機
械強度を維持し、かつ低コストであるプロトン伝導性膜
を提供する。
The problem to be solved by the present invention is the heat resistance limit of the conventional fluorine-based electrolyte membrane.
Provided is a low-cost proton conductive membrane that maintains stable proton conductivity and mechanical strength even at a temperature of 00 ° C. or higher.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、発明者等は無機プロトン伝導性材料に着目し、こ
れと耐熱性有機高分子材料を複合した電解質膜の研究を
鋭意行った。その結果、プロトンキャリアとして酸化タ
ングステンや酸化スズの水和物に代表される金属酸化物
水和物と、膜を形成するマトリックス材料として耐熱
性、耐酸性の高い有機高分子とを複合して電解質膜を形
成することによって本発明の目的とするフッ素系電解質
と同等以上、もしくは実用上十分な耐劣化特性を有し、
しかも低コストで製造可能な高耐久性プロトン伝導性電
解質膜を提供できることを見出した。更に電解質膜を製
造するにあたり、無機プロトン伝導体の前駆体となる単
一又は複数の化合物の溶液、有機物モノマー又はポリマ
ーを少なくとも含有する液状混合物を膜状に成し、これ
を硬化又は架橋させた後、無機プロトン伝導体の前駆体
をプロトン伝導体に転換させるための薬剤を含む溶液な
いしガスを含む気体で処理し、膜中に無機固体プロトン
伝導体を形成させる方法を見出した。このような方法を
採用することにより、非相溶性の膜を形成するマトリッ
クス材と無機固体プロトン伝導体を微少にかつ均一に分
散でき、分散濃度を高めることが可能となり、100℃
程度の高温領域でも十分に高いイオン伝導性を有する無
機プロトン伝導体と有機高分子の複合電解質膜が実現で
きる事を発明するに至った。
Means for Solving the Problems In order to achieve the above object, the present inventors have paid attention to an inorganic proton conductive material and have intensively studied an electrolyte membrane in which the material is combined with a heat-resistant organic polymer material. . As a result, a metal oxide hydrate represented by a hydrate of tungsten oxide or tin oxide as a proton carrier and an organic polymer having high heat resistance and acid resistance as a matrix material for forming a film are combined to form an electrolyte. By forming a film, it is equivalent to or more than the fluorine-based electrolyte intended for the present invention, or has practically sufficient deterioration resistance,
In addition, it has been found that a highly durable proton conductive electrolyte membrane that can be manufactured at low cost can be provided. Furthermore, upon producing an electrolyte membrane, a solution of a compound or a plurality of compounds to be a precursor of an inorganic proton conductor, a liquid mixture containing at least an organic monomer or a polymer was formed into a film, and this was cured or crosslinked. Later, they found a method of forming an inorganic solid proton conductor in a membrane by treating the precursor of the inorganic proton conductor with a solution or gas containing a drug for converting the precursor into a proton conductor. By adopting such a method, it is possible to finely and uniformly disperse the matrix material and the inorganic solid proton conductor that form an incompatible film, and it is possible to increase the dispersion concentration.
The inventors have invented that a composite electrolyte membrane of an inorganic proton conductor and an organic polymer having sufficiently high ionic conductivity can be realized even in a high temperature range of about the same level.

【0012】[0012]

【発明の実施の形態】本発明の実施態様は、以下に詳し
く説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail below.

【0013】本発明によるプロトン伝導性膜は、無機プ
ロトン伝導体の前駆体となる単一又は複数の化合物の溶
液、有機物モノマー又はポリマーを少なくとも含む液状
混合物を膜状に成し、これを硬化又は架橋させた後、該
無機プロトン伝導体の前駆体をプロトン伝導体に転換さ
せるための薬剤を含む溶液ないしガスを含む気体で処理
し、膜中に無機固体プロトン伝導体を形成させて実現さ
れる。本発明において100℃以上で機能する無機プロ
トン伝導体としては酸化タングステン水和物、スズ酸化
物水和物あるいは酸化タングステン水和物にニオブをド
ープした酸化タングステン水和物などを用いることがで
き、これらのプロトン伝導体の単一成分あるいは複数の
成分を混合して用いることができる。有機高分子膜を形
成する材料としては耐熱性、耐酸性、可撓性を有する材
料であれば特に限定はないが、ポリイミド系材料、エポ
キシ系材料、ポリエーテルアクリレイト系材料は好まし
い材料である。プロトン伝導膜を作成するにあたり、プ
ロトン伝導体の前駆体としては塩化物、硫酸塩、各種ア
ルコキシド、及び有機酸、アミン系錯体などの形態のも
のから前記した有機高分子膜前駆体との相溶性を持つも
のが選ばれる。プロトン伝導性電解質膜は1)マトリッ
クスとなる有機高分子材料の溶液もしくは前駆体の溶液
と、その溶液に対して相溶性を持つプロトン伝導体前駆
体、また必要に応じて適当な分散剤とを混合して均一系
を作製するステップ、2)均一混合系に硬化剤或いは重
合触媒を添加するステップ、3)均一混合系を膜状にキ
ャステイングし、膜化するステップ、4)作製された膜
のプロトン伝導体前駆体を酸化物水和物に変換するステ
ップを経て作製される。膜化するステップでは有機高分
子膜が十分な強度と可撓性が与えられる方法であれば特
に限定はなく有機高分子膜前駆体の特性に依存する熱硬
化、架橋重合、光重合などの反応が選択される。又プロ
トン伝導体前駆体への変換は酸化タングステン水和物、
スズ酸化物水和物あるいは酸化タングステン水和物にニ
オブをドープした酸化タングステン水和物など酸化物水
和物を得ることが目的であり特定の反応に限定されるこ
とはないが、用いられた前駆体が塩化物、硫酸塩、各ア
ルコキシド類の場合には酸性水溶液或いはアルカリ性水
溶液による加水分解など、前駆体が有機酸錯体や過酸化
水素錯体である場合には40〜100℃の比較的低温域
で熱分解した後水溶液や蒸気に接触させて賦活する方法
などが有効である。
[0013] The proton conductive membrane according to the present invention forms a liquid mixture containing at least a solution of one or more compounds as precursors of an inorganic proton conductor, an organic monomer or a polymer, and cures or hardens the mixture. After the crosslinking, the precursor of the inorganic proton conductor is treated with a solution or gas containing an agent for converting the precursor into a proton conductor, thereby forming an inorganic solid proton conductor in the membrane. . Tungsten oxide hydrate, tin oxide hydrate or tungsten oxide hydrate doped with niobium can be used as the inorganic proton conductor functioning at 100 ° C. or higher in the present invention, A single component of these proton conductors or a mixture of a plurality of components can be used. The material for forming the organic polymer film is not particularly limited as long as it has heat resistance, acid resistance, and flexibility, but a polyimide material, an epoxy material, and a polyether acrylate material are preferable materials. . In preparing the proton conductive membrane, the precursors of the proton conductor include chlorides, sulfates, various alkoxides, and organic acids and amine complexes, and are compatible with the above-described organic polymer membrane precursors. Those with are selected. The proton conductive electrolyte membrane is composed of 1) a solution of an organic polymer material or a precursor solution serving as a matrix, a proton conductor precursor having compatibility with the solution, and, if necessary, an appropriate dispersant. 2) adding a curing agent or a polymerization catalyst to the homogeneous mixed system, 3) casting the uniform mixed system into a film, and forming a film. It is produced through a step of converting a proton conductor precursor into an oxide hydrate. In the step of forming a film, there is no particular limitation as long as the organic polymer film has sufficient strength and flexibility, and reactions such as thermosetting, cross-linking polymerization, and photopolymerization depending on the characteristics of the organic polymer film precursor are performed. Is selected. The conversion to the proton conductor precursor is tungsten oxide hydrate,
The purpose is to obtain an oxide hydrate such as a tin oxide hydrate or a tungsten oxide hydrate doped with niobium in a tungsten oxide hydrate. When the precursor is chloride, sulfate, or each alkoxide, hydrolysis with an acidic aqueous solution or an alkaline aqueous solution is performed. When the precursor is an organic acid complex or a hydrogen peroxide complex, a relatively low temperature of 40 to 100 ° C. It is effective to use a method in which thermal decomposition is performed in a region and then activated by contact with an aqueous solution or steam.

【0014】本発明によるプロトン伝導性電解質を燃料
電池用として使用する際には、一般的には、膜の状態で
使用されるが、これに限定されるものではなく筒状で用
いることも可能である。すなわち、上記したプロトンキ
ャリアとなる無機酸化物水和物と高分子マトリックス材
の分散混合物を直接膜状にキャステイングする方法、あ
るいは該分散混合物を多孔質芯材、織布あるいは不織布
などに含浸キャステイングするなどの方法を採る事がで
きる。特に芯材を用いる方法は、芯材に高強度のものを
用いる事で得られる膜を薄くできることから電解質膜の
実行抵抗を小さくする上で有利である。又、本発明によ
り作製されたプロトン伝導性電解質膜を使用するにあた
って、有機溶媒で表面の有機マトリックス材のみを溶解
によって一部除去したり膜の表面を一部研磨するなどの
表面処理を施すことは電極との接触抵抗を低減する上で
有効な方法である。
When the proton conductive electrolyte according to the present invention is used for a fuel cell, it is generally used in the form of a membrane, but is not limited to this, and may be used in the form of a cylinder. It is. That is, a method in which a dispersion mixture of the above-described inorganic oxide hydrate serving as a proton carrier and a polymer matrix material is directly cast into a membrane, or the dispersion mixture is cast into a porous core material, a woven fabric or a nonwoven fabric, and the like. And so on. In particular, the method using a core material is advantageous in reducing the effective resistance of the electrolyte membrane since the film obtained by using a high-strength core material can be thinned. Further, when using the proton conductive electrolyte membrane produced according to the present invention, a surface treatment such as dissolving only part of the organic matrix material on the surface with an organic solvent or partially polishing the surface of the membrane is performed. Is an effective method for reducing the contact resistance with the electrode.

【0015】本発明によるプロトン伝導性電解質膜の厚
みは、特に制限はないが実用に耐える膜の強度を得るに
は10μmより厚い方が好ましく、膜抵抗の低減のために
は200μmより薄い方が好ましく、特に燃料電池電池の
内部抵抗を小さくしたりセンサーとしての感度を高める
ためには10〜30μmがより好ましい。膜厚は、均一混合
系の粘度あるいは基板上へのキャスト厚みにより制御で
きる。又、本発明によるプロトン伝導性電解質を製造す
る際に、通常の高分子に使用される可塑剤、安定剤、離
型剤、等の添加剤を本発明の目的に損なわない範囲内で
使用することもできる。
The thickness of the proton conductive electrolyte membrane according to the present invention is not particularly limited, but is preferably larger than 10 μm in order to obtain a practically strong membrane, and smaller than 200 μm in order to reduce the membrane resistance. More preferably, it is more preferably 10 to 30 μm in order to reduce the internal resistance of the fuel cell and to increase the sensitivity as a sensor. The film thickness can be controlled by the viscosity of the homogeneous mixed system or the thickness of the cast on the substrate. Further, when producing the proton conductive electrolyte according to the present invention, additives such as a plasticizer, a stabilizer, a release agent, and the like used for a general polymer are used within a range that does not impair the object of the present invention. You can also.

【0016】燃料電池用として用いる膜/電極接合体に
使用されるガス拡散電極は、触媒金属の微粒子を担持し
た伝導材を電解質膜上に塗布又は予め膜状に成形した電
極層を貼り合わせるなどにより構成されるものであり、
必要に応じて撥水剤や結着剤が含まれていてもよい。ま
た、触媒を担持していない伝導材と撥水剤や結着剤とか
らなる層が、触媒層の外側に形成してあるものでもよ
い。このガス拡散電極に使用される触媒金属としては、
水素の酸化反応および酸素の還元反応を促進する金属で
あればいずれのものでもよく、例えば、白金、金、銀、
パラジウム、イリジウム、ロジウム、ルテニウム、鉄、
コバルト、ニッケル、クロム、タングステン、マンガ
ン、バナジウム、あるいはそれらの合金が挙げられる。
このような触媒の中で、特にカソードでは白金が、アノ
ードでは白金とルテニウムの二元系が多くの場合用いら
れる。触媒となる金属の粒径は、通常は10〜300オング
ストロームである。触媒の担持量は、電極が成形された
状態で例えば0.01〜10mg/cm2が望ましい。
A gas diffusion electrode used in a membrane / electrode assembly used for a fuel cell is formed by applying a conductive material carrying fine particles of a catalyst metal on an electrolyte membrane or bonding an electrode layer formed in a film shape in advance. Is composed of
If necessary, a water repellent or a binder may be contained. Further, a layer formed of a conductive material not carrying a catalyst, a water repellent and a binder may be formed outside the catalyst layer. As the catalytic metal used for this gas diffusion electrode,
Any metal that promotes the oxidation reaction of hydrogen and the reduction reaction of oxygen may be used, for example, platinum, gold, silver,
Palladium, iridium, rhodium, ruthenium, iron,
Cobalt, nickel, chromium, tungsten, manganese, vanadium, or alloys thereof are mentioned.
Among such catalysts, a binary system of platinum and ruthenium is often used, particularly for the cathode and platinum for the anode. The particle size of the metal serving as a catalyst is usually 10 to 300 Å. The supported amount of the catalyst is desirably, for example, 0.01 to 10 mg / cm 2 in a state where the electrode is formed.

【0017】伝導材としては、電子伝導性物質であれば
いずれのものでも良く、例えば各種金属や炭素材料など
が挙げられる。炭素材料としては、例えば、ファーネス
ブラックおよびアセチレンブラック等のカーボンブラッ
ク、活性炭、黒鉛などが挙げられ、これらが単独あるい
は混合して使用される。撥水剤としては、例えばフッ素
化カーボンやポリテトラフルオロエチレン分散剤などが
使用される。触媒層を形成するバインダーとしては本発
明のプロトン伝導性電解質マトリックス高分子をそのま
ま用いることが好ましいが、他の各種樹脂を用いても差
し支えない。その場合は撥水性を有する含フッ素樹脂が
好ましく、特に耐熱性、耐酸化性の優れたものがより好
ましく、例えばポリテトラフルオロエチレン、テトラフ
ルオロエチレン−パーフルオロアルキルビニルエーテル
共重合体、およびテトラフルオロエチレン−ヘキサフル
オロプロピレン共重合体が挙げられる。
As the conductive material, any material may be used as long as it is an electron conductive material, and examples thereof include various metals and carbon materials. Examples of the carbon material include carbon black such as furnace black and acetylene black, activated carbon, graphite and the like, and these are used alone or in combination. As the water repellent, for example, a fluorinated carbon or a polytetrafluoroethylene dispersant is used. As the binder for forming the catalyst layer, the proton conductive electrolyte matrix polymer of the present invention is preferably used as it is, but other various resins may be used. In that case, a fluorine-containing resin having water repellency is preferable, and those having excellent heat resistance and oxidation resistance are more preferable. For example, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkylvinyl ether copolymer, and tetrafluoroethylene -Hexafluoropropylene copolymer.

【0018】燃料電池用として用いる電解質膜と電極接
合法についても特に制限はなく、公知の方法を適用する
ことが可能である。膜/電極接合体の製作方法として、
例えば、白金触媒紛をポリテトラフルオロエチレン懸濁
液と混ぜ、カーボンペーパーに塗布、熱処理して触媒層
を形成する。次いで、電解質膜と同一の電解質溶液又は
前駆体溶液を触媒層に塗布、含浸し、電解質膜とホット
プレスで一体化する方法がある。この他、 本発明にな
る電解質膜又は電解質膜前駆体の溶液を予め白金触媒紛
にコーテイングしたものを電解質膜に塗布する方法、本
発明になる電解質膜又は電解質膜前駆体の溶液と触媒と
でペースト化して電解質膜に塗布する方法、電解質膜に
電極を無電解鍍金する方法、電解質膜に白金族の金属錯
イオンを吸着させた後、還元する方法等を選択すること
ができる。
The method for bonding the electrolyte membrane and the electrode used for the fuel cell is not particularly limited, and a known method can be applied. As a method of manufacturing a membrane / electrode assembly,
For example, a platinum catalyst powder is mixed with a polytetrafluoroethylene suspension, applied to carbon paper, and heat-treated to form a catalyst layer. Next, there is a method in which the same electrolyte solution or precursor solution as the electrolyte membrane is applied to the catalyst layer, impregnated, and integrated with the electrolyte membrane by hot pressing. In addition, a method of applying a solution of an electrolyte membrane or an electrolyte membrane precursor according to the present invention to a platinum catalyst powder in advance coated on a platinum catalyst powder, and a method of coating the electrolyte membrane or an electrolyte membrane precursor solution according to the present invention with a catalyst. A method of forming a paste and applying it to the electrolyte membrane, a method of electrolessly plating an electrode on the electrolyte membrane, a method of adsorbing platinum group metal complex ions on the electrolyte membrane, and then reducing the same can be selected.

【0019】燃料電池は、上記のように形成された電解
質膜とガス拡散電極との接合体の外側に燃料流路と酸化
剤流路を形成する溝付きの集電体としての燃料配流板と
酸化剤配流板を配したものを単セルとし、構成の概略を
図1に示す。単セルの電圧は外部負荷を与えた状態で作
動温度によって異なるが概ね0.5〜0.8Vであり、単セル
を必要とする電圧に対応して複数個、冷却板等を介して
積層することによりスタックが構成される。燃料電池
は、高い温度で作動させる方が電極触媒が高活性となっ
て電極過電圧が減少し、電極の一酸化炭素による被毒も
少ないため好ましい条件であるが、プロトン伝導性電解
質膜は水和状態にないと十分に機能しないため、水分管
理が可能な温度で作動させる必要がある。本発明による
プロトン伝導性電解質は従来の電解質膜に比較して高温
での特性に優れており、燃料電池の作動温度が100℃
以上であっても十分に機能するのが特徴である。(実施
例)以下実施例により本発明をさらに詳しく説明する
が、本発明はこれらに限定されるものではない。なお、
各物性の測定条件は次の通りである。 (実施例1)本発明の実施例として酸化タングステン水
和物/エポキシ樹脂複合プロトン伝導性電解質膜の作製
方法を以下に説明する。金属タングステン粉末10gを30
%過酸化水素水に反応させながら溶解して前駆体となる
過酸化ポリタングステン酸を作製する。得られた水溶液
に5Nの苛性ソーダ(NaOH)水溶液を加えてポリ酸
を完全に分解した後、6N塩酸を加えて黄色不透明沈殿
物を得る。この沈殿物をろ過し、デシケ−タ中で乾燥さ
せた。上記の方法で得られた乾燥粉末10gに400mlの純
水を添加し30分間攪拌し24時間放置した。粉末が沈降
し完全に分離状態となった溶液の上澄み液を捨て、新た
に同量の純水を添加した。同様の洗浄操作を6回繰り返
し、未反応原料に由来する不純物イオンを取り除いた。
洗浄後の酸化タングステン水和物5gに新たに純水500
mlを加えて溶液Aとし、溶液Aを攪拌した。攪拌を停
止した5分後に溶液Aの液表面から溶液50mlをスポイ
トにて採取した。採取した溶液Aを500℃の噴霧式高温
乾燥炉にて急速乾燥させた。噴霧式高温乾燥炉は上方か
ら溶液を霧状に噴霧し、溶液粒子が下降する間に周囲に
設置されたヒーターで溶媒を蒸発させる炉である。ここ
で得られた酸化タングステン水和物を電子顕微鏡で観察
したところ、最大粒子直径が76nmの微細粒子であった。
膜マトリックス材となるエポキシ系樹脂としてアラルダ
イト(昭和高分子製)を選択し、主剤1g、硬化剤1gに酸
化タングステン水和物を2g加えて均一になるように混
合し、スライドガラス上に硬化時の厚さが約70μmにな
るようにアプリケータでキャステイングした。室温で2
4時間硬化させた後研磨テープ(LT−C2000;富士写
真フィルム製)で両面を均一に約20μm程度研磨して約3
0μm厚みに仕上げて酸化タングステン水和物/エポキシ
系樹脂複合プロトン伝導性電解質膜とした。
The fuel cell includes a fuel distribution plate as a current collector having a groove for forming a fuel flow path and an oxidant flow path outside the joined body of the electrolyte membrane and the gas diffusion electrode formed as described above. A single cell provided with an oxidant distribution plate is shown in FIG. The voltage of a single cell varies depending on the operating temperature under an external load, but is generally 0.5 to 0.8 V. Stacking by stacking multiple units via cooling plates etc. corresponding to the voltage required for a single cell Is configured. Operating the fuel cell at a high temperature is a preferable condition because the electrode catalyst becomes highly active, the electrode overvoltage is reduced, and the electrode is less poisoned by carbon monoxide, but the proton conductive electrolyte membrane is hydrated. If it is not in a state, it will not work well, so it must be operated at a temperature that allows moisture management. The proton conductive electrolyte according to the present invention is superior in characteristics at high temperatures as compared with the conventional electrolyte membrane, and the operating temperature of the fuel cell is 100 ° C.
The feature is that it functions sufficiently even with the above. (Examples) Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto. In addition,
The measurement conditions of each physical property are as follows. (Example 1) As an example of the present invention, a method for producing a tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane will be described below. 30g of metal tungsten powder 10g
% Polyperoxytungstic acid that is dissolved and reacted as a precursor while being reacted with aqueous hydrogen peroxide. A 5N aqueous solution of sodium hydroxide (NaOH) is added to the obtained aqueous solution to completely decompose the polyacid, and then 6N hydrochloric acid is added to obtain a yellow opaque precipitate. The precipitate was filtered and dried in a desiccator. 400 g of pure water was added to 10 g of the dry powder obtained by the above method, stirred for 30 minutes and left for 24 hours. The supernatant of the solution in which the powder settled and became completely separated was discarded, and the same amount of pure water was newly added. The same washing operation was repeated six times to remove impurity ions derived from unreacted raw materials.
500 g of pure water is added to 5 g of tungsten oxide hydrate after washing.
The solution A was added to the solution A, and the solution A was stirred. Five minutes after the stirring was stopped, 50 ml of the solution was collected from the surface of the solution A with a dropper. The collected solution A was rapidly dried in a spray-type high-temperature drying oven at 500 ° C. The spray-type high-temperature drying furnace is a furnace in which the solution is sprayed from above into a mist, and the solvent is evaporated by a heater installed around the solution particles while the solution particles descend. When the obtained tungsten oxide hydrate was observed with an electron microscope, it was found to be fine particles having a maximum particle diameter of 76 nm.
Select Araldite (manufactured by Showa Polymer Co., Ltd.) as the epoxy resin used as the membrane matrix material, add 2 g of tungsten oxide hydrate to 1 g of the main agent and 1 g of the curing agent, mix them evenly, and cure them on the slide glass. Was cast with an applicator so that the thickness of the film became about 70 μm. 2 at room temperature
After curing for 4 hours, the both sides are uniformly polished by about 20 μm with a polishing tape (LT-C2000; manufactured by Fuji Photo Film) to about 3 μm.
Finished to a thickness of 0 μm to obtain a tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane.

【0020】次に、白金・ルテニウム担持炭素触媒に乾
燥重量で電解質量が触媒量の60wt%に相当する5重量%
のナフィオン117アルコール水溶液(水、イソプロパノ
ール、ノルマルプロパノールが重量比で20:40:4
0の混合溶媒:Fluka Chemika社製)を添加してペース
ト状に混練したものを上記で得られた60mm×60mmサイズ
の酸化タングステン水和物/エポキシ系樹脂複合プロト
ン伝導性電解質膜上に30mm×30mmのサイズで塗布し60℃
で3時間乾燥してアノードを形成した。得られたアノー
ドの白金担持量は約0.5mg/cm2であり、ルテニウム担持
量は約0.5mg/cm2であった。形成された電解質膜の反対
側の面に、白金担持炭素粉末触媒に乾燥重量でナフィオ
ン117が触媒量の60wt%相当の5重量%のナフィオン117
アルコール水溶液を添加しペースト状に混練したものを
乾燥時の厚さが15μmとなるようにアノードと重なるよ
うに塗布して60℃で3時間乾燥しカソードを形成し電解
質膜/電極接合体を作製した。得られたカソードの白金
担持量は約0.3mg/cm2であった。 (実施例2)本発明のもう1つの実施例によるニオブを
ドープした酸化タングステン水和物/エポキシ系樹脂複
合プロトン伝導性電解質膜の作製方法を以下に説明す
る。金属タングステン粉末10gと金属ニオブ粉末500mgを
30%過酸化水素水に反応させながら溶解して前駆体とな
る過酸化ポリタングステン酸と過酸化ポリニオブ酸水溶
液をそれぞれに作製する。得られた水溶液を金属比が
(Nb/(W+Nb))=0.005となるように混合し、こ
れに5Nの苛性ソーダ(NaOH)水溶液を加えてポリ
酸を完全に分解した後、6N塩酸を加えて黄色不透明沈
殿物を得る。この沈殿物をろ過し、デシケ−タ中で乾燥
させた。上記の方法で得られた乾燥粉末10gに400mlの
純水を添加し30分間攪拌し24時間放置した。粉末が沈
降し完全に分離状態となった溶液の上澄み液を捨て、新
たに同量の純水を添加した。同様の洗浄操作を6回繰り
返し、未反応原料に由来する不純物イオンを取り除い
た。洗浄後のニオブをドープした酸化タングステン水和
物5gに新たに純水500mlを加えて溶液Bとし、溶液B
を攪拌した。攪拌を停止した5分後に溶液Bの液表面か
ら溶液50mlをスポイトにて採取した。採取した溶液B
を500℃の噴霧式高温乾燥炉にて急速乾燥させた。ここ
で得られたニオブをドープした酸化タングステン水和物
を電子顕微鏡で観察したところ、最大粒子直径が73nmの
微細粒子であった。膜マトリックス材となるエポキシ系
樹脂としてアラルダイトを選択し、主剤1g、硬化剤1gに
ニオブをドープした酸化タングステン水和物を2g加え
て均一になるように混合し、スライドガラス上に硬化時
の厚さが約70μmになるようにアプリケータでキャステ
イングした。室温で24時間硬化させた後研磨テープで
両面を均一に約20μm程度研磨して約30μm厚みに仕上げ
てニオブドープ酸化タングステン水和物/エポキシ系樹
脂複合プロトン伝導性電解質膜とした。次に、上記で得
られた60mm×60mmサイズのニオブドープ酸化タングステ
ン水和物/エポキシ系樹脂複合プロトン伝導性電解質膜
上に30mm×30mmのサイズの電極を形成した。形成手法、
電極組成は実施例1と同様である。 (実施例3)本発明のもう1つの実施例による酸化スズ
水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の
作製方法を以下に説明する。塩化第二スズ(SnCl4・5H
2O)17.5gを50mlの水に溶解して60℃に加熱して加水
分解した。これにアンモニア水を加えて100℃で1時
間加熱、熟成し、得られた沈殿物をろ過し、乾燥させて
プロトン伝導性のスズ酸化物水和物(SnO2・nH2O)を得
た。熱重量変化測定からnは約1.7であった。
Next, a dry weight of the platinum-ruthenium-supported carbon catalyst has an electrolytic mass of 5% by weight corresponding to 60% by weight of the catalyst amount.
Nafion 117 alcohol aqueous solution (water, isopropanol, normal propanol in a weight ratio of 20: 40: 4
No. 0 mixed solvent: manufactured by Fluka Chemika) was added and kneaded into a paste, and the resultant mixture was 30 mm × 60 mm × 60 mm size tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. Apply at 30mm size and 60 ℃
For 3 hours to form an anode. The amount of platinum supported on the obtained anode was about 0.5 mg / cm 2 , and the amount of supported ruthenium was about 0.5 mg / cm 2 . On the opposite side of the formed electrolyte membrane, 5% by weight of Nafion 117 corresponding to 60% by weight of the catalyst amount was added to the platinum-supported carbon powder catalyst by dry weight.
An alcohol aqueous solution is added and kneaded into a paste. The paste is applied so that the thickness when dried becomes 15 μm so as to overlap with the anode, and dried at 60 ° C. for 3 hours to form a cathode to form an electrolyte membrane / electrode assembly. did. The amount of platinum carried on the obtained cathode was about 0.3 mg / cm 2 . Embodiment 2 A method for producing a niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. 10g of metal tungsten powder and 500mg of niobium metal powder
A polytungstic peroxide solution and a polyniobate peroxide aqueous solution which are dissolved and reacted as a precursor while reacting with a 30% aqueous hydrogen peroxide solution are prepared respectively. The obtained aqueous solution was mixed so that the metal ratio became (Nb / (W + Nb)) = 0.005, and a 5N aqueous solution of caustic soda (NaOH) was added to completely decompose the polyacid, and then 6N hydrochloric acid was added. A yellow opaque precipitate is obtained. The precipitate was filtered and dried in a desiccator. 400 g of pure water was added to 10 g of the dry powder obtained by the above method, stirred for 30 minutes and left for 24 hours. The supernatant of the solution in which the powder settled and became completely separated was discarded, and the same amount of pure water was newly added. The same washing operation was repeated six times to remove impurity ions derived from unreacted raw materials. 500 ml of pure water is newly added to 5 g of the niobium-doped tungsten oxide hydrate after washing to form a solution B.
Was stirred. Five minutes after stopping the stirring, 50 ml of the solution was collected from the surface of the solution B with a dropper. Collected solution B
Was quickly dried in a spray-type high-temperature drying oven at 500 ° C. Observation of the obtained niobium-doped tungsten oxide hydrate with an electron microscope revealed that the particles were fine particles having a maximum particle diameter of 73 nm. Araldite was selected as the epoxy resin to be used as the film matrix material, 1 g of the base resin, 2 g of niobium-doped tungsten oxide hydrate were added to 1 g of the curing agent, and mixed uniformly so that the thickness at the time of curing on the slide glass was reduced. Casting was performed with an applicator so that the thickness became about 70 μm. After curing at room temperature for 24 hours, both surfaces were uniformly polished with a polishing tape to a thickness of about 20 μm and finished to a thickness of about 30 μm to obtain a niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane. Next, an electrode of 30 mm × 30 mm size was formed on the niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane of 60 mm × 60 mm size obtained above. Formation method,
The electrode composition is the same as in Example 1. (Embodiment 3) A method for producing a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Stannic chloride (SnCl 4 · 5H
The 2 O) 17.5 g was hydrolyzed by heating to dissolve to 60 ° C. in water 50 ml. Aqueous ammonia was added thereto, and the mixture was heated and aged at 100 ° C. for 1 hour. The obtained precipitate was filtered and dried to obtain a proton conductive tin oxide hydrate (SnO 2 .nH 2 O). . From the thermogravimetric change measurement, n was about 1.7.

【0021】作製した酸化スズ水和物10gに400mlの
純水を添加し30分間攪拌し24時間放置した。沈降、分
離した酸化スズ水和物の上澄み液を採取して捨て、新た
に同量の純水を添加した。同様の洗浄操作を6回繰り返
し、未反応原料に由来する不純物イオンを取り除いた。
洗浄後の酸化スズ水和物5gに新たに純水500mlを加
えて溶液Cとし、溶液Cを攪拌した。攪拌を停止した5分
後に溶液Cの液表面近傍から溶液50mlをスポイトにて
採取した。採取した溶液Cを500℃の噴霧式高温乾燥炉に
て急速乾燥させた。ここで得られた酸化スズ水和物を電
子顕微鏡で観察したところ、最大粒子直径が75nmの微細
粒子であることが分かった。膜マトリックス材となるエ
ポキシ系樹脂としてアラルダイトを選択し、主剤1g、硬
化剤1gに酸化スズ水和物を2g加えて均一になるように
混合し、スライドガラス上に硬化時の厚さが約70μmに
なるようにアプリケータでキャステイングした。室温で
24時間硬化させた後研磨テープで両面を均一に約20μ
m程度研磨して約30μm厚みに仕上げて酸化スズ水和物/
エポキシ系樹脂複合プロトン伝導性電解質膜とした。
400 g of pure water was added to 10 g of the prepared tin oxide hydrate, stirred for 30 minutes and left for 24 hours. The supernatant liquid of the precipitated and separated tin oxide hydrate was collected and discarded, and the same amount of pure water was newly added. The same washing operation was repeated six times to remove impurity ions derived from unreacted raw materials.
500 ml of pure water was newly added to 5 g of the washed tin oxide hydrate to obtain a solution C, and the solution C was stirred. Five minutes after stopping the stirring, 50 ml of the solution C was collected from the vicinity of the surface of the solution C with a dropper. The collected solution C was rapidly dried in a spray-type high-temperature drying oven at 500 ° C. Observation of the obtained tin oxide hydrate with an electron microscope revealed that the hydrate was fine particles having a maximum particle diameter of 75 nm. Select Araldite as the epoxy resin to be the film matrix material, add 2 g of tin oxide hydrate to 1 g of the main agent and 1 g of the curing agent, mix them uniformly, and set the thickness on a slide glass to about 70 μm when cured. Was cast with an applicator. After curing at room temperature for 24 hours, use a polishing tape to uniformly coat both sides with about 20μ.
polished to about 30μm thickness and tin oxide hydrate /
An epoxy resin composite proton conductive electrolyte membrane was used.

【0022】次に、上記で得られた60mm×60mmサイズの
酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電
解質膜上に30mm×30mmのサイズの電極を形成した。形成
手法、電極組成は実施例1と同様である。 (実施例4)本発明のもう1つの実施例による酸化タン
グステン水和物/エポキシ系樹脂複合プロトン伝導性電
解質膜の作製方法を以下に説明する。金属タングステン
粉末1gを30%過酸化水素水に反応させながら溶解して前
駆体となる過酸化ポリタングステン酸を作製する。得ら
れた水溶液に5Nの苛性ソーダ(NaOH)水溶液を加
えてポリ酸を完全に分解した後、6N塩酸を加えて黄色
不透明沈殿物を得る。この沈殿物をろ過し、デシケ−タ
中で乾燥させた。上記の方法で得られた乾燥粉末1.2gを
5Nの苛性ソーダ水溶液1.2mlに加えて前駆体溶液とし
た。次に、膜マトリックス材となるエポキシ系樹脂とし
てアラルダイトを選択し、主剤2g、硬化剤2gに上記した
前駆体溶液0.6mlとアセトン0.3mlを加えて均一になるよ
うに混合し、スライドガラス上に硬化時の厚さが約70μ
mになるようにアプリケータでキャステイングした。キ
ャステイング後室温で24時間静置しスライドガラスか
ら剥離させて前駆体膜とした。この膜を3N塩酸水溶液
中に約24時間浸漬した後蒸留水で洗浄を繰り返して黄
色不透明の酸化タングステン水和物/エポキシ系樹脂複
合プロトン伝導性電解質膜を得た。得られた厚さ約70μ
mのプロトン伝導性電解質膜を研磨テープで両面を均一
に約20μm程度研磨して約30μmの厚みとした。膜断面を
電子顕微鏡にて確認したところ、膜中に存在する粒子の
最大直径は71nmであった。
Next, a 30 mm × 30 mm electrode was formed on the 60 mm × 60 mm tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The forming method and electrode composition are the same as those in the first embodiment. Embodiment 4 A method for producing a tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. 1 g of metal tungsten powder is dissolved in a 30% aqueous hydrogen peroxide solution while reacting to produce a polytungstic peroxide as a precursor. A 5N aqueous solution of sodium hydroxide (NaOH) is added to the obtained aqueous solution to completely decompose the polyacid, and then 6N hydrochloric acid is added to obtain a yellow opaque precipitate. The precipitate was filtered and dried in a desiccator. 1.2 g of the dry powder obtained by the above method was added to 1.2 ml of a 5N aqueous sodium hydroxide solution to prepare a precursor solution. Next, araldite was selected as an epoxy resin to be a film matrix material, 0.6 g of the above precursor solution and 0.3 ml of acetone were added to 2 g of the main agent and 2 g of the curing agent, and mixed so as to be uniform, and placed on a slide glass. Approximately 70μ thick when cured
m was cast with an applicator. After the casting, it was allowed to stand at room temperature for 24 hours and peeled off from the slide glass to form a precursor film. This membrane was immersed in a 3N hydrochloric acid aqueous solution for about 24 hours and then repeatedly washed with distilled water to obtain a yellow opaque tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane. The obtained thickness of about 70μ
The proton conductive electrolyte membrane having a thickness of about 30 μm was uniformly polished on both sides with a polishing tape to about 20 μm. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 71 nm.

【0023】次に、上記で得られた60mm×60mmサイズの
酸化タングステン水和物/エポキシ系樹脂複合プロトン
伝導性電解質膜上に30mm×30mmのサイズの電極を形成し
た。形成手法、電極組成は実施例1と同様である。 (実施例5)本発明のもう1つの実施例によるニオブを
ドープした酸化タングステン水和物/エポキシ系樹脂複
合プロトン伝導性電解質膜の作製方法を以下に説明す
る。金属タングステン粉末1gと金属ニオブ粉末50mgを30
%過酸化水素水に反応させながら溶解して前駆体となる
過酸化ポリタングステン酸と過酸化ポリニオブ酸水溶液
をそれぞれに作製する。得られた水溶液を金属比が(N
b/(W+Nb))=0.005となるように混合し、これに
5Nの苛性ソーダ(NaOH)水溶液を加えてポリ酸を
完全に分解した後、6N塩酸を加えて黄色不透明沈殿物
を得る。この沈殿物をろ過し、デシケ−タ中で乾燥させ
た。上記の方法で得られた乾燥粉末1.2gを5Nの苛性ソ
ーダ水溶液1.2mlに加えて前駆体溶液とした。次に、膜
マトリックス材となるエポキシ系樹脂としてアラルダイ
トを選択し、主剤2g、硬化剤2gに上記した前駆体溶液0.
6mlとアセトン0.3mlを加えて均一になるように混合し、
スライドガラス上に硬化時の厚さが約70μmになるよう
にアプリケータでキャステイングした。キャステイング
後室温で24時間静置しスライドガラスから剥離させて
前駆体膜とした。この膜を3N塩酸水溶液中に約24時
間浸漬した後蒸留水で洗浄を繰り返して黄色不透明のニ
オブをドープした酸化タングステン水和物/エポキシ系
樹脂複合プロトン伝導性電解質膜を得た。得られた厚さ
約70μmのプロトン伝導性電解質膜を研磨テープで両面
を均一に約20μm程度研磨して約30μmの厚みとした。膜
断面を電子顕微鏡にて確認したところ、膜中に存在する
粒子の最大直径は70nmであった。
Next, a 30 mm × 30 mm electrode was formed on the 60 mm × 60 mm tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The forming method and electrode composition are the same as those in the first embodiment. Embodiment 5 A method for producing a niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. 30 g of metal tungsten powder 1 g and metal niobium powder 50 mg
% Polytungstic acid and a polyniobate peroxide aqueous solution which are dissolved and reacted as precursors while reacting with a hydrogen peroxide solution. The resulting aqueous solution is adjusted to a metal ratio (N
b / (W + Nb)) = 0.005, and a 5N aqueous solution of caustic soda (NaOH) was added to completely decompose the polyacid. Then, 6N hydrochloric acid was added to obtain a yellow opaque precipitate. The precipitate was filtered and dried in a desiccator. 1.2 g of the dry powder obtained by the above method was added to 1.2 ml of a 5N aqueous sodium hydroxide solution to prepare a precursor solution. Next, araldite was selected as an epoxy-based resin serving as a film matrix material, and 2 g of a main agent and 2 g of a curing agent were added to the precursor solution described above.
Add 6 ml and 0.3 ml of acetone and mix until uniform,
Casting was performed on a slide glass with an applicator so that the thickness at the time of curing was about 70 μm. After the casting, it was allowed to stand at room temperature for 24 hours and peeled off from the slide glass to form a precursor film. This membrane was immersed in a 3N hydrochloric acid aqueous solution for about 24 hours, and then repeatedly washed with distilled water to obtain a yellow opaque niobium-doped tungsten oxide hydrate / epoxy resin composite proton conductive electrolyte membrane. The obtained proton conductive electrolyte membrane having a thickness of about 70 μm was uniformly polished on both sides with a polishing tape to about 20 μm to a thickness of about 30 μm. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 70 nm.

【0024】次に、上記で得られた60mm×60mmサイズの
ニオブをドープした酸化タングステン水和物/エポキシ
系樹脂プロトン伝導性電解質膜上に30mm×30mmのサイズ
の電極を形成した。形成手法、電極組成は実施例1と同
様である。 (実施例6)本発明のもう1つの実施例による酸化スズ
水和物/ポリアミド複合プロトン伝導性電解質膜の作製
方法を以下に説明する。ジメチルアセトアミド0.3mlに
酸化物水和物の前駆体として塩化第二スズ(SnCl4・5H
2O)1.0gを添加、攪拌して透明な粘性液体を作製する。
この液体と、ポリアミド酸ワニス(ポリアミド酸の20
wt%N−メチルピロリドン溶液;宇部興産製)4.0gを
混合、攪拌して薄い褐色透明の粘性溶液を作製する。こ
の溶液をガラス基板上にキャステイングし、空気雰囲
気、80℃で1時間熱処理をした。その空気雰囲気下、
130℃、160℃、200℃で各1時間ずつキャステ
イング膜の熱処理を行い、さらに完全な溶媒除去、脱水
イミド化を進めるため、200℃のまま真空状態として
10時間ほど保持し、半透明黄色のプロトン伝導性電解
質前駆体膜を作製した。得られた前駆体膜を研磨テープ
で両面を均一に約10μm程度研磨した後、25wt%アンモ
ニア水溶液に20分浸漬した。前駆体膜が白濁したとこ
ろで取り出し、蒸留水で4〜5回洗浄して厚さ約30μm
の酸化スズ水和物/ポリアミド複合プロトン伝導性電解
質膜を得た。膜断面を電子顕微鏡にて確認したところ、
膜中に存在する粒子の最大直径は74nmであった。
Next, a 30 mm × 30 mm size electrode was formed on the 60 mm × 60 mm niobium-doped tungsten oxide hydrate / epoxy resin proton conductive electrolyte membrane obtained above. The forming method and electrode composition are the same as those in the first embodiment. Embodiment 6 A method for producing a tin oxide hydrate / polyamide composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Stannic chloride as the precursor of the oxide hydrate dimethylacetamide 0.3ml (SnCl 4 · 5H
2 O) Add 1.0 g and stir to produce a clear viscous liquid.
This liquid and polyamic acid varnish (polyamic acid 20)
4.0 g of a wt% N-methylpyrrolidone solution (manufactured by Ube Industries) is mixed and stirred to produce a light brown transparent viscous solution. This solution was cast on a glass substrate and heat-treated at 80 ° C. for 1 hour in an air atmosphere. Under the air atmosphere,
The casting film is heat-treated at 130 ° C., 160 ° C., and 200 ° C. for 1 hour each, and further kept at 200 ° C. in a vacuum state for about 10 hours to promote complete solvent removal and dehydration imidization. A proton conductive electrolyte precursor membrane was prepared. The obtained precursor film was uniformly polished on both sides with a polishing tape to about 10 μm, and then immersed in a 25 wt% ammonia aqueous solution for 20 minutes. When the precursor film becomes cloudy, take it out and wash it with distilled water 4 to 5 times to obtain a thickness of about 30 μm.
A hydrated tin oxide / polyamide composite proton conductive electrolyte membrane was obtained. When the cross section of the film was confirmed with an electron microscope,
The largest diameter of the particles present in the film was 74 nm.

【0025】次に、上記で得られた60mm×60mmサイズの
酸化スズ水和物/ポリアミド複合プロトン伝導性電解質
膜上に30mm×30mmのサイズの電極を形成した。形成手
法、電極組成は実施例1と同様である。 (実施例7)本発明のもう1つの実施例による酸化スズ
水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の
作製方法を以下に説明する。膜マトリックス材となるエ
ポキシ系樹脂としてアラルダイト(昭和高分子製)を選
択し、この硬化剤である変性ポリチオール370mgに酸化
スズ水和物の前駆体となるトリ-N-ブチルスズトリメト
キサイド370mgを添加し攪拌すると粘性のある透明液体
が生成する。これをアラルダイトの主材である変性エポ
キシ樹脂に添加、混合して粘性のある均一液体し、平滑
なポリテトラフルオロエチレン板上に硬化時の厚さが約
70μmとなるようにアプリケーターでキャステイングす
る。このキャステイング膜を空気中60℃で3時間硬化
反応を進める。得られた前駆体膜を25wt%アンモニア水
溶液に1時間浸漬し、その後取り出して蒸留水で4〜5
回洗浄して厚さ約70μmの酸化スズ水和物/エポキシ系
マトリックス複合プロトン伝導性電解質膜を得た。この
プロトン伝導性電解質膜を研磨テープで両面を均一に約
20μm程度研磨して約30μm厚みに仕上げた。膜断面を電
子顕微鏡にて確認したところ、膜中に存在する粒子の最
大直径は72nmであった。
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm size tin oxide hydrate / polyamide composite proton conductive electrolyte membrane obtained above. The forming method and electrode composition are the same as those in the first embodiment. Embodiment 7 A method for producing a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Araldite (Showa Polymer) was selected as the epoxy resin used as the membrane matrix material, and 370 mg of tri-N-butyltin trimethoxide, a precursor of tin oxide hydrate, was added to 370 mg of the modified polythiol used as a curing agent. Upon stirring, a viscous transparent liquid is produced. This is added to the modified epoxy resin, which is the main component of Araldite, and mixed to form a viscous, uniform liquid.
Cast with an applicator to 70 μm. The curing reaction of this casting film is advanced in air at 60 ° C. for 3 hours. The obtained precursor film was immersed in a 25 wt% ammonia aqueous solution for 1 hour, and then taken out and distilled water for 4 to 5 minutes.
The membrane was washed twice to obtain a tin oxide hydrate / epoxy matrix composite proton conductive electrolyte membrane having a thickness of about 70 μm. This proton conductive electrolyte membrane is uniformly polished on both sides with a polishing tape.
It was polished by about 20 μm and finished to about 30 μm thickness. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 72 nm.

【0026】次に、上記で得られた60mm×60mmサイズの
酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電
解質膜上に30mm×30mmのサイズの電極を形成した。形成
手法、電極組成は実施例1と同様である。 (実施例8)本発明のもう1つの実施例による酸化スズ
水和物/ポリエーテルアクリレート系樹脂複合プロトン
伝導性電解質膜の作製方法を以下に説明する。ポリエー
テルアクリレートはエチレンオキサイドとプロピレンオ
キサイドをモル比で4:1の比率でランダムに共重合させ
たオリゴマーの末端をアクリル酸で変成したものであ
る。このポリエーテルアクリレート1gに酸化スズ水和
物の前駆体となるトリ−N−ブチルスズトリメトキサイ
ド1gを添加し攪拌すると粘性のある液体が調製する。こ
の液体にベンゾイルパーオキサイドを重合開始剤として
添加、混合して平滑なポリテトラフルオロエチレン基板
上にアプリケーターでキャステイングし、加熱処理して
厚さ50μmの前駆体膜を得た。この前駆体膜を25wt%ア
ンモニア水溶液に20分浸漬し、白濁していた前駆体膜
が黄色に変化したところで取り出して蒸留水で4〜5回
洗浄して厚さ約50μmの酸化スズ水和物/ポリエーテル
アクリレート系樹脂複合プロトン伝導性電解質膜を得
た。膜断面を電子顕微鏡にて確認したところ、膜中に存
在する粒子の最大直径は75nmであった。
Next, a 30 mm × 30 mm electrode was formed on the 60 mm × 60 mm tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane obtained above. The forming method and electrode composition are the same as those in the first embodiment. (Embodiment 8) A method for producing a tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane according to another embodiment of the present invention will be described below. Polyether acrylate is obtained by modifying the terminal of an oligomer obtained by randomly copolymerizing ethylene oxide and propylene oxide at a molar ratio of 4: 1 with acrylic acid. To 1 g of this polyether acrylate, 1 g of tri-N-butyltin trimethoxide, which is a precursor of tin oxide hydrate, is added and stirred to prepare a viscous liquid. Benzoyl peroxide was added to this liquid as a polymerization initiator, mixed, cast on a smooth polytetrafluoroethylene substrate with an applicator, and heat-treated to obtain a precursor film having a thickness of 50 μm. This precursor film was immersed in a 25 wt% aqueous ammonia solution for 20 minutes. When the cloudy precursor film turned yellow, it was taken out and washed 4-5 times with distilled water to obtain a tin oxide hydrate having a thickness of about 50 μm. / Polyether acrylate resin composite proton conductive electrolyte membrane was obtained. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 75 nm.

【0027】次に、上記で得られた60mm×60mmサイズの
酸化スズ水和物/ポリエーテルアクリレート系樹脂複合
プロトン伝導性電解質膜上に30mm×30mmのサイズの電極
を形成した。形成手法、電極組成は実施例1と同様であ
る。 (比較例1)本発明の1つの比較例として酸化スズ水和
物/ポリエーテルアクリレート系樹脂複合プロトン伝導
性電解質膜の作製方法を以下に説明する。プロトン伝導
体の原料として塩化第二スズ(SnCl4・5H2O)17.5gを50
mlの水に溶解して60℃に加熱して加水分解する。これ
にアンモニア水を加えて100℃で1時間加熱、熟成す
る。得られた沈殿物をろ過し、乾燥させてプロトン伝導
性のスズ酸化物水和物(SnO2・nH2O)を得た。熱重量変
化測定からnは約1.7であった。
Next, an electrode having a size of 30 mm × 30 mm was formed on the 60 mm × 60 mm tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane obtained above. The forming method and electrode composition are the same as those in the first embodiment. (Comparative Example 1) As one comparative example of the present invention, a method for producing a tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane will be described below. Material as stannic chloride proton conductor (SnCl 4 · 5H 2 O) and 17.5 g 50
Dissolve in ml of water and heat to 60 ° C to hydrolyze. Ammonia water is added to this and heated at 100 ° C. for 1 hour to ripen. The obtained precipitate was filtered and dried to obtain a proton conductive tin oxide hydrate (SnO 2 · nH 2 O). From the thermogravimetric change measurement, n was about 1.7.

【0028】次に、エーテルアクリレートオリゴマー10
gに上記で得られたスズ酸化物水和物(SnO2・nH2O)粉
末を5g加えて高速回転混合機で約2分間混合した。これ
に重合開始剤としてベンゾイルパーオキサイドを加え更
に高速回転混合機で混合し、その後に約0.1wt%のセチ
ルトリメチルアンモニウムブロマイドを界面活性剤とし
て加えてスライドガラス上にキャステイングした。キャ
スティング膜を加熱処理し、酸化スズ水和物/ポリエー
テルアクリレート系樹脂複合プロトン伝導性電解質膜と
した。膜断面を電子顕微鏡にて確認したところ、膜中に
存在する粒子の最大直径は1.1μmであった。
Next, ether acrylate oligomer 10
Then, 5 g of the tin oxide hydrate (SnO 2 .nH 2 O) powder obtained above was added to the resulting mixture, and the mixture was mixed for about 2 minutes with a high-speed rotary mixer. Benzoyl peroxide as a polymerization initiator was added thereto, and the mixture was further mixed by a high-speed rotary mixer. Thereafter, about 0.1% by weight of cetyltrimethylammonium bromide was added as a surfactant and cast on a slide glass. The casting film was heat-treated to obtain a tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte film. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles present in the film was 1.1 μm.

【0029】次に、白金・ルテニウム担持炭素触媒に乾
燥重量で電解質量が触媒量の60wt%に相当する5重量%
のナフィオン117アルコール水溶液を添加してペースト
状に混練したものを上記で得られた60mm×60mmサイズの
酸化スズ水和物/ポリエーテルアクリレート系樹脂複合
プロトン伝導性電解質膜上に30mm×30mmのサイズで塗布
し60℃で3時間乾燥してアノードを形成した。得られた
アノードの白金担持量は約0.5mg/cm2であり、ルテニウ
ム担持量は約0.5mg/cm2であった。形成された電解質膜
の反対側の面に、白金担持炭素粉末触媒に乾燥重量でナ
フィオン117が触媒量の60wt%相当の5重量%のナフィオ
ン117アルコール水溶液を添加しペースト状に混練した
ものを乾燥時の厚さが15μmとなるようにアノードと重
なるように塗布して60℃で3時間乾燥しカソードを形成
し電解質膜/電極接合体を作製した。得られたカソード
の白金担持量は約0.3mg/cm2であった。 (比較例2)本発明のもう1つの比較例として酸化スズ
水和物/エポキシ系樹脂複合プロトン伝導性電解質膜の
作製方法を以下に説明する。膜マトリックス材となるエ
ポキシ系樹脂としてアラルダイト(昭和高分子製)を選
択し、主剤1g、硬化剤1gに比較例2の方法で合成したプ
ロトン伝導性のスズ酸化物水和物(SnO2・nH2O;n〜1.
7)を2g加えて均一になるように混合し、スライドガラ
ス上に硬化時の厚さが約70μmになるようにアプリケー
タでキャステイングした。室温で24時間硬化させた後
研磨テープで両面を均一に約20μm程度研磨して約30μm
厚みに仕上げて酸化スズ水和物/エポキシ系樹脂複合プ
ロトン伝導性電解質膜とした。膜断面を電子顕微鏡にて
確認したところ、膜中に存在する粒子の最大直径は1.0
μmであった。
Next, the platinum / ruthenium-supported carbon catalyst was dried at a weight of 5 wt% corresponding to 60 wt% of the catalyst amount.
The Nafion 117 alcohol aqueous solution was added and kneaded into a paste. The 30 mm x 30 mm tin oxide hydrate / polyether acrylate resin composite proton conductive electrolyte membrane obtained above was 30 mm x 30 mm in size. And dried at 60 ° C. for 3 hours to form an anode. The amount of platinum supported on the obtained anode was about 0.5 mg / cm 2 , and the amount of supported ruthenium was about 0.5 mg / cm 2 . On the opposite surface of the formed electrolyte membrane, Nafion 117 was added to a platinum-supported carbon powder catalyst by dry weight, and a 5% by weight aqueous solution of Nafion 117 alcohol equivalent to 60% by weight of the catalyst amount was added and kneaded into a paste and dried. The coating was applied so as to overlap the anode so that the thickness at the time became 15 μm, and dried at 60 ° C. for 3 hours to form a cathode, thereby producing an electrolyte membrane / electrode assembly. The amount of platinum carried on the obtained cathode was about 0.3 mg / cm 2 . (Comparative Example 2) As another comparative example of the present invention, a method for producing a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane will be described below. Araldite (manufactured by Showa Polymer Co., Ltd.) was selected as an epoxy resin serving as a membrane matrix material, and proton conductive tin oxide hydrate (SnO 2 .nH 2 ) synthesized by the method of Comparative Example 2 was added to 1 g of the main agent and 1 g of the curing agent. 2 O; n-1.
7) was added thereto and mixed so as to be uniform, and was cast on a slide glass with an applicator so that the thickness at the time of curing was about 70 μm. After curing at room temperature for 24 hours, both sides are polished uniformly with a polishing tape about 20μm about 30μm
Finished to a thickness, a tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane was obtained. When the cross section of the film was confirmed with an electron microscope, the maximum diameter of the particles existing in the film was 1.0
μm.

【0030】次に、上記で得られた60mm×60mmサイズの
酸化スズ水和物/エポキシ系樹脂複合プロトン伝導性電
解質膜上に30mm×30mmのサイズの電極を形成した。形成
手法、電極組成は比較例1と同様である。
Next, an electrode having a size of 30 mm × 30 mm was formed on the obtained 60 mm × 60 mm tin oxide hydrate / epoxy resin composite proton conductive electrolyte membrane. The forming method and electrode composition are the same as in Comparative Example 1.

【0031】上記の手法で作製した各実施例および比較
例にPTFEで撥水処理したカーボンペーパをアノード、カ
ソード電極面に配置し、ガス流路溝を加工した高密度カ
ーボン製で挟み所定の締付け圧力を加えた状態でボルト
を用いて全体を固定し、試験用セルを作製した。この試
験セルを恒温槽にセットし、加熱のためのヒーター機能
を有するガス供給ラインと、出口圧力調整弁と温度保温
用ヒーターを有するガス出口ラインをそれぞれ接続し、
液体用マスフローコントローラでセルに水を供給した。
供給された水を加熱ヒーターにより昇温しさらに出口ラ
インのヒーターおよび恒温槽の温度と圧力調整弁を調整
することにより、水蒸気圧・温度を試験設定値に保ち、
その状態でセルの伝導率を交流測定法にて評価した。こ
の場合の測定値にはカーボンセパレータ、カーボンペー
パー、電極などの伝導率や各材料の接触抵抗が含まれて
いるためブランクセルを別に作製し、同条件で評価しリ
ファレンスとした。
In each of the examples and comparative examples produced by the above-described method, carbon paper treated with PTFE for water repellency was disposed on the anode and cathode electrode surfaces, and was sandwiched between high-density carbons in which gas flow grooves were machined, and tightened in a predetermined manner. The whole was fixed using bolts in a state where pressure was applied, to produce a test cell. This test cell is set in a constant temperature bath, a gas supply line having a heater function for heating, and a gas outlet line having an outlet pressure regulating valve and a heater for maintaining temperature are connected, respectively.
Water was supplied to the cell by a liquid mass flow controller.
By raising the temperature of the supplied water with a heating heater, and further adjusting the temperature of the heater in the outlet line and the temperature control chamber and the pressure regulating valve, the steam pressure and temperature are maintained at the test set values,
In this state, the conductivity of the cell was evaluated by an AC measurement method. Since the measured values in this case include the conductivity of the carbon separator, carbon paper, electrodes, and the like and the contact resistance of each material, a blank cell was separately prepared and evaluated under the same conditions as a reference.

【0032】図2に実施例および比較例における飽和蒸
気圧下での電解質膜伝導性の温度依存性を示した。さら
に図3は150℃におけるイオン伝導率の水蒸気圧依存
性を示した。
FIG. 2 shows the temperature dependence of the electrolyte membrane conductivity under a saturated vapor pressure in Examples and Comparative Examples. FIG. 3 shows the dependence of the ionic conductivity at 150 ° C. on the water vapor pressure.

【0033】50℃から150℃における測定温度領域
では比較例1および2のイオン伝導率は150℃におい
て最も高い値を示したが10-3S/cm程度にとどまった。さ
らにその水蒸気圧依存性は大きく、水蒸気分圧0.2の条
件ではイオン伝導率が10-4S/cm以下へ大幅に低下した。
これは、比較例1および2を高伝導率の状態に維持する
ためには水蒸気分圧を高く保たねばならず、その結果高
圧力に耐えるシステムが必要になることを示している。
In the measurement temperature range from 50 ° C. to 150 ° C., the ionic conductivity of Comparative Examples 1 and 2 showed the highest value at 150 ° C., but was only about 10 −3 S / cm. Furthermore, the water vapor pressure dependence was large, and the ion conductivity dropped to 10 -4 S / cm or less under the condition of the water vapor partial pressure of 0.2.
This indicates that in order to maintain Comparative Examples 1 and 2 in a state of high conductivity, the water vapor partial pressure must be kept high, and as a result, a system that can withstand the high pressure is required.

【0034】図1に示される通り実施例1の150℃にお
けるイオン伝導率は10-2S/cmで比較例よりも一桁程度の
向上が確認できた。これは膜中のイオン伝導体を小粒径
化し高分散させた効果と考えられる。一方実施例2は15
0℃で2×10-2S/cmとなり実施例1を上回るイオン伝導率
が確認された。実施例1と2はイオン伝導体のベース材
料が同じ酸化タングステン酸化物であるが、実施例2で
はニオブのドーピング処理を施している。ニオブを添加
することで酸化タングステン水和物系のプロトン伝導膜
特性に好ましい影響を与えることが示唆された。
As shown in FIG. 1, the ionic conductivity at 150 ° C. of Example 1 was 10 −2 S / cm, which was an order of magnitude improvement over the comparative example. This is considered to be the effect of reducing the particle size of the ionic conductor in the film and dispersing it highly. On the other hand, Example 2 is 15
It was 2 × 10 -2 S / cm at 0 ° C., and ionic conductivity higher than that of Example 1 was confirmed. In the first and second embodiments, the base material of the ion conductor is the same tungsten oxide, but in the second embodiment, niobium doping treatment is performed. It was suggested that the addition of niobium had a favorable effect on the properties of the proton conductive membrane of the tungsten oxide hydrate.

【0035】さらに実施例3の飽和水蒸気圧下150℃に
おけるイオン伝導率は2×10-2S/cm以上であった。また1
50℃未満の温度領域においても実施例3は実施例1およ
び2よりも高い伝導率で推移している。一方図3より、
実施例3はイオン伝導率の水蒸気圧依存性が小さく、水
蒸気圧分圧が0.2の条件でも3×10-3S/cm以上の伝導率
を維持している。これは実施例3に用いた酸化スズ水和
物がプロトンを伝導させやすいという性質とともに、水
和水が脱離しにくい特性を有するため水蒸気分圧が低い
環境でも高伝導率を示すと考えられる。
Further, the ionic conductivity at 150 ° C. under the saturated steam pressure of Example 3 was 2 × 10 −2 S / cm or more. Also one
Even in a temperature range of less than 50 ° C., Example 3 has a higher conductivity than Examples 1 and 2. On the other hand, from FIG.
Example 3 has a small water vapor pressure dependency of the ionic conductivity, and maintains a conductivity of 3 × 10 −3 S / cm or more even when the water vapor pressure partial pressure is 0.2. This is considered to be due to the fact that the tin oxide hydrate used in Example 3 has a property that protons are easily conducted, and also has a property that hydration water is hardly desorbed, so that the tin oxide hydrate exhibits high conductivity even in an environment where the water vapor partial pressure is low.

【0036】実施例4および5はそれぞれ実施例1およ
び2と用いたプロトン伝導体が同一であり、膜中の分散
粒子径も80nm以下でほぼ等しい。図2および図3よりそ
のイオン伝導率、伝導率の水蒸気圧依存性もほぼ同じ結
果が得られている。しかし実施例4は、用いた出発物質
に含まれるタングステンの92.3%が最終的に作製したプ
ロトン伝導膜中に含まれるのに対し、実施例1の作製法
では原料に用いたタングステンの2.04%しかプロトン伝
導膜に使用できず、残りは作製途中で廃棄されている。
さらに実施例1は実施例4に比較し、粒径80nm 以下の
酸化タングステン水和物を作成する過程での酸化タング
ステン水和物溶液からの上澄み液分取や、噴霧式高温乾
燥炉を用いる乾燥処理などの工程が加わっている。いい
かえれば実施例4は実施例1と比較し、同様の特性を有
するイオン伝導性膜をより効率的にかつ大幅に低コスト
工程で作製した材料といえる。上記はイオン伝導体のタ
ングステンにニオブをドープした実施例5についても該
当する。
In Examples 4 and 5, the proton conductors used in Examples 1 and 2 were the same, and the dispersed particle diameter in the membrane was almost the same at 80 nm or less. From FIG. 2 and FIG. 3, almost the same results are obtained for the ionic conductivity and the water vapor pressure dependence of the conductivity. However, in Example 4, 92.3% of tungsten contained in the starting material used was contained in the finally produced proton conductive membrane, whereas in the production method of Example 1, only 2.04% of tungsten used as a raw material was used. It cannot be used as a proton conductive membrane, and the rest is discarded during production.
Furthermore, Example 1 is different from Example 4 in that a supernatant liquid is separated from a tungsten oxide hydrate solution in the process of forming a tungsten oxide hydrate having a particle size of 80 nm or less, and drying using a spray-type high-temperature drying furnace is performed. Processes such as processing are added. In other words, Example 4 can be said to be a material in which an ion conductive film having the same characteristics as that of Example 1 was produced more efficiently and at a significantly lower cost. The above also applies to Example 5 in which niobium is doped into tungsten as an ion conductor.

【0037】実施例6,7,8は図2および3に示される
通り、実施例3とほぼ同様の伝導率特性を示している。
これらの実施例はイオン伝導体に酸化スズ水和物を用い
ており、膜中の粒径も80nm以下である。しかし実施例3
は原料に用いたスズの3.45%しかプロトン伝導膜に使用
できず、残りは作製途中で廃棄されている。ここで実施
例6,7,8はそれぞれ出発物質に含有されるスズの92.
3,91.5,93.2%が最終的に得られたプロトン伝導膜に
含まれている。さらに実施例3はスズ水和酸化物を作成
する過程で塩化スズ水溶液の作製、加熱、アンモニア水
の添加、その後の濾過、洗浄および乾燥の工程が必要で
あるのに対し、実施例6,7,8では膜を形成してからの
加水分解反応が必要となるものの原料となるスズ化合物
を溶液状態で有機材料中に直接分散させることが可能で
上記の複数の工程を省略できる。すなわち実施例6,7,
8は実施例3に比較して同等の特性を有するプロトン伝
導性膜でありながらその原料・作製コストを大幅に低減
できる。
As shown in FIGS. 2 and 3, Examples 6, 7, and 8 show almost the same conductivity characteristics as Example 3.
In these examples, tin oxide hydrate was used as the ion conductor, and the particle size in the film was 80 nm or less. However, Example 3
Only 3.45% of the tin used in the raw material can be used for the proton conducting membrane, and the rest is discarded during fabrication. Here, Examples 6, 7, and 8 each show 92% of tin contained in the starting material.
3, 91.5 and 93.2% are contained in the finally obtained proton conducting membrane. Further, in Example 3, the steps of preparing an aqueous tin chloride solution, heating, adding aqueous ammonia, followed by filtration, washing and drying are required in the process of preparing the hydrated tin oxide. In No. and No. 8, although a hydrolysis reaction after forming a film is required, a tin compound as a raw material can be directly dispersed in an organic material in a solution state, and the above-described plurality of steps can be omitted. That is, Examples 6, 7,
8 is a proton conductive membrane having the same characteristics as in Example 3, but the raw material and production cost can be significantly reduced.

【0038】以上より本実施例はプロトン伝導体である
金属酸化物水和物と膜の有機高分子材料の耐熱性が良好
であるため150℃で安定した伝導性が確保できることが
分かった。さらに酸化物水和物前駆体の形で均一膜を作
製しその後加水分解で金属酸化物水和物を生成させるこ
とにより、膜中のプロトン伝導体の分散が大幅に高ま
る。よってプロトン伝導性を従来よりも向上させること
ができる。さらにはスズ水和酸化物を用いることにより
伝導性の水蒸気圧依存性を減少させることが可能とな
る。また、本製造方法と本材料を用いるプロトン伝導性
膜は製造コストを従来よりも大幅に低減できる。
From the above, it was found that in this example, the metal oxide hydrate which is a proton conductor and the organic polymer material of the membrane have good heat resistance, so that stable conductivity at 150 ° C. can be secured. Further, by forming a uniform membrane in the form of an oxide hydrate precursor and then producing a metal oxide hydrate by hydrolysis, the dispersion of the proton conductor in the membrane is greatly increased. Therefore, proton conductivity can be improved as compared with the related art. Furthermore, the use of tin hydrated oxide makes it possible to reduce the steam pressure dependence of conductivity. In addition, the production method and the proton conductive membrane using the present material can significantly reduce the production cost as compared with the related art.

【0039】[0039]

【発明の効果】本発明に係るプロトン伝導性を有する金
属酸化物水和物と有機高分子の複合電解質は従来のそれ
より高温でも十分高いイオン伝導性を有する。また本発
明に係る方法によれば、従来のそれよりも低コストでか
つ高温でも十分高いイオン伝導性を有するプロトン伝導
体膜を製造できる。
The composite electrolyte of a metal oxide hydrate having proton conductivity and an organic polymer according to the present invention has a sufficiently high ionic conductivity even at a higher temperature than that of a conventional electrolyte. Further, according to the method of the present invention, it is possible to produce a proton conductor membrane having lower ionic conductivity and a sufficiently high ionic conductivity even at a higher temperature than the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関わる固体高分子型積層燃料電池の単
位構成を示す図である。
FIG. 1 is a diagram showing a unit configuration of a polymer electrolyte fuel cell according to the present invention.

【図2】本発明に関わる電解質膜の飽和水蒸気圧でのイ
オン伝導率の温度依存性を示す実験結果である。
FIG. 2 is an experimental result showing the temperature dependence of the ionic conductivity at the saturated water vapor pressure of the electrolyte membrane according to the present invention.

【図3】本発明に関わる電解質膜の150℃におけるイオ
ン伝導率の水蒸気圧分圧依存性を示す実験結果である。
FIG. 3 is an experimental result showing the dependence of the ionic conductivity at 150 ° C. of the electrolyte membrane of the present invention on the partial pressure of water vapor pressure.

【符号の説明】[Explanation of symbols]

1,2…セパレータ、3…カソード側カーボンペーパ
ー、4…アノード側カーボンペーパー、5…電解質膜、
6…カソードガス流路、7…アノードガス流路。
1, 2 ... separator, 3 ... cathode side carbon paper, 4 ... anode side carbon paper, 5 ... electrolyte membrane,
6: cathode gas flow path, 7: anode gas flow path.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/10 G01N 27/58 Z (72)発明者 山賀 賢史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 工藤 徹一 東京都港区六本木7丁目22番1号 (72)発明者 宮山 勝 東京都港区六本木7丁目22番1号 (72)発明者 田中 優実 東京都港区六本木7丁目22番1号 (72)発明者 本間 格 茨城県つくば市梅園1丁目1番4 経済産 業省産業技術総合研究所 電子技術総合研 究所内 Fターム(参考) 2G004 ZA01 ZA05 5G301 CA18 CA30 CD01 5H026 AA06 BB00 BB10 CC03 CX05 EE11 EE18 HH01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/10 G01N 27/58 Z (72) Inventor Takeshi Yamaga 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 7 Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Yuichi Kamo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. 7-22-1 (72) Inventor Masaru Miyayama 7-22-1 Roppongi, Minato-ku, Tokyo (72) Inventor Yumi Tanaka 7-22-1 Roppongi, Minato-ku, Tokyo (72) Inventor Tadashi Honma Ibaraki 1-4 1-4 Umezono, Tsukuba, Japan F-term (reference) 2E004 ZA01 ZA05 5G301 CA18 CA30 CD01 5H026 AA06 BB00 BB10 CC03 CX05 EE11 EE18 HH01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プロトン伝導性膜の製造方法において、
少なくとも無機プロトン伝導体の前駆体となる単一又は
複数の化合物の溶液、有機物モノマー又はポリマーを含
む液状混合物を膜状に成し、これを硬化又は架橋させた
後、該無機プロトン伝導体の前駆体をプロトン伝導体に
転換させるための薬剤を含む溶液ないしガスを含む気体
で処理し、膜中に無機固体プロトン伝導体を形成させる
ことを特徴とするプロトン伝導性膜の製造方法。
1. A method for producing a proton conductive membrane, comprising:
A solution of at least one compound serving as a precursor of the inorganic proton conductor, a liquid mixture containing an organic monomer or a polymer is formed into a film, and after curing or crosslinking, a precursor of the inorganic proton conductor is formed. A method for producing a proton-conductive membrane, comprising: treating a body with a solution or gas containing an agent for converting a substance into a proton conductor to form an inorganic solid proton conductor in the membrane.
【請求項2】 無機プロトン伝導体が酸化タングステン
水和物あるいはこれにニオブをドープした酸化タングス
テン水和物であることを特徴とする請求項1記載のプロ
トン伝導性膜の製造方法。
2. The method for producing a proton conductive membrane according to claim 1, wherein the inorganic proton conductor is tungsten oxide hydrate or tungsten oxide hydrate doped with niobium.
【請求項3】 無機プロトン伝導体が酸化スズ水和物で
あることを特徴とする請求項1記載のプロトン伝導性膜
の製造方法。
3. The method according to claim 1, wherein the inorganic proton conductor is tin oxide hydrate.
【請求項4】 無機プロトン伝導体と有機物ポリマーを
少なくとも含有するプロトン伝導性膜であって、膜中に
分散される該無機プロトン伝導体の最大粒子径が80nm以
下であることを特徴とするプロトン伝導性膜。
4. A proton conductive membrane containing at least an inorganic proton conductor and an organic polymer, wherein the maximum particle diameter of the inorganic proton conductor dispersed in the membrane is 80 nm or less. Conductive membrane.
【請求項5】 無機プロトン伝導体が酸化タングステン
水和物あるいはこれにニオブをドープした酸化タングス
テン水和物であることを特徴とする請求項4記載のプロ
トン伝導性膜。
5. The proton conductive membrane according to claim 4, wherein the inorganic proton conductor is tungsten oxide hydrate or tungsten oxide hydrate doped with niobium.
【請求項6】 無機プロトン伝導体が酸化スズ水和物で
あることを特徴とする請求項4記載のプロトン伝導性
膜。
6. The proton conductive membrane according to claim 4, wherein the inorganic proton conductor is tin oxide hydrate.
JP2001088086A 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane Expired - Lifetime JP4254990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001088086A JP4254990B2 (en) 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001088086A JP4254990B2 (en) 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane

Publications (2)

Publication Number Publication Date
JP2002289051A true JP2002289051A (en) 2002-10-04
JP4254990B2 JP4254990B2 (en) 2009-04-15

Family

ID=18943228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001088086A Expired - Lifetime JP4254990B2 (en) 2001-03-26 2001-03-26 Proton conductive membrane manufacturing method and proton conductive membrane

Country Status (1)

Country Link
JP (1) JP4254990B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208814A (en) * 2002-01-11 2003-07-25 Nippon Kodoshi Corp High ion conductive solid electrolyte and electrochemical system using it
KR100486728B1 (en) * 2002-12-12 2005-05-03 삼성에스디아이 주식회사 Nanocomposite electrolyte membrane and fuel cell employing the same
WO2006064542A1 (en) * 2004-12-14 2006-06-22 Hitachi, Ltd. Electrolyte membrane for fuel cell, process for producing the same, membrane/electrode union, and fuel cell
JP2008117658A (en) * 2006-11-06 2008-05-22 Nippon Kodoshi Corp Manufacturing method of complex compound solid electrolyte
JP2008159343A (en) * 2006-12-22 2008-07-10 Toyota Central R&D Labs Inc Solid polymer fuel cell
JP2008300135A (en) * 2007-05-30 2008-12-11 Hitachi Ltd Complex electrolyte membrane for fuel cell, manufacturing method thereof, membrane electrode assembly, and fuel cell
DE102008043463A1 (en) 2007-11-07 2009-05-20 National University Corporation Shizuoka University, Hamamatsu-shi Electrolyte membrane for a fuel cell
CN101689670A (en) * 2007-06-01 2010-03-31 阿海珐核能公司 Be used for optimizing conducting film by H +Proton and/or OH -The method of the conductivity that the displacement of ion provides
JP2012025863A (en) * 2010-07-23 2012-02-09 Mitsui Chemicals Inc Polyelectrolyte particle, method of producing the polyelectrolyte particle, and solid polyelectrolyte

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208814A (en) * 2002-01-11 2003-07-25 Nippon Kodoshi Corp High ion conductive solid electrolyte and electrochemical system using it
KR100486728B1 (en) * 2002-12-12 2005-05-03 삼성에스디아이 주식회사 Nanocomposite electrolyte membrane and fuel cell employing the same
WO2006064542A1 (en) * 2004-12-14 2006-06-22 Hitachi, Ltd. Electrolyte membrane for fuel cell, process for producing the same, membrane/electrode union, and fuel cell
JP2008117658A (en) * 2006-11-06 2008-05-22 Nippon Kodoshi Corp Manufacturing method of complex compound solid electrolyte
JP2008159343A (en) * 2006-12-22 2008-07-10 Toyota Central R&D Labs Inc Solid polymer fuel cell
JP2008300135A (en) * 2007-05-30 2008-12-11 Hitachi Ltd Complex electrolyte membrane for fuel cell, manufacturing method thereof, membrane electrode assembly, and fuel cell
CN101689670A (en) * 2007-06-01 2010-03-31 阿海珐核能公司 Be used for optimizing conducting film by H +Proton and/or OH -The method of the conductivity that the displacement of ion provides
JP2010529291A (en) * 2007-06-01 2010-08-26 アレバ・エヌペ Method for optimizing conductivity by substituting H + protons and / or OH- ions in a conductive membrane
DE102008043463A1 (en) 2007-11-07 2009-05-20 National University Corporation Shizuoka University, Hamamatsu-shi Electrolyte membrane for a fuel cell
US7745061B2 (en) 2007-11-07 2010-06-29 National University Corporation Shizuoka University Electrolyte membrane for fuel cell having hollow inorganic fine particles
JP2012025863A (en) * 2010-07-23 2012-02-09 Mitsui Chemicals Inc Polyelectrolyte particle, method of producing the polyelectrolyte particle, and solid polyelectrolyte

Also Published As

Publication number Publication date
JP4254990B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
KR100647296B1 (en) Metal catalyst and a fuel cell employing an electrode including the same
CN111164810B (en) Radical scavenger, method of preparing the same, membrane-electrode assembly including the radical scavenger, and fuel cell including the same
JP3970390B2 (en) Membrane-electrode assembly for solid polymer fuel cell
KR100684836B1 (en) Catalyst complex for fuel cell, method for preparing the same, membrane-electrode assembly comporising the same, and fuel cell system comprising the same
US20060134507A1 (en) Fuel cell electrode containing metal phosphate and fuel cell using the same
WO2014013879A1 (en) Catalyst layer for anion-exchange membrane fuel cells, membrane-electrode assembly, anion-exchange membrane fuel cell using membrane-electrode assembly, and method for operating anion-exchange membrane fuel cell
WO2014033204A1 (en) Colloidal dispersions comprising precious metal particles and acidic ionomer components and methods of their manufacture and use
JPWO2002037585A1 (en) Electrodes for polymer electrolyte fuel cells
US8173712B2 (en) Modified inorganic material with ion exchange capacity, composite electolyte membrane comprising the same, and fuel cell comprising the composite electrolyte membrane
JP4263732B2 (en) Multi-block copolymer, method for producing the same, polymer electrolyte membrane produced from the multi-block copolymer, method for producing the same, and fuel cell including polymer electrolyte membrane
KR20140060302A (en) Improvements in or relating to catalysts
US20140342262A1 (en) Fuel Cell
JP4254990B2 (en) Proton conductive membrane manufacturing method and proton conductive membrane
CN1180250A (en) Gas diffusion electrodes based on poly (vinylidene fluoride) carbon blends
JP5669201B2 (en) Composition for forming catalyst layer and method for producing catalyst layer
KR20190066865A (en) An anode for fuel cell and membrane-electrode assembly for fuel cell comprising the same
JP5292742B2 (en) Fuel cell using solid acid and method for producing solid acid
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
CN1180249A (en) Gas diffusion electrodes based on polyethersulfone carbon blends
JP2010238373A (en) Polymer electrolyte membrane, its manufacturing method, and membrane electrode assembly as well as solid polymer fuel cell using the same
JP2010103079A (en) Polymer electrolyte, membrane electrode assembly, and fuel cell
JP2003142124A (en) Electrolyte film and solid high polymer type fuel cell using the same
JP2007520852A (en) High-temperature proton conducting polymer membrane, method for producing the same, membrane-electrode assembly using the same, and fuel cell including the same
JP2002198067A (en) High-temperature operating solid polymer composite electrolyte membrane, membrane/electrode bonded body and fuel cell
WO2006064542A1 (en) Electrolyte membrane for fuel cell, process for producing the same, membrane/electrode union, and fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20020206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term