JP4254016B2 - Angular velocity sensor and manufacturing method thereof - Google Patents

Angular velocity sensor and manufacturing method thereof Download PDF

Info

Publication number
JP4254016B2
JP4254016B2 JP2000144977A JP2000144977A JP4254016B2 JP 4254016 B2 JP4254016 B2 JP 4254016B2 JP 2000144977 A JP2000144977 A JP 2000144977A JP 2000144977 A JP2000144977 A JP 2000144977A JP 4254016 B2 JP4254016 B2 JP 4254016B2
Authority
JP
Japan
Prior art keywords
vibration
detection element
angular velocity
velocity sensor
processing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000144977A
Other languages
Japanese (ja)
Other versions
JP2001324333A (en
Inventor
正樹 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000144977A priority Critical patent/JP4254016B2/en
Publication of JP2001324333A publication Critical patent/JP2001324333A/en
Application granted granted Critical
Publication of JP4254016B2 publication Critical patent/JP4254016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角速度を検出する検出素子の防振支持構造を改良した角速度センサ及びその製造方法に関する。
【0002】
【発明が解決しようとする課題】
近年、車両(自動車)においては、角速度センサ(ヨーレートセンサ)により横滑り等を検出して車体の安定化制御を行なうシステムを搭載することが考えられている。この種の角速度センサは、筐体内に、検出素子を検出周波数範囲の振動を受け得るように設けると共に、その検出素子からの信号を処理する信号処理回路基板を固定的に設ける構成を備えるのであるが、前記検出素子に、車両振動ノイズなどが加わると正規のセンサ出力が得られなくなるため、検出素子に対する防振支持構造が設けられるようになっている。
【0003】
このような角速度センサの従来例として、図4に示す構成のものがあった。このものは、筐体1内の下部に、検出素子2を基板3上に支持した状態で、梁状をなす防振用のゴム部品4に挿入して組付け、そのゴム部品4をその外周部にて固定部材5により取付けるようになっている。また、信号処理回路基板6は、筐体1内の上部にねじ止め等により固定的に取付けられ、前記検出素子2との間はリード線7により接続されるようになっている。
【0004】
また、別の従来例として、図5に示す構成のものもあった。このものは、筐体8内の下部に配置された、ダンパ形状をなす防振用のゴム部品9の切込部9aに、検出素子10を支持した基板11を嵌込むようにし、そのゴム部品9を固定部材12により筐体8に固定するものである。また、信号処理回路基板13は、やはり筐体8内の上部にねじ止め等により固定的に取付けられ、前記検出素子10との間はリード線14により接続されるようになっている。
【0005】
しかしながら、上記従来の検出素子2,10に対する防振支持構造では、ゴム部品4,9などを組付けるにあたって、共に、ゴム部品4,9に対する検出素子2,10の挿入や嵌込み、ゴム部品4,9の筐体1,8内への組付けといった自動化が困難な作業が必要となり、手作業による組付けが必要となって量産性に劣るものとなっていた。
【0006】
本発明は上記事情に鑑みてなされたもので、その目的は、検出素子に対する防振支持構造を設けたものにあって、手作業によるゴム部品などの組付けを廃止して生産性の向上を図ることができる角速度センサ及びその製造方法を提供するにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の角速度センサは、検出素子をフレキシブル基板に実装し、そのフレキシブル基板を信号処理回路基板の下方に吊下げ状態に接続するようにすると共に、筐体内に液状のゴム材料を充填して硬化させることにより、検出素子を防振ゴム層内に埋没状態とさせるようにしたものである (請求項1の発明)。
【0008】
これによれば、検出素子は、フレキシブル基板によって、信号処理回路基板の下方に吊下げ状態とされて検出周波数範囲の振動を受け得るようになると共に、防振ゴム層内に埋没状態とされることにより、検出周波数範囲外の周囲の振動に対する防振状態に支持される。このとき、防振ゴム層は、液状のゴム材料を充填,硬化させることにより形成されるので、成型品からなる防振用のゴム部品を筐体内に組付ける場合と異なり、筐体内に液状のゴム材料を注入し硬化させるだけで済み、自動化が可能となる。この結果、生産性の向上、品質の安定化を図ることができるものである。
【0009】
ところで、上記した防振ゴム層については、次のような特性が要求される。即ち、第1に、検出周波数範囲の角速度入力(例えば車両の角速度測定用としては10Hz以下)に対しては検出素子に作用させる必要があるため、その周波数範囲では外部振動(角速度)を伝達すること。第2に、検出素子の振動子の共振 (駆動)周波数(例えば数kHz)付近の振動が振動子に作用すると出力に誤差を生じるため、振動子の共振(駆動)周波数付近の外部振動を伝達しないこと。第3に、振動子の共振(駆動)周波数と、検出周波数との差分周波数(例えば数百Hz〜数kHz)の振動が振動子に作用すると出力に誤差を生じるため、その周波数範囲の外部振動を伝達しないこと。第4に、落下等の瞬間的な衝撃Gを吸収し、振動子の耐量以下に緩和できること。
【0010】
このような要求される防振ゴム層の特性は、防振ゴム層の硬化後の硬さや、検出素子と筐体との間の充填量(充填厚み)によって調整可能である。本発明者の研究によれば、上記した要求特性を満たすためには、防振ゴム層を、筐体の内壁面と検出素子との間に5〜10mmの厚みで設けるようにすることが望ましい(請求項2の発明)。
【0011】
また、防振ゴム層(液状のゴム材料)の材質としては、常温で液状をなし、湿気硬化型や加熱硬化型などの所定の硬化手段により硬化するゴム材料であれば、シリコーンゴムやブチルゴムなど様々なものを使用できるが、広い温度範囲(例えば−30℃〜85℃)でばね定数が変化せず(硬くならず)安定している、シリコーンゴムを採用することが最も望ましい(請求項3の発明)。
【0012】
そして、本発明の角速度センサの製造方法は、上面に検出素子が実装されたフレキシブル基板を、信号処理回路基板の下方に吊下げ状態に接続し、信号処理回路基板を筐体内に取付け、液状のゴム材料を筐体内に検出素子が埋没状態となるように充填して硬化させることにより、防振ゴム層を形成するようにしたところに特徴を有している(請求項4の発明)。
【0013】
これによれば、検出素子は、フレキシブル基板によって、信号処理回路基板の下方に吊下げ状態とされて検出周波数範囲の振動を受け得るようになると共に、防振ゴム層内に埋没状態とされることにより、検出周波数範囲外の周囲の振動に対する防振状態に支持される。このとき、防振ゴム層は、液状のゴム材料を充填,硬化させることにより形成されるので、成型品からなる防振用のゴム部品を筐体内に組付ける場合と異なり、筐体内に定量の液状のゴム材料を注入し硬化させるだけで済み、自動化が可能となる。この結果、生産性の向上、品質の安定化を図ることができる。
【0014】
この場合、筐体内に液状のゴム材料を充填(注入)するにあたり、防振ゴム層中に気泡や空隙が生ずると、防振特性に悪影響を与えてしまう虞があり、気泡や空隙が生じないように充填する必要がある。そこで、液状のゴム材料を自然流下により筐体内に充填することにより(請求項5の発明)、防振ゴム層内への空気の巻込みを極力防止することができる。フレキシブル基板の下面側を平滑面とすることにより(請求項6の発明)、液状のゴム材料がフレキシブル基板の下面をスムーズに流れて充填されるようになり、フレキシブル基板の下面側の凹凸に起因した空隙の発生等を未然に防止することができる。
【0015】
また、筐体内に液状のゴム材料を充填(注入)する際に、検出素子に傾きが生じていると、検出素子が傾いた状態で防振ゴム層内に埋設されるようになり、出力誤差等の要因となる。そこで、フレキシブル基板を前後方向及び左右方向に対称形状とすると共に、検出素子を、その中心部に実装するようにすれば(請求項7の発明)、フレキシブル基板の重心が検出素子の重心に一致して、ゴム材料の充填時に検出素子が前後左右にずれることなく防振ゴム層内に埋没状態とさせることができる。さらには、フレキシブル基板の中心部に錘部材を取付けるようにすれば(請求項8の発明)、ゴム材料の充填時に、検出素子をより一層安定した姿勢に保持することが可能となり、傾きなどの発生を防止できる。
【0016】
【発明の実施の形態】
以下、本発明を車両(自動車)における角速度検出用に適用した一実施例について、図1及び図2を参照しながら説明する。図1は、本実施例に係る角速度センサ(ヨーレートセンサ)21の要部構成を概略的に示している。この角速度センサ21は、筐体22内に、検出素子23を後述する防振支持構造を介して設けると共に、その検出素子23からの信号を処理する信号処理回路基板24を固定的に設けて構成される。
【0017】
前記筐体22は、上面が開放した容器状に構成され、その内部には、4箇所に位置して(2個のみ図示)、内底面から上方に延びる取付ボス部25が一体的に設けられている。前記信号処理回路基板24は、その四隅部にてそれら取付ボス部25の上端部に夫々ねじ26によって取付けられ、もって、筐体22内の上部寄り部位に水平状態をなすように取付けられるようになっている。尚、図示はしないが、筐体22の上面開口部は、図示しない蓋体により塞がれるようになっており、また、前記信号処理回路基板24と外部回路とを接続するためのケーブル等が導出されるようになっている。
【0018】
詳しく図示はしないが、前記検出素子23は、周知のように、矩形状をなす外殻内に、駆動(励振)用及び検出用の圧電セラミックスを組合わせてなる振動子を備え、コリオリ力の検出に基づいて、角速度を検出するようになっている。このとき、この検出素子23は、所要の可撓性(弾性)を有するフレキシブル基板27上に実装された状態で配設されるようになっている。
【0019】
前記フレキシブル基板27は、図2に示すように、四角形状の実装部27aの左右両辺部の中央部から、左右方向に延びる接続部27b,27bを有しており、もって、前後方向及び左右方向に対称形状とされている。前記検出素子23は、前記実装部27aの上面の中心に実装されるようになっている。また、本実施例では、このフレキシブル基板27の下面側は、部品等が実装されない平滑面とされている。
【0020】
そして、このフレキシブル基板27は、図1に示すように、信号処理回路基板24の下方に配置された状態で、前記接続部27b,27bが、前記信号処理回路基板24の左右両辺部の中央部に接続されるようになっている。これにて、前記検出素子23が、信号処理回路基板24の下方に吊下げ状態に設けられ、このとき、フレキシブル基板27の上面には図示しない配線パターンが形成されていて、検出素子23と信号処理回路基板24とが電気的に接続されるようになっている。
【0021】
さて、前記筐体22内の下部側部位(信号処理回路基板24のやや下部から下側)には、前記検出素子23を防振支持するための防振ゴム層28が、充填状態に設けられるようになっている。前記検出素子23(及びフレキシブル基板27の上端部を除く部位)は、この防振ゴム層28内に埋没状態とされるようになっており、もって、外乱振動(検出周波数範囲(例えば10Hz以下)外の振動)からの防振が図られるようになっている。
【0022】
このとき、次の作用説明でも述べるように、この防振ゴム層28は、予め信号処理回路基板24や検出素子23が組付けられた筐体22内に、常温で液状のゴム材料例えば湿気硬化型又は加熱硬化型のシリコーンゴムを、自動注入機等を用いて自然流下により定量注入し、その後硬化させることにより形成されるようになっている。また、防振ゴム層28は、筐体22の内壁面と検出素子23との間に5〜10mmの厚みで設けられている。
【0023】
次に、上記構成の作用について述べる。上記した構成の角速度センサ21は、次のような工程を経て製造される。即ち、まず、予め実装部27aの上面に検出素子23が実装されたフレキシブル基板27を、その接続部27b,27bにて、信号処理回路基板24の下方に吊下げ状態に接続する工程が実行される。次いで、フレキシブル基板27が接続された信号処理回路基板24を筐体22内に収容し、取付ボス部25に対してねじ止めにより取付ける工程が実行される。これにて、検出素子23は、筐体22内に、信号処理回路基板24の下方においてフレキシブル基板27により弾性支持された形態に設けられる。
【0024】
この後、上記のように検出素子23や信号処理回路基板24等が組付けられた筐体22に対し、その下部側に、常温で液状をなすゴム材料を、前記検出素子23(及びフレキシブル基板27の上部を除く部位)が埋没状態となるように充填して硬化させる工程が実行される。これにて、筐体22内に防振ゴム層28が形成されるのである。
【0025】
この工程では、上述のように、湿気硬化型又は加熱硬化型のシリコーンゴムからなる定量のゴム材料を、自動注入機を用いて上方から自然流下により筐体22内に注入することが行なわれる。この場合、従来例で述べたような、成型品からなる防振用のゴム部品4,9に対する検出素子2,10の挿入や嵌込み、ゴム部品4,9の筐体1,8内への組付けといった自動化が困難な作業が必要となる場合と異なり、筐体22内に液状のゴム材料を注入し硬化させるだけの作業で済むので、容易に自動化を行なうことができたのである。
【0026】
また、このとき、自然流下を用いたことにより、防振ゴム層28内への空気の巻込みが極力防止され、しかも、フレキシブル基板27の下面側を平滑面としたことにより、液状のゴム材料がフレキシブル基板27の下面をスムーズに流れて充填されるようになり、フレキシブル基板27の下面の凹凸に起因した防振ゴム層28内の空隙の発生等が未然に防止される。さらには、前後方向及び左右方向に対称形状をなすフレキシブル基板27の中心部に、検出素子23を実装したことにより、フレキシブル基板27の重心が検出素子23の重心に一致して、ゴム材料の充填時に検出素子23が前後左右にずれることなく、防振ゴム層28内に埋没状態とさせることができるのである。
【0027】
そして、上記のようにして製造された角速度センサ21にあっては、検出素子23に対する防振ゴム層28による防振支持構造によって、車両振動ノイズなどの外乱振動からの防振が良好に図られ、正確性の高いセンサ出力が得られるようになっている。この場合、本実施例では、防振ゴム層28を、筐体22の内壁面と検出素子23との間に5〜10mmの厚みで設けるようにしたので、次のような要求される4つの特性を満たすものとすることができたのである。
【0028】
即ち、第1に、検出周波数範囲の角速度入力(例えば10Hz以下)に対しては検出素子23に作用させる必要があるため、その周波数範囲では外部振動(角速度)を伝達する。第2に、検出素子23の振動子の共振(駆動)周波数(例えば数kHz)付近の振動が振動子に作用すると出力に誤差を生じるため、振動子の共振(駆動)周波数付近の外部振動を伝達しない。第3に、振動子の共振(駆動)周波数と、検出周波数との差分周波数(例えば数百Hz〜数kHz)の振動が振動子に作用すると出力に誤差を生じるため、その周波数範囲の外部振動を伝達しない。第4に、落下等の瞬間的な衝撃Gを吸収し、振動子の耐量以下に緩和できるといった特性である。
【0029】
さらに、本実施例では、防振ゴム層28の材質として、シリコーンゴムを採用しので、広い温度範囲(例えば車両の環境温度である−30℃〜85℃)にあってばね定数が変化せず(硬くならず)安定したものとなり、車両用の角速度センサ21として採用するに適したものとなるのである。
【0030】
以上の説明のように、本実施例の角速度センサ21及びその製造方法によれば、筐体22内に液状のゴム材料を充填して硬化させることにより、防振ゴム層28を形成するようにしたので、防振ゴム層28の形成の自動化が可能となり、従来のようなゴム部品4,9の手作業による組付けを廃止することができ、この結果、生産性の向上、品質の安定化を図ることができるものである。
【0031】
また、特に本実施例の防振ゴム層28の構成によれば、角速度の検出面での要求される特性を満たすことができ、しかも車両の環境温度に対して適したものとなる。そして、本実施例の製造方法によれば、筐体22内に液状のゴム材料を充填(注入)するにあたり、防振ゴム28層中に気泡や空隙が生ずることを効果的に防止でき、それら気泡や空隙により防振特性に悪影響を与えてしまうことを未然に防止することができ、さらには、防振ゴム28層に埋没状態とされる検出素子23に傾きが生ずることを効果的に防止できるので、傾きに起因した出力誤差等の発生を未然に防止できるといった利点を得ることができるものである。
【0032】
図3は、本発明の他の実施例に係る角速度センサ31の要部構成を概略的に示している。この角速度センサ31が上記実施例の角速度センサ21と異なるところは、フレキシブル基板27の中心部(重心部分)である実装部27aの下面に、錘部材32を取付けるようにした点にある。この場合、錘部材32は、フレキシブル基板27の実装部27aと同等の大きさに構成されたプリント基板の如き合成樹脂製の板状部材からなり、実装部27aの下面側に貼付けられている。
【0033】
これによれば、上記一実施例とほぼ同様の作用,効果が得られることに加え、液状のゴム材料の充填時に、検出素子23をより一層安定した姿勢に保持することが可能となり、傾きなどの発生をより効果的に防止できるものである。フレキシブル基板27の補強を図ることもできる。尚、この錘部材としては、様々な材質、形状のものを採用できることは勿論である。
【0034】
その他、本発明は上記した各実施例に限定されるものではなく、例えば防振ゴム層(液状のゴム材料)の材質としては、常温で液状をなし、湿気硬化型や加熱硬化型などの所定の硬化手段により硬化するゴム材料であれば、シリコーンゴムに限らずブチルゴムなど様々なものを採用することができる。また、本発明の角速度センサは、車両用以外にも各種の用途に用いることができる等、要旨を逸脱しない範囲内で適宜変更して実施し得るものである。
【図面の簡単な説明】
【図1】本発明の一実施例を示すもので、角速度センサの要部構成を概略的に示す縦断正面図
【図2】フレキシブル基板の平面図
【図3】本発明の他の実施例を示す図1相当図
【図4】従来例を示す図1相当図
【図5】別の従来例を示す図1相当図
【符号の説明】
図面中、21,31は角速度センサ、22は筐体、23は検出素子、24は信号処理回路基板、27はフレキシブル基板、28は防振ゴム層、32は錘部材を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an angular velocity sensor having an improved anti-vibration support structure for a detection element that detects angular velocity, and a method for manufacturing the same.
[0002]
[Problems to be solved by the invention]
2. Description of the Related Art In recent years, it has been considered that a vehicle (automobile) is equipped with a system for detecting a side slip by an angular velocity sensor (yaw rate sensor) and controlling the stabilization of the vehicle body. This type of angular velocity sensor has a configuration in which a detection element is provided in a housing so as to receive vibration in a detection frequency range, and a signal processing circuit board for processing a signal from the detection element is fixedly provided. However, when vehicle vibration noise or the like is applied to the detection element, a normal sensor output cannot be obtained, so that a vibration isolation support structure for the detection element is provided.
[0003]
As a conventional example of such an angular velocity sensor, there is a configuration shown in FIG. This is inserted into a beam-shaped rubber component 4 for vibration isolation with the detection element 2 supported on the substrate 3 at the lower part of the housing 1 and assembled. It is attached by the fixing member 5 at the part. The signal processing circuit board 6 is fixedly attached to the upper part of the housing 1 by screwing or the like, and is connected to the detection element 2 by a lead wire 7.
[0004]
Another conventional example has the configuration shown in FIG. In this structure, a substrate 11 supporting a detection element 10 is fitted into a cut-out portion 9a of a vibration-proof rubber component 9 having a damper shape, which is disposed in the lower part of the housing 8, and the rubber component. 9 is fixed to the housing 8 by a fixing member 12. The signal processing circuit board 13 is also fixedly attached to the upper portion of the housing 8 by screwing or the like, and is connected to the detection element 10 by a lead wire 14.
[0005]
However, in the conventional anti-vibration support structure for the detection elements 2 and 10, when the rubber parts 4 and 9 are assembled, both the insertion and insertion of the detection elements 2 and 10 into the rubber parts 4 and 9 and the rubber part 4 , 9 in the housings 1 and 8 are difficult to automate, and manual assembly is required, resulting in poor mass productivity.
[0006]
The present invention has been made in view of the above circumstances, and its purpose is to provide an anti-vibration support structure for the detection element, which eliminates manual assembly of rubber parts and the like to improve productivity. An object of the present invention is to provide an angular velocity sensor and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an angular velocity sensor according to the present invention has a detection element mounted on a flexible substrate, and the flexible substrate is suspended below the signal processing circuit substrate and is liquid in the housing. The detection element is buried in the anti-vibration rubber layer by filling and curing the rubber material (Invention of Claim 1).
[0008]
According to this, the detection element is suspended by the flexible substrate below the signal processing circuit substrate and can receive vibration in the detection frequency range, and is embedded in the anti-vibration rubber layer. Thus, it is supported in an anti-vibration state against ambient vibrations outside the detection frequency range. At this time, since the anti-vibration rubber layer is formed by filling and curing a liquid rubber material, unlike the case of assembling anti-vibration rubber parts made of molded products in the enclosure, the anti-vibration rubber layer is liquid in the enclosure. All that is required is to inject and cure the rubber material, which can be automated. As a result, productivity can be improved and quality can be stabilized.
[0009]
By the way, the following characteristics are required for the above-mentioned vibration-proof rubber layer. That is, first, since an angular velocity input in the detection frequency range (for example, 10 Hz or less for measuring the vehicle angular velocity) needs to be applied to the detection element, external vibration (angular velocity) is transmitted in that frequency range. thing. Second, if vibration near the resonance (drive) frequency (for example, several kHz) of the transducer of the detection element acts on the transducer, an error occurs in the output, so external vibration near the resonance (drive) frequency of the transducer is transmitted. Don't do it. Thirdly, since an error occurs in the output when a vibration having a difference frequency (for example, several hundred Hz to several kHz) between the resonance (drive) frequency of the vibrator and the detection frequency acts on the vibrator, an external vibration in the frequency range. Do not communicate. Fourthly, it can absorb an instantaneous shock G such as a drop and relax it below the tolerance of the vibrator.
[0010]
Such required properties of the vibration-proof rubber layer can be adjusted by the hardness of the vibration-proof rubber layer after curing and the filling amount (filling thickness) between the detection element and the casing. According to the inventor's study, in order to satisfy the required characteristics that describes above, a rubber cushion layer, it is made to provide a thickness of 5~10mm between the inner wall surface and the detection element housing Desirable (Invention of Claim 2 )
[0011]
In addition, as a material of the anti-vibration rubber layer (liquid rubber material), silicone rubber, butyl rubber, etc., as long as the rubber material is liquid at room temperature and is cured by a predetermined curing means such as a moisture curing type or a heat curing type. can be used various ones, a wide temperature range (e.g., -30 ° C. to 85 ° C.) the spring constant does not change by (not hard) and stable, it is most desirable to employ silicone rubber (claim 3 Invention).
[0012]
In the method of manufacturing the angular velocity sensor according to the present invention, the flexible substrate having the detection element mounted on the upper surface is connected in a suspended state below the signal processing circuit substrate, the signal processing circuit substrate is attached in the casing, A vibration-proof rubber layer is formed by filling and curing a rubber material in a casing so that the detection element is buried (invention of claim 4 ).
[0013]
According to this, the detection element is suspended by the flexible substrate below the signal processing circuit substrate and can receive vibration in the detection frequency range, and is embedded in the anti-vibration rubber layer. Thus, it is supported in an anti-vibration state against ambient vibrations outside the detection frequency range. At this time, since the anti-vibration rubber layer is formed by filling and curing a liquid rubber material, unlike the case where the anti-vibration rubber part made of a molded product is assembled in the case, a fixed amount of the anti-vibration rubber layer is provided in the case. All that is required is to inject and cure a liquid rubber material, which can be automated. As a result, productivity can be improved and quality can be stabilized.
[0014]
In this case, in filling (injecting) the liquid rubber material into the housing, if bubbles or voids are generated in the vibration-proof rubber layer, there is a risk of adversely affecting the vibration-proof characteristics, and no bubbles or voids are generated. Need to be filled. Thus, by filling the casing with a liquid rubber material by natural flow (invention of claim 5 ), it is possible to prevent air from being entrained in the anti-vibration rubber layer as much as possible. By making the lower surface side of the flexible substrate a smooth surface (the invention of claim 6 ), the liquid rubber material smoothly flows and fills the lower surface of the flexible substrate, which is caused by unevenness on the lower surface side of the flexible substrate. It is possible to prevent the occurrence of voids.
[0015]
Also, when filling (injecting) a liquid rubber material into the housing, if the detector element is tilted, it will be embedded in the anti-vibration rubber layer with the detector element tilted, resulting in an output error. And so on. Therefore, if the flexible substrate is symmetrically formed in the front-rear direction and the left-right direction, and the detection element is mounted at the center thereof (the invention of claim 7 ), the center of gravity of the flexible substrate matches the center of gravity of the detection element. Then, when the rubber material is filled, the detection element can be buried in the vibration-proof rubber layer without shifting from front to back and from side to side. Furthermore, if a weight member is attached to the center of the flexible substrate (invention of claim 8 ), it becomes possible to hold the detecting element in a more stable posture when filling with a rubber material, such as inclination. Occurrence can be prevented.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with the one embodiment of applying the present invention for angular velocity detection in a vehicle (automobile) will be described with reference to FIGS. FIG. 1 schematically shows a main configuration of an angular velocity sensor (yaw rate sensor) 21 according to the present embodiment. This angular velocity sensor 21 has a configuration in which a detection element 23 is provided in a housing 22 via an anti-vibration support structure which will be described later, and a signal processing circuit board 24 for processing a signal from the detection element 23 is fixedly provided. Is done.
[0017]
The housing 22 is configured in a container shape with an open top surface, and is internally provided with mounting boss portions 25 located at four locations (only two are shown) and extending upward from the inner bottom surface. ing. The signal processing circuit board 24 is attached to the upper end portions of the mounting boss portions 25 at the four corners by screws 26 so that the signal processing circuit board 24 is attached to the upper portion in the housing 22 so as to be in a horizontal state. It has become. Although not shown, the upper surface opening of the housing 22 is closed by a lid (not shown), and a cable or the like for connecting the signal processing circuit board 24 and an external circuit is provided. Has been derived.
[0018]
Although not shown in detail, the detection element 23 includes, as is well known, a vibrator formed by combining driving (excitation) and detection piezoelectric ceramics in a rectangular outer shell, and has a Coriolis force. Based on the detection, the angular velocity is detected. At this time, the detection element 23 is arranged in a state of being mounted on a flexible substrate 27 having required flexibility (elasticity).
[0019]
As shown in FIG. 2, the flexible substrate 27 has connecting portions 27b and 27b extending in the left-right direction from the central portions of the left and right sides of the rectangular mounting portion 27a. It has a symmetrical shape. The detection element 23 is mounted at the center of the upper surface of the mounting portion 27a. In this embodiment, the lower surface side of the flexible substrate 27 is a smooth surface on which no components are mounted.
[0020]
As shown in FIG. 1, the flexible board 27 is arranged below the signal processing circuit board 24, and the connection portions 27 b and 27 b are arranged at the center of the left and right sides of the signal processing circuit board 24. To be connected to. Thus, the detection element 23 is provided in a suspended state below the signal processing circuit board 24. At this time, a wiring pattern (not shown) is formed on the upper surface of the flexible board 27, and the detection element 23 and the signal The processing circuit board 24 is electrically connected.
[0021]
An anti-vibration rubber layer 28 for anti-vibration support of the detection element 23 is provided in a filled state at a lower part in the housing 22 (slightly below the signal processing circuit board 24). It is like that. The detection element 23 (and the portion excluding the upper end portion of the flexible substrate 27) is buried in the anti-vibration rubber layer 28, so that disturbance vibration (detection frequency range (for example, 10 Hz or less)) is obtained. Anti-vibration from outside vibration) can be achieved.
[0022]
At this time, as will be described in the following description of the operation, the vibration-proof rubber layer 28 is a rubber material that is liquid at room temperature, for example, moisture curing, in the housing 22 in which the signal processing circuit board 24 and the detection element 23 are previously assembled. A mold or heat-curing type silicone rubber is quantitatively injected by natural flow using an automatic injection machine or the like and then cured. Also, vibration-proof rubber layer 28 is provided in a thickness of 5~10mm between the inner wall surface and the detection element 23 of the housing 22.
[0023]
Next, the operation of the above configuration will be described. The angular velocity sensor 21 having the above-described configuration is manufactured through the following steps. That is, first, a step of connecting the flexible substrate 27, on which the detection element 23 is previously mounted on the upper surface of the mounting portion 27a, in a suspended state below the signal processing circuit substrate 24 at the connection portions 27b, 27b is executed. The Next, a process of housing the signal processing circuit board 24 to which the flexible board 27 is connected in the housing 22 and attaching the signal processing circuit board 24 to the attachment boss portion 25 by screws is performed. Thus, the detection element 23 is provided in the housing 22 in a form elastically supported by the flexible substrate 27 below the signal processing circuit substrate 24.
[0024]
Thereafter, with respect to the case 22 in which the detection element 23, the signal processing circuit board 24, and the like are assembled as described above, a rubber material that is in a liquid state at room temperature is formed on the lower side of the case 22 and the detection element 23 (and the flexible substrate). A step of filling and curing so that the portion excluding the upper portion of 27 is buried is performed. As a result, the anti-vibration rubber layer 28 is formed in the housing 22.
[0025]
In this step, as described above, a fixed amount of rubber material made of moisture-curing type or heat-curing type silicone rubber is injected into the housing 22 by natural flow from above using an automatic injector. In this case, as described in the conventional example, the detection elements 2 and 10 are inserted and fitted into the rubber parts 4 and 9 for vibration isolation made of molded products, and the rubber parts 4 and 9 are inserted into the casings 1 and 8. Unlike the case where an operation that is difficult to automate, such as assembly, is required, the operation can be performed simply by injecting a liquid rubber material into the housing 22 and curing it.
[0026]
At this time, by using natural flow, air is prevented from being entrapped in the vibration-proof rubber layer 28 as much as possible, and the lower surface side of the flexible substrate 27 is a smooth surface, so that a liquid rubber material is used. As a result, the lower surface of the flexible substrate 27 smoothly flows and fills, and the occurrence of voids in the anti-vibration rubber layer 28 due to irregularities on the lower surface of the flexible substrate 27 is prevented. Further, since the detection element 23 is mounted at the center of the flexible substrate 27 that is symmetrical in the front-rear direction and the left-right direction, the center of gravity of the flexible substrate 27 coincides with the center of gravity of the detection element 23 and is filled with a rubber material. Sometimes, the detection element 23 can be buried in the anti-vibration rubber layer 28 without shifting from front to back and left and right.
[0027]
In the angular velocity sensor 21 manufactured as described above, the anti-vibration support structure by the anti-vibration rubber layer 28 with respect to the detection element 23 can satisfactorily prevent vibration from disturbance vibration such as vehicle vibration noise. Highly accurate sensor output can be obtained. In this case, in the present embodiment, the vibration-proof rubber layer 28, since the provided a thickness of 5~10mm between the inner wall surface and the detection element 23 of the housing 22, four being as follows requests It was possible to satisfy the characteristics.
[0028]
That is, first, since an angular velocity input (for example, 10 Hz or less) in the detection frequency range needs to be applied to the detection element 23, external vibration (angular velocity) is transmitted in the frequency range. Secondly, if vibration near the resonance (drive) frequency (for example, several kHz) of the vibrator of the detecting element 23 acts on the vibrator, an error occurs in the output. Do not communicate. Thirdly, since an error occurs in the output when a vibration having a difference frequency (for example, several hundred Hz to several kHz) between the resonance (drive) frequency of the vibrator and the detection frequency acts on the vibrator, an external vibration in the frequency range. Not communicate. The fourth characteristic is that an instantaneous shock G such as a drop is absorbed and can be relaxed below the tolerance of the vibrator.
[0029]
Furthermore, in this embodiment, as the material of the vibration damping rubber layer 28, since adopting a silicone rubber, not change the spring constant be in a wide temperature range (e.g., -30 ° C. to 85 ° C. which is environmental temperature of the vehicle) Therefore, it becomes stable (not hard) and suitable for use as the angular velocity sensor 21 for a vehicle.
[0030]
As described above, according to the angular velocity sensor 21 and the manufacturing method thereof of the present embodiment, the vibration isolating rubber layer 28 is formed by filling the casing 22 with a liquid rubber material and curing it. As a result, the formation of the anti-vibration rubber layer 28 can be automated, and the conventional manual assembly of the rubber parts 4 and 9 can be eliminated. As a result, the productivity is improved and the quality is stabilized. Can be achieved.
[0031]
In particular, according to the configuration of the anti-vibration rubber layer 28 of the present embodiment, it is possible to satisfy the required characteristics on the detection surface of the angular velocity and to be suitable for the environmental temperature of the vehicle. According to the manufacturing method of the present embodiment, when the liquid rubber material is filled (injected) into the housing 22, it is possible to effectively prevent bubbles and voids from being generated in the vibration-proof rubber 28 layer. It is possible to prevent the vibration-proof characteristic from being adversely affected by the air bubbles and the air gap, and to effectively prevent the detection element 23 that is buried in the vibration-proof rubber 28 layer from being inclined. Therefore, it is possible to obtain an advantage that an output error or the like caused by the inclination can be prevented.
[0032]
Figure 3 shows schematically a configuration of a main part of an angular velocity sensor 31 according to another embodiment of the present invention. This angular velocity sensor 31 differs from the angular velocity sensor 21 of the above embodiment in that a weight member 32 is attached to the lower surface of the mounting portion 27a, which is the central portion (center of gravity) of the flexible substrate 27. In this case, the weight member 32 is made of a synthetic resin plate-like member such as a printed circuit board having a size equivalent to that of the mounting portion 27a of the flexible substrate 27, and is attached to the lower surface side of the mounting portion 27a.
[0033]
According to this, in addition to substantially the same operation and effect as the above-described one embodiment, it is possible to hold the detection element 23 in a more stable posture when filling with a liquid rubber material, such as tilting. Can be more effectively prevented. The flexible substrate 27 can be reinforced. Of course, various materials and shapes can be used as the weight member.
[0034]
In addition, the present invention is not limited to each of the above-described embodiments. For example, the material of the anti-vibration rubber layer (liquid rubber material) is liquid at room temperature, and may be a predetermined type such as a moisture curable type or a heat curable type. As long as the rubber material is cured by this curing means, various materials such as butyl rubber can be adopted as well as silicone rubber. Further, the angular velocity sensor of the present invention can be implemented with appropriate modifications within a range that does not depart from the gist, such as being able to be used for various purposes other than for vehicles.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view schematically showing a configuration of an essential part of an angular velocity sensor according to an embodiment of the present invention. FIG. 2 is a plan view of a flexible substrate. FIG. 4 is a diagram corresponding to FIG. 1. FIG. 4 is a diagram corresponding to FIG. 1 illustrating a conventional example. FIG. 5 is a diagram corresponding to FIG.
In the drawing, 21 and 31 are angular velocity sensors, 22 is a housing, 23 is a detection element, 24 is a signal processing circuit board, 27 is a flexible substrate, 28 is a vibration-proof rubber layer, and 32 is a weight member.

Claims (8)

筐体内に、検出素子を検出周波数範囲の振動を受け得るように設けると共に、その検出素子からの信号を処理する信号処理回路基板を固定的に設けてなる角速度センサであって、
上面に前記検出素子が実装されたフレキシブル基板を、前記信号処理回路基板の下方に吊下げ状態に接続する構成とすると共に、
前記検出素子は、前記筐体内に液状のゴム材料を充填して硬化させた防振ゴム層内に埋没状態とされていることを特徴とする角速度センサ。
An angular velocity sensor in which a detection element is provided in a housing so as to receive vibration in a detection frequency range, and a signal processing circuit board for processing a signal from the detection element is fixedly provided.
A flexible board having the detection element mounted on the upper surface is connected to the signal processing circuit board in a suspended state below the signal processing circuit board, and
The angular velocity sensor, wherein the detection element is buried in a vibration-proof rubber layer in which a liquid rubber material is filled and cured in the casing.
前記防振ゴム層は、前記筐体の内壁面と検出素子との間に5〜10 mm の厚みで設けられていることを特徴とする請求項1記載の角速度センサ。2. The angular velocity sensor according to claim 1 , wherein the anti-vibration rubber layer is provided with a thickness of 5 to 10 mm between the inner wall surface of the casing and the detection element . 前記防振ゴム層は、シリコーンゴムからなることを特徴とする請求項1又は2記載の角速度センサ。The angular velocity sensor according to claim 1, wherein the vibration-proof rubber layer is made of silicone rubber . 筐体内に、検出素子を検出周波数範囲の振動を受け得るように設けると共に、その検出素子からの信号を処理する信号処理回路基板を固定的に設けてなる角速度センサを製造する方法であって、A method of manufacturing an angular velocity sensor in which a detection element is provided in a housing so as to receive vibration in a detection frequency range, and a signal processing circuit board for processing a signal from the detection element is fixedly provided.
上面に前記検出素子が実装されたフレキシブル基板を、前記信号処理回路基板の下方に吊下げ状態に接続し、A flexible board on which the detection element is mounted on the upper surface is connected in a suspended state below the signal processing circuit board,
前記信号処理回路基板を前記筐体内に取付け、Mounting the signal processing circuit board in the housing;
液状のゴム材料を前記筐体内に前記検出素子が埋没状態となるように充填して硬化させることにより、防振ゴム層を形成するようにしたことを特徴とする角速度センサの製造方法。A method for manufacturing an angular velocity sensor, wherein a vibration-proof rubber layer is formed by filling and curing a liquid rubber material in the casing so that the detection element is buried.
前記液状のゴム材料を自然流下により前記筐体内に充填するようにしたことを特徴とする請求項4記載の角速度センサの製造方法。 5. The method of manufacturing an angular velocity sensor according to claim 4, wherein the casing is filled with the liquid rubber material by natural flow . 記フレキシブル基板の下面側を平滑面としたことを特徴とする請求項4又は5記載の角速度センサの製造方法。Method of manufacturing an angular velocity sensor according to claim 4 or 5 further characterized in that the lower surface side of the front Symbol flexible substrate has a smooth surface. 前記フレキシブル基板を前後方向及び左右方向に対称形状とすると共に、前記検出素子を、その中心部に実装するようにしたことを特徴とする請求項4ないし6のいずれかに記載の角速度センサの製造方法。The angular velocity sensor according to any one of claims 4 to 6 , wherein the flexible substrate has a symmetrical shape in the front-rear direction and the left-right direction, and the detection element is mounted at a central portion thereof. Method. 前記フレキシブル基板の中心部に錘部材を取付けるようにしたことを特徴とする請求項7記載の角速度センサの製造方法。8. The method of manufacturing an angular velocity sensor according to claim 7, wherein a weight member is attached to a central portion of the flexible substrate.
JP2000144977A 2000-05-17 2000-05-17 Angular velocity sensor and manufacturing method thereof Expired - Fee Related JP4254016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144977A JP4254016B2 (en) 2000-05-17 2000-05-17 Angular velocity sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144977A JP4254016B2 (en) 2000-05-17 2000-05-17 Angular velocity sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001324333A JP2001324333A (en) 2001-11-22
JP4254016B2 true JP4254016B2 (en) 2009-04-15

Family

ID=18651551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144977A Expired - Fee Related JP4254016B2 (en) 2000-05-17 2000-05-17 Angular velocity sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4254016B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298014B2 (en) * 2004-12-03 2007-11-20 Honeywell International Inc. Use of visco-elastic polymer to reduce acoustic and/or vibration induced error in microelectromechanical devices and systems
JP4595779B2 (en) * 2005-10-12 2010-12-08 株式会社デンソー Angular velocity sensor
JP4682856B2 (en) * 2006-02-01 2011-05-11 株式会社デンソー Angular velocity sensor device
JP4720528B2 (en) * 2006-02-07 2011-07-13 株式会社デンソー Angular velocity sensor device
JP4816273B2 (en) * 2006-06-12 2011-11-16 株式会社デンソー Gyro sensor
DE102008028299B3 (en) 2008-06-13 2009-07-30 Epcos Ag System support for e.g. micro-electro-mechanical system component, has flexible support with upper side, and conductor paths guided to connecting contacts on upper side of components, which is turned away from flexible support
DE102009000571B4 (en) 2009-02-03 2023-05-17 Robert Bosch Gmbh Sensor device and housing for such a sensor device
DE102010001023A1 (en) 2010-01-19 2011-07-21 Robert Bosch GmbH, 70469 sensor device
EP2538175B1 (en) * 2010-02-18 2018-07-04 Panasonic Intellectual Property Management Co., Ltd. Angular speed sensor and composite sensor for detecting angular speed and acceleration
JP5287760B2 (en) * 2010-02-18 2013-09-11 パナソニック株式会社 Angular velocity sensor unit
JP6179580B2 (en) * 2015-11-25 2017-08-16 セイコーエプソン株式会社 Sensor devices and electronics

Also Published As

Publication number Publication date
JP2001324333A (en) 2001-11-22

Similar Documents

Publication Publication Date Title
JP4254016B2 (en) Angular velocity sensor and manufacturing method thereof
US7939937B2 (en) Chip housing having reduced induced vibration
JP3870918B2 (en) Temperature sensor integrated pressure sensor device
EP0678730B1 (en) Angular velocity sensor device
JP4922161B2 (en) Compound sensor
US5548999A (en) Mounting arrangement for acceleration detector element
WO1985004749A1 (en) Optical disc player
US10240953B2 (en) Housing with a damping element for a micromechanical sensor element
JP2010181392A (en) Mechanical quantity sensor and method of manufacturing the same
CN104884961B (en) Damper for sensor unit and the sensor device for motor vehicle
US20040150144A1 (en) Elastomeric vibration and shock isolation for inertial sensor assemblies
WO2007094184A1 (en) Ultrasonic sensor and fabrication method thereof
US6182508B1 (en) Structure of angular rate sensor
JP6729774B2 (en) Sensor units, electronics, and mobiles
JP2010530134A (en) Premolded housing with built-in vibration isolation
CN105359208A (en) Sonic transducer assembly
US10779399B2 (en) Conductor path structure having a component received in a vibration-damped manner
JP2015094645A (en) Inertial force sensor device
JP2017083361A (en) Inertial force sensor
JP2004294419A (en) Sensor device
JP7145322B2 (en) sensor device
JPH09203638A (en) Angular-velocity sensor device
CN210037852U (en) Differential Hall revolution speed transducer
JP2002055117A (en) Capacitance type acceleration sensor
JPH0418154Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees