JP4253860B2 - Exposure method and exposure apparatus - Google Patents

Exposure method and exposure apparatus Download PDF

Info

Publication number
JP4253860B2
JP4253860B2 JP10512698A JP10512698A JP4253860B2 JP 4253860 B2 JP4253860 B2 JP 4253860B2 JP 10512698 A JP10512698 A JP 10512698A JP 10512698 A JP10512698 A JP 10512698A JP 4253860 B2 JP4253860 B2 JP 4253860B2
Authority
JP
Japan
Prior art keywords
exposure
array
focus
line width
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10512698A
Other languages
Japanese (ja)
Other versions
JPH11297608A (en
Inventor
博一 川平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10512698A priority Critical patent/JP4253860B2/en
Publication of JPH11297608A publication Critical patent/JPH11297608A/en
Application granted granted Critical
Publication of JP4253860B2 publication Critical patent/JP4253860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、露光方法及び露光装置に関し、特に、フォトリソグラフィプロセスに用いる露光方法及び露光装置に関するものである。本発明は、半導体装置製造等の場合を代表的なものとして、各種のフォトリソグラフィプロセス利用の場合の露光技術として用いることができる。
【0002】
【従来の技術】
従来より、半導体デバイスの製造プロセスをはじめ、各種のパターン加工形成等のために、フォトリソグラフィ工程が採用されている。以下、従来技術について、半導体素子製造の場合を例にとって、説明する。
【0003】
半導体素子の性能を高め、かつその製造歩留りを高めるためには、半導体基板、あるいはガラス基板等の被露光材上のパターン形成時のパターン寸法を、デバイス製造プロセスにおける許容範囲内におさめることが重要である。またこれと同時に、半導体素子の製造過程中、半導体基板、あるいはガラス基板等の被露光材上のパターン形成時に発生する欠陥を低減することも必要である。
【0004】
半導体素子を加工ないし製造する際のフォトリソグラフィ工程においては、一般にフォトレジストが用いられるが、このようなフォトリソグラフィ工程で用いるフォトレジストは、その選択の段階で、パターン形成精度(たとえば、パターン加工寸法の露光量・フォーカス依存性、解像度、ポストエクスポージャベイク(露光後のベーク)温度依存性、露光後放置時間依存性)を十分に吟味評価し、また、半導体基板、あるいはガラス基板等の被露光材上の被加工膜上におけるフォトレジスト塗布性の評価や、露光現像後の欠陥数評価を行って、最適な半導体製造用フォトレジスト材料として選定されるのが通常である。
【0005】
実際の半導体量産工程においては、上記のように選定されたフォトレジスト材料を用いて、半導体ウエーハやガラス基板等が適正な条件で加工等されているかを判断するために、あらかじめ条件出し用のウエーハやガラス基板等を用いて、露光装置の露光量、及びフォーカスを図3に示すように条件振りし、管理すべきパターン寸法が規格内に入る露光量・フォーカスの条件を決めていた。図3において、符号1は、この条件出しのために用いるシリコンウエーハ、2は露光するチップパターンの1個分を示す。図示においては、チップ配列中の各チップに与える、露光量、及びフォーカスについて、図の横方向に露光量を40mJ/cm2 を基準に2mJ/cm2 ピッチで振り、図の縦方向にフォーカスを0μmを基準に0.2μmピッチで振って与えている。ここで決定した露光量、及びフォーカスは、線幅の許容規格内の中で、できるだけ設計値に近い値を取れるような条件を選択し、それを生産条件としていた。
【0006】
しかしながら、このように線幅を最適に仕上げるように露光量、及びフォーカスを設定したにもかかわらず、実際の製造加工用のウエーハやガラス基板では、線幅を最適に与えることはできるものの、露光現像したパターン上に欠陥が発生し、製造・加工したウエーハやガラス基板が、欠陥発生数という点で許容できないレベルになる場合が生じていた。たとえば、0.25μmデバイス製造工程で、1リソグラフィ工程(典型的には、レジスト塗布〜ベイク〜パターン露光〜ポストエクスポージャベイク〜現像〜ポストベイクで、1工程)で、0.25μmプラスマイナス0.25μmの加工線幅規格に対して、0.2503μmという良好な加工線幅は得られたにもかかわらず、該パターンが形成されている8インチウエーハ全域を欠陥検査したところ、0.3μm以上のパターン形状欠陥、あるいは残渣欠陥が、8インチシリコンウエーハ上、8380個発生した。
【0007】
これは、製造歩留りを著しく下げ、デバイス量産プロセス上、許容できないレベルになっていることが分かった。この欠陥発生の原因を調査したところ、基板ウエーハ上にフォトレジストを塗布する前の下地膜の表面状態(疎水性、親水性の極性)が、露光量、及びフォーカスを最適化したときと比べて変化しており、線幅は許容範囲内で、かつ、設計値にきわめて近い形で形成されているにもかかわらず、露光量を上げ(オーバー露光条件にする)、フォーカスをプラス側に設定し、線幅を細めに仕上げないと、欠陥が発生することが判明した。
【0008】
【発明が解決しようとする課題】
上記のように、従来の最適露光量・フォーカス設定の手法として採用されている、線幅規格が許容範囲内に入りかつできるだけ設計値に近い条件を選択するという方法は、一方では、パターン欠陥発生をもたらすおそれを有していたのである。本発明は、従来技術のこの問題点を解決して、線幅規格が許容範囲内に入るとともに、欠陥発生数も低減させ得るように露光量、及びフォーカスを設定できる、露光方法及び露光装置を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、フォトリソグラフィとプロセスにおける転写線幅の露光量、及びフォーカス依存性と同時に、欠陥発生歩留りを考慮して、最適露光量、及びフォーカスを設定するようにしたものである。
【0010】
本発明によれば、露光量、及びフォーカスの設定方法として、露光量依存性、フォーカス依存性、及び欠陥発生歩留りを考慮して最適露光、及び最適フォーカスを設定するので、線幅規格が許容範囲内に入るばかりでなく、欠陥発生数も低減され、高歩留りを実現できる。
【0011】
【発明の実施の形態】
以下本発明の実施の形態についてさらに詳細に説明し、また、本発明の好ましい実施の形態の具体例について、図面を参照して説明する。但し当然のことではあるが、本発明は図示実施の形態例に限定されるものではない。
【0012】
本発明は、次のような態様をとることができる。半導体製造の場合で言えば、半導体量産工程において使用したいレジスト材料を用いて、実際の量産で使用する被露光材(ウエーハやガラス基板等)上の被加工膜が適正な条件で加工できるかを判断するために、あらかじめ量産と同一条件で作成準備した条件出し用の被露光材(ウエーハやガラス基板等)を用いて、その上に上記レジストを適宜塗布し、ベイクし、露光装置の露光量の条件、及びフォーカスの条件を振って、露光し、その後現像を行う。その後に、管理すべきパターンの寸法をたとえば測長SEMにて測長し、許容規格内に入る露光量、及びフォーカスの条件範囲を求める。順序は不同であるが、たとえばこれにひき続いて、該被露光材(ウエーハやガラス基板等)をパターン欠陥検査し、たとえばパターン欠陥及び残渣欠陥数の合計が許容数の中に入る露光量、及びフォーカスの条件範囲を求める。ここで、線幅についてと、欠陥について、両方とも許容範囲に入る露光量、及びフォーカスの範囲の中で、量産用ウエーハ等の露光時に適用する露光量、及びフォーカスの条件を設定する。
【0013】
実施の形態例1
以下、本発明の好ましい実施例について、図面を参照して説明する。この実施の形態例は、最適露光、及び最適フォーカスを設定するに際し、露光量及びフォーカスの条件を振ってフォトリソグラフィプロセスにより作成した被露光材に発生した欠陥を検査し、該欠陥発生数が許容レベル以下となる露光量及びフォーカスの条件範囲を見出し、該範囲と、測定した線幅規格が許容範囲内に入る露光量及びフォーカスの条件範囲との事象積から最適条件を決定するようにした例である。特に、1つの被露光材(ここでは半導体ウエーハ)に、露光量及びフォーカスの条件を振った配列Aと、露光量及びフォーカスの条件を振らない配列Bとを配置して、線幅測長及びパターン欠陥検査を行い、最適露光、及び最適フォーカスを設定するようにしたものである。図1及び図2を参照する。
【0014】
被露光材として8インチシリコンウエーハを用意し、このウエーハ上にSi3 4 膜をCVD法により200nm堆積させ、この後、純水ジェット洗浄、スピン乾燥を行い、さらにHMDS(ヘキサメチルジシラザン)蒸気に40秒さらし、直後に180℃、30秒間の脱水ベイクを行い、そしてその上に、ここでは日本合成ゴム株式会社製の化学増幅型レジスト(商品名KRF−K2G)を0.765μmの厚さで塗布し、さらに表面反射防止膜(東京応化株式会社製、商品名TSP5A)を43nm厚で塗布し、100℃、90秒間のプリベイクを施した。これを条件出し用の被露光材1とする。
【0015】
このサンプル1枚の上に、10mm角のチップ(1チップを符号2で示す)を全面配置露光することを目的に、露光配置ファイルを作成した。ここでは、露光量を40mJ/cm2 を中心条件としてプラスマイナスに2mJ/cm2 ピッチで、また、フォーカスの条件を0μmを中心条件としてプラスマイナスに0.2μmピッチで露光した配列グループAと、露光量、フォーカスをそれぞれ40mJ/cm2 、0μmに固定した配列Bを1列毎に交互に配置して、露光ファイルを作成した。この配列図を示すのが、図1である。
【0016】
図1において、符号1は、本例におけるこの条件出し用の被露光材であるシリコンウエーハ、2は露光するチップパターンの1個分である。配列Aの対象チップ群は、符号3で示し、配列Bの対象チップ群は、符号4で示す。これにしたがって、エキシマステッパー(ニコン株式会社製、NSR−2205 EX10B11て、KrFエキシマレーザ光を用いて、0.25μmルールDRAM(Dynamic Random Access Memory)素子を1600万個配置したLOCOSレイヤーのマスクパターンを、該ウエーハ上に露光した。
【0017】
露光後、直ちに該ウエーハを110℃、90℃にてポストエクスポージャベイクを行い、その後、TMAH(テトラメチルアンモニウムアンハイドライド)2.38%現像液にてパドル現像60秒を施し、純水リンス後、振りスピン乾燥を行った。
【0018】
上記ウエーハの上の配列Aのパターンについて、測長SEM(日立製作所製;S8840)を用いて、DRAM LOCOSパターンの設計値0.26μmレーザ残し寸法部を測長し、露光量・フォーカス設定値毎に、出来上がり線幅を求めた。これをもとにして、0.25μm設計値のパターン寸法の変動許容規格±0.025μmに入っている露光量・フォーカス条件群ED(A)を、見出した。
【0019】
上記に引き続いて、配列Aの各露光量・フォーカス設定値におけるパターン欠陥数、レジスト残渣欠陥数を、配列Bの露光チップとの比較検査により求めるため、該ウエーハを、KAL社製欠陥検査機KAL2132のランダムモード(0.62μmピクセル、スレショルド50)にて検査した。KAL社製欠陥検査機KAL2132とは、いわゆる反射光式のダイ・ツー・ダイ比較でのパターン欠陥検査装置である。
【0020】
比較検査では、露光量・フォーカスを振った配列群Aを、その両脇の配列群Bと比較して検査し、相違があった場合を欠陥とした。その欠陥発生数を各露光量・フォーカス設定値毎に調べ、それが許容値レベル以下となる露光量・フォーカス条件範囲を見出した。
【0021】
本実施の形態例では、1チップ当たりのLOCOSパターン上の許容欠陥数は、歩留りの観点から30個に設定されており、これを満たす露光量・フォーカスの設定条件群ED(B)を見出した。
【0022】
図2に、線幅測定結果と欠陥数からそれぞれ許容仕様を満たす範囲ED(A)、ED(B)を示す。図2より、線幅規格のみから求めた場合のベスト露光量、及びベストフォーカスは、それぞれ40mJ/cm2 、0μmであるが、この場合の欠陥数は58個であり、欠陥数規格を満たさないことがわかる。線幅条件を見たし、かつ、欠陥数も規格を満たす条件は、露光量44mJ/cm2 、+0.4μmフォーカス近傍であることがわかる。
【0023】
以上より得られた露光量44mJ/cm2 、+0.4μmフォーカス近傍で、量産の本体ウエーハを露光した結果、10mm角の16MDRAMパターンを、8インチウエーハ25枚に露光した結果で、線幅規格外れ、及び欠陥数規格外れとなったチップは7000チップ中、皆無であった(1ウエーハ中280チップ、25枚で7000チップ)。
【0024】
これに対して、従来の手法により求めた最適条件である露光量40mJ/cm2 、フォーカス0μmにて同様に8インチウエーハ25枚に露光した場合、7000チップの中で、線幅規格をすべて満たしたが、欠陥数規格(30個以下)を満たしたのは、537チップに留まった。これより、従来の設定方法では、半導体デバイスの製造歩留りが格段に低下するものであることが明らかである。
【0025】
以上述べたように、本実施の形態例によれば、測定した線幅規格が許容範囲内に入る露光量・フォーカス条件範囲と、検査した欠陥数が許容範囲内におさまる範囲の事象積から最適条件を決定することを可能ならしめる本発明の手法を適用したことにより、製造したいウエーハ上の線幅を許容範囲内におさめ、かつ、欠陥たとえば露光後現像時の現像残り欠陥等を低減した、高歩留りを実現した露光を行うことが可能となった。
【0026】
なお本実施の形態例では、1枚の条件出し用ウエーハを用いて条件決定を行った例を示しているが、条件出し用ウエーハを複数枚に分けたり、それぞれのウエーハ毎に条件を振る手法によって、線幅と欠陥数が規格に入る範囲を求めて、その事象積で最適条件を設定することももちろん可能であり、このような態様も本発明に包含される。
【0027】
【発明の効果】
上記のとおり、本発明に係る露光方法及び露光装置によれば、線幅規格が許容範囲内に入るとともに、欠陥発生数も低減させ得るように露光量、及びフォーカスを設定できるのであり、これにより、製品を高歩留りで得ることができるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施の形態例1を説明するための図である。
【図2】 本発明の実施の形態例1を説明するための図であり、条件設定の詳細を示すものである。
【図3】 従来技術を示す図である。
【符号の説明】
1・・・被露光材(条件出しウエーハ)、2・・・チップ(1個)、3・・・配列Aの対象チップ群、4・・・配列Bの対象チップ群、ED(A)・・・線幅の許容仕様を満たす範囲、ED(B)・・・欠陥数の許容仕様を満たす範囲。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exposure method and an exposure apparatus, and more particularly to an exposure method and an exposure apparatus used in a photolithography process. The present invention can be used as an exposure technique in the case of using various photolithography processes, typically in the case of manufacturing semiconductor devices.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a photolithography process has been employed for various pattern processing and the like including a semiconductor device manufacturing process. Hereinafter, the prior art will be described by taking a case of manufacturing a semiconductor element as an example.
[0003]
In order to improve the performance of semiconductor elements and increase their manufacturing yield, it is important to keep the pattern dimensions when forming patterns on exposed materials such as semiconductor substrates or glass substrates within the allowable range in the device manufacturing process. It is. At the same time, it is also necessary to reduce defects that occur during pattern formation on an exposed material such as a semiconductor substrate or a glass substrate during the manufacturing process of the semiconductor element.
[0004]
In a photolithography process for processing or manufacturing a semiconductor element, a photoresist is generally used. The photoresist used in such a photolithography process has a pattern formation accuracy (for example, a pattern processing dimension) at the stage of selection. Exposure, focus dependence, resolution, post-exposure bake (post-exposure baking temperature dependence, post-exposure standing time dependence), etc., and thoroughly examine and evaluate the exposure of semiconductor substrates, glass substrates, etc. It is usual to select an optimum photoresist material for semiconductor manufacture by evaluating the photoresist coatability on the film to be processed on the material and evaluating the number of defects after exposure and development.
[0005]
In an actual semiconductor mass production process, in order to determine whether a semiconductor wafer, a glass substrate, or the like is processed under appropriate conditions using the photoresist material selected as described above, a wafer for condition determination is used in advance. As shown in FIG. 3, the exposure amount and focus of the exposure apparatus are adjusted as shown in FIG. 3 using a glass substrate or the like, and the exposure amount / focus conditions within which the pattern size to be managed falls within the standard are determined. In FIG. 3, reference numeral 1 denotes a silicon wafer used for determining the conditions, and 2 denotes one chip pattern to be exposed. In the drawing, with respect to the exposure amount and focus given to each chip in the chip array, the exposure amount is shaken at a pitch of 2 mJ / cm 2 with reference to 40 mJ / cm 2 in the horizontal direction of the figure, and the focus is set in the vertical direction of the figure. Waves are given with a pitch of 0.2 μm with respect to 0 μm. For the exposure amount and focus determined here, a condition that can take a value as close to the design value as possible within the line width tolerance standard is selected and used as a production condition.
[0006]
However, in spite of setting the exposure amount and focus so as to optimally finish the line width in this way, the wafer or glass substrate for actual manufacturing processing can give the line width optimally, but exposure In some cases, defects occur on the developed pattern, and the wafers and glass substrates manufactured and processed are at an unacceptable level in terms of the number of defects generated. For example, in a 0.25 μm device manufacturing process, in one lithography process (typically, resist coating, baking, pattern exposure, post-exposure baking, development, post-baking, one process), 0.25 μm plus or minus 0.25 μm Despite the fact that a good processing line width of 0.2503 μm was obtained with respect to the processing line width standard, the entire area of the 8-inch wafer on which the pattern was formed was inspected for defects. 8380 shape defects or residue defects were generated on an 8-inch silicon wafer.
[0007]
This has significantly reduced the manufacturing yield and has been found to be unacceptable in the device mass production process. As a result of investigating the cause of this defect, the surface condition (hydrophobic and hydrophilic polarity) of the base film before applying the photoresist on the substrate wafer was compared with that when the exposure amount and focus were optimized. Even though the line width is within the allowable range and is very close to the design value, the exposure is increased (overexposure condition) and the focus is set to the plus side. It was found that defects would occur if the line width was not finished fine.
[0008]
[Problems to be solved by the invention]
As described above, the method of selecting a condition where the line width standard is within the allowable range and is as close to the design value as possible, which has been adopted as the conventional method for setting the optimum exposure dose and focus, on the other hand, causes pattern defects. It had the risk of bringing about. The present invention solves this problem of the prior art, and provides an exposure method and an exposure apparatus capable of setting an exposure amount and a focus so that the line width standard is within an allowable range and the number of defects can be reduced. The issue is to provide.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention sets the optimum exposure amount and focus in consideration of the defect generation yield as well as the exposure amount and focus dependency of the transfer line width in photolithography and process. Is.
[0010]
According to the present invention, as the exposure amount and focus setting method, the optimum exposure and the optimum focus are set in consideration of the exposure amount dependency, the focus dependency, and the defect generation yield. In addition to being within, the number of defects is reduced and a high yield can be realized.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in more detail, and specific examples of preferred embodiments of the present invention will be described with reference to the drawings. However, as a matter of course, the present invention is not limited to the illustrated embodiment.
[0012]
The present invention can take the following aspects. In the case of semiconductor manufacturing, using the resist material that you want to use in the semiconductor mass production process, whether the film to be processed on the exposed material (wafer, glass substrate, etc.) used in actual mass production can be processed under appropriate conditions. In order to judge, using the exposure target material (wafer, glass substrate, etc.) prepared in advance under the same conditions as those for mass production, the above resist is appropriately applied thereon, baked, and the exposure amount of the exposure apparatus The exposure is performed under the above conditions and the focus conditions, and then development is performed. Thereafter, the dimension of the pattern to be managed is measured by, for example, a length measuring SEM, and the exposure amount and the focus condition range falling within the allowable standard are obtained. Although the order is not limited, for example, following this, the exposed material (wafer, glass substrate, etc.) is subjected to pattern defect inspection, for example, the exposure amount in which the total number of pattern defects and residual defects falls within the allowable number, And the focus condition range is obtained. Here, with respect to the line width and the defect, the exposure amount to be applied at the time of exposure of a mass production wafer or the like and the focus condition are set within the exposure range and the focus range both within the allowable range.
[0013]
Embodiment 1
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In this embodiment, when setting the optimal exposure and the optimal focus, the defect generated in the exposed material created by the photolithography process is inspected by changing the exposure amount and the focus condition, and the number of generated defects is allowed. An example in which the exposure and focus condition ranges below the level are found, and the optimum condition is determined from the event product of the range and the exposure and focus condition ranges where the measured line width standard falls within the allowable range It is. In particular, an array A in which an exposure amount and a focus condition are set and an array B in which an exposure amount and a focus condition are not set are arranged on one object to be exposed (here, a semiconductor wafer). Pattern defect inspection is performed, and optimal exposure and optimal focus are set. Please refer to FIG. 1 and FIG.
[0014]
An 8-inch silicon wafer is prepared as a material to be exposed, and a Si 3 N 4 film is deposited on the wafer by a CVD method to a thickness of 200 nm, followed by pure water jet cleaning and spin drying, and further HMDS (hexamethyldisilazane). It is exposed to steam for 40 seconds, immediately followed by dehydration baking at 180 ° C. for 30 seconds, and a chemically amplified resist (trade name KRF-K2G) manufactured by Nippon Synthetic Rubber Co., Ltd. is added here to a thickness of 0.765 μm. Then, a surface antireflection film (trade name: TSP5A, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied at a thickness of 43 nm, and prebaked at 100 ° C. for 90 seconds. This is the exposure target material 1 for determining the conditions.
[0015]
An exposure arrangement file was created for the purpose of arranging and exposing a 10 mm square chip (one chip is denoted by reference numeral 2) on the entire surface of one sample. Here, the array group A is exposed at an exposure amount of 40 mJ / cm 2 with a central condition of plus or minus 2 mJ / cm 2 pitch, and the focus condition of 0 μm with a center condition of plus or minus 0.2 μm pitch. An exposure file was created by alternately arranging array B with the exposure amount and focus fixed at 40 mJ / cm 2 and 0 μm, respectively, for each column. This arrangement is shown in FIG.
[0016]
In FIG. 1, reference numeral 1 denotes a silicon wafer, which is an exposure material for determining the conditions in this example, and 2 denotes a chip pattern to be exposed. The target chip group in array A is indicated by reference numeral 3, and the target chip group in array B is indicated by reference numeral 4. In accordance with this, a mask pattern of a LOCOS layer in which 16 million 0.25 μm rule DRAM (Dynamic Random Access Memory) elements are arranged using an excimer stepper (Nikon Corporation, NSR-2205 EX10B11, KrF excimer laser light). Then, the wafer was exposed.
[0017]
Immediately after exposure, the wafer was post-exposure baked at 110 ° C. and 90 ° C., and then subjected to paddle development for 60 seconds with a TMAH (tetramethylammonium anhydride) 2.38% developer, followed by rinsing with pure water. Then, spin-drying was performed.
[0018]
With respect to the pattern of the array A on the wafer, using a length measuring SEM (manufactured by Hitachi, Ltd .; S8840), the design value of the DRAM LOCOS pattern 0.26 μm is measured for the remaining size of the laser, and the exposure amount / focus setting value is measured. Then, the finished line width was obtained. Based on this, an exposure amount / focus condition group ED (A) that falls within the variation tolerance standard ± 0.025 μm of the 0.25 μm design value was found.
[0019]
Subsequent to the above, in order to obtain the number of pattern defects and the number of resist residue defects at each exposure amount / focus setting value of the array A by comparison inspection with the exposure chip of the array B, the wafer is obtained as a defect inspection machine KAL2132 manufactured by KAL. In random mode (0.62 μm pixel, threshold 50). The defect inspection machine KAL2132 manufactured by KAL is a pattern defect inspection apparatus based on a so-called reflected light type die-to-die comparison.
[0020]
In the comparative inspection, the array group A with the exposure amount / focusing was inspected in comparison with the array group B on both sides thereof, and a case where there was a difference was defined as a defect. The number of occurrences of defects was examined for each exposure amount / focus setting value, and an exposure amount / focus condition range in which the defect level was below an allowable value level was found.
[0021]
In this embodiment, the allowable number of defects on the LOCOS pattern per chip is set to 30 from the viewpoint of yield, and an exposure amount / focus setting condition group ED (B) that satisfies this is found. .
[0022]
FIG. 2 shows ranges ED (A) and ED (B) that satisfy the allowable specifications from the line width measurement result and the number of defects. From FIG. 2, the best exposure amount and the best focus obtained from only the line width standard are 40 mJ / cm 2 and 0 μm, respectively, but the number of defects in this case is 58 and does not satisfy the defect number standard. I understand that. It can be seen that the conditions for viewing the line width condition and satisfying the standard for the number of defects are in the vicinity of an exposure amount of 44 mJ / cm 2 and +0.4 μm focus.
[0023]
As a result of exposing a mass-produced main body wafer at an exposure amount of 44 mJ / cm 2 and a focus of +0.4 μm obtained as described above, 25 mm 10 mm square 16MDRAM patterns were exposed to 25 8-inch wafers, resulting in non-standard line width. In addition, there were none of the 7000 chips out of the defect number standard (280 chips in one wafer, 7000 chips in 25 wafers).
[0024]
On the other hand, when the exposure is 40 mJ / cm 2 , which is the optimum condition obtained by the conventional method, and 25 pieces of 8-inch wafers are similarly exposed at a focus of 0 μm, all the line width standards are satisfied in 7000 chips. However, only 537 chips met the defect number standard (30 or less). From this, it is clear that in the conventional setting method, the manufacturing yield of the semiconductor device is remarkably reduced.
[0025]
As described above, according to the present embodiment, it is optimal from the exposure product / focus condition range where the measured line width standard falls within the allowable range, and the event product within the range where the number of inspected defects falls within the allowable range. By applying the method of the present invention that makes it possible to determine the conditions, the line width on the wafer to be manufactured is kept within an allowable range, and defects such as development residual defects at the time of development after exposure are reduced, It has become possible to perform exposure with high yield.
[0026]
In this embodiment, an example is shown in which conditions are determined using a single wafer for condition determination. However, a method for dividing the wafer for condition determination into a plurality of wafers or assigning conditions for each wafer is described. Thus, it is of course possible to obtain the range in which the line width and the number of defects fall within the standard, and to set the optimum condition with the event product, and such an aspect is also included in the present invention.
[0027]
【The invention's effect】
As described above, according to the exposure method and the exposure apparatus of the present invention, the exposure amount and focus can be set so that the line width standard falls within the allowable range and the number of defects can be reduced. The product can be obtained at a high yield.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a first embodiment of the present invention.
FIG. 2 is a diagram for explaining a first embodiment of the present invention and shows details of condition setting;
FIG. 3 is a diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Material to be exposed (conditional wafer), 2 ... Chip (1 piece), 3 ... Target chip group in array A, 4 ... Target chip group in array B, ED (A)・ ・ A range that satisfies the allowable specification of the line width, ED (B)... A range that satisfies the allowable specification of the number of defects.

Claims (4)

フォトリソグラフィプロセスにおける露光方法において、
1つの被露光材に、露光量及びフォーカスの条件を振った配列Aと、露光量及びフォーカスの条件を振らない配列Bとを配置して露光ファイルを形成し、露光現像する工程、
前記配列Aの線幅を測長する、線幅測長検査をする工程、
前記配列Aのチップと、前記配列Bのチップとを比較し、前記配列Aのチップにおける欠陥発生数を求めることにより、パターン欠陥検査をする工程、
前記配列Aのチップの条件のうち、前記線幅測長検査及び前記パターン欠陥検査から見出された最適露光量、及び最適フォーカスの条件を設定する工程、
とを含む露光方法。
Oite to the exposure method in the photolithography process,
A step of forming an exposure file by arranging an array A in which exposure conditions and focus conditions are set on one exposure material and an array B in which exposure conditions and focus conditions are not set, and performing exposure development.
Measuring the line width of the array A, performing a line width measurement inspection,
Comparing the chips of the array A with the chips of the array B, and determining the number of defects generated in the chips of the array A, thereby performing a pattern defect inspection;
Of the conditions of the chips of the array A, the step of setting the optimum exposure amount found from the line width measurement inspection and the pattern defect inspection, and the optimum focus condition,
An exposure method comprising:
前記配列Aと前記配列Bとの配置を交互にし、前記パターン欠陥検査は、前記配列Aのチップと、前記配列Aのチップの両脇の前記配列Bのチップとを比較することにより行う、The arrangement of the array A and the array B is alternated, and the pattern defect inspection is performed by comparing the chip of the array A with the chip of the array B on both sides of the chip of the array A.
請求項1記載の露光方法。The exposure method according to claim 1.
前記配列Bの露光量及びフォーカスは、線幅規格のみから求めた場合のベスト露光量、及びベストフォーカスであるThe exposure amount and focus of the array B are the best exposure amount and the best focus obtained from only the line width standard.
請求項1記載の露光方法。The exposure method according to claim 1.
フォトリソグラフィプロセスに用いる露光装置であって、
転写線幅の露光量依存性、フォーカス依存性、及び欠陥発生歩留まりを考慮した最適露光、及び最適フォーカスの設定手段を備え、
前記最適露光、及び前記最適フォーカスの設定手段では、1つの被露光材に、露光量及びフォーカスの条件を振った配列Aと、露光量及びフォーカスの条件を振らない配列Bとを配置し、前記配列Aの線幅を測長する線幅測長検査と、前記配列Aのチップと、前記配列Aのチップの両脇にある前記配列Bのチップとを比較し、前記配列Aのチップにおける欠陥発生数を求めるパターン欠陥検査とが行われ、前記線幅測長検査及び前記パターン欠陥検査とから、前記最適露光、及び前記最適フォーカスとが求められる
ことを特徴とする露光装置。
An exposure apparatus used in a photolithography process,
Optimum exposure and optimum focus setting means considering the exposure amount dependency, focus dependency, and defect generation yield of the transfer line width,
In the optimum exposure and optimum focus setting means, an array A in which an exposure amount and a focus condition are set and an array B in which an exposure amount and a focus condition are not set are arranged on one exposure material, The line width measurement inspection for measuring the line width of the array A, the chip of the array A, and the chip of the array B on both sides of the chip of the array A are compared, and the defect in the chip of the array A An exposure apparatus characterized in that a pattern defect inspection for determining the number of occurrences is performed, and the optimum exposure and the optimum focus are obtained from the line width measurement inspection and the pattern defect inspection .
JP10512698A 1998-04-15 1998-04-15 Exposure method and exposure apparatus Expired - Fee Related JP4253860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10512698A JP4253860B2 (en) 1998-04-15 1998-04-15 Exposure method and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10512698A JP4253860B2 (en) 1998-04-15 1998-04-15 Exposure method and exposure apparatus

Publications (2)

Publication Number Publication Date
JPH11297608A JPH11297608A (en) 1999-10-29
JP4253860B2 true JP4253860B2 (en) 2009-04-15

Family

ID=14399101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10512698A Expired - Fee Related JP4253860B2 (en) 1998-04-15 1998-04-15 Exposure method and exposure apparatus

Country Status (1)

Country Link
JP (1) JP4253860B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015992A (en) * 2000-04-25 2002-01-18 Nikon Corp Lithographic process, evaluating method for lithography system, adjusting method for substrate-processing apparatus, lithography system, method and apparatus for exposure, and method for measuring condition of photosensitive material
JP2003218022A (en) * 2002-01-28 2003-07-31 Tokyo Electron Ltd Substrate processing method and substrate processing apparatus
WO2005055295A1 (en) * 2003-12-03 2005-06-16 Nikon Corporation Exposure method and system, and device producing method
JP4786224B2 (en) * 2005-03-30 2011-10-05 富士フイルム株式会社 Projection head focus position measuring method and exposure method
JP5002380B2 (en) * 2007-09-06 2012-08-15 東京エレクトロン株式会社 Processing device abnormality detection method, processing device, and computer-readable storage medium

Also Published As

Publication number Publication date
JPH11297608A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US20060105476A1 (en) Photoresist pattern, method of fabricating the same, and method of assuring the quality thereof
TWI413160B (en) Semiconductor lithography process
US7897297B2 (en) Method and system for optimizing intra-field critical dimension uniformity using a sacrificial twin mask
JP2000508118A (en) Semiconductor wafer processing method for controlling drive current
JP4567110B2 (en) Proximity effect measurement method and device by device capability measurement
US20070231935A1 (en) Novel critical dimension (cd) control by spectrum metrology
JP2002217092A (en) Method for forming resist pattern and method for fabricating semiconductor device
JP2005026362A (en) Temperature proofreading method of heat treatment apparatus, adjustment method of development processor, and method for manufacturing semiconductor device
US7238454B2 (en) Method and apparatus for producing a photomask blank, and apparatus for removing an unnecessary portion of a film
US6569605B1 (en) Photomask and method for forming micro patterns of semiconductor device using the same
JP2003203841A (en) Method for evaluation, correcting manufacturing conditions, and manufacturing semiconductor device
JP4253860B2 (en) Exposure method and exposure apparatus
US6866974B2 (en) Semiconductor process using delay-compensated exposure
US5723238A (en) Inspection of lens error associated with lens heating in a photolithographic system
CN114077166B (en) Method for obtaining critical dimension rocking curve of photoetching technology
JPH09218500A (en) Manufacture of resist patterns
KR20010104236A (en) Method of lithography
JP3384880B2 (en) Focusing method in photoengraving
JPH10256149A (en) Method of forming resist pattern
JP3861851B2 (en) Resist pattern forming method and semiconductor device manufacturing method
US6759351B2 (en) Method for eliminating development related defects in photoresist masks
US7393619B2 (en) Method and lithographic structure for measuring lengths of lines and spaces
JPH08148490A (en) Line width control pattern and line width control method by use thereof
JP3241809B2 (en) Method for manufacturing photomask having phase shift layer
KR0172766B1 (en) Method of determining the thickness of photoresist in the manufacturing process of semiconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees