WO2005055295A1 - Exposure method and system, and device producing method - Google Patents

Exposure method and system, and device producing method Download PDF

Info

Publication number
WO2005055295A1
WO2005055295A1 PCT/JP2004/017817 JP2004017817W WO2005055295A1 WO 2005055295 A1 WO2005055295 A1 WO 2005055295A1 JP 2004017817 W JP2004017817 W JP 2004017817W WO 2005055295 A1 WO2005055295 A1 WO 2005055295A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
optical system
illumination
projection
ope
Prior art date
Application number
PCT/JP2004/017817
Other languages
French (fr)
Japanese (ja)
Inventor
Taro Ogata
Takehito Kudo
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2005055295A1 publication Critical patent/WO2005055295A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture

Definitions

  • the present invention relates to a lithography apparatus for manufacturing a device such as a semiconductor integrated circuit or a liquid crystal display element, which is used for transferring a mask pattern onto a substrate via a projection optical system.
  • the present invention is suitable for use in the technology, particularly when adjusting the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of OPE (Optical Proximity Effect) which is an optical proximity effect of the projected image.
  • OPE Optical Proximity Effect
  • a pattern of a reticle (or a photomask or the like) as a mask is coated with a photoresist as a substrate (sensitive object) via a projection optical system.
  • a batch exposure type such as a stepper and a scanning exposure type projection exposure apparatus such as a scanning stepper are used to transfer the image onto each shot area of a wafer (or a glass plate or the like).
  • the ideal light amount distribution of exposure light (exposure beam) on the pupil plane of the illumination optical system is a uniform distribution within a circular area for normal illumination, and an annular area for annular illumination. It is a uniform distribution within.
  • the light intensity distribution of the exposure light There is a certain degree of unevenness (, so-called brightness unevenness) for each device, and the OPE characteristics also change due to the uneven brightness.
  • the ⁇ ⁇ characteristic also changes depending on the exposure conditions such as the numerical aperture (NA) of the projection optical system and the coherence factor ( ⁇ value) of the illumination optical system. Therefore, an actual projection exposure apparatus has its own ⁇ characteristic depending on the aberration of the projection optical system, the uneven brightness of the exposure light, and the exposure conditions.
  • Patent Document 1 U.S. Patent Application Publication No. 2001Z0026448A1
  • the method of correcting the line width of each pattern at the time of producing a reticle is not limited to a method in which the produced reticle can be used in a specific projection exposure apparatus.
  • the projection exposure apparatus may not be used. Therefore, when another projection exposure apparatus is used, a new reticle must be manufactured in accordance with the ⁇ characteristics of the projection exposure apparatus, which is one of the factors that increase the manufacturing cost of semiconductor integrated circuits and the like. Had become.
  • the ⁇ characteristic of the first projection exposure apparatus adjusted by this method and the ⁇ characteristic of another second projection exposure apparatus were not necessarily matched. That is, due to the ⁇ characteristics of the first and second projection exposure apparatuses, the absolute value of the line width of the projected image of the periodic pattern and the isolated line is different from each other, and the absolute value of the projected image of the isolated line is different from that of the periodic pattern and the isolated line. ⁇ characteristics at pitch differed from each other. Therefore, its first projection dew The reticle produced by correcting the OPE characteristics for the optical device was too powerful to be used in the second projection exposure apparatus.
  • the purpose is to match the line width of the projected image between the periodic pattern and the isolated pattern, and to adjust the OPE characteristics within a predetermined pitch range as a whole to a predetermined state. There was no. In the future, as the miniaturization and high integration of integrated circuits and the like progress further, it is expected that it is required to further increase the line width uniformity within a predetermined pitch range as a whole.
  • the present invention provides an exposure technique and a device manufacturing technique capable of adjusting the characteristic relating to the pitch dependency of the line width of a projected image or the characteristic of an OPE for each exposure apparatus. Aim.
  • the present invention is designed so that the characteristics relating to the pitch dependency of the line width of the projected image or the characteristics of the OPE can be matched in a predetermined state within a predetermined pitch range or between a plurality of exposure apparatuses.
  • a second object is to provide an exposure technology and a device manufacturing technology that can be adjusted to a desired level.
  • the present invention provides an exposure technique and a device capable of correcting, for each exposure apparatus, a characteristic relating to a pitch dependency of a line width of a projection image or an OPE characteristic caused by unevenness in a light amount distribution of an exposure beam on a pupil plane of an illumination optical system.
  • the third purpose is to provide manufacturing technology.
  • the first exposure method illuminates a first object (R) with an exposure beam from an illumination optical system (3), and irradiates the first object (R) with the exposure beam via the first object and a projection optical system (PL).
  • the second object is adjusted in order to adjust each of the line widths of a plurality of mutually different patterns projected through the projection optical system to a predetermined state. This is to change the exposure condition for exposure.
  • the present invention by adjusting the line widths of the projection images of a plurality of patterns to a predetermined state by changing the exposure conditions, the characteristic relating to the pitch dependency of the line widths of the projection images is obtained.
  • the characteristics of OPE Optical Proximity Effect
  • the line widths of three or more different patterns projected from the projection optical system through the projection optical system may be adjusted to corresponding reference values.
  • the three or more types of patterns are, for example, three or more patterns having different pitches from each other.
  • the three or more patterns include, for example, a pattern having a minimum pitch, a pattern having a maximum pitch, and a pattern having an intermediate pitch between the pattern having the minimum pitch and the pattern having the maximum pitch.
  • the characteristic relating to the pitch dependence of the line width of the projected image and the characteristic of the OPE can be adjusted to a predetermined state determined by the reference value.
  • the mask can be commonly used by a plurality of exposure apparatuses. Further, by using the reference value as the line width measured by another exposure apparatus, it is possible to perform matching between a plurality of exposure apparatuses with respect to the pitch dependency of the line width of the projected image.
  • the change in the line width of the projected image caused by the unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system or a conjugate plane with this plane is brought into a predetermined state. It may be adjusted. This makes it possible to correct, for each exposure apparatus, the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of the OPE caused by the unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system.
  • the light amount distribution is such that, for example, the light amount of the exposure beam is substantially uniformly distributed in a circular area, an annular area, or a plurality of eccentric areas.
  • the OPE characteristics are set to the same characteristics as when illumination is performed with an ideal light amount distribution. exposure It can be performed.
  • the exposure conditions are plural, and the exposure conditions are adjusted within a range that does not substantially affect the imaging characteristics of the projection optical system.
  • the OPE characteristic without lowering the resolution of the projected image can be adjusted to a predetermined state.
  • the plurality of patterns are three or more types of patterns, and three or more types of exposure conditions are used in order to adjust the line widths of the projected images of the three or more types of patterns to the corresponding reference values. May be set. In this way, as the number of exposure conditions to be set is increased, it becomes easy to adjust the line width of the projected image with three or more types of patterns, and the type of pattern to be adjusted (for example, the number of pitches) ) Can be increased.
  • the line widths of the plurality of patterns projected through the projection optical system may be obtained! By using the value obtained by optical simulation or actual measurement for the line width of the projected image, the pitch dependence characteristic of the projected image line width can be adjusted with higher accuracy.
  • a second exposure method includes a first exposure apparatus (1A) for exposing an object via a first projection optical system (PLA) and a second exposure optical system (PLB).
  • a line width of a projected image of three or more different patterns through the second projection optical system is different from each other.
  • the exposure conditions of the second exposure apparatus are set in order to make each of them correspond to the line width of the projected image via the first projection optical system.
  • the present invention it is possible to match between the first and second exposure apparatuses with respect to the characteristic relating to the pitch dependency of the line width of the projected image, and further to the characteristic of the OPE. Therefore, for example, it is possible to commonly use a mask whose OPE characteristics have been corrected.
  • three or more exposure conditions for the second exposure apparatus may be set.
  • an exposure apparatus provides an illumination optical system (3) for illuminating a first object (R) with an exposure beam, and projects an image of the first object onto a second object (W).
  • projection optics PL
  • Control for changing the exposure condition for exposing the second object in order to adjust each of the line widths of a plurality of different patterns projected through the projection optical system to a predetermined state.
  • the present invention by adjusting the line widths of the projection images of the plurality of patterns to predetermined states by changing the exposure conditions, the characteristic relating to the pitch dependency of the line widths of the projection images is obtained.
  • the characteristics of OPE Optical Proximity Effect
  • the control device may change the exposure condition.
  • the three or more types of patterns include, for example, a pattern having a minimum pitch, a pattern having a maximum pitch, and a pattern having an intermediate pitch between the pattern having the minimum pitch and the pattern having the maximum pitch.
  • the characteristic relating to the pitch dependency of the line width of the projected image, and eventually the OPE characteristic is changed to a predetermined state. Can be adjusted.
  • control device may change the exposure condition. This makes it possible to correct the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of the OPE due to the unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system for each exposure apparatus.
  • the light amount distribution is, for example, a state in which the light amount of the exposure beam is substantially uniformly distributed in a circular area, an annular area, or a plurality of eccentric areas.
  • a plurality of exposure conditions are set, and the exposure conditions are adjusted within a range that does not substantially affect the imaging characteristics of the projection optical system.
  • the control device sets three or more exposure conditions. May be set.
  • the image processing apparatus may further include an arithmetic unit (41a) or an aerial image measurement system (29) for obtaining line width information of the aerial image of the three or more types of patterns via the projection optical system.
  • One example of the reference value is a line width of a projected image of the three or more types of patterns projected via the projection optical system of another exposure apparatus. This makes it possible to match between the plurality of exposure apparatuses with respect to the pitch dependency of the line width of the projected image.
  • the reference value is, for example, a value corresponding to a mask whose OPE characteristic has been corrected.
  • the mask can be used in common by a plurality of exposure apparatuses.
  • the three or more types of patterns include, for example, first, second, and third periodic patterns having gradually different pitches.
  • the first, second, and third periodic patterns are further regarded as a fine pitch (pi) pattern, a larger pitch (p2) intermediate pitch pattern, and a substantially isolated pattern, respectively.
  • a coarse pitch (p3) pattern that can be used.
  • the exposure conditions set include, for example, a numerical aperture of the projection optical system, a coherence factor of the illumination optical system, and an illumination condition of the illumination optical system. At least one of the illumination zone ratio of the annular illumination, the wavelength of the exposure beam, the half width of the wavelength of the exposure beam, the exposure amount of the exposure beam, and the type of photosensitive material on the second object. is there.
  • the exposure conditions are as follows.
  • the numerical aperture of the projection optical system, the coherence factor of the illumination optical system, and the illumination annular ratio may be used when the illumination optical system performs annular illumination. Further, under these conditions, the exposure amount of the exposure beam may be adjusted.
  • the first device manufacturing method according to the present invention is a device manufacturing method including a lithographic process, wherein the exposure conditions set by the exposure method of the present invention during the lithographic process. Is used to transfer the pattern (R) onto the photoreceptor (W).
  • a second device manufacturing method is a device manufacturing method including a lithographic process, wherein the pattern (R) is transferred onto the photoreceptor (W) by the exposure apparatus of the present invention during the lithographic process. It is.
  • a mask with corrected OPE characteristics can be commonly used in a plurality of exposure apparatuses at the time of exposure, so that manufacturing costs can be reduced.
  • the pitch condition of the projection image line width is changed by changing the exposure condition.
  • Characteristics or OPE characteristics can be adjusted for each exposure apparatus.
  • the exposure condition is changed in order to match the line widths of the projected images of three or more different patterns to the corresponding reference values, the pitch dependency of the line widths of the projected images is changed.
  • the characteristic relating to the performance or the characteristic of the OPE can be adjusted to a predetermined state within a predetermined pitch range (a range between the pattern of the minimum pitch and the pattern of the maximum pitch).
  • a change in the line width of the projected image caused by unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system or a conjugate plane with this plane is adjusted to a predetermined state.
  • the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of the OPE caused by the unevenness of the light amount distribution can be corrected for each exposure apparatus.
  • the characteristics relating to the pitch dependency of the line width of the projected image or the characteristics of the OPE can be adjusted so that matching can be achieved between a plurality of exposure devices.
  • FIG. 1 is a perspective view showing a projection exposure apparatus used in an embodiment of the present invention.
  • FIG. 2 is an enlarged view showing an example of an OPE characteristic evaluation pattern.
  • FIG. 3 is an enlarged view showing a projected image of the pattern of FIG. 2 via a projection optical system.
  • FIG. 4 shows a case where the projection optical system has no aberration in the first embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a simulation result of OPE characteristics of the projection exposure apparatus.
  • FIG. 5 is a diagram showing the change in OPE characteristics when the numerical aperture (projection NA) of the projection optical system is also changed in the state force in FIG.
  • FIG. 6 A diagram showing a change in OPE characteristics when the lighting sigma is changed from the state in FIG. 4.
  • [7] A diagram showing changes in OPE characteristics when the state force in Fig. 4 is changed. It is a figure.
  • Fig. 8 is a diagram showing changes in OPE characteristics when the projection NA, illumination sigma, and illumination ring zone ratio are each changed by 0.01.
  • FIG. 9 is a diagram showing a simulation result of OPE characteristics of the projection exposure apparatus when the projection optical system has an aberration.
  • FIG. 10 is a diagram showing an example of adjusting the OPE characteristics using the projection NA in the first embodiment of the present invention.
  • FIG. 11 is a diagram showing an example in which the OPE characteristic is adjusted using both the projection NA and the illumination sigma in the first embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of a simulation result of the OPE characteristic of the projection exposure apparatus when the projection optical system has no aberration in the second embodiment of the present invention.
  • Fig. 13 is a diagram illustrating an example of a luminance distribution (light amount distribution) in a pupil plane during annular illumination.
  • FIG. 14 OP obtained by simulation based on the luminance distribution in the pupil plane of FIG. 13
  • FIG. 9 is a view showing an E characteristic.
  • FIG. 15 is a diagram showing changes in OPE characteristics when the projection NA is changed when there is a luminance distribution with a tendency to be convex in the middle.
  • FIG. 16 is a diagram showing changes in OPE characteristics when the illumination sigma is changed when there is a luminance distribution with a tendency to be convex in the middle.
  • FIG. 17 is a diagram showing changes in OPE characteristics when the illumination ring zone ratio is changed in the case where there is a luminance distribution with a tendency to be convex toward the center.
  • FIG. 18 is a diagram showing the rate of change of the OPE characteristic when the projection NA, the illumination sigma, and the illumination ring zone ratio are each changed by 0.01 in the case where there is a luminance distribution with a tendency to be convex in the middle.
  • FIG. 19 is a diagram showing an example of OPE characteristics optimized by adjusting exposure conditions in the case where there is a luminance distribution having a convexity in the second embodiment of the present invention.
  • FIG. 20 is a diagram showing a change in OPE characteristics when the projection NA is changed when there is a luminance distribution with a decreasing tendency.
  • FIG. 21 is a diagram showing a change in OPE characteristics when the illumination sigma is changed when there is a luminance distribution with a decreasing tendency.
  • FIG. 22 is a diagram showing changes in OPE characteristics when the illumination ring zone ratio is changed when there is a luminance distribution with a decreasing tendency.
  • FIG. 23 is a diagram showing the rate of change of the OPE characteristic when the projection NA, the illumination sigma, and the illumination ring zone ratio are changed by 0.01, respectively, when there is a luminance distribution with a decreasing tendency.
  • FIG. 24 is a diagram showing an example of OPE characteristics optimized by adjusting exposure conditions in a case where there is a luminance distribution with a decreasing tendency in the second embodiment of the present invention.
  • FIG. 25 is a perspective view showing an exposure system according to a third embodiment of the present invention.
  • FIG. 26 is a flowchart showing an example of an operation for matching OPE characteristics of two exposure apparatuses in the third embodiment. Explanation of symbols
  • FIG. 1 shows a schematic configuration of a scanning exposure type projection exposure apparatus (exposure apparatus) including the scanning stepper of the present embodiment.
  • an exposure light source 2 that generates exposure light IL as an exposure beam includes: An ArF excimer laser light source (wavelength 193 nm) is used.
  • the exposure light source is a KrF excimer laser light source (wavelength 248 nm), an F laser light source (
  • Wavelength 157 nm Wavelength 157 nm
  • Kr laser light source Wavelength 146 nm
  • YAG laser harmonic generation light source fixed
  • a harmonic generator of a body laser (such as a semiconductor laser) or a mercury lamp can also be used.
  • the exposure light source 2 of the present example controls the wavelength (exposure wavelength) of the exposure light IL (ultraviolet pulse laser light in this example) and the wavelength of the exposure light IL.
  • the half width is configured to be controllable in a predetermined range.
  • Exposure light (illumination light for exposure) IL emitted from the exposure light source 2 at the time of exposure passes through the mirror 7, the beam shaping optical system (not shown), the first lens 8A, the mirror 9, and the second lens 8B.
  • the cross-sectional shape is shaped into a predetermined shape, and the light enters the fly-eye lens 10 as an optical integrator (uniformizer or homogenizer), and the illuminance distribution is made uniform.
  • the light intensity distribution of the exposure light is circular (normal illumination), a plurality of eccentric regions (deformed illumination such as dipole and quadrupole illumination), a ring zone ( Illumination with an aperture stop ( ⁇ stop) 13A, 13B, 13C, 13D for setting illumination conditions by setting it to a ring shape or a small circle (small ⁇ illumination with a small coherence factor ( ⁇ value))
  • a system aperture stop member 11 is rotatably arranged by a drive motor 12.
  • the aperture stop 13C having the annular aperture for annular illumination of this example has a coherence factor ( ⁇ value) based on the outer diameter of the aperture and the value of the ratio of the inner diameter to the outer diameter of the aperture.
  • the ratio can be controlled within a predetermined range. Further, even when other aperture stops 13A, 13B, 13D and the like are used, the configuration is such that the coherence factor ( ⁇ value) can be adjusted.
  • Main control system 41 consisting of a computer that supervises and controls the operation of the entire system 41 (Control device) 1S
  • the illumination system aperture stop member 11 is rotated via the drive motor 12 to set the illumination conditions, and its coherence factor ( ⁇ value) And at the same time, control the illumination zone ratio during zone illumination.
  • the exposure light IL that has passed through the aperture stop in the illumination system aperture stop member 11 passes through the beam splitter 14 and the relay lens 17A having low reflectance, and passes through the fixed blind 18 ° as a fixed field stop and the movable field stop. Sequentially pass through the movable blind 18B.
  • the movable blind 18B is arranged on a surface almost conjugate with the pattern surface (reticle surface) of the reticle R as a mask
  • the fixed blind 18A is a surface on which the surface force conjugate with the reticle surface is slightly defocused. Placed in! RU
  • the illumination system aperture stop member 11 is used to change the illumination condition for the reticle R.
  • the optical optical integrator (fly-eye lens) 10 It is preferable that the intensity distribution of the illumination light or the incident angle range of the illumination light on the incident surface is variable to minimize the loss of light amount due to the change in the illumination conditions described above.
  • an optical unit including at least one movable prism (for example, a conical prism or a polyhedral prism) and at least one zoom optical system is disposed between the light source 2 and the optical integrator (fly-eye lens) 10.
  • movable prism for example, a conical prism or a polyhedral prism
  • zoom optical system is disposed between the light source 2 and the optical integrator (fly-eye lens) 10.
  • the fixed blind 18A is used to define the illumination area 21R on the reticle surface as a slit-like area elongated in a non-scanning direction orthogonal to the reticle R scanning direction.
  • the movable blind 18B has two pairs of blades that are relatively movable in directions corresponding to the scanning direction and the non-scanning direction of the reticle R, respectively, and is unnecessary at the start and end of scanning exposure for each shot area to be exposed. It is used to close the illuminated area in the scanning direction so that no exposure to the part takes place.
  • the movable blind 18B is also used to define the center and width of the illumination area in the non-scanning direction.
  • the exposure light IL passing through the blinds 18A and 18B passes through the sub-condenser lens 17B, the mirror 19 for bending the optical path, and the main condenser lens 20 to uniformly illuminate the illumination area 21R of the pattern area of the reticle R as a mask. Illuminate with distribution.
  • the exposure light reflected by the beam splitter 14 is received by an integrator sensor 16 composed of a photoelectric sensor via a condenser lens 15.
  • the detection signal of the integrator sensor 16 is supplied to the exposure control system 43, and the exposure control system 43 uses the detection signal and the beam splitter 14 which has been measured in advance to determine the optical power up to the wafer W as a substrate (sensitive substrate).
  • the exposure energy on the wafer W is calculated indirectly using the transmittance of the system.
  • the exposure control system 43 controls the light emission operation of the exposure light source 2 (emission period, light emission period) based on the integrated value of the calculation result and the control information from the main control system 41 so as to obtain an appropriate exposure amount on the wafer W.
  • the illumination optical system 3 is configured to include this.
  • the pattern in the illumination area 21R of the reticle R passes through the projection optical system PL at a projection magnification j8 (j8 is 1Z4, 1Z5, or the like) at a wafer W coated with a photoresist.
  • the light is projected on a slit-like exposure area 21W which is elongated in the non-scanning direction on the upper one shot area SA.
  • the wafer W is a disk-shaped substrate such as a semiconductor (eg, silicon) or SOI (silicon on insulator) having a diameter of about 200 to 300 mm.
  • the pattern surface (reticle surface) of reticle R and the surface (wafer surface) of wafer W correspond to the object plane and image plane of the projection optical system, respectively. Further, reticle R and wafer W can be regarded as a first object and a second object (photoconductor), respectively.
  • the projection optical system PL of the present example is a power projection optical system PL.
  • the projection optical system PL has optical axes intersecting each other as disclosed in, for example, US Patent No. 6,496,306.
  • a catadioptric system consisting of multiple optical systems can also be used.
  • a variable aperture stop 35 is arranged on a pupil plane of the projection optical system PL.
  • the main control system 41 is configured to drive the variable aperture stop 35 to control the numerical aperture of the projection optical system PL.
  • the Z axis is taken in parallel with the optical axis AX of the projection optical system PL, and the non-scanning direction orthogonal to the scanning direction of the reticle R and the wafer W during scanning exposure is in a plane perpendicular to the Z axis.
  • the reticle R is held on a reticle stage (first stage) 22, and the reticle stage 22 moves at a constant speed in the Y direction on the reticle base 23, and moves in the X direction so as to correct a synchronization error.
  • the reticle R is scanned by fine movement in the Y and rotation directions.
  • the position of the reticle stage 22 is measured by a movable mirror (not shown) and a laser interferometer (not shown) provided thereon, and based on the measured values and control information from the main control system 41, the stage drive is performed.
  • the system 42 controls the position and speed of the reticle stage 22 via a drive mechanism (not shown) (such as a linear motor).
  • reticle alignment microscopes 34A and 34B for detecting the positions of alignment marks 32A and 32B near pattern area 31 on reticle R via mirrors 33A and the like. Arranged!
  • the wafer W is held on a wafer stage 27 via a wafer holder 24, and the wafer stage 27 moves at a constant speed in the Y direction on the wafer base 28, and moves in steps in the X and Y directions. It has a moving XY stage 26 and a Z tilt stage 25.
  • the tilt stage 25 performs focusing and leveling of the wafer W based on a measurement value of the position of the wafer W in the Z direction by an autofocus sensor (not shown).
  • the position of the wafer stage 27 in the XY plane and the rotation angles around the X, Y, and Z axes are measured by a laser interferometer (not shown), and the measured values and the control information from the main control system 41 are used.
  • the stage drive system 42 controls the operation of the wafer stage 27 via a drive mechanism (such as a linear motor) not shown.
  • an aerial image measurement system 29 having slit-shaped openings 30A and 30B formed along the Y direction and the X direction, respectively, is installed.
  • the surface on which the openings 30A and 30B are formed is arranged so as to be at the same height as the wafer surface, and photoelectric sensors are arranged on the bottom surfaces of the openings 30A and 30B via condensing optical systems, respectively.
  • the detection signal of the sensor is supplied to a signal processing unit in the main control system 41.
  • the wafer stage 27 is driven in the X direction (or Y direction) to scan the projected image of the pattern of the reticle R through the opening 30A (or 30B) while detecting the detection signal of the photoelectric sensor.
  • the line width of the projected image can be detected at the stage of the aerial image.
  • an irradiation amount monitor (not shown) having a light receiving surface larger than the exposure area 21 W is also arranged on the wafer stage 27, and this detection signal is supplied to the exposure amount control system 43.
  • an off-axis alignment sensor 36 for wafer alignment is arranged, and the main control system 41 performs wafer alignment based on the detection result.
  • the reticle stage 22 and the wafer stage 27 are driven to synchronously scan the reticle R and one shot area on the wafer W in the Y direction while irradiating the exposure light IL.
  • the operation of driving the wafer 27 and step-moving the wafer W in the X and Y directions is repeated.
  • a pattern image of the reticle R is exposed to each shot area on the ueno and W by the step-and-scan method.
  • the characteristic relating to the pitch dependency of the line width of the projection image of the projection optical system PL in other words, the OPE which is the optical proximity effect of the projection image
  • the OPE which is the optical proximity effect of the projection image
  • FIG. 2 shows a part of a pattern of a reticle TR for measuring an OPE characteristic for evaluating the OPE characteristic of the projection exposure apparatus of the present embodiment.
  • L / S pattern space pattern
  • a second L / S pattern 53 as an intermediate pitch pattern
  • an isolated pattern 55 as a coarse and pitch pattern Is formed.
  • the X axis and the Y axis in FIG. 2 are coordinate systems when the reticle TR for measuring OPE characteristics in FIG. 2 is loaded on the reticle stage 22 in FIG.
  • the first L & S pattern 51 is composed of 11 halftone line patterns 52 each having a transmittance of 6% and extending in the Y direction with a width D in the X direction in the X direction at a pitch PI (> D). They are formed in an array.
  • the second LZS pattern 53 is formed by arranging 11 line patterns 54 of 6% transmittance halftone extending in the Y direction with a width D in the X direction at a pitch P2 (> P1) in the X direction. Have been.
  • the isolated pattern 55 is a halftone line pattern having a transmittance of 6% and extending in the Y direction with a width D in the X direction.
  • Each of the line patterns 52 and 54 and the isolated pattern 55 is a chrome film formed on a glass substrate that transmits exposure light.
  • the line widths of the line patterns 52 and 54 and the isolated pattern 55 are D in common.
  • the pitch P1 of the first L & S pattern 51 is twice the line width D
  • the pitch P2 of the second L & S pattern 53 is three times the line width D. That is, the ratio of the width of the line to the space of the first L & S pattern 51 is 1: 1 and the ratio of the width of the line to the space of the second L & S pattern 53 is 1: 2.
  • the isolated pattern 55 is formed of an L & S pattern arranged in the X direction at a pitch (about 1.5-2 ⁇ m in terms of the length on a wafer) at which a line pattern can be regarded as practically infinite. Can be considered part of Wear.
  • a plurality of (eg, 10) LZS patterns having the same line width and different pitches are formed on the OPE characteristic measurement reticle TR. These LZS patterns can be regarded as a plurality of different patterns or three or more different patterns.
  • the reticle TR for measuring the OPE characteristics of this example has the same line width but different pitches of the LZS pattern formed. Even if the L / S patterns with different line widths and different pitches are used, the OPE characteristics are different. It is possible to evaluate
  • the reticle TR for measuring the OPE characteristics shown in FIG. 2 is loaded on the reticle stage 22 shown in FIG. 1 instead of the reticle R, and the images of the LZS patterns having the same line width and different pitches shown in FIG.
  • the pitch dependency (OPE characteristic) of the line width of the projected image when projecting onto the wafer W via the is obtained.
  • To determine the line width of the projected image (1) project the image of each pattern of the OPE characteristic measurement reticle TR onto an unexposed wafer W and measure the line width of the resist pattern obtained by development Test print method, (2) Aerial image measurement method in which the image is scanned in the X direction at the aperture 30A of the aerial image measurement system 29 in Fig.
  • the exposure conditions for this simulation were as follows: the exposure wavelength was 193 nm, the numerical aperture (NA) of the projection optical system PL was 0.60, the coherence factor ( ⁇ value) of the illumination optical system 3 was 0.75, and the annular zone.
  • the illumination zone ratio which is the value of the ratio of the inner diameter to the outer diameter of the annular aperture of the aperture stop 13C in FIG. 1, was set to 0.67.
  • the coherence factor ( ⁇ value) of the illumination optical system 3 is a value obtained by dividing the reticle-side numerical aperture of the illumination optical system 3 by the reticle-side numerical aperture of the projection optical system PL.
  • the projection optical system PL was assumed to be non-income, and the line width of the projected image (aerial image) of the center line pattern of the L & S pattern for each pitch on the wafer surface was calculated.
  • FIG. 3 shows an aerial image TRW of the reticle TR for measuring OPE characteristics shown in FIG. 2, and FIG. Then, the light amount distributions of the projected images 51W, 53W, 55W of the L & S patterns 51, 53 and the isolated pattern 55 in FIG. 2 are calculated, and the line width dl of the images 52W, 54W, 55W corresponding to the central line pattern among them is calculated. , d2, d3 were calculated.
  • the projection optical system PL forms an erect image. In practice, for example, the line width of the image of the center line pattern was calculated for each of the projected images of LZS patterns with ten different pitches.
  • FIG. 4 shows the result of the aerial image simulation.
  • the polygonal line C7 includes the calculation result 61 of the smallest pitch to the calculation result 62 of the largest pitch (substantially isolated pattern).
  • the actual calculated line width is connected.
  • the horizontal axis is the value (nm) obtained by converting the pitch p of the projected L & S pattern into the length on the wafer, and the vertical axis is the image of the center line pattern of the L & S pattern at that pitch p. Is the line width d (nm). This is common to the following Figs. 5 to 7 and Figs. 9 to 11.
  • the exposure conditions that can be set in the projection exposure apparatus of this example include the numerical aperture of the projection optical system PL (hereinafter, referred to as “projection NA”), the illumination conditions by the illumination optical system 3 (normally, two poles, 4 poles, annular zone, small ⁇ , etc.), coherence factor of illumination optical system 3 (hereinafter referred to as “illumination sigma”), illumination zone ratio of annular illumination under illumination condition of illumination optical system 3, and exposure wavelength
  • the illumination condition is annular illumination.
  • the change in the OPE characteristic in FIG. 4 when the projection NA is changed will be described.
  • FIG. 5 is a diagram showing changes in OPE characteristics when the projection NA is changed.
  • the broken line C7 in FIG. 5 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination zone ratio: 0. 67, the simulation result of the OPE characteristic at the line pattern line width: 140 nm).
  • the simulation in which the broken line C9 increases only the projection NA by 0.01 to 0.61 compared to the broken line C7 The result. It can be seen from FIG. 5 that when the projection NA changes, the OPE characteristics change.
  • FIG. 6 is a diagram showing changes in OPE characteristics when the illumination sigma is changed.
  • the broken line C7 in FIG. 6 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0.67) as the line C7 in FIG. (Line width of the line pattern: 140 nm) is a simulation result of the OPE characteristic.
  • the broken line C11 is a simulation in which only the illumination sigma is increased by 0.02 to 0.77 with respect to the case of the broken line C7. This is the result of the session.
  • Fig. 6 shows that the OPE characteristics change when the lighting sigma changes.
  • FIG. 7 is a diagram showing changes in OPE characteristics when the illumination zone ratio is changed.
  • the broken line C7 in FIG. 7 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illuminated ring zone ratio: 0.67) as the line C7 in FIG. (Line width of line pattern: 140 nm) is a simulation result of the OPE characteristic.
  • Exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illuminated ring zone ratio: 0.67 is a simulation result of the OPE characteristic.
  • the polygonal line C13 only the illumination zone ratio is increased by 0.02 to 0.69 with respect to the polygonal line C7.
  • Fig. 8 shows the change rate of the OPE characteristic when the projection NA, the illumination sigma, and the illumination ring zone ratio are changed.
  • the polygonal lines C14, C15, and CI 6 indicate the projection NA, respectively.
  • the arithmetic unit in the main control system 41 uses the information of the change rate of the OPE characteristics, as the three pattern pitch pi, p2, the line width of the OPE characteristics of P 3 respectively become predetermined target value , The combination of the exposure conditions, and the amount of change in the exposure conditions. Note that one of the combination of the exposure conditions and the change amount of the exposure conditions may be obtained.
  • an OPE characteristic C18 indicated by a broken line in FIG. 9 indicates an evaluation (simulation) result of the OPE characteristic when the projection optical system PL of the projection exposure apparatus in FIG. 1 has a predetermined aberration.
  • the exposure conditions in this case (exposure wavelength: 193 nm, projection lens NA: 0.60, illumination sigma: 0.75, illumination ring ratio: 0.67, line pattern line width: 140 nm) are the same as in FIG. It is the same.
  • the OPE characteristic C17 indicated by a solid broken line in FIG. 9 is an OPE characteristic obtained by simulation for another projection exposure apparatus (hereinafter, referred to as “reference projection exposure apparatus”). Since the projection optical system PL of the projection exposure apparatus of this example has a different aberration from the projection optical system of the projection exposure apparatus as a reference, the two corresponding OPE characteristics C17 and C18 are also different.
  • the change amount of the exposure condition such as the projection NA, the illumination sigma, and the illumination ring ratio is described.
  • the projection NA and the amount of change in the illumination sigma in such a range that does not substantially affect the imaging characteristics of the projection optical system PL are within ⁇ 0.05, for example, respectively.
  • the variation of the illuminated zone ratio in a range that does not substantially affect the variation is, for example, within about ⁇ 0.2.
  • the projection NA of the projection exposure apparatus shown in FIG. 1 is adjusted by a factor of 0.02 from 0.60 to 0.58 using the rate of change of the OPE characteristic of the polygonal line C14 in FIG.
  • the OPE characteristic C21 in FIG. 10 shows the OPE characteristic of the projection exposure apparatus of the present example after being changed from the OPE characteristic C18 in FIG. 9 by the adjustment.
  • the illumination sigma of the projection exposure apparatus of FIG. 1 is also adjusted, and the OPE characteristic C21 at the pattern pitch of 1540 ⁇ m and the OPE characteristic C21 at the pattern pitch of 490 nm are simultaneously set as the reference of the projection exposure apparatus.
  • the OPE characteristic C17 For this purpose, starting from the state shown in FIG. 9 and using the rate of change of the OPE characteristics of the polygonal lines C14 and C15 in FIG. 8, the projection for matching the OPE characteristics C18 with the OPE characteristics C17 at the pattern pitches p2 and p3 is performed. Calculate the amount of change in shadow NA and lighting sigma.
  • the change amount of the projection NA is 0.01
  • the change amount of the illumination sigma is 0.03.
  • the OPE characteristic C24 in Fig. 11 is such that the projection NA is adjusted from 0.60 to 0.61 and the lighting sigma is adjusted from 0.75 to 0.78 from the state in Fig. 9.
  • the OPE characteristics of the projection exposure apparatus are shown.
  • the OPE characteristic C17 of FIG. 11 is the OPE characteristic of the projection exposure Sex Same as C17.
  • the operation of matching the OPE characteristic C24 with the reference OPE characteristic C17 at three pattern pitches adjusts the line widths of the projection images of a plurality of different patterns to a predetermined state. In addition, it corresponds to the operation of changing the exposure condition for exposing the wafer.
  • the adjusted OPE characteristic C24 of the projection exposure apparatus of this example and the reference OPE characteristic C17 of the projection exposure apparatus are the smallest measured pitch pi, the larger intermediate pitch p2, and the substantial In other words, three pitches, p3, which can be regarded as an isolated pattern, are consistent. Therefore, the L & S patterns with the pitches pi, p2, and ⁇ 3 converted on these wafers can be regarded as the first, second, and third periodic patterns having different pitches from each other.
  • the OPE characteristic of the projection exposure apparatus can be adjusted at three different pattern pitches. Can be. If there are four or more pattern pitches to be adjusted, use a combination of projection NA, illumination sigma, and illumination zone ratio that minimizes the standard deviation of the deviation of the overall OPE characteristics using a root mean square optimization method, etc. Can be guided. Further, by changing all of the above exposure conditions as the exposure conditions, the OPE characteristics can be adjusted at more pitches. Then, the main control system 41 in FIG. 1 actually sets the exposure conditions adjusted as described above and performs exposure on the wafer W.
  • the OPE characteristics can be adjusted for each projection exposure apparatus. Therefore, in the projection exposure apparatus of this example, the OPE characteristics created for the projection exposure apparatus serving as the reference are compensated. Since a corrected reticle can be used, there is no need to create a new reticle with OPE characteristics corrected, and manufacturing costs can be reduced. As a result, each time a new projection exposure apparatus is introduced, it is not necessary to create a new OPE-corrected reticle, thus greatly reducing the cost in the exposure process.
  • the OPE characteristic C17 which is the reference in FIG. 9, is the OPE characteristic of the projection exposure apparatus that is the reference.
  • the OPE characteristic C17 may be determined according to, for example, the characteristic of a device pattern to be exposed. Further, the OPE characteristic C17 may be, for example, such as a predetermined standard.
  • the scanning exposure type projection exposure apparatus (exposure apparatus) shown in FIG. 1 is used.
  • the OPE characteristic which is a characteristic relating to the pitch dependency of the line width of the projected image caused by the exposure light within the exposure light
  • predetermined exposure conditions similar to those in the first embodiment are used.
  • the OPE characteristics are obtained by simulation or actual measurement of the aerial image as follows.
  • a plurality of patterns for measuring the OPE characteristics used in this example include a first LZS pattern 51 as a fine pitch pattern in FIG. 2 and a pattern as an intermediate pitch pattern as in the first embodiment. It is arranged between the second L / S pattern 53, the isolated pattern 55 as a coarse and pitch pattern, and the second L & S pattern 53 and the isolated pattern 55, and has the same line as the line pattern 54 (52). It includes a plurality of L & S patterns (not shown) in which line patterns of a width are arranged in the X direction at increasingly larger pitches. These L / S patterns can be considered as multiple different patterns or three or more different patterns.
  • reticle TR for measuring OPE characteristics shown in FIG. 2 is loaded onto reticle stage 22 shown in FIG. 1, and images of LZS patterns having the same line width and different pitches shown in FIG. 2 are projected.
  • OPE characteristics pitch dependence of line width of projected image (OPE characteristics).
  • OPE characteristics are obtained by a simulation of an aerial image.
  • a computer 41a (arithmetic unit) for optical simulation is connected to the main control system 41 (control unit) in FIG.
  • the exposure conditions for this simulation were as follows: the exposure wavelength was 193 nm, the projection NA (numerical aperture of the projection optical system PL) was 0.60, the illumination sigma (coherence factor of the illumination optical system 3) was 0.75, In order to perform annular illumination, the illumination annular ratio (inner diameter Z outer diameter) of the annular aperture of the aperture stop 13C in FIG. 1 was set to 0.67. Further, the line width D of each of the line patterns 52 and 54 and the isolated pattern 55 in FIG. 2 was set to 140 nm as a value converted on the wafer, and each line pattern was a halftone having a transmittance of 6%.
  • the projection optical system PL has no aberration, and it is assumed that there is no luminance unevenness of the exposure light in the pupil plane of the illumination optical system 3, and the L & S pattern of each pitch on the wafer surface is The line width of the projected image (aerial image) of the central line pattern was calculated.
  • FIG. 12 shows the result of the aerial image simulation.
  • the broken line E7 includes the calculation result 62E of the largest pitch (substantially isolated pattern) from the calculation result 61E of the smallest pitch. It connects the actually calculated line widths for multiple pitches.
  • the horizontal axis represents the value (nm) obtained by converting the pitch p of the projected L & S pattern into the length on the wafer, and the vertical axis represents the image of the center line pattern of the L & S pattern at that pitch p. Is the line width d (nm). This is common to FIGS. 14 to 17, FIG. 19 to FIG. 22, and FIG. 24 below.
  • simulation in FIG. 12 is a calculation result when the exposure amount is set so that the line width of the image of the isolated pattern (calculation result 62E) is 140 nm, and thus the characteristic of the polygonal line E7 in FIG. Is different from the characteristic of the polygonal line C7 in FIG.
  • the luminance distribution of the exposure light in the pupil plane of the illumination optical system 3 has a certain degree of luminance unevenness, which is not an ideal flat distribution. Since the luminance unevenness differs for each projection exposure apparatus, in order to adjust the OPE characteristic with high accuracy for each projection exposure apparatus, it is necessary to consider a change in the OPE characteristic caused by the luminance unevenness.
  • FIG. 13 shows an example of luminance unevenness during annular illumination in the pupil plane.
  • the horizontal axis represents the position of the pupil plane in the radial direction converted to illumination sigma
  • the vertical axis represents the position. Is a value obtained by standardizing the luminance (light quantity) at the position in the radial direction so that the maximum value is 1.
  • a flat (top-hat-shaped) distribution E8 is an ideal luminance distribution, and the simulation result in FIG. 12 is calculated under the distribution E8.
  • distribution E9 is a luminance distribution with a central convexity where the luminance increases in the center
  • distribution E10 is a luminance distribution with a tendency to decrease in which the luminance gradually increases in the orbital zone toward the outer periphery.
  • the line width (OPE) of the aerial image with respect to the pattern pitch is used as in FIG.
  • the characteristics) obtained by simulation are shown by the polygonal lines E11 and E12 in Fig. 14, respectively. Also in this simulation, the exposure is set so that the line width of the isolated line is 140 nm. This is the same in the following simulation. In FIG. 14, the broken line E7 of FIG. 12 is also displayed.
  • the exposure conditions that can be set for the projection exposure apparatus of this example include the projection NA, the illumination conditions by the illumination optical system 3 (usually, an annular zone, deformation (2 poles, 4 poles, etc.), small ⁇ , etc.), illumination sigma, Illumination of zonal illumination
  • the ratio of the annular zone, the exposure wavelength, the half width of the wavelength of the exposure light IL, the exposure amount of the exposure light IL, the type of the photoresist as the photosensitive material on the wafer W, the thickness of the photosensitive material, etc. is there.
  • the ⁇ characteristics are adjusted within a predetermined range by changing these exposure conditions.
  • the amount of change in the exposure conditions such as the projection ⁇ , the illumination sigma, and the illumination ring ratio is substantially different from the characteristics other than the ⁇ characteristics, for example, the imaging characteristics such as the resolution of the projection optical system PL. Set within the range that does not affect.
  • FIG. 15 is a diagram showing changes in OPE characteristics when the projection NA is changed.
  • the solid line E11 in FIG. 15 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0. 67, the line pattern line width: 140 nm) is a simulation result of the OPE characteristic.
  • the dotted broken line E14 is obtained by increasing only the projection NA by 0.01 and setting it to 0.61 compared to the broken line E11. It is a simulation result of. As can be seen from Fig. 15, the OPE characteristic changes when the projection NA changes.
  • FIG. 16 is a diagram showing a change in the OPE characteristic when the illumination sigma is changed under the annular illumination having a luminance distribution E9 in FIG.
  • the solid line E11 in FIG. 16 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illuminated zone ratio) as the solid line E11 in FIG. : 0.67, line pattern line width: 140 nm) is a simulation result of the OPE characteristics.
  • the dotted broken line E15 is obtained by increasing only the illumination sigma by 0.01 in the case of the broken line E11. This is the simulation result when 76 is set. From FIG. 16, it can be seen that when the illumination sigma changes, the OPE characteristics change.
  • FIG. 17 is a diagram showing changes in OPE characteristics when the illumination ring zone ratio is changed under the zone illumination of the distribution E9 in which the luminance distribution has a mid-convex tendency in FIG. is there.
  • the solid line E11 in FIG. 17 is the same exposure condition (exposure wavelength: 193 nm, projection) as the line E11 in FIG. (NA: 0.60, illumination sigma: 0.75, illumination zone ratio: 0.67, line pattern line width: 140 nm)
  • Exposure wavelength 193 nm, projection
  • NA exposure condition
  • illumination sigma 0.75
  • illumination zone ratio 0.67
  • line pattern line width 140 nm
  • Fig. 18 shows the rate of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed under the annular illumination of the distribution E9 in which the luminance distribution is the mid-convex distribution in Fig. 13.
  • the polygonal lines E17, E18, and El 9 indicate the change in the line width of the aerial image (change rate) (nm) and the change in the illumination sigma (nm) with respect to the change in the projection NA (0.01), respectively.
  • the change in the line width of the aerial image (rate of change) (nm) against (0.01) and the change in the line width of the aerial image (rate of change) (nm) with respect to the change in the illuminated zone ratio (0.01) is there.
  • the horizontal axis in FIG. 18 is the pitch (nm) converted on the wafer of the L & S pattern, and the vertical axis is the change rate (nm) of the line width of the aerial image. From Fig. 18, it can be seen that the rates of change of the OPE characteristics when the projection NA, illumination sigma, and illumination ring zone ratio are changed are different from each other. Similarly, the rate of change of the OPE characteristic when other exposure conditions are changed is also obtained, and the information on the rate of change of the OPE characteristic is stored in the storage unit in the main control system 41 in FIG. .
  • the arithmetic unit in the main control system 41 uses the information on the rate of change of the OPE characteristic and, for example, by means of a root mean square optimization method or the like, the luminance distribution is shown in FIG.
  • the OPE characteristic under the annular illumination is projected so that the standard deviation of the deviation over the entire pattern pitch is minimized with respect to the OPE characteristic of the ideal luminance distribution (polyline E7 in Fig. 14).
  • the change amount of the projection NA is 0, the change amount of the illumination sigma is 0.03, and the change amount of the illumination ring ratio is 0.01.
  • These exposure conditions are set in the projection exposure apparatus of FIG.
  • the combination of the projection NA, the illumination sigma, and the illumination ring zone ratio, and the amount of change thereof can be arbitrarily set according to the target standard deviation.
  • FIG. 19 shows the OPE characteristics after optimizing the exposure conditions in such a manner.
  • the polygonal lines E 7 and El 1 indicate the ideal luminance distribution and the luminance of the central convexity shown in FIG. 14, respectively.
  • illumination conditions exposure wavelength: 193 nm, projection NA: 0.60, It shows the OPE characteristics when the lighting sigma is 0.75 and the lighting zone ratio is 0.67).
  • the polygonal line E20 performs ring illumination with a luminance distribution with a tendency to be convex, and the OPE after optimizing the projection NA to 0.60, the illumination sigma to 0.78, and the illumination ring ratio to 0.66. The characteristics are shown.
  • the OPE characteristic after the optimization of the exposure condition is the OPE characteristic when the luminance distribution in the pupil plane is ideal.
  • the degree of coincidence with the characteristic is high, indicating that the OPE characteristic is effectively corrected.
  • FIG. 20 is a diagram showing changes in OPE characteristics when the projection NA is changed.
  • the broken line E12 in FIG. 20 is the same exposure condition (exposure wavelength: 193 ⁇ m, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0.67) as the line E12 in FIG. (Line width of the line pattern: 140 nm) is the simulation result of the OPE characteristic.
  • the polygonal line E22 is the simulation result when only the projection NA is increased by 0.011 to 0.61 with respect to the polygonal line E12. Yeong result. From Fig. 20, it is clear that when the projection NA changes, the OPE characteristics change.
  • FIG. 21 is a diagram showing a change in the OPE characteristic when the illumination sigma is changed under the annular illumination of the distribution E10 in which the luminance distribution decreases in FIG.
  • the polygonal line E12 in FIG. 21 shows the same exposure conditions (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0.67, (Line width of line pattern: 140 nm) is a simulation result of the OPE characteristics.
  • the broken line E23 is the simulation result when only the lighting sigma is increased by 0.01 to 0.76 compared to the broken line E12. It is. From FIG. 21, it can be seen that when the illumination sigma changes, the OPE characteristics change.
  • FIG. 22 is a diagram showing a change in the OPE characteristic when the illumination ring zone ratio is changed under the ring illumination of the distribution E10 in which the luminance distribution decreases in FIG. .
  • Line in Figure 22 E12 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination zonal ratio: 0.67, line width of the line pattern obtained the polygonal line E12 in FIG. 14 : 140 nm) is the simulation result of the OPE characteristic
  • the polygonal line E24 is the simulation result when only the illumination zone ratio is increased by 0.01 to 0.68 with respect to the polygonal line E12. From FIG. 22, it can be seen that the OPE characteristics change when the illumination zone ratio changes.
  • Fig. 23 shows the rate of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed under the annular illumination of E10 in which the luminance distribution decreases in Fig. 13.
  • the polygonal lines E25, E26, and E27 indicate the change in the line width of the aerial image (change rate) (nm) and the change in the illumination sigma (nm) with respect to the change in the projection NA (0.01), respectively.
  • 01) is the change in the line width of the aerial image (rate of change) (nm) relative to the change in the illumination zone ratio (0.01)
  • the change in the line width of the aerial image (change rate) (nm) is the change in the annular zone ratio (0.01) .
  • the horizontal axis in FIG. 23 is the pitch (nm) converted on the wafer of the L & S pattern, and the vertical axis is the rate of change of the line width of the aerial image (nm). From FIG. 23, it can be seen that the rates of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed are different from each other. Similarly, the rate of change of the OPE characteristic when other exposure conditions are changed is also obtained, and the information on the rate of change of the OPE characteristic is stored in the storage unit in the main control system 41 in FIG. .
  • the arithmetic unit in the main control system 41 uses the information on the rate of change of the OPE characteristic and, for example, by a root mean square optimization method or the like, the luminance distribution in FIG.
  • the projection NA, the projection NA, and the OPE characteristic under the illumination of the annular zone are set so that the standard deviation of the deviation over the entire pattern pitch is minimized with respect to the OPE characteristic of the ideal luminance distribution (polyline E7 in Fig. 14).
  • the change amount of the projection NA is 0, the change amount of the illumination sigma is 0, and the change amount of the illumination ring zone ratio is 0.2.
  • These exposure conditions are set in the projection exposure apparatus of FIG.
  • the combination of the projection NA, the illumination sigma, and the illumination zone ratio and the amount of change can be set arbitrarily according to the target standard deviation.
  • FIG. 24 shows the OPE characteristics after optimizing the exposure conditions in such a manner.
  • the broken lines E7 and E12 indicate the ideal luminance distribution and the luminance distribution of the inward decreasing tendency shown in FIG. 14, respectively.
  • the exposure conditions exposure wavelength: 193 nm, projection NA: 0.6 0, lighting sigma: 0.75, lighting zone ratio: 0.67).
  • the polygonal line E28 (which almost matches the polygonal line E7) performs zonal illumination with a luminance distribution that tends to decrease in the inside, and also has a projection NA of 0.60, an illumination sigma of 0.75, and an illumination zonal ratio.
  • the OPE characteristics after optimization to 0.47 are shown.
  • the OPE characteristic after optimization of the exposure condition is the OPE characteristic when the luminance distribution in the pupil plane is ideal.
  • the degree of coincidence with the characteristic becomes higher, which indicates that the OPE characteristic is effectively corrected.
  • the OPE characteristic is adjusted by adjusting the exposure condition of the projection exposure apparatus. It can be almost matched with the OPE characteristics when the light brightness distribution is ideal. Therefore, in the projection exposure apparatus of this example, for example, a reticle with OPE characteristics corrected for another projection exposure apparatus can be used. Can be reduced. As a result, it is not necessary to create a new OPE-corrected reticle each time a new projection exposure apparatus is introduced, so that the cost in the exposure process can be significantly reduced.
  • the OPE characteristics of the luminance distribution E9 having the convexity in the middle and the luminance distribution E10 of the decreasing tendency in FIG. We considered matching the characteristics.
  • the OPE characteristic (line E11 in FIG. 14) of the luminance distribution E9 having a convexity in the middle is matched with the OPE characteristic (line E12 in FIG. 14) of the luminance distribution E10 having an inward decreasing tendency.
  • the illumination condition is not limited to the annular illumination, and the OPE characteristic is adjusted to a predetermined state by adjusting the exposure condition according to the brightness unevenness in the pupil plane under any illumination condition.
  • OPE characteristics can be matched between projection exposure apparatuses having differences in luminance unevenness in the pupil plane.
  • FIGS. 25 Is an application of the present invention to an exposure system in which a plurality of projection exposure apparatuses (exposure apparatuses) are operated in parallel.
  • FIG. 25 parts corresponding to FIG. Description is omitted.
  • FIG. 25 shows a schematic configuration of the exposure system of the present example.
  • the exposure system of the present example controls a first exposure apparatus 1A, a second exposure apparatus 1B, and these.
  • the first and second exposure apparatuses 1A and 1B are both configured to include a host computer 4, and are both step-and-scan type projection exposure apparatuses, that is, scanning exposure type exposure apparatuses.
  • the exposure system includes a coater / developer for applying and developing a resist on a wafer.
  • the same reticle pattern is exposed to each wafer by two exposure apparatuses 1A and 1B. .
  • the exposure light from the illumination optical system 3A illuminates the reticle Ml.
  • the pattern in the illumination area of the reticle Ml illuminated by the exposure light is converted into a slit-like exposure light in the shot area SAA on the wafer W1 on which the photoresist is applied at a predetermined projection magnification
  • the image is reduced and projected on the area.
  • the Z axis is taken parallel to the optical axis of the projection optical system PLA, and the scanning direction of the reticle Ml and the wafer W1 is defined as the Y axis on a plane perpendicular to the Z axis, and the non-scanning direction is defined as the X axis. This is the same for the second exposure apparatus 1B.
  • the reticle Ml is held on the reticle stage 22A, and the reticle stage 22A can be continuously moved in the Y direction by, for example, a linear motor system on the reticle base 23A, and can be finely moved in the X, Y, and rotation directions. It is placed on.
  • the wafer W1 is held on a wafer stage 27A via a wafer holder (not shown).
  • the wafer stage 27A can be continuously moved in the Y direction on the wafer base 28A by, for example, a linear motor system, and can be moved in the X and Y directions. It is configured to be able to move stepwise in the Y direction.
  • the position of the reticle stage 22A (reticle Ml) in the Y and X directions and the rotation angle are determined by an interferometer system including the moving mirrors 44YA1 and 44YA2 and the laser interferometers 45YA1 and 45YA2. And moving mirror 44XA, laser interferometer 45XA, and interferometer system Measured by the system.
  • the position of the wafer stage 27A (wafer W1) in the X and Y directions is determined by the interferometer system including the moving mirror 46XA and the laser interferometer 47XA, and the moving mirror 46YA and the laser interferometer 47YA and the laser interferometer.
  • a stage drive system controls the reticle stage 22A and the wafer stage 27A under the control of a main control system 41A (control device) that controls the overall operation of the exposure apparatus 1A. Control behavior.
  • an alignment sensor is provided on the side of the projection optical system PLA. 36A is installed.
  • the reticle Ml is irradiated with exposure light to move the reticle stage 22A (reticle Ml) and the wafer stage 27A (wafer W1) in the Y direction in synchronization with each other, and the wafer stage 27A is moved in the X direction.
  • the pattern of the reticle Ml is transferred to each shot area SAA on the wafer W1.
  • the second exposure apparatus 1B shown in FIG. 25 includes an illumination optical system 3B, a reticle stage 22B holding a reticle M2, a reticle base 23B, and a laser interferometer 45YB1 similarly to the first exposure apparatus 1A.
  • Moving mirrors 44YB1, 44YB2, 44XB are fixed to reticle stage 22B
  • moving mirrors 46XB, 46YB are fixed to wafer stage 27B.
  • reticle M2 is irradiated with exposure light to move reticle stage 22B (reticle M2) and wafer stage 27B (wafer W2) in the Y direction in synchronism with each other.
  • reticle stage 22B reticle M2
  • wafer stage 27B wafer W2
  • the OPE characteristics for example, the OPE characteristics C17 in FIG. 9 of the first exposure apparatus 1A as the reference projection exposure apparatus are simulated. Ask.
  • the OPE characteristic for example, the OPE characteristic C18 in FIG. 9 of the second exposure apparatus 1B, which is the projection exposure apparatus to be adjusted, is determined by simulation of the aerial image. Since the exposure apparatuses 1A and 1B of the present example are controlled by the host computer 4, the simulation of the aerial image is performed by the host computer 4.
  • step 103 the host computer 4 determines the difference between the line widths of the OPE characteristics of the two exposure apparatuses 1A and IB at the three pattern pitches pi, p2 and p3 in Fig. 10, for example. And verify that it is below the specified tolerance. If any of these deviations exceeds the permissible value, the operation proceeds to step 104, where the host computer 4 sends the line width deviation information and the OPE characteristic information of the exposure apparatus 1B to the main control of the exposure apparatus 1B. Supply to system 41B. In response to this, using, for example, the same information as the change rate of the OPE characteristic in FIG.
  • the main control system 41B converts the OPE characteristic of the exposure apparatus 1B into the three pitches pi, p2, and the OPE characteristic of the exposure apparatus 1A. The combination of exposure conditions for matching at p3 and the amount of change in the exposure conditions are determined.
  • the main control system 41B sets the adjusted exposure conditions (illumination conditions, exposure amount, etc.) in the illumination optical system 3B and the projection optical system PLB, etc., and hosts the information on the set exposure conditions. Supply to computer 4.
  • the operation returns to step 102 again, and the host computer 4 obtains the OPE characteristics of the second exposure apparatus 1B again.
  • the OPE characteristics measurement reticle TR shown in Fig. 2 may be actually loaded instead of the reticle M2, and the OPE characteristics may be obtained by a test print or aerial image measurement. .
  • the host computer 4 again determines that the difference between the line widths of the OPE characteristics of the two exposure apparatuses 1A and IB at the three pattern pitches pi, p2 and p3 in FIG. Check if it is. When these deviations are not more than the allowable value, the adjustment (optimization) of the OPE characteristics of the second exposure apparatus 1B is completed.
  • the reticle M2 having the OPE characteristics corrected for the first exposure apparatus 1A is used as it is in the second exposure apparatus 1B, and the line width for each pitch is not changed. Uniformity can be eliminated. Therefore, the manufacturing cost can be significantly reduced. Also in this example, the OPE characteristics of the two exposure apparatuses 1A and 1B should be matched with three or more pattern pitches. [0102] As described above, in this example, two exposure apparatuses 1A and IB perform, for example, exposure of a device pattern of the same layer. However, the two exposure apparatuses 1A and 1B may be used to perform the overlay exposure by the mitigation 'and' match method.
  • the second exposure apparatus 1B performs overlay exposure on the second layer above the wafer on the second layer.
  • the OPE characteristics of the two exposure apparatuses 1A and 1B are adjusted in the same manner in this example, the overlay accuracy and the like are improved.
  • the present invention can be similarly applied to the case where exposure is performed not only by a scanning exposure type exposure apparatus but also by a batch exposure type exposure apparatus. Further, the present invention can be applied to an immersion type exposure apparatus disclosed in, for example, International Publication No. (WO) No. 99Z49504. Also, a plurality of projection exposure apparatuses (exposure apparatuses) of the above-described embodiment are provided.
  • the illumination optical system and the projection optical system composed of the lenses described above are integrated into the exposure apparatus main body, optically adjusted, and a reticle stage and a wafer stage composed of many mechanical parts are attached to the exposure apparatus main body, and wiring and piping are connected. Furthermore, it can be manufactured by performing comprehensive adjustment (electrical adjustment, operation confirmation, etc.). It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature, cleanliness, etc. are controlled.
  • the semiconductor device has a step of performing function and performance design of the device.
  • the application of the exposure apparatus of the present invention is not limited to the exposure apparatus for manufacturing semiconductor devices, and for example, a liquid crystal display element formed on a square glass plate, or a display apparatus such as a plasma display.
  • a liquid crystal display element formed on a square glass plate, or a display apparatus such as a plasma display.
  • various devices such as exposure equipment for imaging, imaging devices (CCD, etc.), micro machines, thin film magnetic heads, and DNA chips.
  • the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed by using a lithographic process.
  • each time a new exposure apparatus is introduced it is not necessary to create a mask with a new OPE characteristic correction.
  • the cost in the process can be significantly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An exposure method and a system therefor able to regulate characteristics regarding a pitch dependency by the line width of a projection image or OPE (Optical Proximity Effect) characteristics to specified states. Pitch dependency characteristics of the line width of a projection image (OPE characteristics) (C17) at a first exposure system and an OPE characteristics (C24) at a second exposure system are respectively determined by simulation. Exposure conditions (numerial aperture of a projection optical system, coherence factor of a lighting optical system, a lighting ring ratio during ring lighting by the lighting optical system, exposure quantity, etc.) at the second exposure system are regulated so that line widths in terms of two OPE characteristics (C17, C24) agree within a specified allowable range at three pattern pitches (p1, p2, p3).

Description

明 細 書  Specification
露光方法及び装置、並びにデバイス製造方法  Exposure method and apparatus, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、例えば半導体集積回路又は液晶表示素子等のデバイスを製造するた めのリソグラフイエ程で、マスクパターンを投影光学系を介して基板上に転写するた めに使用される露光技術に関し、特に投影像の線幅のピッチ依存性に関する特性、 又は投影像の光学的近接効果である OPE (Optical Proximity Effect)の特性を調整 する場合に使用して好適なものである。  The present invention relates to a lithography apparatus for manufacturing a device such as a semiconductor integrated circuit or a liquid crystal display element, which is used for transferring a mask pattern onto a substrate via a projection optical system. The present invention is suitable for use in the technology, particularly when adjusting the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of OPE (Optical Proximity Effect) which is an optical proximity effect of the projected image.
背景技術  Background art
[0002] 例えば半導体集積回路を製造するためのリソグラフイエ程中で、マスクとしてのレチ クル (又はフォトマスク等)のパターンを投影光学系を介して基板 (感応物体)としての フォトレジストが塗布されたウェハ (又はガラスプレート等)の各ショット領域に転写す るために、ステッパー等の一括露光型、及びスキャニングステッパー等の走査露光型 の投影露光装置が使用されている。近年の集積回路の一層の微細化に伴い、投影 露光装置に対する転写後のパターンの線幅均一性の要求が高まっている。  [0002] For example, during a lithographic process for manufacturing a semiconductor integrated circuit, a pattern of a reticle (or a photomask or the like) as a mask is coated with a photoresist as a substrate (sensitive object) via a projection optical system. A batch exposure type such as a stepper and a scanning exposure type projection exposure apparatus such as a scanning stepper are used to transfer the image onto each shot area of a wafer (or a glass plate or the like). With the further miniaturization of integrated circuits in recent years, the demand for uniformity of the line width of a transferred pattern in a projection exposure apparatus is increasing.
[0003] その線幅均一'性に関して、レチクル上の同じ線幅のラインパターンを互いに異なる ピッチで配列してなる複数のライン 'アンド'スペースパターンを、投影露光装置の投 影光学系を介してウェハ上に転写した場合を考える。この場合、その投影光学系が たとえ無収差であったとしても、投影像の光学的近接効果である OPE (Optical Proximity Effect)によって、現像後にウェハ上に形成される複数のレジストパターン の各ラインパターン(又はスペースパターン)の線幅は、ピッチによって変化する。こ のような転写されるパターン (又は投影像)の線幅のピッチ依存性は、「OPE特性」と 呼ばれている。通常、投影露光装置の投影光学系には或る程度の収差が残存して おり、その残存している収差によってその OPE特性は変化する。  [0003] Regarding the "uniformity of line width", a plurality of line "and" space patterns formed by arranging line patterns of the same line width on a reticle at different pitches from each other are transmitted through a projection optical system of a projection exposure apparatus. Consider the case where the image is transferred onto a wafer. In this case, even if the projection optical system has no aberration, each line pattern of a plurality of resist patterns formed on the wafer after development by OPE (Optical Proximity Effect) which is an optical proximity effect of the projected image. The line width of the (or space pattern) changes depending on the pitch. Such pitch dependence of the line width of the transferred pattern (or projected image) is called “OPE characteristic”. Usually, a certain degree of aberration remains in the projection optical system of the projection exposure apparatus, and the OPE characteristic changes due to the remaining aberration.
[0004] 更に、照明光学系の瞳面における露光光 (露光ビーム)の理想的な光量分布は、 通常照明であれば円形領域内の均一な分布であり、輪帯照明であれば輪帯領域内 の均一な分布である。し力しながら、露光光の光量分布には、実際には投影露光装 置毎に或る程度のムラ ( 、わゆる輝度ムラ)が存在し、その輝度ムラによっても OPE特 性が変化する。また、投影光学系の開口数 (NA)及び照明光学系のコヒーレンスファ クタ(σ値)等の露光条件によっても、その ΟΡΕ特性は変化する。従って、実際の投 影露光装置は、その投影光学系が持つ収差、露光光の輝度ムラ、及び露光条件に よってそれぞれ固有の ΟΡΕ特性を持つ。 [0004] Furthermore, the ideal light amount distribution of exposure light (exposure beam) on the pupil plane of the illumination optical system is a uniform distribution within a circular area for normal illumination, and an annular area for annular illumination. It is a uniform distribution within. In fact, the light intensity distribution of the exposure light There is a certain degree of unevenness (, so-called brightness unevenness) for each device, and the OPE characteristics also change due to the uneven brightness. The ま た characteristic also changes depending on the exposure conditions such as the numerical aperture (NA) of the projection optical system and the coherence factor (σ value) of the illumination optical system. Therefore, an actual projection exposure apparatus has its own ΟΡΕ characteristic depending on the aberration of the projection optical system, the uneven brightness of the exposure light, and the exposure conditions.
[0005] 従来は、その ΟΡΕ特性による線幅のピッチ依存性を補正するために、事前に投影 露光装置の ΟΡΕ特性を計測しておき、レチクルを作る際に、ピッチの違いで投影像 の線幅にばらつきが出ないように、各パターンの線幅を ΟΡΕ特性を相殺するようなォ フセット分だけ補正して 、た。 [0005] Conventionally, in order to correct the pitch dependency of the line width due to the ΟΡΕ characteristic, the characteristic of a projection exposure apparatus is measured in advance, and when a reticle is made, the line of the projected image is different due to the difference in pitch. To prevent variations in width, the line width of each pattern was corrected by an offset that offsets the ΟΡΕ characteristic.
また、線幅のピッチ依存性を補正する従来の方法として、微細なピッチの周期バタ ーン及び孤立線のパターンに着目し、その周期パターンの投影像の線幅とその孤立 線のパターンの投影像の線幅との差 (バイアス)が所定の許容範囲になるように、投 影光学系の開口数及び照明光学系のコヒーレンスファクタ等を調整する方法が知ら れている(例えば、特許文献 1参照。 )  In addition, as a conventional method for correcting the pitch dependency of the line width, attention is paid to the periodic pattern of fine pitch and the pattern of the isolated line, and the line width of the projected image of the periodic pattern and the projection of the isolated line pattern are taken. There is known a method of adjusting the numerical aperture of a projection optical system, the coherence factor of an illumination optical system, and the like so that the difference (bias) from the line width of an image falls within a predetermined allowable range (for example, see Patent Document 1). See.)
特許文献 1 :米国特許出願公開第 2001Z0026448A1号明細書  Patent Document 1: U.S. Patent Application Publication No. 2001Z0026448A1
[0006] 上記の如き従来の技術のうちで、レチクルを作る際に、各パターンの線幅を補正す る方法は、作製されたレチクルが或る特定の投影露光装置では使用できても、他の 投影露光装置では使用できないことがあるという不都合があった。そのため、別の投 影露光装置を使用する場合には、その投影露光装置の ΟΡΕ特性に合わせて新たに レチクルを作製し直す必要があり、これが半導体集積回路等の製造コストを高くする 一因となっていた。 [0006] Among the conventional techniques as described above, the method of correcting the line width of each pattern at the time of producing a reticle is not limited to a method in which the produced reticle can be used in a specific projection exposure apparatus. There is a disadvantage that the projection exposure apparatus may not be used. Therefore, when another projection exposure apparatus is used, a new reticle must be manufactured in accordance with the ΟΡΕ characteristics of the projection exposure apparatus, which is one of the factors that increase the manufacturing cost of semiconductor integrated circuits and the like. Had become.
[0007] 一方、周期パターンの投影像の線幅と孤立線のパターンの投影像の線幅との差が 所定の許容範囲になるように、投影光学系の開口数等を調整する従来の方法にお いても、この方法で調整された第 1の投影露光装置の ΟΡΕ特性と、別の第 2の投影 露光装置の ΟΡΕ特性とは必ずしもマッチングが取られていな力つた。即ち、その第 1 及び第 2の投影露光装置の ΟΡΕ特性にぉ 、て、その周期パターン及びその孤立線 の投影像の線幅の絶対値が互いに異なるとともに、その周期パターン及びその孤立 線以外のピッチでの ΟΡΕ特性は互いに異なっていた。そのため、その第 1の投影露 光装置用に OPE特性を補正して作製したレチクルは、その第 2の投影露光装置では 必ずしも使用できな力つた。 On the other hand, a conventional method of adjusting the numerical aperture of a projection optical system or the like so that the difference between the line width of the projected image of the periodic pattern and the line width of the projected image of the isolated line pattern falls within a predetermined allowable range. In this case, the ΟΡΕ characteristic of the first projection exposure apparatus adjusted by this method and the ΟΡΕ characteristic of another second projection exposure apparatus were not necessarily matched. That is, due to the ΟΡΕcharacteristics of the first and second projection exposure apparatuses, the absolute value of the line width of the projected image of the periodic pattern and the isolated line is different from each other, and the absolute value of the projected image of the isolated line is different from that of the periodic pattern and the isolated line. ΟΡΕ characteristics at pitch differed from each other. Therefore, its first projection dew The reticle produced by correcting the OPE characteristics for the optical device was too powerful to be used in the second projection exposure apparatus.
[0008] また、従来は、周期パターンと孤立パターンとでその投影像の線幅を合わせること を目的としており、所定のピッチ範囲内での OPE特性を全体として所定の状態に調 整するという発想はなかった。今後、集積回路等の微細化、高集積化が一層進展す るにつれて、所定のピッチ範囲内での線幅均一性を全体として更に高めることが要 求されると予想される。 [0008] Conventionally, the purpose is to match the line width of the projected image between the periodic pattern and the isolated pattern, and to adjust the OPE characteristics within a predetermined pitch range as a whole to a predetermined state. There was no. In the future, as the miniaturization and high integration of integrated circuits and the like progress further, it is expected that it is required to further increase the line width uniformity within a predetermined pitch range as a whole.
更に、半導体集積回路等の一層の微細化に応じて、より高い線幅均一性を得るた めに、露光光の輝度ムラに起因する OPE特性の変化も投影露光装置毎に高精度に 補正できることが求められて 、る。  Furthermore, in order to obtain higher linewidth uniformity as semiconductor integrated circuits become finer, changes in OPE characteristics due to uneven brightness of exposure light can be corrected with high accuracy for each projection exposure apparatus. Is required.
発明の開示  Disclosure of the invention
[0009] 本発明は斯力る点に鑑み、投影像の線幅のピッチ依存性に関する特性又は OPE の特性を、露光装置毎に調整できる露光技術及びデバイス製造技術を提供すること を第 1の目的とする。  In view of the above, the present invention provides an exposure technique and a device manufacturing technique capable of adjusting the characteristic relating to the pitch dependency of the line width of a projected image or the characteristic of an OPE for each exposure apparatus. Aim.
[0010] また、本発明は、投影像の線幅のピッチ依存性に関する特性又は OPEの特性を、 所定のピッチ範囲内で所定の状態に、又は複数の露光装置間でのマッチングが取 れるように調整できる露光技術及びデバイス製造技術を提供することを第 2の目的と する。  [0010] Furthermore, the present invention is designed so that the characteristics relating to the pitch dependency of the line width of the projected image or the characteristics of the OPE can be matched in a predetermined state within a predetermined pitch range or between a plurality of exposure apparatuses. A second object is to provide an exposure technology and a device manufacturing technology that can be adjusted to a desired level.
更に、本発明は、照明光学系の瞳面における露光ビームの光量分布のムラに起因 する投影像の線幅のピッチ依存性に関する特性又は OPEの特性を、露光装置毎に 補正できる露光技術及びデバイス製造技術を提供することを第 3の目的とする。  Further, the present invention provides an exposure technique and a device capable of correcting, for each exposure apparatus, a characteristic relating to a pitch dependency of a line width of a projection image or an OPE characteristic caused by unevenness in a light amount distribution of an exposure beam on a pupil plane of an illumination optical system. The third purpose is to provide manufacturing technology.
[0011] 以下の本発明の各要素に付した括弧付き符号は、後述の本発明の実施形態の構 成に対応するものである。し力しながら、各符号はその要素の例示に過ぎず、各要素 をその実施形態の構成に限定するものではな 、。 [0011] The following reference numerals in parentheses attached to the respective elements of the present invention correspond to the configuration of an embodiment of the present invention described later. However, each reference sign is merely an example of that element and does not limit each element to the configuration of the embodiment.
本発明による第 1の露光方法は、照明光学系(3)からの露光ビームで第 1物体 (R) を照明し、その露光ビームでその第 1物体及び投影光学系(PL)を介して第 2物体( W)を露光する露光方法において、互いに異なる複数のパターンのその投影光学系 を介した投影像の線幅のそれぞれを所定の状態に調整するために、その第 2物体を 露光するための露光条件を変化させるものである。 The first exposure method according to the present invention illuminates a first object (R) with an exposure beam from an illumination optical system (3), and irradiates the first object (R) with the exposure beam via the first object and a projection optical system (PL). In the exposure method for exposing two objects (W), the second object is adjusted in order to adjust each of the line widths of a plurality of mutually different patterns projected through the projection optical system to a predetermined state. This is to change the exposure condition for exposure.
[0012] 斯かる本発明によれば、露光条件を変化させて複数のパターンの投影像の線幅の それぞれを所定の状態に調整することで、投影像の線幅のピッチ依存性に関する特 性、ひいては OPE (Optical Proximity Effect)の特性を露光装置毎に調整することが できる。これによつて、例えば OPE特性の補正されたマスクを複数の露光装置で共 通に使用することが可能となる。  According to the present invention, by adjusting the line widths of the projection images of a plurality of patterns to a predetermined state by changing the exposure conditions, the characteristic relating to the pitch dependency of the line widths of the projection images is obtained. In addition, the characteristics of OPE (Optical Proximity Effect) can be adjusted for each exposure apparatus. This makes it possible to use, for example, a mask whose OPE characteristics have been corrected in common by a plurality of exposure apparatuses.
[0013] 本発明において、互いに異なる 3種類以上のパターンのその投影光学系を介した 投影像の線幅をそれぞれ対応する基準値に合わせるようにしてもょ ヽ。  [0013] In the present invention, the line widths of three or more different patterns projected from the projection optical system through the projection optical system may be adjusted to corresponding reference values.
この場合、その 3種類以上のパターンは、例えば互いにピッチが異なる 3個以上の パターンである。このとき、 3個以上のパターンとして、例えば最小ピッチのパターン、 最大ピッチのパターン、及び最小ピッチのパターンと最大ピッチのパターンとの間の 中間ピッチのパターンを含むものとする。このとき、中間ピッチのパターンを含む最小 ピッチのパターンと最大ピッチのパターンとの間における所定のピッチ範囲内で、そ の投影像の線幅のピッチ依存性に関する特性、ひ ヽては OPEの特性をその基準値 で定まる所定の状態に調整することができる。また、その基準値を例えば OPE特性 の補正されたマスクに対応する値とすることで、複数の露光装置でそのマスクを共通 に使用できる。また、その基準値を別の露光装置で計測される線幅とすることで、投 影像の線幅のピッチ依存性に関して複数の露光装置間でマッチングを取ることがで きる。  In this case, the three or more types of patterns are, for example, three or more patterns having different pitches from each other. At this time, the three or more patterns include, for example, a pattern having a minimum pitch, a pattern having a maximum pitch, and a pattern having an intermediate pitch between the pattern having the minimum pitch and the pattern having the maximum pitch. At this time, within a predetermined pitch range between the pattern of the minimum pitch including the pattern of the intermediate pitch and the pattern of the maximum pitch, the characteristic relating to the pitch dependence of the line width of the projected image and the characteristic of the OPE Can be adjusted to a predetermined state determined by the reference value. Further, by setting the reference value to a value corresponding to, for example, a mask whose OPE characteristics have been corrected, the mask can be commonly used by a plurality of exposure apparatuses. Further, by using the reference value as the line width measured by another exposure apparatus, it is possible to perform matching between a plurality of exposure apparatuses with respect to the pitch dependency of the line width of the projected image.
[0014] また、本発明において、その照明光学系の瞳面又はこの面との共役面におけるそ の露光ビームの光量分布のムラに起因したその投影像の線幅の変化をその所定の 状態に調整してもよい。これによつて、照明光学系の瞳面における露光ビームの光量 分布のムラに起因する投影像の線幅のピッチ依存性に関する特性又は OPEの特性 を、露光装置毎に補正できる。  Further, in the present invention, the change in the line width of the projected image caused by the unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system or a conjugate plane with this plane is brought into a predetermined state. It may be adjusted. This makes it possible to correct, for each exposure apparatus, the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of the OPE caused by the unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system.
[0015] この場合、その光量分布は、一例としてその露光ビームの光量が円形領域、輪帯 状の領域、又は複数の偏心した領域に実質的に均一に分布する状態である。これに よって、通常照明、輪帯照明、又はいわゆる変形照明(2極、 4極照明等)を用いると きに、 OPE特性を理想的な光量分布で照明が行われるときと同様な特性にして露光 を行うことができる。 In this case, the light amount distribution is such that, for example, the light amount of the exposure beam is substantially uniformly distributed in a circular area, an annular area, or a plurality of eccentric areas. As a result, when using normal illumination, annular illumination, or so-called modified illumination (dipole, quadrupole illumination, etc.), the OPE characteristics are set to the same characteristics as when illumination is performed with an ideal light amount distribution. exposure It can be performed.
[0016] また、上記の本発明において、一例として、その露光条件は複数であり、その露光 条件は、その投影光学系の結像特性には実質的に影響を与えない範囲で調整され る。これによつて、例えば投影像の解像度を低下させることなぐ OPE特性を所定の 状態に調整できる。  In the above-described present invention, as an example, the exposure conditions are plural, and the exposure conditions are adjusted within a range that does not substantially affect the imaging characteristics of the projection optical system. Thereby, for example, the OPE characteristic without lowering the resolution of the projected image can be adjusted to a predetermined state.
また、一例として、上記の複数のパターンは 3種類以上のパターンであり、その 3種 類以上のパターンのその投影像の線幅をそれぞれ対応する基準値に合わせるため に、 3個以上の露光条件を設定してもよい。このように、設定する露光条件の数を増 カロさせるのに応じて、 3種類以上のパターンで投影像の線幅を調整することが容易に なり、調整対象のパターンの種類 (例えばピッチの数)を増加することができる。  Also, as an example, the plurality of patterns are three or more types of patterns, and three or more types of exposure conditions are used in order to adjust the line widths of the projected images of the three or more types of patterns to the corresponding reference values. May be set. In this way, as the number of exposure conditions to be set is increased, it becomes easy to adjust the line width of the projected image with three or more types of patterns, and the type of pattern to be adjusted (for example, the number of pitches) ) Can be increased.
[0017] また、その露光条件を変化させる前に、その複数のパターンのその投影光学系を 介した投影像の線幅をそれぞれ求めてもよ!、。その投影像の線幅を光学シミュレ一 シヨン又は実測によって求めた値を用いることによって、投影像の線幅のピッチ依存 性の特性をより高精度に調整できる。 Before changing the exposure conditions, the line widths of the plurality of patterns projected through the projection optical system may be obtained! By using the value obtained by optical simulation or actual measurement for the line width of the projected image, the pitch dependence characteristic of the projected image line width can be adjusted with higher accuracy.
次に、本発明による第 2の露光方法は、第 1の投影光学系(PLA)を介して物体を 露光する第 1の露光装置(1A)と、第 2の投影光学系 (PLB)を介して物体を露光す る第 2の露光装置( 1B)とを用いる露光方法にぉ 、て、互 、に異なる 3種類以上のパ ターンのその第 2の投影光学系を介した投影像の線幅をそれぞれその第 1の投影光 学系を介した投影像の線幅に合わせるために、その第 2の露光装置の露光条件を設 定するものである。  Next, a second exposure method according to the present invention includes a first exposure apparatus (1A) for exposing an object via a first projection optical system (PLA) and a second exposure optical system (PLB). According to an exposure method using a second exposure apparatus (1B) for exposing an object, a line width of a projected image of three or more different patterns through the second projection optical system is different from each other. The exposure conditions of the second exposure apparatus are set in order to make each of them correspond to the line width of the projected image via the first projection optical system.
[0018] 本発明によれば、その投影像の線幅のピッチ依存性に関する特性、ひ 、ては OPE の特性に関して、第 1及び第 2の露光装置間でマッチングを取ることができる。従って 、例えば OPE特性の補正されたマスクを共通に使用することも可能となる。  According to the present invention, it is possible to match between the first and second exposure apparatuses with respect to the characteristic relating to the pitch dependency of the line width of the projected image, and further to the characteristic of the OPE. Therefore, for example, it is possible to commonly use a mask whose OPE characteristics have been corrected.
本発明においても、その 3種類以上のパターンのその第 2の投影光学系を介した投 影像の線幅をそれぞれその第 1の投影光学系を介した投影像の線幅に合わせるた めに、その第 2の露光装置の 3個以上の露光条件を設定してもよ 、。  Also in the present invention, in order to match the line widths of the three or more types of patterns projected through the second projection optical system with the line widths of the projection images transmitted through the first projection optical system, respectively. Alternatively, three or more exposure conditions for the second exposure apparatus may be set.
[0019] 次に、本発明による露光装置は、露光ビームで第 1物体 (R)を照明する照明光学 系(3)と、その第 1物体の像を第 2物体 (W)上に投影する投影光学系 (PL)とを有す る露光装置において、互いに異なる複数のパターンのその投影光学系を介した投影 像の線幅のそれぞれを所定の状態に調整するために、その第 2物体を露光するため の露光条件を変化させる制御装置 (41)を有するものである。 Next, an exposure apparatus according to the present invention provides an illumination optical system (3) for illuminating a first object (R) with an exposure beam, and projects an image of the first object onto a second object (W). With projection optics (PL) Control for changing the exposure condition for exposing the second object in order to adjust each of the line widths of a plurality of different patterns projected through the projection optical system to a predetermined state. Device (41).
[0020] 斯かる本発明によれば、露光条件を変化させて複数のパターンの投影像の線幅の それぞれを所定の状態に調整することで、投影像の線幅のピッチ依存性に関する特 性、ひいては OPE (Optical Proximity Effect)の特性を露光装置毎に調整することが できる。 According to the present invention, by adjusting the line widths of the projection images of the plurality of patterns to predetermined states by changing the exposure conditions, the characteristic relating to the pitch dependency of the line widths of the projection images is obtained. In addition, the characteristics of OPE (Optical Proximity Effect) can be adjusted for each exposure apparatus.
本発明にお 、て、互いに異なる 3種類以上のパターンのその投影光学系を介した 投影像の線幅をそれぞれ対応する基準値に合わせるために、その制御装置はその 露光条件を変化させてもよい。この場合、その 3種類以上のパターンとして、例えば 最小ピッチのパターン、最大ピッチのパターン、及び最小ピッチのパターンと最大ピッ チのパターンとの間の中間ピッチのパターンを含むものとする。このとき、中間ピッチ のパターンを含む最小ピッチのパターンと最大ピッチのパターンとの間における所定 のピッチ範囲内で、その投影像の線幅のピッチ依存性に関する特性、ひいては OPE の特性を所定の状態に調整できる。  In the present invention, in order to adjust the line widths of three or more different patterns projected from the projection optical system through the projection optical system to the corresponding reference values, the control device may change the exposure condition. Good. In this case, the three or more types of patterns include, for example, a pattern having a minimum pitch, a pattern having a maximum pitch, and a pattern having an intermediate pitch between the pattern having the minimum pitch and the pattern having the maximum pitch. At this time, within a predetermined pitch range between the minimum pitch pattern including the intermediate pitch pattern and the maximum pitch pattern, the characteristic relating to the pitch dependency of the line width of the projected image, and eventually the OPE characteristic, is changed to a predetermined state. Can be adjusted.
[0021] また、その照明光学系の瞳面又はこの面との共役面におけるその露光ビームの光 量分布のムラに起因したその投影像の線幅の変化をその所定の状態に調整するた めに、その制御装置はその露光条件を変化させてもよい。これによつて、照明光学系 の瞳面における露光ビームの光量分布のムラに起因する投影像の線幅のピッチ依 存性に関する特性又は OPEの特性を、露光装置毎に補正できる。 [0021] Further, in order to adjust the change in the line width of the projected image caused by unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system or a conjugate plane with the plane, to a predetermined state. Alternatively, the control device may change the exposure condition. This makes it possible to correct the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of the OPE due to the unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system for each exposure apparatus.
また、その光量分布は、一例としてその露光ビームの光量が円形領域、輪帯状の 領域、又は複数の偏心した領域に実質的に均一に分布する状態である。  The light amount distribution is, for example, a state in which the light amount of the exposure beam is substantially uniformly distributed in a circular area, an annular area, or a plurality of eccentric areas.
本発明においても、一例としてその設定される露光条件は複数であり、その露光条 件は、その投影光学系の結像特性には実質的に影響を与えない範囲で調整される また、一例として、その複数のパターンを 3種類以上のパターンであり、その 3種類 以上のパターンのその投影像の線幅をそれぞれ対応する基準値に合わせるために 、その制御装置は、 3個以上の露光条件を設定してもよい。 [0022] また、その 3種類以上のパターンのその投影光学系を介した空間像の線幅情報を 求めるための演算装置 (41a)又は空間像計測系(29)を更に有してもよい。これによ つて、テストプリントを行うことなぐ光学シミュレーション又は空間像の計測のみで効 率的にそれらのパターンの投影像の線幅を求めることができる。 In the present invention, as an example, a plurality of exposure conditions are set, and the exposure conditions are adjusted within a range that does not substantially affect the imaging characteristics of the projection optical system. In order to match the line widths of the projected images of the three or more patterns with the corresponding reference values, the control device sets three or more exposure conditions. May be set. [0022] The image processing apparatus may further include an arithmetic unit (41a) or an aerial image measurement system (29) for obtaining line width information of the aerial image of the three or more types of patterns via the projection optical system. As a result, the line widths of the projected images of these patterns can be efficiently obtained only by optical simulation without performing test printing or by only measuring the aerial image.
また、その基準値の一例は、別の露光装置の投影光学系を介して投影されるその 3種類以上のパターンの投影像の線幅である。これによつて、投影像の線幅のピッチ 依存性に関して複数の露光装置間でマッチングを取ることができる。  One example of the reference value is a line width of a projected image of the three or more types of patterns projected via the projection optical system of another exposure apparatus. This makes it possible to match between the plurality of exposure apparatuses with respect to the pitch dependency of the line width of the projected image.
[0023] また、その基準値の別の例は、例えば OPE特性の補正されたマスクに対応する値 である。これによつて、複数の露光装置でそのマスクを共通に使用できる。  Further, another example of the reference value is, for example, a value corresponding to a mask whose OPE characteristic has been corrected. Thus, the mask can be used in common by a plurality of exposure apparatuses.
また、本発明の露光方法及び装置において、上記の 3種類以上のパターンは、一 例として、互いに次第にピッチが異なる第 1、第 2、及び第 3の周期パターンを含むも のである。この場合、更にその第 1、第 2、及び第 3の周期パターンを、それぞれ微細 ピッチ(pi)のパターン、それよりも大きいピッチ(p2)の中間ピッチのパターン、及び 実質的に孤立パターンとみなすことができる粗いピッチ (p3)のパターンとしてもよい。 これによつて、広いピッチ範囲内で所定の状態で、その投影像の線幅のピッチ依存 性に関する特性を調整することができる。  In the exposure method and apparatus of the present invention, the three or more types of patterns include, for example, first, second, and third periodic patterns having gradually different pitches. In this case, the first, second, and third periodic patterns are further regarded as a fine pitch (pi) pattern, a larger pitch (p2) intermediate pitch pattern, and a substantially isolated pattern, respectively. A coarse pitch (p3) pattern that can be used. Thus, the characteristics relating to the pitch dependency of the line width of the projected image can be adjusted in a predetermined state within a wide pitch range.
[0024] また、本発明の露光方法及び装置において、その設定される露光条件は、一例と して、その投影光学系の開口数、その照明光学系のコヒーレンスファクタ、その照明 光学系の照明条件における輪帯照明の照明輪帯比、その露光ビームの波長、その 露光ビームの波長の半値幅、その露光ビームの露光量、及びその第 2物体上の感光 材料の種類のうちの少なくとも 1つである。  In the exposure method and apparatus of the present invention, the exposure conditions set include, for example, a numerical aperture of the projection optical system, a coherence factor of the illumination optical system, and an illumination condition of the illumination optical system. At least one of the illumination zone ratio of the annular illumination, the wavelength of the exposure beam, the half width of the wavelength of the exposure beam, the exposure amount of the exposure beam, and the type of photosensitive material on the second object. is there.
この場合、互いに異なる 3種類のパターン(例えば 3つの異なるピッチのパターン) のその投影光学系を介した投影像の線幅をそれぞれ対応する基準値に合わせる場 合には、その露光条件として、その投影光学系の開口数、その照明光学系のコヒー レンスファクタ、及びその照明光学系が輪帯照明を行う場合にはその照明輪帯比を 用いてもよい。更に、これらの条件に、露光ビームの露光量をカ卩えてもよい。  In this case, if the line width of the projected image of the three different patterns (for example, three patterns with different pitches) through the projection optical system is to be adjusted to the corresponding reference values, the exposure conditions are as follows. The numerical aperture of the projection optical system, the coherence factor of the illumination optical system, and the illumination annular ratio may be used when the illumination optical system performs annular illumination. Further, under these conditions, the exposure amount of the exposure beam may be adjusted.
[0025] また、本発明による第 1のデバイス製造方法は、リソグラフイエ程を含むデバイス製 造方法において、そのリソグラフイエ程で本発明の露光方法で設定された露光条件 でパターン (R)を感光体 (W)上に転写するものである。 [0025] Further, the first device manufacturing method according to the present invention is a device manufacturing method including a lithographic process, wherein the exposure conditions set by the exposure method of the present invention during the lithographic process. Is used to transfer the pattern (R) onto the photoreceptor (W).
また、本発明による第 2のデバイス製造方法は、リソグラフイエ程を含むデバイス製 造方法において、そのリソグラフイエ程で本発明の露光装置でパターン (R)を感光体 (W)上に転写するものである。これらのデバイス製造方法によれば、本発明の適用 によって、露光時に複数の露光装置で OPE特性の補正されたマスクを共通に使用 できるため、製造コストを低減できる。  A second device manufacturing method according to the present invention is a device manufacturing method including a lithographic process, wherein the pattern (R) is transferred onto the photoreceptor (W) by the exposure apparatus of the present invention during the lithographic process. It is. According to these device manufacturing methods, by applying the present invention, a mask with corrected OPE characteristics can be commonly used in a plurality of exposure apparatuses at the time of exposure, so that manufacturing costs can be reduced.
[0026] 本発明によれば、互いに異なる複数のパターンの投影像の線幅のそれぞれを所定 の状態に調整するために、露光条件を変化させることによって、投影像の線幅のピッ チ依存性に関する特性又は OPEの特性を、露光装置毎に調整することができる。 また、本発明において、互いに異なる 3種類以上のパターンの投影像の線幅をそ れぞれ対応する基準値に合わせるために、露光条件を変化させる場合には、投影像 の線幅のピッチ依存性に関する特性又は OPEの特性を、所定のピッチ範囲(最小ピ ツチのパターンと、最大ピッチのパターンとの間の範囲)内で所定の状態に調整する ことができる。 According to the present invention, in order to adjust each of the line widths of the projection images of a plurality of patterns different from each other to a predetermined state, the pitch condition of the projection image line width is changed by changing the exposure condition. Characteristics or OPE characteristics can be adjusted for each exposure apparatus. Further, in the present invention, when the exposure condition is changed in order to match the line widths of the projected images of three or more different patterns to the corresponding reference values, the pitch dependency of the line widths of the projected images is changed. The characteristic relating to the performance or the characteristic of the OPE can be adjusted to a predetermined state within a predetermined pitch range (a range between the pattern of the minimum pitch and the pattern of the maximum pitch).
[0027] また、本発明において、照明光学系の瞳面又はこの面との共役面における露光ビ ームの光量分布のムラに起因した投影像の線幅の変化を所定の状態に調整するた めに、露光条件を変化させる場合には、その光量分布のムラに起因する投影像の線 幅のピッチ依存性に関する特性又は OPEの特性を、露光装置毎に補正することが できる。  Further, in the present invention, a change in the line width of the projected image caused by unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system or a conjugate plane with this plane is adjusted to a predetermined state. In order to change the exposure condition, the characteristic relating to the pitch dependency of the line width of the projected image or the characteristic of the OPE caused by the unevenness of the light amount distribution can be corrected for each exposure apparatus.
また、本発明において、互いに異なる 3種類以上のパターンの投影像の線幅をそ れぞれ別の露光装置での投影像の線幅に合わせるように、露光条件を設定する場 合には、投影像の線幅のピッチ依存性に関する特性又は OPEの特性を、複数の露 光装置間でのマッチングが取れるように調整することができる。  Further, in the present invention, when the exposure conditions are set so that the line widths of the projected images of three or more different patterns are different from the line widths of the projected images obtained by different exposure apparatuses, The characteristics relating to the pitch dependency of the line width of the projected image or the characteristics of the OPE can be adjusted so that matching can be achieved between a plurality of exposure devices.
図面の簡単な説明  Brief Description of Drawings
[0028] [図 1]本発明の実施形態で使用される投影露光装置を示す斜視図である。 FIG. 1 is a perspective view showing a projection exposure apparatus used in an embodiment of the present invention.
[図 2]OPE特性の評価用のパターンの一例を示す拡大図である。  FIG. 2 is an enlarged view showing an example of an OPE characteristic evaluation pattern.
[図 3]図 2のパターンの投影光学系を介した投影像を示す拡大図である。  FIG. 3 is an enlarged view showing a projected image of the pattern of FIG. 2 via a projection optical system.
[図 4]本発明の第 1の実施形態において、投影光学系が無収差であるとした場合の 投影露光装置の OPE特性のシミュレーション結果の一例を示す図である。 FIG. 4 shows a case where the projection optical system has no aberration in the first embodiment of the present invention. FIG. 9 is a diagram illustrating an example of a simulation result of OPE characteristics of the projection exposure apparatus.
圆 5]図 4の状態力も投影光学系の開口数 (投影 NA)を変化させたときの OPE特性 の変化を示す図である。 [5] FIG. 5 is a diagram showing the change in OPE characteristics when the numerical aperture (projection NA) of the projection optical system is also changed in the state force in FIG.
[図 6]図 4の状態から照明シグマを変化させたときの OPE特性の変化を示す図である 圆 7]図 4の状態力 照明輪帯比を変化させたときの OPE特性の変化を示す図であ る。  [FIG. 6] A diagram showing a change in OPE characteristics when the lighting sigma is changed from the state in FIG. 4. [7] A diagram showing changes in OPE characteristics when the state force in Fig. 4 is changed. It is a figure.
圆 8]投影 NA、照明シグマ、照明輪帯比をそれぞれ 0. 01変化させたときの、 OPE 特性の変化を示す図である。 [8] Fig. 8 is a diagram showing changes in OPE characteristics when the projection NA, illumination sigma, and illumination ring zone ratio are each changed by 0.01.
圆 9]投影光学系が収差を持つ場合の投影露光装置の OPE特性のシミュレーション 結果を示す図である。 [9] FIG. 9 is a diagram showing a simulation result of OPE characteristics of the projection exposure apparatus when the projection optical system has an aberration.
圆 10]本発明の第 1の実施形態において、投影 NAを使った OPE特性の調整例を示 す図である。 [10] FIG. 10 is a diagram showing an example of adjusting the OPE characteristics using the projection NA in the first embodiment of the present invention.
圆 11]本発明の第 1の実施形態において、投影 NAと照明シグマとの両方を使って O PE特性を調整した例を示す図である。 [11] FIG. 11 is a diagram showing an example in which the OPE characteristic is adjusted using both the projection NA and the illumination sigma in the first embodiment of the present invention.
圆 12]本発明の第 2の実施形態において、投影光学系が無収差であるとした場合の 投影露光装置の OPE特性のシミュレーション結果の一例を示す図である。 [12] FIG. 12 is a diagram illustrating an example of a simulation result of the OPE characteristic of the projection exposure apparatus when the projection optical system has no aberration in the second embodiment of the present invention.
圆 13]輪帯照明時の瞳面内の輝度分布 (光量分布)の例を示す図である。 [13] Fig. 13 is a diagram illustrating an example of a luminance distribution (light amount distribution) in a pupil plane during annular illumination.
[図 14]図 13の瞳面内の輝度分布に基づいてシミュレーションによって求められた OP [FIG. 14] OP obtained by simulation based on the luminance distribution in the pupil plane of FIG. 13
E特性を示す図である。 FIG. 9 is a view showing an E characteristic.
圆 15]中凸傾向の輝度分布がある場合に投影 NAを変化させたときの OPE特性の変 化を示す図である。 [15] FIG. 15 is a diagram showing changes in OPE characteristics when the projection NA is changed when there is a luminance distribution with a tendency to be convex in the middle.
圆 16]中凸傾向の輝度分布がある場合に照明シグマを変化させたときの OPE特性 の変化を示す図である。 [16] FIG. 16 is a diagram showing changes in OPE characteristics when the illumination sigma is changed when there is a luminance distribution with a tendency to be convex in the middle.
圆 17]中凸傾向の輝度分布がある場合に照明輪帯比を変化させたときの OPE特性 の変化を示す図である。 [17] FIG. 17 is a diagram showing changes in OPE characteristics when the illumination ring zone ratio is changed in the case where there is a luminance distribution with a tendency to be convex toward the center.
圆 18]中凸傾向の輝度分布がある場合に、投影 NA、照明シグマ、照明輪帯比をそ れぞれ 0. 01変化させたときの OPE特性の変化率を示す図である。 [図 19]本発明の第 2の実施形態において、中凸傾向の輝度分布がある場合に、露光 条件を調整して最適化された OPE特性の一例を示す図である。 [18] Fig. 18 is a diagram showing the rate of change of the OPE characteristic when the projection NA, the illumination sigma, and the illumination ring zone ratio are each changed by 0.01 in the case where there is a luminance distribution with a tendency to be convex in the middle. FIG. 19 is a diagram showing an example of OPE characteristics optimized by adjusting exposure conditions in the case where there is a luminance distribution having a convexity in the second embodiment of the present invention.
[図 20]内減り傾向の輝度分布がある場合に投影 NAを変化させたときの OPE特性の 変化を示す図である。  FIG. 20 is a diagram showing a change in OPE characteristics when the projection NA is changed when there is a luminance distribution with a decreasing tendency.
[図 21]内減り傾向の輝度分布がある場合に照明シグマを変化させたときの OPE特性 の変化を示す図である。  FIG. 21 is a diagram showing a change in OPE characteristics when the illumination sigma is changed when there is a luminance distribution with a decreasing tendency.
[図 22]内減り傾向の輝度分布がある場合に照明輪帯比を変化させたときの OPE特 性の変化を示す図である。  FIG. 22 is a diagram showing changes in OPE characteristics when the illumination ring zone ratio is changed when there is a luminance distribution with a decreasing tendency.
[図 23]内減り傾向の輝度分布がある場合に、投影 NA、照明シグマ、照明輪帯比をそ れぞれ 0. 01変化させたときの OPE特性の変化率を示す図である。  FIG. 23 is a diagram showing the rate of change of the OPE characteristic when the projection NA, the illumination sigma, and the illumination ring zone ratio are changed by 0.01, respectively, when there is a luminance distribution with a decreasing tendency.
[図 24]本発明の第 2の実施形態において、内減り傾向の輝度分布がある場合に、露 光条件を調整して最適化された OPE特性の一例を示す図である。  FIG. 24 is a diagram showing an example of OPE characteristics optimized by adjusting exposure conditions in a case where there is a luminance distribution with a decreasing tendency in the second embodiment of the present invention.
[図 25]本発明の第 3の実施形態の露光システムを示す斜視図である。  FIG. 25 is a perspective view showing an exposure system according to a third embodiment of the present invention.
[図 26]第 3の実施形態で 2台の露光装置の OPE特性をマッチングさせる動作の一例 を示すフローチャートである。 符号の説明  FIG. 26 is a flowchart showing an example of an operation for matching OPE characteristics of two exposure apparatuses in the third embodiment. Explanation of symbols
[0029] 1A, 1Β· ··露光装置、 2…露光光源、 3…照明光学系、 4…ホストコンピュータ、 R, Ml, Μ2· ··レチクル、 W, Wl, W2"-ウエノ、、 PL, PLA, PLB…投景光学系、 11· ·. 照明系開口絞り部材、 35· ··可変開口絞り、 29…空間像計測系、 41, 41A, 41Β· ·· 主制御系、 41a…コンピュータ  [0029] 1A, 1Β ··· Exposure apparatus, 2 ··· Exposure light source, 3 ··· Illumination optical system, 4 ··· Host computer, R, Ml, Μ2 ··· Reticle, W, Wl, W2 "-Ueno, PL, PLA, PLB… Projection optical system, 11 ··· Illumination system aperture stop member, 35 ··· Variable aperture stop, 29… Aerial image measurement system, 41, 41A, 41Β ··· Main control system, 41a… Computer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] [第 1の実施形態]  [First Embodiment]
以下、本発明の好ましい第 1の実施形態につき図 1一図 11を参照して説明する。 図 1は、本例のスキャニングステッパーよりなる走査露光型の投影露光装置 (露光 装置)の概略構成を示し、この図 1において、露光ビームとしての露光光 ILを発生す る露光光源 2としては、 ArFエキシマレーザ光源 (波長 193nm)が使用されている。 なお、露光光源としては、 KrFエキシマレーザ光源(波長 248nm)、 Fレーザ光源(  Hereinafter, a first preferred embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of a scanning exposure type projection exposure apparatus (exposure apparatus) including the scanning stepper of the present embodiment. In FIG. 1, an exposure light source 2 that generates exposure light IL as an exposure beam includes: An ArF excimer laser light source (wavelength 193 nm) is used. The exposure light source is a KrF excimer laser light source (wavelength 248 nm), an F laser light source (
2  2
波長 157nm)、Kr レーザ光源(波長 146nm)、 YAGレーザの高調波発生光源、固 体レーザ (半導体レーザなど)の高調波発生装置、又は水銀ランプなども使用するこ とができる。また、本例の露光光源 2は、露光量制御系 43の制御のもとで、その露光 光 IL (本例では紫外パルスレーザ光)の波長(露光波長)と、その露光光 ILの波長の 半値幅とを所定範囲で制御できるように構成されて 、る。 Wavelength 157 nm), Kr laser light source (wavelength 146 nm), YAG laser harmonic generation light source, fixed A harmonic generator of a body laser (such as a semiconductor laser) or a mercury lamp can also be used. Further, under the control of the exposure amount control system 43, the exposure light source 2 of the present example controls the wavelength (exposure wavelength) of the exposure light IL (ultraviolet pulse laser light in this example) and the wavelength of the exposure light IL. The half width is configured to be controllable in a predetermined range.
[0031] 露光時に露光光源 2から発光された露光光 (露光用の照明光) ILは、ミラー 7、不図 示のビーム整形光学系、第 1レンズ 8A、ミラー 9、及び第 2レンズ 8Bを経て断面形状 が所定形状に整形されて、オプティカル 'インテグレータ(ュニフォマイザ又はホモジ ナイザ)としてのフライアイレンズ 10に入射して、照度分布が均一化される。フライアイ レンズ 10の射出面 (照明光学系の瞳面)には、露光光の光量分布を円形 (通常照明 )、複数の偏心領域 (2極、 4極照明等の変形照明)、輪帯 (輪帯照明)、又は小さい 円形 (コヒーレンスファクタ( σ値)の小さい小 σ照明)などに設定して照明条件を決 定するための開口絞り(σ絞り) 13A, 13B, 13C, 13Dを有する照明系開口絞り部 材 11が、駆動モータ 12によって回転自在に配置されている。本例の輪帯照明用の 輪帯開口を持つ開口絞り 13Cは、その開口部の外径によるコヒーレンスファクタ( σ 値)と、その開口部の外径に対する内径の比の値である照明輪帯比とを所定範囲で 制御できるように構成されている。また、他の開口絞り 13A, 13B, 13D等を使用する 場合にも、コヒーレンスファクタ( σ値)を調整できるように構成されている。装置全体 の動作を統轄制御するコンピュータよりなる主制御系 41 (制御装置) 1S 駆動モータ 12を介して照明系開口絞り部材 11を回転して照明条件を設定して、そのコヒーレン スファクタ( σ値)を制御するとともに、輪帯照明時にその照明輪帯比を制御する。 [0031] Exposure light (illumination light for exposure) IL emitted from the exposure light source 2 at the time of exposure passes through the mirror 7, the beam shaping optical system (not shown), the first lens 8A, the mirror 9, and the second lens 8B. Through this, the cross-sectional shape is shaped into a predetermined shape, and the light enters the fly-eye lens 10 as an optical integrator (uniformizer or homogenizer), and the illuminance distribution is made uniform. On the exit surface of the fly-eye lens 10 (pupil surface of the illumination optical system), the light intensity distribution of the exposure light is circular (normal illumination), a plurality of eccentric regions (deformed illumination such as dipole and quadrupole illumination), a ring zone ( Illumination with an aperture stop (σ stop) 13A, 13B, 13C, 13D for setting illumination conditions by setting it to a ring shape or a small circle (small σ illumination with a small coherence factor (σ value)) A system aperture stop member 11 is rotatably arranged by a drive motor 12. The aperture stop 13C having the annular aperture for annular illumination of this example has a coherence factor (σ value) based on the outer diameter of the aperture and the value of the ratio of the inner diameter to the outer diameter of the aperture. The ratio can be controlled within a predetermined range. Further, even when other aperture stops 13A, 13B, 13D and the like are used, the configuration is such that the coherence factor (σ value) can be adjusted. Main control system 41 consisting of a computer that supervises and controls the operation of the entire system 41 (Control device) 1S The illumination system aperture stop member 11 is rotated via the drive motor 12 to set the illumination conditions, and its coherence factor (σ value) And at the same time, control the illumination zone ratio during zone illumination.
[0032] 照明系開口絞り部材 11中の開口絞りを通過した露光光 ILは、反射率の小さいビー ムスプリッタ 14及びリレーレンズ 17Aを経て、固定視野絞りとしての固定ブラインド 18 Α及び可動視野絞りとしての可動ブラインド 18Bを順次通過する。この場合、可動ブ ラインド 18Bは、マスクとしてのレチクル Rのパターン面(レチクル面)とほぼ共役な面 に配置され、固定ブラインド 18Aは、そのレチクル面と共役な面力も僅かにデフォー カスされた面に配置されて!、る。  The exposure light IL that has passed through the aperture stop in the illumination system aperture stop member 11 passes through the beam splitter 14 and the relay lens 17A having low reflectance, and passes through the fixed blind 18 ° as a fixed field stop and the movable field stop. Sequentially pass through the movable blind 18B. In this case, the movable blind 18B is arranged on a surface almost conjugate with the pattern surface (reticle surface) of the reticle R as a mask, and the fixed blind 18A is a surface on which the surface force conjugate with the reticle surface is slightly defocused. Placed in! RU
[0033] なお、本実施形態では、照明系開口絞り部材 11を用いて、レチクル Rに対する照 明条件を変更するものとした力 オプティカル 'インテグレータ (フライアイレンズ) 10 の入射面上での照明光の強度分布あるいは照明光の入射角度範囲を可変として、 前述の照明条件の変更に伴う光量損失を最小限に抑えることが好ましい。このため に、照明系開口絞り部材 11の代わりに、あるいはそれと組み合わせて、例えば照明 光学系 3の光路上に交換して配置される複数の回折光学素子、照明光学系 3の光軸 に沿って移動可能な少なくとも 1つのプリズム(円錐プリズムや多面体プリズムなど)、 及びズーム光学系の少なくとも 1つを含む光学ユニットを光源 2とオプティカル 'インテ グレータ (フライアイレンズ) 10との間に配置する構成を採用することができる。 In this embodiment, the illumination system aperture stop member 11 is used to change the illumination condition for the reticle R. The optical optical integrator (fly-eye lens) 10 It is preferable that the intensity distribution of the illumination light or the incident angle range of the illumination light on the incident surface is variable to minimize the loss of light amount due to the change in the illumination conditions described above. For this purpose, instead of or in combination with the illumination system aperture stop member 11, for example, a plurality of diffractive optical elements exchanged and arranged on the optical path of the illumination optical system 3, along the optical axis of the illumination optical system 3 An optical unit including at least one movable prism (for example, a conical prism or a polyhedral prism) and at least one zoom optical system is disposed between the light source 2 and the optical integrator (fly-eye lens) 10. Can be adopted.
[0034] 固定ブラインド 18Aは、レチクル面の照明領域 21Rをレチクル Rの走査方向に直交 する非走査方向に細長いスリット状の領域に規定するために使用される。可動ブライ ンド 18Bは、レチクル Rの走査方向及び非走査方向に対応する方向にそれぞれ相対 移動自在な 2対のブレードを備え、露光対象の各ショット領域への走査露光の開始 時及び終了時に不要な部分への露光が行われな 、ように、照明領域を走査方向に 閉じるために使用される。可動ブラインド 18Bは、更に照明領域の非走査方向の中 心及び幅を規定するためにも使用される。ブラインド 18A, 18Bを通過した露光光 IL は、サブコンデンサレンズ 17B、光路折り曲げ用のミラー 19、及びメインコンデンサレ ンズ 20を経て、マスクとしてのレチクル Rのパターン領域の照明領域 21Rを均一な照 度分布で照明する。 [0034] The fixed blind 18A is used to define the illumination area 21R on the reticle surface as a slit-like area elongated in a non-scanning direction orthogonal to the reticle R scanning direction. The movable blind 18B has two pairs of blades that are relatively movable in directions corresponding to the scanning direction and the non-scanning direction of the reticle R, respectively, and is unnecessary at the start and end of scanning exposure for each shot area to be exposed. It is used to close the illuminated area in the scanning direction so that no exposure to the part takes place. The movable blind 18B is also used to define the center and width of the illumination area in the non-scanning direction. The exposure light IL passing through the blinds 18A and 18B passes through the sub-condenser lens 17B, the mirror 19 for bending the optical path, and the main condenser lens 20 to uniformly illuminate the illumination area 21R of the pattern area of the reticle R as a mask. Illuminate with distribution.
[0035] 一方、ビームスプリッタ 14で反射された露光光は、集光レンズ 15を介して光電セン サよりなるインテグレータセンサ 16に受光される。インテグレータセンサ 16の検出信 号は露光量制御系 43に供給され、露光量制御系 43は、その検出信号と予め計測さ れているビームスプリッタ 14力 基板 (感応基板)としてのウェハ Wまでの光学系の透 過率とを用いてウェハ W上での露光エネルギーを間接的に算出する。露光量制御 系 43は、その算出結果の積算値及び主制御系 41からの制御情報に基づいて、ゥェ ハ W上で適正露光量が得られるように露光光源 2の発光動作 (発光期間、発光周波 数、出力(パルス毎のエネルギー)、波長、波長の半値幅等)を制御する。ミラー 7, 9 、レンズ 8A, 8B、フライアイレンズ 10、照明系開口絞り部材 11、ビームスプリッタ 14 、リレーレンズ 17A、ブラインド 18A, 18B、サブコンデンサレンズ 17B、ミラー 19、及 びメインコンデンサレンズ 20を含んで照明光学系 3が構成されている。 [0036] 露光光 ILのもとで、レチクル Rの照明領域 21R内のパターンは、投影光学系 PLを 介して投影倍率 j8 ( j8は 1Z4, 1Z5等)で、フォトレジストが塗布されたウェハ W上 の一つのショット領域 SA上の非走査方向に細長いスリット状の露光領域 21Wに投影 される。ウェハ Wは、例えば半導体(シリコン等)又は SOI(silicon on insulator)等の直 径が 200— 300mm程度の円板状の基板である。レチクル Rのパターン面(レチクル 面)及びウェハ Wの表面(ウェハ面)がそれぞれ投影光学系の物体面及び像面に対 応している。また、レチクル R及びウェハ Wをそれぞれ第 1物体及び第 2物体 (感光体 )とみなすこともできる。 On the other hand, the exposure light reflected by the beam splitter 14 is received by an integrator sensor 16 composed of a photoelectric sensor via a condenser lens 15. The detection signal of the integrator sensor 16 is supplied to the exposure control system 43, and the exposure control system 43 uses the detection signal and the beam splitter 14 which has been measured in advance to determine the optical power up to the wafer W as a substrate (sensitive substrate). The exposure energy on the wafer W is calculated indirectly using the transmittance of the system. The exposure control system 43 controls the light emission operation of the exposure light source 2 (emission period, light emission period) based on the integrated value of the calculation result and the control information from the main control system 41 so as to obtain an appropriate exposure amount on the wafer W. It controls the emission frequency, output (energy per pulse), wavelength, half-width of wavelength, etc. Mirrors 7, 9; lenses 8A, 8B; fly-eye lens 10, illumination system aperture stop 11, beam splitter 14, relay lens 17A, blinds 18A, 18B, sub-condenser lens 17B, mirror 19, and main condenser lens 20 The illumination optical system 3 is configured to include this. [0036] Under the exposure light IL, the pattern in the illumination area 21R of the reticle R passes through the projection optical system PL at a projection magnification j8 (j8 is 1Z4, 1Z5, or the like) at a wafer W coated with a photoresist. The light is projected on a slit-like exposure area 21W which is elongated in the non-scanning direction on the upper one shot area SA. The wafer W is a disk-shaped substrate such as a semiconductor (eg, silicon) or SOI (silicon on insulator) having a diameter of about 200 to 300 mm. The pattern surface (reticle surface) of reticle R and the surface (wafer surface) of wafer W correspond to the object plane and image plane of the projection optical system, respectively. Further, reticle R and wafer W can be regarded as a first object and a second object (photoconductor), respectively.
[0037] 本例の投影光学系 PLは屈折系である力 投影光学系 PLとしては、例えば米国特 許第 6, 496, 306号明細書に開示されているように、互いに交差する光軸を持つ複 数の光学系よりなる反射屈折系なども使用できる。また、投影光学系 PLの瞳面には 、可変開口絞り 35が配置されている。主制御系 41は、可変開口絞り 35を駆動して、 投影光学系 PLの開口数を制御できるように構成されている。以下、図 1において、投 影光学系 PLの光軸 AXに平行に Z軸を取り、 Z軸に垂直な平面内で走査露光時のレ チクル R及びウェハ Wの走査方向に直交する非走査方向に X軸を取り、その走査方 向に Y軸を取って説明する。  [0037] The projection optical system PL of the present example is a power projection optical system PL. The projection optical system PL has optical axes intersecting each other as disclosed in, for example, US Patent No. 6,496,306. A catadioptric system consisting of multiple optical systems can also be used. Further, a variable aperture stop 35 is arranged on a pupil plane of the projection optical system PL. The main control system 41 is configured to drive the variable aperture stop 35 to control the numerical aperture of the projection optical system PL. Hereinafter, in FIG. 1, the Z axis is taken in parallel with the optical axis AX of the projection optical system PL, and the non-scanning direction orthogonal to the scanning direction of the reticle R and the wafer W during scanning exposure is in a plane perpendicular to the Z axis. The following describes the X axis and the Y axis in the scanning direction.
[0038] 先ず、レチクル Rはレチクルステージ(第 1ステージ) 22上に保持され、レチクルステ ージ 22はレチクルベース 23上で Y方向に一定速度で移動すると共に、同期誤差を 補正するように X方向、 Y方向、回転方向に微動して、レチクル Rの走査を行う。レチ クルステージ 22の位置は、この上に設けられた移動鏡 (不図示)及びレーザ干渉計( 不図示)によって計測され、この計測値及び主制御系 41からの制御情報に基づいて 、ステージ駆動系 42は不図示の駆動機構 (リニアモータなど)を介してレチクルステ ージ 22の位置及び速度を制御する。また、レチクル Rの周辺部の上方には、ミラー 3 3A等を介してレチクル R上のパターン領域 31の近傍のァライメントマーク 32A, 32B の位置を検出するためのレチクルァライメント顕微鏡 34A, 34Bが配置されて!、る。  First, the reticle R is held on a reticle stage (first stage) 22, and the reticle stage 22 moves at a constant speed in the Y direction on the reticle base 23, and moves in the X direction so as to correct a synchronization error. The reticle R is scanned by fine movement in the Y and rotation directions. The position of the reticle stage 22 is measured by a movable mirror (not shown) and a laser interferometer (not shown) provided thereon, and based on the measured values and control information from the main control system 41, the stage drive is performed. The system 42 controls the position and speed of the reticle stage 22 via a drive mechanism (not shown) (such as a linear motor). Above the periphery of reticle R, reticle alignment microscopes 34A and 34B for detecting the positions of alignment marks 32A and 32B near pattern area 31 on reticle R via mirrors 33A and the like. Arranged!
[0039] 一方、ウェハ Wは、ウェハホルダ 24を介してウェハステージ 27上に保持され、ゥェ ハステージ 27はウェハベース 28上で Y方向に一定速度で移動すると共に、 X方向、 Y方向にステップ移動する XYステージ 26と、 Zチルトステージ 25とを備えている。 Z チルトステージ 25は、不図示のオートフォーカスセンサによるウェハ Wの Z方向の位 置の計測値に基づいて、ウェハ Wのフォーカシング及びレべリングを行う。ウェハス テージ 27の XY平面内での位置、及び X軸、 Y軸、 Z軸の回りの回転角はレーザ干渉 計 (不図示)によって計測され、この計測値及び主制御系 41からの制御情報に基づ いて、ステージ駆動系 42は不図示の駆動機構 (リニアモータなど)を介してウェハス テージ 27の動作を制御する。 On the other hand, the wafer W is held on a wafer stage 27 via a wafer holder 24, and the wafer stage 27 moves at a constant speed in the Y direction on the wafer base 28, and moves in steps in the X and Y directions. It has a moving XY stage 26 and a Z tilt stage 25. Z The tilt stage 25 performs focusing and leveling of the wafer W based on a measurement value of the position of the wafer W in the Z direction by an autofocus sensor (not shown). The position of the wafer stage 27 in the XY plane and the rotation angles around the X, Y, and Z axes are measured by a laser interferometer (not shown), and the measured values and the control information from the main control system 41 are used. Based on this, the stage drive system 42 controls the operation of the wafer stage 27 via a drive mechanism (such as a linear motor) not shown.
[0040] 更に、ウェハステージ 27上のウェハ Wの近傍には、 Y方向及び X方向に沿ってそ れぞれスリット状の開口 30A及び 30Bが形成された空間像計測系 29が設置されて いる。開口 30A及び 30Bが形成された面はウェハ面と同じ高さになるように配置され 、開口 30A及び 30Bの底面にそれぞれ集光光学系を介して光電センサが配置され ており、その 2つの光電センサの検出信号が主制御系 41内の信号処理部に供給さ れている。本例では、ウェハステージ 27を X方向(又は Y方向)に駆動して開口 30A ( 又は 30B)でレチクル Rのパターンの投影像を走査しながら、その光電センサの検出 信号を検出することによって、その投影像の線幅を空間像の段階で検出することがで きる。 Further, near the wafer W on the wafer stage 27, an aerial image measurement system 29 having slit-shaped openings 30A and 30B formed along the Y direction and the X direction, respectively, is installed. . The surface on which the openings 30A and 30B are formed is arranged so as to be at the same height as the wafer surface, and photoelectric sensors are arranged on the bottom surfaces of the openings 30A and 30B via condensing optical systems, respectively. The detection signal of the sensor is supplied to a signal processing unit in the main control system 41. In this example, the wafer stage 27 is driven in the X direction (or Y direction) to scan the projected image of the pattern of the reticle R through the opening 30A (or 30B) while detecting the detection signal of the photoelectric sensor. The line width of the projected image can be detected at the stage of the aerial image.
[0041] なお、ウェハステージ 27上には、露光領域 21Wよりも大きい受光面を有する照射 量モニタ (不図示)も配置され、この検出信号は露光量制御系 43に供給されている。 また、ウェハステージ 27の上方には、ウェハァライメント用のオフ 'ァクシス方式のァ ライメントセンサ 36が配置されており、この検出結果に基づいて主制御系 41はゥェ ハ Wのァライメントを行う。  It should be noted that an irradiation amount monitor (not shown) having a light receiving surface larger than the exposure area 21 W is also arranged on the wafer stage 27, and this detection signal is supplied to the exposure amount control system 43. Above the wafer stage 27, an off-axis alignment sensor 36 for wafer alignment is arranged, and the main control system 41 performs wafer alignment based on the detection result.
[0042] 露光時には、レチクルステージ 22及びウェハステージ 27を駆動して、露光光 ILを 照射した状態でレチクル Rとウェハ W上の一つのショット領域とを Y方向に同期走査 する動作と、ウェハステージ 27を駆動してウェハ Wを X方向、 Y方向にステップ移動 する動作とが繰り返される。これによつて、ステップ ·アンド'スキャン方式でウエノ、 W 上の各ショット領域にレチクル Rのパターン像が露光される。  At the time of exposure, the reticle stage 22 and the wafer stage 27 are driven to synchronously scan the reticle R and one shot area on the wafer W in the Y direction while irradiating the exposure light IL. The operation of driving the wafer 27 and step-moving the wafer W in the X and Y directions is repeated. As a result, a pattern image of the reticle R is exposed to each shot area on the ueno and W by the step-and-scan method.
[0043] 次に、本例の投影露光装置にお!、て、投影光学系 PLの投影像の線幅のピッチ依 存性に関する特性、言 、換えると投影像の光学的近接効果である OPE (Optical Proximity Effect)の特性を調整する動作の一例につき説明する。そのためには、先 ず OPE特性を次のようにして空間像のシミュレーション又は実測によって求める。 Next, in the projection exposure apparatus according to the present embodiment, the characteristic relating to the pitch dependency of the line width of the projection image of the projection optical system PL, in other words, the OPE which is the optical proximity effect of the projection image An example of an operation of adjusting the characteristic of (Optical Proximity Effect) will be described. To do so, First, the OPE characteristics are obtained by simulation or actual measurement of the aerial image as follows.
[無収差の投影光学系を用 、る場合の OPE特性の評価の原理]  [Principle of evaluating OPE characteristics when using an aberration-free projection optical system]
図 2は、本例の投影露光装置の OPE特性を評価するための OPE特性計測用レチ クル TRのパターンの一部を示し、この図 2において、微細ピッチのパターンとしての 第 1のライン 'アンド'スペースパターン(以下、「L/Sパターン」と言う。) 51と、中間ピ ツチのパターンとしての第 2の L/Sパターン 53と、粗!、ピッチのパターンとしての孤 立パターン 55とが形成されている。なお、図 2の X軸及び Y軸は、図 2の OPE特性計 測用レチクル TRを図 1のレチクルステージ 22上にロードした場合の座標系である。  FIG. 2 shows a part of a pattern of a reticle TR for measuring an OPE characteristic for evaluating the OPE characteristic of the projection exposure apparatus of the present embodiment. In FIG. 'A space pattern (hereinafter referred to as “L / S pattern”) 51, a second L / S pattern 53 as an intermediate pitch pattern, and an isolated pattern 55 as a coarse and pitch pattern Is formed. Note that the X axis and the Y axis in FIG. 2 are coordinate systems when the reticle TR for measuring OPE characteristics in FIG. 2 is loaded on the reticle stage 22 in FIG.
[0044] そして、第 1の L&Sパターン 51は、それぞれ X方向の幅 Dの Y方向に伸びた透過 率 6%のハーフトーンの 11個のラインパターン 52をピッチ PI ( >D)で X方向に配列 して形成されている。また、第 2の LZSパターン 53は、 X方向の幅 Dの Y方向に伸び た透過率 6%のハーフトーンの 11個のラインパターン 54をピッチ P2 ( >P1)で X方向 に配列して形成されている。そして、孤立パターン 55は、 X方向の幅 Dの Y方向に伸 びた透過率 6%のハーフトーンのラインパターンである。ラインパターン 52, 54及び 孤立パターン 55は、それぞれ露光光を透過するガラス基板に形成されたクロム膜で ある。 [0044] The first L & S pattern 51 is composed of 11 halftone line patterns 52 each having a transmittance of 6% and extending in the Y direction with a width D in the X direction in the X direction at a pitch PI (> D). They are formed in an array. The second LZS pattern 53 is formed by arranging 11 line patterns 54 of 6% transmittance halftone extending in the Y direction with a width D in the X direction at a pitch P2 (> P1) in the X direction. Have been. The isolated pattern 55 is a halftone line pattern having a transmittance of 6% and extending in the Y direction with a width D in the X direction. Each of the line patterns 52 and 54 and the isolated pattern 55 is a chrome film formed on a glass substrate that transmits exposure light.
[0045] この場合、ラインパターン 52, 54及び孤立パターン 55の線幅はそれぞれ共通に D である。また、次のように、第 1の L&Sパターン 51のピッチ P1は線幅 Dの 2倍、第 2の L&Sパターン 53のピッチ P2は線幅 Dの 3倍である。即ち、第 1の L&Sパターン 51の ラインとスペースとの幅の比は 1: 1であり、第 2の L&Sパターン 53のラインとスペース との幅の比は 1 : 2である。  In this case, the line widths of the line patterns 52 and 54 and the isolated pattern 55 are D in common. Further, as described below, the pitch P1 of the first L & S pattern 51 is twice the line width D, and the pitch P2 of the second L & S pattern 53 is three times the line width D. That is, the ratio of the width of the line to the space of the first L & S pattern 51 is 1: 1 and the ratio of the width of the line to the space of the second L & S pattern 53 is 1: 2.
[0046] Pl = 2-D  [0046] Pl = 2-D
P2 = 3 -D - -- (2)  P2 = 3 -D--(2)
実際には、第 2の L&Sパターン 53と孤立パターン 55との間には、ラインパターン 5 4 (52)と同じ線幅のラインパターンを次第に大きくなるピッチで X方向に配列した複 数の L&Sパターン (不図示)も形成されている。そして、孤立パターン 55は、実際に はラインパターンを事実上無限大とみなすことができるピッチ (ウェハ上に換算した長 さで 1. 5-2 μ m程度)で X方向に配列した L&Sパターンの一部ともみなすことがで きる。このように OPE特性計測用レチクル TRには、同一ライン線幅で、ピッチが異な る複数 (例えば 10個)の LZSパターンが形成されて 、る。これらの LZSパターンを、 互いに異なる複数のパターン、又は互いに異なる 3種類以上のパターンとみなすこと も可能である。 Actually, between the second L & S pattern 53 and the isolated pattern 55, a plurality of L & S patterns in which line patterns having the same line width as the line pattern 54 (52) are arranged in the X direction at gradually increasing pitches. (Not shown) are also formed. In addition, the isolated pattern 55 is formed of an L & S pattern arranged in the X direction at a pitch (about 1.5-2 μm in terms of the length on a wafer) at which a line pattern can be regarded as practically infinite. Can be considered part of Wear. As described above, a plurality of (eg, 10) LZS patterns having the same line width and different pitches are formed on the OPE characteristic measurement reticle TR. These LZS patterns can be regarded as a plurality of different patterns or three or more different patterns.
[0047] なお、本例の OPE特性計測用レチクル TRには、同一線幅で異なるピッチの LZS パターンが形成されている力 異なる線幅で異なるピッチの L/Sパターンを用いても 、 OPE特性を評価することは可能である。  [0047] The reticle TR for measuring the OPE characteristics of this example has the same line width but different pitches of the LZS pattern formed. Even if the L / S patterns with different line widths and different pitches are used, the OPE characteristics are different. It is possible to evaluate
次に、図 1のレチクルステージ 22上に、レチクル Rの代わりに図 2の OPE特性計測 用レチクル TRをロードして、図 2の同一線幅で異なるピッチの LZSパターンの像を 投影光学系 PLを介してウェハ W上に投影する場合の、投影像の線幅のピッチ依存 性 (OPE特性)を求める。投影像の線幅を求めるには、(1)実際に未露光のウェハ W 上にその OPE特性計測用レチクル TRの各パターンの像を投影し、現像によって得 られるレジストパターンの線幅を計測するテストプリント法、(2)その像を図 1の空間像 計測系 29の開口 30Aで X方向に走査して、各パターン像の線幅を計測する空間像 計測法、及び(3)コンピュータによる空間像のシミュレーションによって求める方法が ある。ここでは、その OPE特性を空間像のシミュレーションによって求めるものとする。 そのために、図 1の主制御系 41には、光学シミュレーション用のコンピュータ 41a (演 算装置)が接続されている。  Next, the reticle TR for measuring the OPE characteristics shown in FIG. 2 is loaded on the reticle stage 22 shown in FIG. 1 instead of the reticle R, and the images of the LZS patterns having the same line width and different pitches shown in FIG. The pitch dependency (OPE characteristic) of the line width of the projected image when projecting onto the wafer W via the is obtained. To determine the line width of the projected image, (1) project the image of each pattern of the OPE characteristic measurement reticle TR onto an unexposed wafer W and measure the line width of the resist pattern obtained by development Test print method, (2) Aerial image measurement method in which the image is scanned in the X direction at the aperture 30A of the aerial image measurement system 29 in Fig. 1 and the line width of each pattern image is measured, and (3) Computer space There is a method to obtain it by image simulation. Here, it is assumed that the OPE characteristics are obtained by a simulation of an aerial image. For this purpose, a computer 41a (computing device) for optical simulation is connected to the main control system 41 in FIG.
[0048] このシミュレーションのための露光条件を、露光波長が 193nm、投影光学系 PLの 開口数 (NA)が 0. 60、照明光学系 3のコヒーレンスファクタ(σ値)が 0. 75、輪帯照 明を行うものとして図 1の開口絞り 13Cの輪帯開口の外径に対する内径の比の値で ある照明輪帯比が 0. 67とした。照明光学系 3のコヒーレンスファクタ(σ値)とは、照 明光学系 3のレチクル側の開口数を投影光学系 PLのレチクル側の開口数で割った 値である。また、図 2の各ラインパターン 52, 54及び孤立パターン 55の線幅 Dを、ゥ ェハ上に換算した値で 140nmとした。更に、簡単のために、投影光学系 PLは無収 差であるとして、ウェハ面上での各ピッチ毎の L&Sパターンの中央のラインパターン の投影像 (空間像)の線幅を計算した。  The exposure conditions for this simulation were as follows: the exposure wavelength was 193 nm, the numerical aperture (NA) of the projection optical system PL was 0.60, the coherence factor (σ value) of the illumination optical system 3 was 0.75, and the annular zone. For illumination, the illumination zone ratio, which is the value of the ratio of the inner diameter to the outer diameter of the annular aperture of the aperture stop 13C in FIG. 1, was set to 0.67. The coherence factor (σ value) of the illumination optical system 3 is a value obtained by dividing the reticle-side numerical aperture of the illumination optical system 3 by the reticle-side numerical aperture of the projection optical system PL. In addition, the line width D of each of the line patterns 52 and 54 and the isolated pattern 55 in FIG. 2 was set to 140 nm as a value converted into a wafer. Further, for simplicity, the projection optical system PL was assumed to be non-income, and the line width of the projected image (aerial image) of the center line pattern of the L & S pattern for each pitch on the wafer surface was calculated.
[0049] 図 3は、図 2の OPE特性計測用レチクル TRの空間像 TRWを示し、この図 3におい て、図 2の L&Sパターン 51, 53及び孤立パターン 55の投影像 51W, 53W, 55W の光量分布を計算し、これらの中で中央のラインパターンに対応する像 52W, 54W , 55Wの線幅 dl, d2, d3を計算によって求めた。なお、図 3では、説明の便宜上、 投影光学系 PLが正立像を形成するものとしてしている。実際には、例えば異なる 10 個のピッチの LZSパターンの投影像に対して、それぞれ中央のラインパターンの像 の線幅を計算した。 FIG. 3 shows an aerial image TRW of the reticle TR for measuring OPE characteristics shown in FIG. 2, and FIG. Then, the light amount distributions of the projected images 51W, 53W, 55W of the L & S patterns 51, 53 and the isolated pattern 55 in FIG. 2 are calculated, and the line width dl of the images 52W, 54W, 55W corresponding to the central line pattern among them is calculated. , d2, d3 were calculated. In FIG. 3, for convenience of explanation, the projection optical system PL forms an erect image. In practice, for example, the line width of the image of the center line pattern was calculated for each of the projected images of LZS patterns with ten different pitches.
[0050] 図 4は、その空間像シミュレーションの結果を示し、この図 4において、折れ線 C7は 、最も小さいピッチの計算結果 61から最も大きいピッチ (実質的に孤立パターン)の 計算結果 62を含む 10個の複数のピッチに関して、実際に計算された線幅を結んで いる。また、図 4において、横軸は投影される L&Sパターンのピッチ pをウェハ上での 長さに換算した値 (nm)であり、縦軸はそのピッチ pの L&Sパターンの中央のライン パターンの像の線幅 d(nm)である。これは、以下の図 5—図 7、及び図 9一図 11でも 共通である。  FIG. 4 shows the result of the aerial image simulation. In FIG. 4, the polygonal line C7 includes the calculation result 61 of the smallest pitch to the calculation result 62 of the largest pitch (substantially isolated pattern). For each of the multiple pitches, the actual calculated line width is connected. In FIG. 4, the horizontal axis is the value (nm) obtained by converting the pitch p of the projected L & S pattern into the length on the wafer, and the vertical axis is the image of the center line pattern of the L & S pattern at that pitch p. Is the line width d (nm). This is common to the following Figs. 5 to 7 and Figs. 9 to 11.
[0051] 図 4の線幅のピッチ依存性 (OPE特性)より、投影光学系 PLがたとえ無収差であつ ても、 L/Sパターンのピッチ pが変わると、レチクル上で同じ線幅のラインパターンで あっても、像面上では違う線幅の像になることが分かる。更に実際には、図 1の投影 光学系 PLには僅かな収差が残存しているため、予め投影光学系 PLの波面収差を 実測によって求めておき、その波面収差のデータをも用いて上記のシミュレーション を行うことで、図 1の投影露光装置に固有の OPE特性を求めることができる。  From the pitch dependence of line width (OPE characteristic) in FIG. 4, even if the projection optical system PL has no aberration, if the pitch p of the L / S pattern changes, the line with the same line width on the reticle It can be seen that even with a pattern, an image with a different line width is formed on the image plane. Further, in practice, a slight aberration remains in the projection optical system PL in FIG. 1, so that the wavefront aberration of the projection optical system PL is obtained in advance by actual measurement, and the above-described data is obtained using the data of the wavefront aberration. By performing a simulation, it is possible to obtain the OPE characteristics unique to the projection exposure apparatus shown in FIG.
[0052] [OPE特性の変化のシミュレーション]  [Simulation of Change in OPE Characteristics]
次に、本例の投影露光装置の設定可能な露光条件には、投影光学系 PLの開口 数 (以下、「投影 NA」と言う。)、照明光学系 3による照明条件 (通常、 2極、 4極、輪帯 、小 σ等)、照明光学系 3のコヒーレンスファクタ(以下、「照明シグマ」と言う。)、照明 光学系 3の照明条件における輪帯照明の照明輪帯比、露光波長え、露光光 ILの波 長の半値幅、露光光 ILの露光量、デフォーカス量、像面に対してウェハの上面(ゥェ ハ面)を傾けて走査露光する場合におけるウェハ面の傾き量、ウェハ W上の感光材 料としてのフォトレジストの種類、及びその感光材料の厚さ等がある。本例では、これ らの露光条件を変えることによって図 1の投影露光装置の線幅のピッチ依存性 (ΟΡΕ 特性)を所定範囲で調整する。 Next, the exposure conditions that can be set in the projection exposure apparatus of this example include the numerical aperture of the projection optical system PL (hereinafter, referred to as “projection NA”), the illumination conditions by the illumination optical system 3 (normally, two poles, 4 poles, annular zone, small σ, etc.), coherence factor of illumination optical system 3 (hereinafter referred to as “illumination sigma”), illumination zone ratio of annular illumination under illumination condition of illumination optical system 3, and exposure wavelength The half width of the wavelength of the exposure light IL, the amount of exposure of the exposure light IL, the amount of defocus, and the amount of tilt of the wafer surface when performing scanning exposure by tilting the upper surface (wafer surface) of the wafer with respect to the image plane. There are a type of photoresist as a photosensitive material on the wafer W, a thickness of the photosensitive material, and the like. In this example, by changing these exposure conditions, the pitch dependence of the line width (ΟΡΕ Characteristics) within a predetermined range.
[0053] 先ず、本例では照明条件を輪帯照明とする。そして、最初に、投影 NAを変化させ た場合の図 4の OPE特性の変化について説明する。  First, in this example, the illumination condition is annular illumination. First, the change in the OPE characteristic in FIG. 4 when the projection NA is changed will be described.
図 5は、投影 NAを変化させた場合の OPE特性の変化を示す図である。図 5中の折 れ線 C7は、図 4の折れ線 C7を求めたのと同じ露光条件(露光波長: 193nm、投影 N A: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅: 140nm) での OPE特性のシミュレーション結果であり、折れ線 C9は、折れ線 C7の場合に対し て投影 NAのみを 0. 01だけ大きくして 0. 61とした場合のシミュレーション結果である 。図 5より、投影 NAが変化すると、 OPE特性が変化することが分かる。  FIG. 5 is a diagram showing changes in OPE characteristics when the projection NA is changed. The broken line C7 in FIG. 5 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination zone ratio: 0. 67, the simulation result of the OPE characteristic at the line pattern line width: 140 nm). The simulation in which the broken line C9 increases only the projection NA by 0.01 to 0.61 compared to the broken line C7 The result. It can be seen from FIG. 5 that when the projection NA changes, the OPE characteristics change.
[0054] 同様に、図 6は照明シグマを変化させた場合の OPE特性の変化を示す図である。  Similarly, FIG. 6 is a diagram showing changes in OPE characteristics when the illumination sigma is changed.
図 6中の折れ線 C7は、図 4の折れ線 C7を求めたのと同じ露光条件(露光波長: 193 nm、投影 NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線 幅: 140nm)での OPE特性のシミュレーション結果であり、折れ線 C11は、折れ線 C 7の場合に対して照明シグマのみを 0. 02だけ大きくして 0. 77とした場合のシミュレ ーシヨン結果である。図 6より、照明シグマが変化すると、 OPE特性が変化することが 分かる。  The broken line C7 in FIG. 6 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0.67) as the line C7 in FIG. (Line width of the line pattern: 140 nm) is a simulation result of the OPE characteristic. The broken line C11 is a simulation in which only the illumination sigma is increased by 0.02 to 0.77 with respect to the case of the broken line C7. This is the result of the session. Fig. 6 shows that the OPE characteristics change when the lighting sigma changes.
[0055] 同様に、図 7は照明輪帯比を変化させた場合の OPE特性の変化を示す図である。  [0055] Similarly, FIG. 7 is a diagram showing changes in OPE characteristics when the illumination zone ratio is changed.
図 7中の折れ線 C7は、図 4の折れ線 C7を求めたのと同じ露光条件(露光波長: 193 nm、投影 NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線 幅: 140nm)での OPE特性のシミュレーション結果であり、折れ線 C13は、折れ線 C 7の場合に対して照明輪帯比のみを 0. 02だけ大きくして 0. 69とした場合のシミュレ ーシヨン結果である。図 7より、照明輪帯比が変化すると、 OPE特性が変化することが 分かる。  The broken line C7 in FIG. 7 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illuminated ring zone ratio: 0.67) as the line C7 in FIG. (Line width of line pattern: 140 nm) is a simulation result of the OPE characteristic. In the case of the polygonal line C13, only the illumination zone ratio is increased by 0.02 to 0.69 with respect to the polygonal line C7. These are the simulation results. From FIG. 7, it can be seen that the OPE characteristics change when the illumination zone ratio changes.
[0056] 図 8は、投影 NA、照明シグマ、及び照明輪帯比を変化させたときの OPE特性の変 化率を示し、図 8において、折れ線 C14、 C15、及び CI 6はそれぞれ投影 N Aの変 ィ匕 (0. 01)に対する空間像の線幅の変化量 (変化率)(nm)、照明シグマの変化 (0. 01)に対する空間像の線幅の変化量 (変化率)(nm)、及び照明輪帯比の変化 (0. 0 1)に対する空間像の線幅の変化量 (変化率)(nm)である。即ち、図 8の横軸は L& Sパターンのウェハ上に換算したピッチ (nm)であり、その縦軸は空間像の線幅の変 化率 (nm)である。図 8より、投影 NA、照明シグマ、及び照明輪帯比を変化させたと きの OPE特性の変化率は互いに違うことが分かる。同様に、他の露光条件を変化さ せた場合の OPE特性の変化率も求められ、これらの OPE特性の変化率の情報は、 図 1の主制御系 41内の記憶部に記憶されている。 [0056] Fig. 8 shows the change rate of the OPE characteristic when the projection NA, the illumination sigma, and the illumination ring zone ratio are changed. In Fig. 8, the polygonal lines C14, C15, and CI 6 indicate the projection NA, respectively. The change in the line width of the aerial image (change rate) (change rate) (nm) for the change (0.01), the change in the line width of the aerial image (change rate) (change rate) (nm) And the change amount (change rate) (nm) of the line width of the aerial image with respect to the change (0.01) of the illumination ring zone ratio. In other words, the horizontal axis in Fig. 8 is L & The pitch of the S pattern on the wafer (nm) is converted, and the vertical axis is the rate of change of the line width of the aerial image (nm). From FIG. 8, it can be seen that the rates of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed are different from each other. Similarly, the rate of change of the OPE characteristic when other exposure conditions are changed is also obtained, and the information on the rate of change of the OPE characteristic is stored in the storage unit in the main control system 41 in FIG. .
また、主制御系 41内の演算部は、その OPE特性の変化率の情報を用いて、 3つの パターンピッチ pi, p2, P3の OPE特性の線幅がそれぞれ所定の目標値になるように 、露光条件の組合せ、及び露光条件の変化量を求める。なお、露光条件の組合せと 露光条件の変化量との一方を求めてもょ 、。 The arithmetic unit in the main control system 41 uses the information of the change rate of the OPE characteristics, as the three pattern pitch pi, p2, the line width of the OPE characteristics of P 3 respectively become predetermined target value , The combination of the exposure conditions, and the amount of change in the exposure conditions. Note that one of the combination of the exposure conditions and the change amount of the exposure conditions may be obtained.
[0057] [収差を持つ投影光学系を用いる場合の OPE特性の調整]  [Adjustment of OPE characteristics when using a projection optical system with aberration]
次に、図 9の点線の折れ線で示す OPE特性 C18は、図 1の投影露光装置の投影 光学系 PLに所定の収差がある場合の OPE特性の評価 (シミュレーション)結果を示 す。この場合の露光条件(露光波長: 193nm、投影レンズ NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅: 140nm)は、図 4の場合と同じで ある。これに対して、図 9の実線の折れ線で示す OPE特性 C17は、別の投影露光装 置(以下、「基準となる投影露光装置」と言う。)についてシミュレーションによって求め られた OPE特性である。本例の投影露光装置の投影光学系 PLと、その基準となる 投影露光装置の投影光学系とは異なる収差を持っているため、対応する 2つの OPE 特性 C17, C18も異なっている。  Next, an OPE characteristic C18 indicated by a broken line in FIG. 9 indicates an evaluation (simulation) result of the OPE characteristic when the projection optical system PL of the projection exposure apparatus in FIG. 1 has a predetermined aberration. The exposure conditions in this case (exposure wavelength: 193 nm, projection lens NA: 0.60, illumination sigma: 0.75, illumination ring ratio: 0.67, line pattern line width: 140 nm) are the same as in FIG. It is the same. On the other hand, the OPE characteristic C17 indicated by a solid broken line in FIG. 9 is an OPE characteristic obtained by simulation for another projection exposure apparatus (hereinafter, referred to as “reference projection exposure apparatus”). Since the projection optical system PL of the projection exposure apparatus of this example has a different aberration from the projection optical system of the projection exposure apparatus as a reference, the two corresponding OPE characteristics C17 and C18 are also different.
[0058] 本例では、その基準となる投影露光装置の OPE特性 C 17に合わせて、ピッチによ る線幅のばらつきを補正したマスクとしての OPE補正されたレチクルは作成済みであ るとする。そこで、本例の投影露光装置の投影 NA、照明シグマ、及び照明輪帯比を 変化させることで、本例の投影露光装置の OPE特性 C18を、その基準となる投影露 光装置の OPE特性 C17に近づけることを考える。これによつて、その基準となる投影 露光装置に合わせて作成した OPE補正されたレチクルを、本例の投影露光装置で も使用できるようにするためである。これは、 OPE特性を投影露光装置毎に調整でき ることをち意味する。  In this example, it is assumed that an OPE-corrected reticle has been created as a mask in which the variation in line width due to the pitch has been corrected in accordance with the OPE characteristic C 17 of the projection exposure apparatus serving as the reference. . Therefore, by changing the projection NA, illumination sigma, and illumination ring zone ratio of the projection exposure apparatus of this example, the OPE characteristic C18 of the projection exposure apparatus of this example is changed to the OPE characteristic C17 of the projection exposure apparatus as a reference. Consider approaching. Thereby, the OPE-corrected reticle created according to the reference projection exposure apparatus can be used in the projection exposure apparatus of the present embodiment. This means that the OPE characteristics can be adjusted for each projection exposure apparatus.
[0059] なお、本例では、投影 NA、照明シグマ、及び照明輪帯比等の露光条件の変化量 は、 OPE特性以外の特性、例えば投影光学系 PLの解像度等の結像特性には実質 的に影響を与えない範囲で設定される。そのように投影光学系 PLの結像特性に実 質的に影響を与えない範囲の投影 NA、及び照明シグマの変化量は、一例としてそ れぞれ ±0. 05以内程度、結像特性に実質的に影響を与えない範囲の照明輪帯比 の変化量は、一例として ±0. 2以内程度である。 [0059] In this example, the change amount of the exposure condition such as the projection NA, the illumination sigma, and the illumination ring ratio is described. Is set within a range that does not substantially affect characteristics other than the OPE characteristics, for example, the imaging characteristics such as the resolution of the projection optical system PL. The projection NA and the amount of change in the illumination sigma in such a range that does not substantially affect the imaging characteristics of the projection optical system PL are within ± 0.05, for example, respectively. The variation of the illuminated zone ratio in a range that does not substantially affect the variation is, for example, within about ± 0.2.
[0060] 先ず、領域 C19で示すように、図 9の OPE特性 C17と OPE特性 C18とのパターン ピッチ 1540nm (=p3)での空間像の線幅を、投影 NAを調整することで一致させる。 このために図 8の折れ線 C14の OPE特性の変化率を用いて、図 1の投影露光装置 の投影 NAを 0. 60力ら 0. 58に 0. 02だけ少なく調整する。  First, as shown by a region C19, the line width of the aerial image at the pattern pitch of 1540 nm (= p3) between the OPE characteristic C17 and the OPE characteristic C18 in FIG. 9 is matched by adjusting the projection NA. For this purpose, the projection NA of the projection exposure apparatus shown in FIG. 1 is adjusted by a factor of 0.02 from 0.60 to 0.58 using the rate of change of the OPE characteristic of the polygonal line C14 in FIG.
図 10の OPE特性 C21は、その調整によって図 9の OPE特性 C18から変化した後 の本例の投影露光装置の OPE特性を示し、この図 10の領域 C22から分力るように、 投影 NAを調整することで、本例の投影露光装置のパターンピッチ 1540nm (=p3) での OPE特性 C21を基準となる投影露光装置のパターンピッチ 1540nmでの OPE 特性 C 17と一致させることができる。し力しながら、一方で、領域 C23から分力るよう に、図 10のパターンピッチ 490nm (=p2)での OPE特性 C21は、かえって OPE特 性 C 17から開いてしまっている。  The OPE characteristic C21 in FIG. 10 shows the OPE characteristic of the projection exposure apparatus of the present example after being changed from the OPE characteristic C18 in FIG. 9 by the adjustment. By adjusting, the OPE characteristic C21 at a pattern pitch of 1540 nm (= p3) of the projection exposure apparatus of this example can be made to match the OPE characteristic C17 at a pattern pitch of 1540 nm of the projection exposure apparatus as a reference. On the other hand, the OPE characteristic C21 at the pattern pitch of 490 nm (= p2) in FIG. 10 is rather open from the OPE characteristic C17, as shown in FIG.
[0061] そこで次に、図 1の投影露光装置の照明シグマも調整して、パターンピッチ 1540η mでの OPE特性 C21とパターンピッチ 490nmでの OPE特性 C21とを、同時に基準 となる投影露光装置の OPE特性 C17と一致させることを考える。このためには、図 9 の状態を開始点として、図 8の折れ線 C14及び C15の OPE特性の変化率を用いて、 パターンピッチ p2及び p3で OPE特性 C18を OPE特性 C17に一致させるための投 影 NA及び照明シグマの変化量を計算する。図 1の主制御系 41の記憶部には、図 9 の OPE特性 C17及び C18の情報も格納されており、主制御系 41内の演算部がその 露光条件の変化量を計算する。この結果、投影 NAの変化量は 0. 01、照明シグマ の変ィ匕量は 0. 03となる。  Then, next, the illumination sigma of the projection exposure apparatus of FIG. 1 is also adjusted, and the OPE characteristic C21 at the pattern pitch of 1540 ηm and the OPE characteristic C21 at the pattern pitch of 490 nm are simultaneously set as the reference of the projection exposure apparatus. Consider matching OPE characteristic C17. For this purpose, starting from the state shown in FIG. 9 and using the rate of change of the OPE characteristics of the polygonal lines C14 and C15 in FIG. 8, the projection for matching the OPE characteristics C18 with the OPE characteristics C17 at the pattern pitches p2 and p3 is performed. Calculate the amount of change in shadow NA and lighting sigma. The information of the OPE characteristics C17 and C18 in FIG. 9 is also stored in the storage unit of the main control system 41 in FIG. 1, and the calculation unit in the main control system 41 calculates the change amount of the exposure condition. As a result, the change amount of the projection NA is 0.01, and the change amount of the illumination sigma is 0.03.
[0062] 図 11の OPE特性 C24は、そのように図 9の状態から投景 NAを 0. 60力ら 0. 61に 、照明シグマを 0. 75から 0. 78に調整した場合の本例の投影露光装置の OPE特性 を示す。また、図 11の OPE特性 C17は、図 9の基準となる投影露光装置の OPE特 性 C17と同じである。 [0062] The OPE characteristic C24 in Fig. 11 is such that the projection NA is adjusted from 0.60 to 0.61 and the lighting sigma is adjusted from 0.75 to 0.78 from the state in Fig. 9. The OPE characteristics of the projection exposure apparatus are shown. The OPE characteristic C17 of FIG. 11 is the OPE characteristic of the projection exposure Sex Same as C17.
図 11の領域 C26, C27から分力るように、本例の投影露光装置の投影 NAと照明 シグマとを同時に調整することで、本例の投影露光装置のパターンピッチ 1540nm( =p3)での OPE特性 C24と、基準となる投影露光装置のパターンピッチ 1540nmで の OPE特性 C17とを一致させ、同時に本例の投影露光装置のパターンピッチ 490η m (=p2)での OPE特性 C24と、基準となる投影露光装置のパターンピッチ 490nm での OPE特性 C 17とを一致させることができる。また、本例では、例えば露光量を調 整することによって、最も小さいパターンピッチであるピッチ 280nm (=pl)での 2つ の OPE特性 C 17及び C24も一致して!/、る。  By simultaneously adjusting the projection NA and the illumination sigma of the projection exposure apparatus of the present example so as to make an effort from the areas C26 and C27 in FIG. 11, the pattern pitch of the projection exposure apparatus of the present example at 1540 nm (= p3) can be obtained. The OPE characteristic C24 and the reference OPE characteristic C17 at the pattern pitch of 1540 nm of the projection exposure apparatus were matched, and at the same time, the OPE characteristic C24 of the projection exposure apparatus of the present example at the pattern pitch of 490ηm (= p2), And the OPE characteristic C 17 at a pattern pitch of 490 nm of the projection exposure apparatus. Further, in this example, by adjusting the exposure amount, for example, the two OPE characteristics C17 and C24 at the pitch 280 nm (= pl), which is the smallest pattern pitch, also match! /.
[0063] このように OPE特性 C24を基準となる OPE特性 C 17に 3つのパターンピッチで一 致させる動作が、互いに異なる複数のパターンの投影像の線幅のそれぞれを所定の 状態に調整するために、ウェハを露光するための露光条件を変化させる動作に対応 している。この結果、本例の調整後の投影露光装置の OPE特性 C24と基準となる投 影露光装置の OPE特性 C17とは、計測された最も小さいピッチ pi、それよりも大きい 中間のピッチ p2、及び実質的に孤立パターンとみなすことができるピッチ p3の 3つの ピッチで一致していることになる。従って、これらのウェハ上に換算したピッチ pi, p2 , ρ3の L&Sパターンを、互いにピッチが異なる第 1、第 2、及び第 3の周期パターンと みなすことができる。 As described above, the operation of matching the OPE characteristic C24 with the reference OPE characteristic C17 at three pattern pitches adjusts the line widths of the projection images of a plurality of different patterns to a predetermined state. In addition, it corresponds to the operation of changing the exposure condition for exposing the wafer. As a result, the adjusted OPE characteristic C24 of the projection exposure apparatus of this example and the reference OPE characteristic C17 of the projection exposure apparatus are the smallest measured pitch pi, the larger intermediate pitch p2, and the substantial In other words, three pitches, p3, which can be regarded as an isolated pattern, are consistent. Therefore, the L & S patterns with the pitches pi, p2, and ρ3 converted on these wafers can be regarded as the first, second, and third periodic patterns having different pitches from each other.
[0064] 同様にして、投影 NA、照明シグマ、照明輪帯比のうちのどれか 1つ、或いは複数を 同時に調整することにより、投影露光装置の OPE特性を異なる 3つのパターンピッチ で調整することができる。調整すべきパターンピッチが 4つ以上ある場合には、 OPE 特性全体の乖離の標準偏差が最小になるような投影 NA、照明シグマ、照明輪帯比 の組み合わせを、自乗平均最適化法等を用いて導くことができる。更に、露光条件と して、上記の全部の露光条件を変化させることによって、更に多くのピッチで OPE特 性を合わせることができる。そして、図 1の主制御系 41は、そのようにして調整された 露光条件を実際に設定して、ウェハ Wに対する露光を行う。  Similarly, by simultaneously adjusting one or more of the projection NA, the illumination sigma, and the illumination ring ratio, the OPE characteristic of the projection exposure apparatus can be adjusted at three different pattern pitches. Can be. If there are four or more pattern pitches to be adjusted, use a combination of projection NA, illumination sigma, and illumination zone ratio that minimizes the standard deviation of the deviation of the overall OPE characteristics using a root mean square optimization method, etc. Can be guided. Further, by changing all of the above exposure conditions as the exposure conditions, the OPE characteristics can be adjusted at more pitches. Then, the main control system 41 in FIG. 1 actually sets the exposure conditions adjusted as described above and performs exposure on the wafer W.
[0065] 本例によれば、投影露光装置毎に OPE特性を調整することができる。従って、本例 の投影露光装置では、その基準となる投影露光装置用に作成された OPE特性の補 正されたレチクルを使用できるため、新たに OPE特性を補正したレチクルを作成する 必要がなくなり、製造コストを低減できる。この結果、新しい投影露光装置を導入する ごとに、新しく OPE補正されたレチクルを作成する必要がなくなるため、露光工程で のコストを大幅に下げられる。 According to this example, the OPE characteristics can be adjusted for each projection exposure apparatus. Therefore, in the projection exposure apparatus of this example, the OPE characteristics created for the projection exposure apparatus serving as the reference are compensated. Since a corrected reticle can be used, there is no need to create a new reticle with OPE characteristics corrected, and manufacturing costs can be reduced. As a result, each time a new projection exposure apparatus is introduced, it is not necessary to create a new OPE-corrected reticle, thus greatly reducing the cost in the exposure process.
[0066] なお、上記の実施形態では、図 9で基準とする OPE特性 C17は、基準となる投影 露光装置の OPE特性である。しかしながら、その OPE特性 C17は、例えばこれから 露光するデバイスパターンの特性に応じて定められたものでもよい。更に、その OPE 特性 C17は、例えば所定の規格のようなものでもよい。  In the above embodiment, the OPE characteristic C17, which is the reference in FIG. 9, is the OPE characteristic of the projection exposure apparatus that is the reference. However, the OPE characteristic C17 may be determined according to, for example, the characteristic of a device pattern to be exposed. Further, the OPE characteristic C17 may be, for example, such as a predetermined standard.
[第 2の実施形態]  [Second embodiment]
次に、本発明の第 2の実施形態につき図 1一図 3、及び図 12—図 24を参照して説 明する。本例においても、図 1の走査露光型の投影露光装置 (露光装置)を使用する 。そして、本例では、図 1の照明光学系 3の瞳面又はその共役面における露光光 (露 光ビーム)の光量分布 (以下、「輝度分布」と言う。)のムラ (以下、「瞳面内での露光光 の輝度ムラ」と言う。 )に起因する投影像の線幅のピッチ依存性に関する特性である O PE特性を調整するために、第 1の実施形態と同様に所定の露光条件を調整する。そ のために、第 1の実施形態と同様に、 OPE特性を次のようにして空間像のシミュレ一 シヨン又は実測によって求める。  Next, a second embodiment of the present invention will be described with reference to FIGS. 1 to 3 and FIGS. Also in this example, the scanning exposure type projection exposure apparatus (exposure apparatus) shown in FIG. 1 is used. In this example, unevenness in the light amount distribution (hereinafter referred to as “brightness distribution”) of exposure light (exposure beam) on the pupil plane of the illumination optical system 3 in FIG. In order to adjust the OPE characteristic, which is a characteristic relating to the pitch dependency of the line width of the projected image caused by the exposure light within the exposure light, predetermined exposure conditions similar to those in the first embodiment are used. To adjust. For this purpose, as in the first embodiment, the OPE characteristics are obtained by simulation or actual measurement of the aerial image as follows.
[0067] 本例で使用する OPE特性計測用の複数のパターンは、第 1の実施形態と同様に 図 2の微細ピッチのパターンとしての第 1の LZSパターン 51と、中間ピッチのパター ンとしての第 2の L/Sパターン 53と、粗!、ピッチのパターンとしての孤立パターン 55 と、第 2の L&Sパターン 53と孤立パターン 55との間に配置されて、ラインパターン 54 (52)と同じ線幅のラインパターンを次第に大きくなるピッチで X方向に配列した複数 の L&Sパターン(不図示)とを含んでいる。これらの L/Sパターンを、互いに異なる 複数のパターン、又は互いに異なる 3種類以上のパターンとみなすことも可能である A plurality of patterns for measuring the OPE characteristics used in this example include a first LZS pattern 51 as a fine pitch pattern in FIG. 2 and a pattern as an intermediate pitch pattern as in the first embodiment. It is arranged between the second L / S pattern 53, the isolated pattern 55 as a coarse and pitch pattern, and the second L & S pattern 53 and the isolated pattern 55, and has the same line as the line pattern 54 (52). It includes a plurality of L & S patterns (not shown) in which line patterns of a width are arranged in the X direction at increasingly larger pitches. These L / S patterns can be considered as multiple different patterns or three or more different patterns.
[0068] 次に、図 1のレチクルステージ 22上に、レチクル Rの代わりに図 2の OPE特性計測 用レチクル TRをロードして、図 2の同一線幅で異なるピッチの LZSパターンの像を 投影光学系 PLを介してウェハ W上に投影する場合の、投影像の線幅のピッチ依存 性 (OPE特性)を求める。ここでは、その OPE特性を空間像のシミュレーションによつ て求めるものとする。そのために、図 1の主制御系 41 (制御装置)には、光学シミュレ ーシヨン用のコンピュータ 41a (演算装置)が接続されている。 Next, instead of reticle R, reticle TR for measuring OPE characteristics shown in FIG. 2 is loaded onto reticle stage 22 shown in FIG. 1, and images of LZS patterns having the same line width and different pitches shown in FIG. 2 are projected. When projecting onto wafer W via optical system PL, pitch dependence of line width of projected image (OPE characteristics). Here, it is assumed that the OPE characteristics are obtained by a simulation of an aerial image. For this purpose, a computer 41a (arithmetic unit) for optical simulation is connected to the main control system 41 (control unit) in FIG.
[0069] このシミュレーションのための露光条件を、露光波長が 193nm、投影 NA (投影光 学系 PLの開口数)が 0. 60、照明シグマ(照明光学系 3のコヒーレンスファクタ)が 0. 75、輪帯照明を行うものとして図 1の開口絞り 13Cの輪帯開口の照明輪帯比(内径 Z外径)が 0. 67とした。また、図 2の各ラインパターン 52, 54及び孤立パターン 55 の線幅 Dを、ウェハ上に換算した値で 140nmとして、各ラインパターンを透過率 6% のハーフトーンとした。更に、簡単のために、投影光学系 PLは無収差であり、照明光 学系 3の瞳面内での露光光の輝度ムラも無いものとして、ウェハ面上での各ピッチ毎 の L&Sパターンの中央のラインパターンの投影像 (空間像)の線幅を計算した。  The exposure conditions for this simulation were as follows: the exposure wavelength was 193 nm, the projection NA (numerical aperture of the projection optical system PL) was 0.60, the illumination sigma (coherence factor of the illumination optical system 3) was 0.75, In order to perform annular illumination, the illumination annular ratio (inner diameter Z outer diameter) of the annular aperture of the aperture stop 13C in FIG. 1 was set to 0.67. Further, the line width D of each of the line patterns 52 and 54 and the isolated pattern 55 in FIG. 2 was set to 140 nm as a value converted on the wafer, and each line pattern was a halftone having a transmittance of 6%. Further, for simplicity, the projection optical system PL has no aberration, and it is assumed that there is no luminance unevenness of the exposure light in the pupil plane of the illumination optical system 3, and the L & S pattern of each pitch on the wafer surface is The line width of the projected image (aerial image) of the central line pattern was calculated.
[0070] 図 12は、その空間像シミュレーションの結果を示し、この図 12において、折れ線 E7 は、最も小さいピッチの計算結果 61Eから最も大きいピッチ (実質的に孤立パターン) の計算結果 62Eを含む 10個の複数のピッチに関して、実際に計算された線幅を結 んでいる。また、図 12において、横軸は投影される L&Sパターンのピッチ pをウェハ 上での長さに換算した値 (nm)であり、縦軸はそのピッチ pの L&Sパターンの中央の ラインパターンの像の線幅 d (nm)である。これは、以下の図 14一図 17、図 19一図 2 2、及び図 24でも共通である。  FIG. 12 shows the result of the aerial image simulation. In FIG. 12, the broken line E7 includes the calculation result 62E of the largest pitch (substantially isolated pattern) from the calculation result 61E of the smallest pitch. It connects the actually calculated line widths for multiple pitches. In FIG. 12, the horizontal axis represents the value (nm) obtained by converting the pitch p of the projected L & S pattern into the length on the wafer, and the vertical axis represents the image of the center line pattern of the L & S pattern at that pitch p. Is the line width d (nm). This is common to FIGS. 14 to 17, FIG. 19 to FIG. 22, and FIG. 24 below.
[0071] なお、図 12のシミュレーションは、孤立パターン(計算結果 62E)の像の線幅が 140 nmとなるように露光量を設定した場合の計算結果であるため、図 12の折れ線 E7の 特性は、図 4の折れ線 C7の特'性とは異なって 、る。  Note that the simulation in FIG. 12 is a calculation result when the exposure amount is set so that the line width of the image of the isolated pattern (calculation result 62E) is 140 nm, and thus the characteristic of the polygonal line E7 in FIG. Is different from the characteristic of the polygonal line C7 in FIG.
図 12の線幅のピッチ依存性 (OPE特性)より、投影光学系 PLがたとえ無収差であ つても、 LZSパターンのピッチ pが変わると、レチクル上で同じ線幅のラインパターン であっても、像面上では違う線幅の像になることが分かる。更に実際には、図 1の投 影光学系 PLには僅かな収差が残存しているため、予め投影光学系 PLの波面収差 を実測によって求めておき、その波面収差のデータをも用いて上記のシミュレーショ ンを行うことで、第 1の実施形態と同様に、図 1の投影露光装置に固有の OPE特性を 求めることができる。 [0072] 更に、実際には、照明光学系 3の瞳面内での露光光の輝度分布は理想的な平坦 な分布ではなぐ或る程度の輝度ムラが生じている。この輝度ムラは投影露光装置毎 に異なつているため、投影露光装置毎に OPE特性を高精度に調整するためには、 その輝度ムラに起因する OPE特性の変化も考慮する必要がある。 From the pitch dependency of line width (OPE characteristic) in Fig. 12, even if the projection optical system PL has no aberration, if the pitch p of the LZS pattern changes, even if the line pattern has the same line width on the reticle, It can be seen that images having different line widths are formed on the image plane. Actually, since a slight aberration remains in the projection optical system PL in FIG. 1, the wavefront aberration of the projection optical system PL is determined in advance by actual measurement, and the above-described data is obtained using the data of the wavefront aberration. By performing the simulation, the OPE characteristic unique to the projection exposure apparatus in FIG. 1 can be obtained as in the first embodiment. Further, actually, the luminance distribution of the exposure light in the pupil plane of the illumination optical system 3 has a certain degree of luminance unevenness, which is not an ideal flat distribution. Since the luminance unevenness differs for each projection exposure apparatus, in order to adjust the OPE characteristic with high accuracy for each projection exposure apparatus, it is necessary to consider a change in the OPE characteristic caused by the luminance unevenness.
図 13は、その瞳面内での輪帯照明時の輝度ムラの例を示し、この図 13において、 横軸はその瞳面における半径方向の位置を照明シグマに換算した位置であり、縦軸 はその半径方向の位置における輝度 (光量)を最大値が 1となるように規格ィ匕した値 である。図 13において、平坦 (トップハット形状)の分布 E8が理想的な輝度分布であ り、図 12のシミュレーション結果は分布 E8のもとで計算されたものである。分布 E8に 対して、分布 E9は中央部で輝度が高くなる中凸傾向のある輝度分布を、分布 E10は 輪帯内で外周部に向力つて次第に輝度が高くなる内減り傾向のある輝度分布をそれ ぞれ示している。  FIG. 13 shows an example of luminance unevenness during annular illumination in the pupil plane. In FIG. 13, the horizontal axis represents the position of the pupil plane in the radial direction converted to illumination sigma, and the vertical axis represents the position. Is a value obtained by standardizing the luminance (light quantity) at the position in the radial direction so that the maximum value is 1. In FIG. 13, a flat (top-hat-shaped) distribution E8 is an ideal luminance distribution, and the simulation result in FIG. 12 is calculated under the distribution E8. In contrast to distribution E8, distribution E9 is a luminance distribution with a central convexity where the luminance increases in the center, and distribution E10 is a luminance distribution with a tendency to decrease in which the luminance gradually increases in the orbital zone toward the outer periphery. Are shown respectively.
[0073] その瞳面の輝度分布として図 13の中凸傾向のある分布 E9、及び内減り傾向のある 分布 E10を用いて、図 12と同様にパターンピッチに対して空間像の線幅(OPE特性 )をシミュレーションによって求めた結果をそれぞれ図 14の折れ線 E11及び E12に示 す。このシミュレーションに際しても、孤立線の線幅が 140nmとなるように露光量を設 定している。これは以下のシミュレーションでも同様である。なお、図 14には、図 12の 折れ線 E7も重ねて表示されて ヽる。  As shown in FIG. 12, the line width (OPE) of the aerial image with respect to the pattern pitch is used as in FIG. The characteristics) obtained by simulation are shown by the polygonal lines E11 and E12 in Fig. 14, respectively. Also in this simulation, the exposure is set so that the line width of the isolated line is 140 nm. This is the same in the following simulation. In FIG. 14, the broken line E7 of FIG. 12 is also displayed.
[0074] 図 14において、理想的な輝度分布の場合 (折れ線 E7)に対して、中凸傾向のある 輝度分布 (折れ線 El 1)では OPE特性が特に中程度のピッチの領域で僅か〖こずれ ており、内減り傾向のある輝度分布 (折れ線 E 12)では OPE特性が小さいピッチ及び 大き 、ピッチの領域でずれて 、ることが分かる。このような輝度分布は投影露光装置 によって異なるため、実際の投影露光装置は、その照明光学系の瞳面内の輝度分 布によって固有の OPE特性を持っている。  In FIG. 14, in the case of the ideal luminance distribution (polyline E7), the OPE characteristic of the luminance distribution having a tendency to be convex (polyline El 1) is slightly shifted especially in the region of the medium pitch. It can be seen that in the luminance distribution (polyline E12) that tends to decrease in the inside, the OPE characteristic shifts in the small pitch, large, and pitch regions. Since such a luminance distribution differs depending on the projection exposure apparatus, an actual projection exposure apparatus has a unique OPE characteristic due to the luminance distribution in the pupil plane of the illumination optical system.
[0075] そこで、先ず図 1の投影露光装置の輪帯照明時の瞳面内での輝度分布が、図 13 の中凸傾向のある分布 E9である場合に、所定の露光条件を調整することによって、 その OPE特性を理想的な輝度分布における OPE特性に近付ける方法について説 明する。 本例の投影露光装置の設定可能な露光条件には、投影 NA、照明光学系 3による 照明条件 (通常、輪帯、変形 (2極、 4極等)、小 σ等)、照明シグマ、輪帯照明の照明 輪帯比、露光波長え、露光光 ILの波長の半値幅、露光光 ILの露光量、ウェハ W上 の感光材料としてのフォトレジストの種類、及びその感光材料の厚さ等がある。本例 では、これらの露光条件を変えることによって ΟΡΕ特性を所定範囲で調整する。なお 、本例においても、投影 ΝΑ、照明シグマ、及び照明輪帯比等の露光条件の変化量 は、 ΟΡΕ特性以外の特性、例えば投影光学系 PLの解像度等の結像特性には実質 的に影響を与えない範囲で設定される。 Therefore, first, when the luminance distribution in the pupil plane during annular illumination of the projection exposure apparatus of FIG. 1 is a distribution E9 having a tendency to be convex in FIG. 13, predetermined exposure conditions are adjusted. The following describes how to make the OPE characteristics closer to the OPE characteristics in an ideal luminance distribution. The exposure conditions that can be set for the projection exposure apparatus of this example include the projection NA, the illumination conditions by the illumination optical system 3 (usually, an annular zone, deformation (2 poles, 4 poles, etc.), small σ, etc.), illumination sigma, Illumination of zonal illumination The ratio of the annular zone, the exposure wavelength, the half width of the wavelength of the exposure light IL, the exposure amount of the exposure light IL, the type of the photoresist as the photosensitive material on the wafer W, the thickness of the photosensitive material, etc. is there. In this example, the ΟΡΕ characteristics are adjusted within a predetermined range by changing these exposure conditions. Also in this example, the amount of change in the exposure conditions such as the projection ΝΑ, the illumination sigma, and the illumination ring ratio is substantially different from the characteristics other than the ΟΡΕ characteristics, for example, the imaging characteristics such as the resolution of the projection optical system PL. Set within the range that does not affect.
[0076] 先ず、輝度分布が図 13の中凸傾向の分布 E9の輪帯照明のもとで、投影 NAを変 化させた場合の図 14の OPE特性 (折れ線 El 1)の変化にっ 、て説明する。 First, the change in the OPE characteristic (polyline El 1) in FIG. 14 when the projection NA is changed under the annular illumination of the distribution E 9 in which the luminance distribution has a mid-convex tendency in FIG. Will be explained.
図 15は、投影 NAを変化させた場合の OPE特性の変化を示す図である。図 15中 の実線の折れ線 E11は、図 14の折れ線 E11を求めたのと同じ露光条件(露光波長: 193nm、投影 NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターン の線幅: 140nm)での OPE特性のシミュレーション結果であり、点線の折れ線 E14は 、折れ線 E11の場合に対して投影 NAのみを 0. 01だけ大きくして 0. 61とした場合 のシミュレーション結果である。図 15より、投影 NAが変化すると、 OPE特性が変化 することが分力ゝる。  FIG. 15 is a diagram showing changes in OPE characteristics when the projection NA is changed. The solid line E11 in FIG. 15 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0. 67, the line pattern line width: 140 nm) is a simulation result of the OPE characteristic. The dotted broken line E14 is obtained by increasing only the projection NA by 0.01 and setting it to 0.61 compared to the broken line E11. It is a simulation result of. As can be seen from Fig. 15, the OPE characteristic changes when the projection NA changes.
[0077] 同様に、図 16は、輝度分布が図 13の中凸傾向の分布 E9の輪帯照明のもとで、照 明シグマを変化させた場合の OPE特性の変化を示す図である。図 16中の実線の折 れ線 E11は、図 14の折れ線 E11を求めたのと同じ露光条件(露光波長: 193nm、投 影 NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅: 140 nm)での OPE特性のシミュレーション結果であり、点線の折れ線 E15は、折れ線 E1 1の場合に対して照明シグマのみを 0. 01だけ大きくして 0. 76とした場合のシミュレ ーシヨン結果である。図 16より、照明シグマが変化すると、 OPE特性が変化すること が分かる。  Similarly, FIG. 16 is a diagram showing a change in the OPE characteristic when the illumination sigma is changed under the annular illumination having a luminance distribution E9 in FIG. The solid line E11 in FIG. 16 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illuminated zone ratio) as the solid line E11 in FIG. : 0.67, line pattern line width: 140 nm) is a simulation result of the OPE characteristics. The dotted broken line E15 is obtained by increasing only the illumination sigma by 0.01 in the case of the broken line E11. This is the simulation result when 76 is set. From FIG. 16, it can be seen that when the illumination sigma changes, the OPE characteristics change.
[0078] 同様に、図 17は、輝度分布が図 13の中凸傾向の分布 E9の輪帯照明のもとで、照 明輪帯比を変化させた場合の OPE特性の変化を示す図である。図 17中の実線の折 れ線 E11は、図 14の折れ線 E11を求めたのと同じ露光条件(露光波長: 193nm、投 影 NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅: 140 nm)での OPE特性のシミュレーション結果であり、折れ線 E16は、折れ線 E11の場 合に対して照明輪帯比のみを 0. 01だけ大きくして 0. 68とした場合のシミュレーショ ン結果である。図 17より、照明輪帯比が変化すると、 OPE特性が変化することが分か る。 Similarly, FIG. 17 is a diagram showing changes in OPE characteristics when the illumination ring zone ratio is changed under the zone illumination of the distribution E9 in which the luminance distribution has a mid-convex tendency in FIG. is there. The solid line E11 in FIG. 17 is the same exposure condition (exposure wavelength: 193 nm, projection) as the line E11 in FIG. (NA: 0.60, illumination sigma: 0.75, illumination zone ratio: 0.67, line pattern line width: 140 nm) This is a simulation result of OPE characteristics. This is a simulation result when only the illumination zone ratio is increased by 0.01 to 0.68. From FIG. 17, it can be seen that the OPE characteristics change when the illumination zone ratio changes.
[0079] 図 18は、輝度分布が図 13の中凸傾向の分布 E9の輪帯照明のもとで、投影 NA、 照明シグマ、及び照明輪帯比を変化させたときの OPE特性の変化率を示し、図 18 において、折れ線 E17、 E18、及び El 9はそれぞれ投影 NAの変化(0. 01)に対す る空間像の線幅の変化量 (変化率)(nm)、照明シグマの変化 (0. 01)に対する空間 像の線幅の変化量 (変化率)(nm)、及び照明輪帯比の変化 (0. 01)に対する空間 像の線幅の変化量 (変化率)(nm)である。即ち、図 18の横軸は L&Sパターンのゥ ェハ上に換算したピッチ (nm)であり、その縦軸は空間像の線幅の変化率 (nm)であ る。図 18より、投影 NA、照明シグマ、及び照明輪帯比を変化させたときの OPE特性 の変化率は互いに違うことが分かる。同様に、他の露光条件を変化させた場合の OP E特性の変化率も求められ、これらの OPE特性の変化率の情報は、図 1の主制御系 41内の記憶部に記憶されている。  [0079] Fig. 18 shows the rate of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed under the annular illumination of the distribution E9 in which the luminance distribution is the mid-convex distribution in Fig. 13. In Fig. 18, the polygonal lines E17, E18, and El 9 indicate the change in the line width of the aerial image (change rate) (nm) and the change in the illumination sigma (nm) with respect to the change in the projection NA (0.01), respectively. The change in the line width of the aerial image (rate of change) (nm) against (0.01) and the change in the line width of the aerial image (rate of change) (nm) with respect to the change in the illuminated zone ratio (0.01) is there. That is, the horizontal axis in FIG. 18 is the pitch (nm) converted on the wafer of the L & S pattern, and the vertical axis is the change rate (nm) of the line width of the aerial image. From Fig. 18, it can be seen that the rates of change of the OPE characteristics when the projection NA, illumination sigma, and illumination ring zone ratio are changed are different from each other. Similarly, the rate of change of the OPE characteristic when other exposure conditions are changed is also obtained, and the information on the rate of change of the OPE characteristic is stored in the storage unit in the main control system 41 in FIG. .
[0080] 次に、主制御系 41内の演算部は、その OPE特性の変化率の情報を用いて、例え ば自乗平均最適化法等によって、輝度分布が図 13の中凸傾向の分布 E9の輪帯照 明のもとでの OPE特性が、理想的な輝度分布の OPE特性(図 14の折れ線 E7)に対 してパターンピッチ全体での乖離の標準偏差が最小になるように、投影 NA、照明シ ダマ、及び照明輪帯比の組み合わせ、並びにその変化量を決定 (最適化)する。この 結果、一例として、投影 NAの変化量は 0、照明シグマの変化量は 0. 03、照明輪帯 比の変化量は 0. 01となる。これらの露光条件は図 1の投影露光装置において設 定される。投影 NA、照明シグマ、及び照明輪帯比の組み合わせと、その変化量とは 、目標とする標準偏差に応じて任意に設定できる。  Next, the arithmetic unit in the main control system 41 uses the information on the rate of change of the OPE characteristic and, for example, by means of a root mean square optimization method or the like, the luminance distribution is shown in FIG. The OPE characteristic under the annular illumination is projected so that the standard deviation of the deviation over the entire pattern pitch is minimized with respect to the OPE characteristic of the ideal luminance distribution (polyline E7 in Fig. 14). Determine (optimize) the combination of NA, lighting shima, and lighting zone ratio and the amount of change. As a result, as an example, the change amount of the projection NA is 0, the change amount of the illumination sigma is 0.03, and the change amount of the illumination ring ratio is 0.01. These exposure conditions are set in the projection exposure apparatus of FIG. The combination of the projection NA, the illumination sigma, and the illumination ring zone ratio, and the amount of change thereof can be arbitrarily set according to the target standard deviation.
[0081] 図 19は、そのように露光条件を最適化した後の OPE特性を示し、図 19において、 折れ線 E7及び El 1はそれぞれ図 14に示した理想的な輝度分布及び中凸傾向の輝 度分布で輪帯照明を行うと共に、露光条件を (露光波長: 193nm、投影 NA: 0. 60、 照明シグマ: 0. 75、照明輪帯比: 0. 67)としたときの OPE特性を示している。また、 折れ線 E20は、中凸傾向の輝度分布で輪帯照明を行うと共に、投影 NAを 0. 60、照 明シグマを 0. 78、照明輪帯比を 0. 66に最適化した後の OPE特性を示している。露 光条件を最適化する前の OPE特性 (折れ線 E11)と比較して、露光条件を最適化し た後の OPE特性 (折れ線 E20)は、瞳面内の輝度分布が理想的である場合の OPE 特性 (折れ線 E7)との一致度が高くなり、 OPE特性が効果的に補正されていることが 分かる。 FIG. 19 shows the OPE characteristics after optimizing the exposure conditions in such a manner. In FIG. 19, the polygonal lines E 7 and El 1 indicate the ideal luminance distribution and the luminance of the central convexity shown in FIG. 14, respectively. And illumination conditions (exposure wavelength: 193 nm, projection NA: 0.60, It shows the OPE characteristics when the lighting sigma is 0.75 and the lighting zone ratio is 0.67). In addition, the polygonal line E20 performs ring illumination with a luminance distribution with a tendency to be convex, and the OPE after optimizing the projection NA to 0.60, the illumination sigma to 0.78, and the illumination ring ratio to 0.66. The characteristics are shown. Compared to the OPE characteristic before optimization of the exposure condition (polyline E11), the OPE characteristic after the optimization of the exposure condition (polyline E20) is the OPE characteristic when the luminance distribution in the pupil plane is ideal. The degree of coincidence with the characteristic (polyline E7) is high, indicating that the OPE characteristic is effectively corrected.
[0082] 次に、図 1の投影露光装置の輪帯照明時の瞳面内での輝度分布が、図 13の内減 り傾向のある分布 E10である場合に、所定の露光条件を調整することによって、その OPE特性を理想的な輝度分布における OPE特性に近付ける方法について説明す る。先ず、輝度分布が図 13の内減り傾向の分布 E10の輪帯照明のもとで、投影 NA を変化させた場合の図 14の OPE特性 (折れ線 E12)の変化について説明する。  Next, when the luminance distribution in the pupil plane during annular illumination of the projection exposure apparatus in FIG. 1 is a distribution E10 having a decreasing tendency in FIG. 13, a predetermined exposure condition is adjusted. The following describes how to make the OPE characteristics closer to the OPE characteristics in an ideal luminance distribution. First, the change of the OPE characteristic (polyline E12) of FIG. 14 when the projection NA is changed under the annular illumination of the distribution E10 in which the luminance distribution decreases in FIG. 13 will be described.
[0083] 図 20は、投影 NAを変化させた場合の OPE特性の変化を示す図である。図 20中 の折れ線 E12は、図 14の折れ線 E12を求めたのと同じ露光条件(露光波長: 193η m、投影 NA: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅 : 140nm)での OPE特性のシミュレーション結果であり、折れ線 E22は、折れ線 E12 の場合に対して投影 NAのみを 0. 01だけ大きくして 0. 61とした場合のシミュレーシ ヨン結果である。図 20より、投影 NAが変化すると、 OPE特性が変化することが分力る  FIG. 20 is a diagram showing changes in OPE characteristics when the projection NA is changed. The broken line E12 in FIG. 20 is the same exposure condition (exposure wavelength: 193 ηm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0.67) as the line E12 in FIG. (Line width of the line pattern: 140 nm) is the simulation result of the OPE characteristic.The polygonal line E22 is the simulation result when only the projection NA is increased by 0.011 to 0.61 with respect to the polygonal line E12. Yeong result. From Fig. 20, it is clear that when the projection NA changes, the OPE characteristics change.
[0084] 同様に、図 21は、輝度分布が図 13の内減り傾向の分布 E10の輪帯照明のもとで、 照明シグマを変化させた場合の OPE特性の変化を示す図である。図 21中の折れ線 E12は、図 14の折れ線 E12を求めたのと同じ露光条件(露光波長: 193nm、投影 N A: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅: 140nm) での OPE特性のシミュレーション結果であり、折れ線 E23は、折れ線 E12の場合に 対して照明シグマのみを 0. 01だけ大きくして 0. 76とした場合のシミュレーション結 果である。図 21より、照明シグマが変化すると、 OPE特性が変化することが分かる。 Similarly, FIG. 21 is a diagram showing a change in the OPE characteristic when the illumination sigma is changed under the annular illumination of the distribution E10 in which the luminance distribution decreases in FIG. The polygonal line E12 in FIG. 21 shows the same exposure conditions (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination ring zone ratio: 0.67, (Line width of line pattern: 140 nm) is a simulation result of the OPE characteristics. The broken line E23 is the simulation result when only the lighting sigma is increased by 0.01 to 0.76 compared to the broken line E12. It is. From FIG. 21, it can be seen that when the illumination sigma changes, the OPE characteristics change.
[0085] 同様に、図 22は、輝度分布が図 13の内減り傾向の分布 E10の輪帯照明のもとで、 照明輪帯比を変化させた場合の OPE特性の変化を示す図である。図 22中の折れ線 E12は、図 14の折れ線 E12を求めたのと同じ露光条件(露光波長: 193nm、投影 N A: 0. 60、照明シグマ: 0. 75、照明輪帯比: 0. 67、ラインパターンの線幅: 140nm) での OPE特性のシミュレーション結果であり、折れ線 E24は、折れ線 E12の場合に 対して照明輪帯比のみを 0. 01だけ大きくして 0. 68とした場合のシミュレーション結 果である。図 22より、照明輪帯比が変化すると、 OPE特性が変化することが分かる。 Similarly, FIG. 22 is a diagram showing a change in the OPE characteristic when the illumination ring zone ratio is changed under the ring illumination of the distribution E10 in which the luminance distribution decreases in FIG. . Line in Figure 22 E12 is the same exposure condition (exposure wavelength: 193 nm, projection NA: 0.60, illumination sigma: 0.75, illumination zonal ratio: 0.67, line width of the line pattern obtained the polygonal line E12 in FIG. 14 : 140 nm) is the simulation result of the OPE characteristic, and the polygonal line E24 is the simulation result when only the illumination zone ratio is increased by 0.01 to 0.68 with respect to the polygonal line E12. From FIG. 22, it can be seen that the OPE characteristics change when the illumination zone ratio changes.
[0086] 図 23は、輝度分布が図 13の内減り傾向の分布 E10の輪帯照明のもとで、投影 NA 、照明シグマ、及び照明輪帯比を変化させたときの OPE特性の変化率を示し、図 23 において、折れ線 E25、 E26、及び E27はそれぞれ投影 NAの変化(0. 01)に対す る空間像の線幅の変化量 (変化率)(nm)、照明シグマの変化 (0. 01)に対する空間 像の線幅の変化量 (変化率)(nm)、及び照明輪帯比の変化 (0. 01)に対する空間 像の線幅の変化量 (変化率)(nm)である。即ち、図 23の横軸は L&Sパターンのゥ ェハ上に換算したピッチ (nm)であり、その縦軸は空間像の線幅の変化率 (nm)であ る。図 23より、投影 NA、照明シグマ、及び照明輪帯比を変化させたときの OPE特性 の変化率は互いに違うことが分かる。同様に、他の露光条件を変化させた場合の OP E特性の変化率も求められ、これらの OPE特性の変化率の情報は、図 1の主制御系 41内の記憶部に記憶されている。  [0086] Fig. 23 shows the rate of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed under the annular illumination of E10 in which the luminance distribution decreases in Fig. 13. In FIG. 23, the polygonal lines E25, E26, and E27 indicate the change in the line width of the aerial image (change rate) (nm) and the change in the illumination sigma (nm) with respect to the change in the projection NA (0.01), respectively. 01) is the change in the line width of the aerial image (rate of change) (nm) relative to the change in the illumination zone ratio (0.01), and the change in the line width of the aerial image (change rate) (nm) is the change in the annular zone ratio (0.01) . That is, the horizontal axis in FIG. 23 is the pitch (nm) converted on the wafer of the L & S pattern, and the vertical axis is the rate of change of the line width of the aerial image (nm). From FIG. 23, it can be seen that the rates of change of the OPE characteristics when the projection NA, the illumination sigma, and the illumination zone ratio are changed are different from each other. Similarly, the rate of change of the OPE characteristic when other exposure conditions are changed is also obtained, and the information on the rate of change of the OPE characteristic is stored in the storage unit in the main control system 41 in FIG. .
[0087] 次に、主制御系 41内の演算部は、その OPE特性の変化率の情報を用いて、例え ば自乗平均最適化法等によって、輝度分布が図 13の内減り傾向の分布 E10の輪帯 照明のもとでの OPE特性が、理想的な輝度分布の OPE特性(図 14の折れ線 E7)に 対してパターンピッチ全体での乖離の標準偏差が最小になるように、投影 NA、照明 シグマ、及び照明輪帯比の組み合わせ、並びにその変化量を決定 (最適化)する。こ の結果、一例として、投影 NAの変化量は 0、照明シグマの変化量は 0、照明輪帯比 の変化量は 0. 2となる。これらの露光条件は図 1の投影露光装置において設定さ れる。投影 NA、照明シグマ、及び照明輪帯比の組み合わせと、その変化量とは、目 標とする標準偏差に応じて任意に設定できる。  Next, the arithmetic unit in the main control system 41 uses the information on the rate of change of the OPE characteristic and, for example, by a root mean square optimization method or the like, the luminance distribution in FIG. The projection NA, the projection NA, and the OPE characteristic under the illumination of the annular zone are set so that the standard deviation of the deviation over the entire pattern pitch is minimized with respect to the OPE characteristic of the ideal luminance distribution (polyline E7 in Fig. 14). Determine (optimize) the combination of lighting sigma and lighting zone ratio and the amount of change. As a result, as an example, the change amount of the projection NA is 0, the change amount of the illumination sigma is 0, and the change amount of the illumination ring zone ratio is 0.2. These exposure conditions are set in the projection exposure apparatus of FIG. The combination of the projection NA, the illumination sigma, and the illumination zone ratio and the amount of change can be set arbitrarily according to the target standard deviation.
[0088] 図 24は、そのように露光条件を最適化した後の OPE特性を示し、図 24において、 折れ線 E7及び E12はそれぞれ図 14に示した理想的な輝度分布及び内減り傾向の 輝度分布で輪帯照明を行うと共に、露光条件を (露光波長: 193nm、投影 NA: 0. 6 0、照明シグマ: 0. 75、照明輪帯比: 0. 67)としたときの OPE特性を示している。また 、折れ線 E28 (折れ線 E7にほぼ合致している)は、内減り傾向の輝度分布で輪帯照 明を行うと共に、投影 NAを 0. 60、照明シグマを 0. 75、照明輪帯比を 0. 47に最適 化した後の OPE特性を示して 、る。露光条件を最適化する前の OPE特性 (折れ線 E 12)と比較して、露光条件を最適化した後の OPE特性 (折れ線 E28)は、瞳面内の 輝度分布が理想的である場合の OPE特性 (折れ線 E7)との一致度が高くなり、 OPE 特性が効果的に補正されていることが分力る。 FIG. 24 shows the OPE characteristics after optimizing the exposure conditions in such a manner. In FIG. 24, the broken lines E7 and E12 indicate the ideal luminance distribution and the luminance distribution of the inward decreasing tendency shown in FIG. 14, respectively. And the exposure conditions (exposure wavelength: 193 nm, projection NA: 0.6 0, lighting sigma: 0.75, lighting zone ratio: 0.67). In addition, the polygonal line E28 (which almost matches the polygonal line E7) performs zonal illumination with a luminance distribution that tends to decrease in the inside, and also has a projection NA of 0.60, an illumination sigma of 0.75, and an illumination zonal ratio. The OPE characteristics after optimization to 0.47 are shown. Compared to the OPE characteristic before optimization of the exposure condition (polyline E12), the OPE characteristic after optimization of the exposure condition (polyline E28) is the OPE characteristic when the luminance distribution in the pupil plane is ideal. The degree of coincidence with the characteristic (polyline E7) becomes higher, which indicates that the OPE characteristic is effectively corrected.
[0089] このように本例によれば、照明光学系の瞳面内で露光光の輝度ムラが生じている場 合に、投影露光装置の露光条件を調整することによって、その OPE特性を露光光の 輝度分布が理想的である場合の OPE特性にほぼ合致させることができる。従って、 本例の投影露光装置では、例えば別の投影露光装置用に作成された OPE特性の 補正されたレチクルを使用できるため、新たに OPE特性を補正したレチクルを作成 する必要がなくなり、製造コストを低減できる。この結果、新しい投影露光装置を導入 するごとに、新しく OPE補正されたレチクルを作成する必要がなくなるため、露光ェ 程でのコストを大幅に下げられる。 As described above, according to this example, when the brightness of the exposure light is uneven in the pupil plane of the illumination optical system, the OPE characteristic is adjusted by adjusting the exposure condition of the projection exposure apparatus. It can be almost matched with the OPE characteristics when the light brightness distribution is ideal. Therefore, in the projection exposure apparatus of this example, for example, a reticle with OPE characteristics corrected for another projection exposure apparatus can be used. Can be reduced. As a result, it is not necessary to create a new OPE-corrected reticle each time a new projection exposure apparatus is introduced, so that the cost in the exposure process can be significantly reduced.
[0090] 上述のように、本例では、図 13の中凸傾向の輝度分布 E9及び内減り傾向の輝度 分布 E10での OPE特性を、それぞれ輪帯照明の理想的な輝度分布 E8での OPE特 性に合わせることを考えた。し力しながら、例えば、中凸傾向の輝度分布 E9での OP E特性 (図 14の折れ線 E 11)を内減り傾向の輝度分布 E 10での OPE特性(図 14の 折れ線 E12)に合わせることも同様にして可能である。逆に、内減り傾向の輝度分布 E 10での OPE特性 (折れ線 E 12)を中凸傾向の輝度分布 E9での OPE特性 (折れ線 E11)に合わせることも可能である。  As described above, in the present example, the OPE characteristics of the luminance distribution E9 having the convexity in the middle and the luminance distribution E10 of the decreasing tendency in FIG. We considered matching the characteristics. For example, the OPE characteristic (line E11 in FIG. 14) of the luminance distribution E9 having a convexity in the middle is matched with the OPE characteristic (line E12 in FIG. 14) of the luminance distribution E10 having an inward decreasing tendency. Is similarly possible. Conversely, it is also possible to match the OPE characteristic (polyline E12) in the luminance distribution E10 with a tendency to decrease inside with the OPE characteristic (polyline E11) in the luminance distribution E9 with a mid-convex tendency.
[0091] また、照明条件は輪帯照明に限らず、どのような照明条件においても瞳面内の輝 度ムラに応じて露光条件を調整して OPE特性を所定の状態に調整することによって 、その瞳面内の輝度ムラに差がある投影露光装置間の OPE特性のマッチングを図る ことができる。  The illumination condition is not limited to the annular illumination, and the OPE characteristic is adjusted to a predetermined state by adjusting the exposure condition according to the brightness unevenness in the pupil plane under any illumination condition. OPE characteristics can be matched between projection exposure apparatuses having differences in luminance unevenness in the pupil plane.
[第 3の実施形態]  [Third embodiment]
次に、本発明の第 3の実施形態につき図 25及び図 26を参照して説明する。本例 は、複数の投影露光装置 (露光装置)を並列に稼働させる露光システムに本発明を 適用したものであり、図 25において図 1に対応する部分には同一又は類似の符号を 付してその詳細説明を省略する。 Next, a third embodiment of the present invention will be described with reference to FIGS. This example Is an application of the present invention to an exposure system in which a plurality of projection exposure apparatuses (exposure apparatuses) are operated in parallel. In FIG. 25, parts corresponding to FIG. Description is omitted.
[0092] 図 25は、本例の露光システムの概略構成を示し、この図 25において、本例の露光 システムは、第 1の露光装置 1Aと、第 2の露光装置 1Bと、これらを制御するホストコン ピュータ 4とを含んで構成され、第 1及び第 2の露光装置 1A, 1Bは共にステップ'ァ ンド 'スキャン方式の投影露光装置、即ち走査露光方式の露光装置である。不図示 であるが、その露光システムには、ウェハに対してレジストの塗布や現像を行うコータ .デベロッパも含まれている。本例では、例えば大量に生産されるデバイス用のゥェ ハを露光するために、 2台の露光装置 1A, 1Bで各ウェハに対して同じレチクルのパ ターンを露光して 、くものとする。  FIG. 25 shows a schematic configuration of the exposure system of the present example. In FIG. 25, the exposure system of the present example controls a first exposure apparatus 1A, a second exposure apparatus 1B, and these. The first and second exposure apparatuses 1A and 1B are both configured to include a host computer 4, and are both step-and-scan type projection exposure apparatuses, that is, scanning exposure type exposure apparatuses. Although not shown, the exposure system includes a coater / developer for applying and developing a resist on a wafer. In this example, for example, in order to expose a wafer for a device to be mass-produced, the same reticle pattern is exposed to each wafer by two exposure apparatuses 1A and 1B. .
[0093] 先ず、図 25の第 1の露光装置 1Aにおいて、照明光学系 3Aからの露光光がレチク ル Mlを照明する。露光光により照明されたレチクル Mlの照明領域内のパターンは 、投影光学系 PLAを介して所定の投影倍率 |8でフォトレジストが塗布されたウェハ W 1上のショット領域 SAA内のスリット状の露光領域に縮小投影される。以下、投影光 学系 PLAの光軸に平行に Z軸を取り、 Z軸に垂直な平面でレチクル Ml及びウェハ W1の走査方向を Y軸として、非走査方向を X軸として説明する。これは第 2の露光装 置 1Bでも同様である。  First, in the first exposure apparatus 1A of FIG. 25, the exposure light from the illumination optical system 3A illuminates the reticle Ml. The pattern in the illumination area of the reticle Ml illuminated by the exposure light is converted into a slit-like exposure light in the shot area SAA on the wafer W1 on which the photoresist is applied at a predetermined projection magnification | 8 through the projection optical system PLA. The image is reduced and projected on the area. Hereinafter, the Z axis is taken parallel to the optical axis of the projection optical system PLA, and the scanning direction of the reticle Ml and the wafer W1 is defined as the Y axis on a plane perpendicular to the Z axis, and the non-scanning direction is defined as the X axis. This is the same for the second exposure apparatus 1B.
[0094] レチクル Mlはレチクルステージ 22A上に保持され、レチクルステージ 22Aはレチ クルベース 23A上に例えばリニアモータ方式によって Y方向に連続移動できるように 、かつ X方向、 Y方向、回転方向に微動できるように載置されている。一方、ウェハ W 1はウェハホルダ(不図示)を介してウェハステージ 27A上に保持されており、ウェハ ステージ 27Aは例えばリニアモータ方式によって、ウェハベース 28A上を Y方向に 連続移動できると共に、 X方向及び Y方向にステップ移動できるように構成されて ヽる  [0094] The reticle Ml is held on the reticle stage 22A, and the reticle stage 22A can be continuously moved in the Y direction by, for example, a linear motor system on the reticle base 23A, and can be finely moved in the X, Y, and rotation directions. It is placed on. On the other hand, the wafer W1 is held on a wafer stage 27A via a wafer holder (not shown). The wafer stage 27A can be continuously moved in the Y direction on the wafer base 28A by, for example, a linear motor system, and can be moved in the X and Y directions. It is configured to be able to move stepwise in the Y direction.
[0095] 図 25に示すように、レチクルステージ 22A (レチクル Ml)の Y方向、 X方向の位置、 及び回転角は、移動鏡 44YA1, 44YA2とレーザ干渉計 45YA1, 45YA2とからな る干渉計システム、及び移動鏡 44XAとレーザ干渉計 45XAとカゝらなる干渉計システ ムによって計測されている。同様に、ウェハステージ 27A (ウェハ W1)の X方向及び Y方向の位置は、移動鏡 46XAとレーザ干渉計 47XAとカゝらなる干渉計システム、及 び移動鏡 46YAとレーザ干渉計 47YAとカゝらなる干渉計システムによってそれぞれ 高精度に計測されている。これらの計測結果に基づいて、不図示のステージ駆動系 は、露光装置 1Aの全体の動作を統轄制御する主制御系 41A (制御装置)の制御の もとで、レチクルステージ 22A及びウェハステージ 27Aの動作を制御する。 [0095] As shown in Fig. 25, the position of the reticle stage 22A (reticle Ml) in the Y and X directions and the rotation angle are determined by an interferometer system including the moving mirrors 44YA1 and 44YA2 and the laser interferometers 45YA1 and 45YA2. And moving mirror 44XA, laser interferometer 45XA, and interferometer system Measured by the system. Similarly, the position of the wafer stage 27A (wafer W1) in the X and Y directions is determined by the interferometer system including the moving mirror 46XA and the laser interferometer 47XA, and the moving mirror 46YA and the laser interferometer 47YA and the laser interferometer. Are measured with high precision by the interferometer system. Based on these measurement results, a stage drive system (not shown) controls the reticle stage 22A and the wafer stage 27A under the control of a main control system 41A (control device) that controls the overall operation of the exposure apparatus 1A. Control behavior.
[0096] また、重ね合わせ露光を行う際にレチクル Mlのパターン像とウェハ W上に既に形 成されているパターンとを高精度に重ね合わせるため、投影光学系 PLAの側面には 、ァライメントセンサ 36Aが設置されている。そして、露光時には、レチクル Mlに露光 光を照射して、レチクルステージ 22A (レチクル Ml)とウェハステージ 27A (ウェハ W 1)とを同期して Y方向に移動する動作と、ウェハステージ 27Aを X方向、 Y方向にス テツプ移動する動作とを繰り返すことで、ウェハ W1上の各ショット領域 SAAにレチク ル Mlのパターンが転写される。  [0096] Further, in order to superimpose the pattern image of the reticle Ml and the pattern already formed on the wafer W with high accuracy during the overlay exposure, an alignment sensor is provided on the side of the projection optical system PLA. 36A is installed. During exposure, the reticle Ml is irradiated with exposure light to move the reticle stage 22A (reticle Ml) and the wafer stage 27A (wafer W1) in the Y direction in synchronization with each other, and the wafer stage 27A is moved in the X direction. By repeating the operation of stepping in the Y direction, the pattern of the reticle Ml is transferred to each shot area SAA on the wafer W1.
[0097] 次に、図 25の第 2の露光装置 1Bは、第 1の露光装置 1Aとほぼ同様に、照明光学 系 3B、レチクル M2を保持するレチクルステージ 22B、レチクルベース 23B、レーザ 干渉計 45YB1, 45YB2, 45XB、投景光学系 PLB、ウェハ W2を保持するウェハス テージ 27B、ウェハベース 28B、レーザ干渉計 47XB, 47YB、ァライメントセンサ 36 B、及び主制御系 41B等力も構成されている。また、レチクルステージ 22Bには移動 鏡 44YB1, 44YB2, 44XBが固定され、ウェハステージ 27Bには移動鏡 46XB, 46 YBが固定されている。この露光装置 1Bにおいても、露光時には、レチクル M2に露 光光を照射して、レチクルステージ 22B (レチクル M2)とウェハステージ 27B (ウェハ W2)とを同期して Y方向に移動する動作と、ウェハステージ 27Bを X方向、 Y方向に ステップ移動する動作とを繰り返すことで、ウェハ W2上の各ショット領域 SABにレチ クル M2のパターンが転写される。  Next, the second exposure apparatus 1B shown in FIG. 25 includes an illumination optical system 3B, a reticle stage 22B holding a reticle M2, a reticle base 23B, and a laser interferometer 45YB1 similarly to the first exposure apparatus 1A. , 45YB2, 45XB, projection optical system PLB, wafer stage 27B holding wafer W2, wafer base 28B, laser interferometers 47XB, 47YB, alignment sensor 36B, and main control system 41B. Moving mirrors 44YB1, 44YB2, 44XB are fixed to reticle stage 22B, and moving mirrors 46XB, 46YB are fixed to wafer stage 27B. Also in this exposure apparatus 1B, at the time of exposure, reticle M2 is irradiated with exposure light to move reticle stage 22B (reticle M2) and wafer stage 27B (wafer W2) in the Y direction in synchronism with each other. By repeating the operation of moving the stage 27B stepwise in the X and Y directions, the pattern of the reticle M2 is transferred to each shot area SAB on the wafer W2.
[0098] 次に、本例の露光システムで 2台の露光装置 1A, 1Bの OPE特性をマッチングさせ るための動作の一例につき、図 26を参照して説明する。  Next, an example of an operation for matching the OPE characteristics of the two exposure apparatuses 1A and 1B in the exposure system of the present example will be described with reference to FIG.
先ず図 26のステップ 101において、基準となる投影露光装置である第 1の露光装 置 1Aの OPE特性(例えば図 9の OPE特性 C17)を空間像のシミュレーションによつ て求める。次のステップ 102において、調整対象の投影露光装置である第 2の露光 装置 1Bの OPE特性(例えば図 9の OPE特性 C18)を空間像のシミュレーションによ つて求める。なお、本例の露光装置 1A, 1Bはホストコンピュータ 4に制御されている ため、その空間像のシミュレーションはホストコンピュータ 4で行われる。 First, in step 101 in FIG. 26, the OPE characteristics (for example, the OPE characteristics C17 in FIG. 9) of the first exposure apparatus 1A as the reference projection exposure apparatus are simulated. Ask. In the next step 102, the OPE characteristic (for example, the OPE characteristic C18 in FIG. 9) of the second exposure apparatus 1B, which is the projection exposure apparatus to be adjusted, is determined by simulation of the aerial image. Since the exposure apparatuses 1A and 1B of the present example are controlled by the host computer 4, the simulation of the aerial image is performed by the host computer 4.
[0099] 次に、ステップ 103において、そのホストコンピュータ 4は、例えば図 10の 3つのパタ ーンピッチ pi, p2, p3における 2台の露光装置 1A, IBの OPE特性の線幅の差がそ れぞれ所定の許容値以下であるかどうかを確かめる。これらの ヽずれかが許容値を 超えた場合には動作はステップ 104に移行して、ホストコンピュータ 4は、線幅のずれ の情報及び露光装置 1Bの OPE特性の情報を露光装置 1Bの主制御系 41Bに供給 する。これに応じて、例えば図 8の OPE特性の変化率と同様の情報を用いて、主制 御系 41Bは、露光装置 1Bの OPE特性を露光装置 1Aの OPE特性に 3つのピッチ pi , p2, p3で合致させるための露光条件の組み合わせ、及びその露光条件の変化量 を求める。次のステップ 105において、主制御系 41Bは調整後の露光条件(照明条 件、露光量等)を照明光学系 3B及び投影光学系 PLB等に設定し、設定後の露光条 件の情報をホストコンピュータ 4に供給する。  [0099] Next, in step 103, the host computer 4 determines the difference between the line widths of the OPE characteristics of the two exposure apparatuses 1A and IB at the three pattern pitches pi, p2 and p3 in Fig. 10, for example. And verify that it is below the specified tolerance. If any of these deviations exceeds the permissible value, the operation proceeds to step 104, where the host computer 4 sends the line width deviation information and the OPE characteristic information of the exposure apparatus 1B to the main control of the exposure apparatus 1B. Supply to system 41B. In response to this, using, for example, the same information as the change rate of the OPE characteristic in FIG. 8, the main control system 41B converts the OPE characteristic of the exposure apparatus 1B into the three pitches pi, p2, and the OPE characteristic of the exposure apparatus 1A. The combination of exposure conditions for matching at p3 and the amount of change in the exposure conditions are determined. In the next step 105, the main control system 41B sets the adjusted exposure conditions (illumination conditions, exposure amount, etc.) in the illumination optical system 3B and the projection optical system PLB, etc., and hosts the information on the set exposure conditions. Supply to computer 4.
[0100] 次に動作は再びステップ 102に戻り、ホストコンピュータ 4は再び第 2の露光装置 1B の OPE特性を求める。但し、この代わりにより正確に OPE特性を求めるために、実際 にレチクル M2の代わりに図 2の OPE特性計測用レチクル TRをロードして、テストプリ ント又は空間像計測によってその OPE特性を求めても良い。  Next, the operation returns to step 102 again, and the host computer 4 obtains the OPE characteristics of the second exposure apparatus 1B again. However, in order to more accurately obtain the OPE characteristics, the OPE characteristics measurement reticle TR shown in Fig. 2 may be actually loaded instead of the reticle M2, and the OPE characteristics may be obtained by a test print or aerial image measurement. .
次のステップ 103において、そのホストコンピュータ 4は、再び例えば図 10の 3つの パターンピッチ pi, p2, p3における 2台の露光装置 1A, IBの OPE特性の線幅の差 がそれぞれ所定の許容値以下であるかどうかを確かめる。これらが ヽずれも許容値 以下であるときに、第 2の露光装置 1Bの OPE特性の調整 (最適化)が完了する。  In the next step 103, the host computer 4 again determines that the difference between the line widths of the OPE characteristics of the two exposure apparatuses 1A and IB at the three pattern pitches pi, p2 and p3 in FIG. Check if it is. When these deviations are not more than the allowable value, the adjustment (optimization) of the OPE characteristics of the second exposure apparatus 1B is completed.
[0101] この後は、図 25において、第 1の露光装置 1 A用に OPE特性の補正されたレチク ル M2を、第 2の露光装置 1Bでもそのまま使用して、ピッチ毎の線幅の不均一性を解 消することができる。従って、製造コストを大幅に低減することができる。なお、本例に おいても、 3つ以上のパターンピッチで 2つの露光装置 1A, 1Bの OPE特性を合わせ るようにしてちょい。 [0102] 上述のように本例では、 2台の露光装置 1A, IBで例えば同じレイヤのデバイスパ ターンの露光を行っている。しかしながら、その 2台の露光装置 1A, 1Bを用いてミツ タス'アンド'マッチ方式で、重ね合わせ露光を行うようにしてもよい。即ち、例えば第 1 の露光装置 1Aでウェハ上の第 1レイヤへの露光を行った後、第 2の露光装置 1Bで ウェハ上のそれより上の第 2レイヤへの重ね合わせ露光を行うようにしてもょ 、。この 場合でも、本例では 2台の露光装置 1A, 1Bの OPE特性は同じように調整されている ため、重ね合わせ精度等が向上する。 [0101] Thereafter, in Fig. 25, the reticle M2 having the OPE characteristics corrected for the first exposure apparatus 1A is used as it is in the second exposure apparatus 1B, and the line width for each pitch is not changed. Uniformity can be eliminated. Therefore, the manufacturing cost can be significantly reduced. Also in this example, the OPE characteristics of the two exposure apparatuses 1A and 1B should be matched with three or more pattern pitches. [0102] As described above, in this example, two exposure apparatuses 1A and IB perform, for example, exposure of a device pattern of the same layer. However, the two exposure apparatuses 1A and 1B may be used to perform the overlay exposure by the mitigation 'and' match method. That is, for example, after the first exposure apparatus 1A performs exposure on the first layer on the wafer, the second exposure apparatus 1B performs overlay exposure on the second layer above the wafer on the second layer. Yeah. Even in this case, since the OPE characteristics of the two exposure apparatuses 1A and 1B are adjusted in the same manner in this example, the overlay accuracy and the like are improved.
[0103] なお、本発明は、走査露光型の露光装置のみならず、一括露光型の露光装置で 露光を行う場合にも同様に適用することができる。また、本発明は、例えば国際公開( WO)第 99Z49504号などに開示される液浸型露光装置にも適用することができる また、上記の実施の形態の投影露光装置 (露光装置)は、複数のレンズから構成さ れる照明光学系、投影光学系を露光装置本体に組み込み光学調整をして、多数の 機械部品からなるレチクルステージやウェハステージを露光装置本体に取り付けて 配線や配管を接続し、更に総合調整 (電気調整、動作確認等)をすることにより製造 することができる。なお、その露光装置の製造は温度及びクリーン度等が管理された クリーンルームで行うことが望まし 、。  [0103] The present invention can be similarly applied to the case where exposure is performed not only by a scanning exposure type exposure apparatus but also by a batch exposure type exposure apparatus. Further, the present invention can be applied to an immersion type exposure apparatus disclosed in, for example, International Publication No. (WO) No. 99Z49504. Also, a plurality of projection exposure apparatuses (exposure apparatuses) of the above-described embodiment are provided. The illumination optical system and the projection optical system composed of the lenses described above are integrated into the exposure apparatus main body, optically adjusted, and a reticle stage and a wafer stage composed of many mechanical parts are attached to the exposure apparatus main body, and wiring and piping are connected. Furthermore, it can be manufactured by performing comprehensive adjustment (electrical adjustment, operation confirmation, etc.). It is desirable that the exposure apparatus be manufactured in a clean room in which the temperature, cleanliness, etc. are controlled.
[0104] また、上記の実施の形態の投影露光装置 (露光装置)を用いて半導体デバイスを 製造する場合、この半導体デバイスは、デバイスの機能'性能設計を行うステップ、こ のステップに基づ ヽてレチクルを製造するステップ、シリコン材料力 ウェハを形成す るステップ、上記の実施の形態の投影露光装置によりァライメントを行ってレチクルの パターンをウェハに露光するステップ、エッチング等の回路パターンを形成するステ ップ、デバイス組み立てステップ (ダイシング工程、ボンディング工程、パッケージェ 程を含む)、及び検査ステップ等を経て製造される。  In the case where a semiconductor device is manufactured using the projection exposure apparatus (exposure apparatus) according to the above-described embodiment, the semiconductor device has a step of performing function and performance design of the device. Manufacturing a reticle, forming a silicon material wafer, aligning the reticle pattern on the wafer by performing alignment using the projection exposure apparatus of the above-described embodiment, and forming a circuit pattern such as etching. It is manufactured through chip, device assembly steps (including dicing, bonding, and package steps), and inspection steps.
[0105] また、本発明の露光装置の用途としては半導体デバイス製造用の露光装置に限定 されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくは プラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子 (CCD等)、 マイクロマシーン、薄膜磁気ヘッド、及び DNAチップ等の各種デバイスを製造するた めの露光装置にも広く適用できる。更に、本発明は、各種デバイスのマスクパターン が形成されたマスク (フォトマスク、レチクル等)をリソグラフイエ程を用いて製造する際 の、露光工程 (露光装置)にも適用することができる。 [0105] The application of the exposure apparatus of the present invention is not limited to the exposure apparatus for manufacturing semiconductor devices, and for example, a liquid crystal display element formed on a square glass plate, or a display apparatus such as a plasma display. To manufacture various devices such as exposure equipment for imaging, imaging devices (CCD, etc.), micro machines, thin film magnetic heads, and DNA chips. Widely applicable to an exposure apparatus for Further, the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, etc.) on which mask patterns of various devices are formed by using a lithographic process.
[0106] なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲 で種々の構成を取り得ることは勿論である。また、明細書、特許請求の範囲、図面、 及び要約を含む 2003年 12月 3日付け提出の日本国特願 2003— 405226、ならび に 2004年 6月 18曰付け提出の曰本国特願 2004— 181827の全ての開示内容は、 そっくりそのまま引用して本願に組み込まれている。  [0106] The present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention. In addition, Japanese Patent Application No. 2003-405226 filed on December 3, 2003, including the description, claims, drawings, and abstracts, and Japanese Patent Application No. 2004-June 18, 2004 filed on June 18, 2004 The entire disclosure of 181827 is hereby incorporated by reference in its entirety.
産業上の利用可能性  Industrial applicability
[0107] 本発明のデバイス製造方法によれば、一例として、新しい露光装置を導入するごと に、新しく OPE特性の補正されたマスクを作成する必要がなくなるため、各種デバイ スを製造するための露光工程でのコストを大幅に下げることが可能となる。 According to the device manufacturing method of the present invention, for example, each time a new exposure apparatus is introduced, it is not necessary to create a mask with a new OPE characteristic correction. The cost in the process can be significantly reduced.

Claims

請求の範囲 The scope of the claims
[1] 照明光学系力 の露光ビームで第 1物体を照明し、前記露光ビームで前記第 1物 体及び投影光学系を介して第 2物体を露光する露光方法において、  [1] An exposure method for illuminating a first object with an exposure beam having an illumination optical system power and exposing a second object with the exposure beam via the first object and a projection optical system,
互いに異なる複数のパターンの前記投影光学系を介した投影像の線幅のそれぞ れを所定の状態に調整するために、前記第 2物体を露光するための露光条件を変化 させることを特徴とする露光方法。  An exposure condition for exposing the second object is changed in order to adjust each of line widths of a plurality of patterns projected from the projection optical system through the projection optical system to a predetermined state. Exposure method.
[2] 互いに異なる 3種類以上のパターンの前記投影光学系を介した投影像の線幅をそ れぞれ対応する基準値に合わせることを特徴とする請求項 1に記載の露光方法。 2. The exposure method according to claim 1, wherein line widths of three or more different patterns projected through the projection optical system through the projection optical system are respectively adjusted to corresponding reference values.
[3] 前記照明光学系の瞳面又はこの面との共役面における前記露光ビームの光量分 布のムラに起因した前記投影像の線幅の変化を前記所定の状態に調整することを 特徴とする請求項 1に記載の露光方法。 [3] A change in the line width of the projection image caused by unevenness in the light amount distribution of the exposure beam on a pupil plane of the illumination optical system or a conjugate plane with the pupil plane is adjusted to the predetermined state. The exposure method according to claim 1, wherein
[4] 前記光量分布は、前記露光ビームの光量が円形領域、輪帯状の領域、又は複数 の偏心した領域に実質的に均一に分布する状態であることを特徴とする請求項 3に 記載の露光方法。 4. The light amount distribution according to claim 3, wherein the light amount distribution is such that the light amount of the exposure beam is substantially uniformly distributed in a circular area, an annular area, or a plurality of eccentric areas. Exposure method.
[5] 前記露光条件は複数であり、 [5] The exposure conditions are plural,
前記露光条件は、前記投影光学系の結像特性には実質的に影響を与えない範囲 で調整されることを特徴とする請求項 1から 4のいずれか一項に記載の露光方法。  The exposure method according to any one of claims 1 to 4, wherein the exposure condition is adjusted within a range that does not substantially affect an imaging characteristic of the projection optical system.
[6] 前記複数のパターンは 3種類以上のパターンであり、 [6] The plurality of patterns are three or more types,
前記 3種類以上のパターンの前記投影像の線幅をそれぞれ対応する基準値に合 わせるために、 3個以上の露光条件を設定することを特徴とする請求項 1から 5の ヽ ずれか一項に記載の露光方法。  6. The method according to claim 1, wherein three or more exposure conditions are set to match the line widths of the projected images of the three or more types of patterns with corresponding reference values. Exposure method according to item.
[7] 前記 3種類以上のパターンは、互いにピッチが異なる第 1、第 2、及び第 3の周期パ ターンを含むことを特徴とする請求項 6に記載の露光方法。 7. The exposure method according to claim 6, wherein the three or more types of patterns include first, second, and third periodic patterns having different pitches from each other.
[8] 前記露光条件を変化させる前に、前記複数のパターンの前記投影光学系を介した 投影像の線幅をそれぞれ求めることを特徴とする請求項 1から 7のいずれか一項に記 載の露光方法。 [8] The method according to any one of claims 1 to 7, wherein before changing the exposure condition, a line width of a projected image of the plurality of patterns via the projection optical system is obtained. Exposure method.
[9] 前記露光条件は、前記投影光学系の開口数、前記照明光学系のコヒーレンスファ クタ、前記照明光学系の照明条件における輪帯照明の照明輪帯比、前記露光ビー ムの波長、前記露光ビームの波長の半値幅、前記露光ビームの露光量、及び前記 第 2物体上の感光材料の種類のうちの少なくとも 1つであることを特徴とする請求項 1 から 8の 、ずれか一項に記載の露光方法。 [9] The exposure conditions include a numerical aperture of the projection optical system, a coherence factor of the illumination optical system, an illumination zone ratio of annular illumination under illumination conditions of the illumination optical system, and an exposure beam. The wavelength of the exposure beam, the half width of the wavelength of the exposure beam, the exposure amount of the exposure beam, and the type of photosensitive material on the second object, wherein The exposure method according to any one of claims 1 to 3.
[10] 第 1の投影光学系を介して物体を露光する第 1の露光装置と、第 2の投影光学系を 介して物体を露光する第 2の露光装置とを用いる露光方法にお 、て、 [10] In an exposure method using a first exposure apparatus that exposes an object via a first projection optical system and a second exposure apparatus that exposes an object via a second projection optical system, ,
互いに異なる 3種類以上のパターンの前記第 2の投影光学系を介した投影像の線 幅をそれぞれ前記第 1の投影光学系を介した投影像の線幅に合わせるために、前記 第 2の露光装置の露光条件を設定することを特徴とする露光方法。  The second exposure is performed to adjust the line widths of three or more types of different patterns projected through the second projection optical system to the line widths of the projection images transmitted through the first projection optical system. An exposure method comprising setting exposure conditions of an apparatus.
[11] 前記 3種類以上のパターンの前記第 2の投影光学系を介した投影像の線幅をそれ ぞれ前記第 1の投影光学系を介した投影像の線幅に合わせるために、前記第 2の露 光装置の 3個以上の露光条件を設定することを特徴とする請求項 10に記載の露光 方法。 [11] In order to adjust the line widths of the three or more types of patterns projected through the second projection optical system to the line widths of the projection images transmitted through the first projection optical system, respectively, 11. The exposure method according to claim 10, wherein three or more exposure conditions of the second exposure device are set.
[12] 前記設定される露光条件は、前記第 2の投影光学系の開口数、前記第 2の露光装 置の照明光学系のコヒーレンスファクタ、該照明光学系の照明条件における輪帯照 明の照明輪帯比、前記第 2の露光装置で用いられる露光ビームの波長、該露光ビー ムの波長の半値幅、該露光ビームの露光量、及び前記物体上の感光材料の種類の うちの少なくとも 1つであることを特徴とする請求項 10又は 11に記載の露光方法。  [12] The exposure conditions set include the numerical aperture of the second projection optical system, the coherence factor of the illumination optical system of the second exposure apparatus, and the annular illumination under the illumination conditions of the illumination optical system. At least one of the illumination zone ratio, the wavelength of the exposure beam used in the second exposure apparatus, the half width of the wavelength of the exposure beam, the exposure amount of the exposure beam, and the type of photosensitive material on the object. 12. The exposure method according to claim 10, wherein:
[13] リソグラフイエ程を含むデバイス製造方法にぉ 、て、  [13] A device manufacturing method including a lithographic process is described.
前記リソグラフイエ程で請求項 1から 12のいずれか一項に記載の露光方法で設定 された露光条件でパターンを感光体上に転写することを特徴とするデバイス製造方 法。  13. A method for manufacturing a device, comprising: transferring a pattern onto a photoconductor under exposure conditions set by the exposure method according to claim 1 during the lithographic process.
[14] 露光ビームで第 1物体を照明する照明光学系と、前記第 1物体の像を第 2物体上に 投影する投影光学系とを有する露光装置において、  [14] An exposure apparatus having an illumination optical system for illuminating a first object with an exposure beam, and a projection optical system for projecting an image of the first object on a second object.
互いに異なる複数のパターンの前記投影光学系を介した投影像の線幅のそれぞ れを所定の基準状態に調整するために、前記第 2物体を露光するための露光条件を 変化させる制御装置を有することを特徴とする露光装置。  In order to adjust each of line widths of projected images of the plurality of patterns different from each other through the projection optical system to a predetermined reference state, a control device that changes exposure conditions for exposing the second object is provided. An exposure apparatus comprising:
[15] 互いに異なる 3種類以上のパターンの前記投影光学系を介した投影像の線幅をそ れぞれ対応する基準値に合わせるために、前記制御装置は前記露光条件を変化さ せることを特徴とする請求項 14に記載の露光装置。 [15] In order to match the line widths of projected images of the three or more different patterns through the projection optical system to the corresponding reference values, the control device changes the exposure conditions. 15. The exposure apparatus according to claim 14, wherein the exposure is performed.
[16] 前記照明光学系の瞳面又はこの面との共役面における前記露光ビームの光量分 布のムラに起因した前記投影像の線幅の変化を前記所定の状態に調整するために 、前記制御装置は前記露光条件を変化させることを特徴とする請求項 14に記載の 露光装置。 [16] In order to adjust the change in the line width of the projection image to the predetermined state due to unevenness in the light amount distribution of the exposure beam on the pupil plane of the illumination optical system or a conjugate plane with the pupil plane, 15. The exposure apparatus according to claim 14, wherein the control device changes the exposure condition.
[17] 前記光量分布は、前記露光ビームの光量が円形領域、輪帯状の領域、又は複数 の偏心した領域に実質的に均一に分布する状態であることを特徴とする請求項 16に 記載の露光装置。  17. The light amount distribution according to claim 16, wherein the light amount distribution of the exposure beam is such that the light amount of the exposure beam is substantially uniformly distributed in a circular area, an annular area, or a plurality of eccentric areas. Exposure equipment.
[18] 前記露光条件は複数であり、 [18] The exposure conditions are plural,
前記露光条件は、前記投影光学系の結像特性には実質的に影響を与えない範囲 で調整されることを特徴とする請求項 14から 17のいずれか一項に記載の露光装置。  18. The exposure apparatus according to claim 14, wherein the exposure condition is adjusted within a range that does not substantially affect an imaging characteristic of the projection optical system.
[19] 前記複数のパターンは 3種類以上のパターンであり、 [19] The plurality of patterns are three or more patterns,
前記 3種類以上のパターンの前記投影像の線幅をそれぞれ対応する基準値に合 わせるために、前記制御装置は、 3個以上の露光条件を変化させることを特徴とする 請求項 14から 18のいずれか一項に記載の露光装置。  19. The control device changes three or more exposure conditions to adjust the line widths of the projected images of the three or more types of patterns to corresponding reference values, respectively. The exposure apparatus according to any one of the above.
[20] 前記 3種類以上のパターンは、互いにピッチが異なる第 1、第 2、及び第 3の周期パ ターンを含むことを特徴とする請求項 19に記載の露光装置。 20. The exposure apparatus according to claim 19, wherein the three or more types of patterns include first, second, and third periodic patterns having different pitches from each other.
[21] 前記複数のパターンの前記投影光学系を介した空間像の線幅情報を求めるため の演算装置又は空間像計測系を更に有することを特徴とする請求項 14から 20のい ずれか一項に記載の露光装置。 21. The apparatus according to claim 14, further comprising an arithmetic device or an aerial image measurement system for obtaining line width information of the aerial image of the plurality of patterns via the projection optical system. Exposure apparatus according to Item.
[22] 前記露光条件は、前記投影光学系の開口数、前記照明光学系のコヒーレンスファ クタ、前記照明光学系の照明条件における輪帯照明の照明輪帯比、前記露光ビー ムの波長、前記露光ビームの波長の半値幅、前記露光ビームの露光量、及び前記 第 2物体上の感光材料の種類のうちの少なくとも 1つであることを特徴とする請求項 1[22] The exposure conditions include a numerical aperture of the projection optical system, a coherence factor of the illumination optical system, an illumination zone ratio of annular illumination under illumination conditions of the illumination optical system, a wavelength of the exposure beam, and 2. The image processing apparatus according to claim 1, wherein the wavelength is at least one of a half width of a wavelength of the exposure beam, an exposure amount of the exposure beam, and a type of a photosensitive material on the second object.
4から 21のいずれか一項に記載の露光装置。 22. The exposure apparatus according to any one of 4 to 21.
[23] 前記基準値は、別の露光装置の投影光学系を介して投影される前記 3種類以上の パターンの投影像の線幅であることを特徴とする請求項 15に記載の露光装置。 23. The exposure apparatus according to claim 15, wherein the reference value is a line width of a projection image of the three or more types of patterns projected via a projection optical system of another exposure apparatus.
[24] リソグラフイエ程を含むデバイス製造方法にぉ 、て、 前記リソグラフイエ程で請求項 14一 23のいずれか一項に記載の露光装置でバタ ーンを感光体上に転写することを特徴とするデバイス製造方法。 [24] A method of manufacturing a device including a lithographic process, 24. A device manufacturing method, wherein a pattern is transferred onto a photoreceptor by the exposure apparatus according to claim 14 during the lithographic process.
PCT/JP2004/017817 2003-12-03 2004-11-30 Exposure method and system, and device producing method WO2005055295A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003405226 2003-12-03
JP2003-405226 2003-12-03
JP2004181827 2004-06-18
JP2004-181827 2004-06-18

Publications (1)

Publication Number Publication Date
WO2005055295A1 true WO2005055295A1 (en) 2005-06-16

Family

ID=34656216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017817 WO2005055295A1 (en) 2003-12-03 2004-11-30 Exposure method and system, and device producing method

Country Status (1)

Country Link
WO (1) WO2005055295A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438507B2 (en) 2008-11-20 2013-05-07 Nikon Corporation Systems and methods for adjusting a lithographic scanner
KR101457029B1 (en) * 2014-01-02 2014-11-04 주식회사 에프엠에스코리아 Box package for low-temperature materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315226A (en) * 1992-05-11 1993-11-26 Sony Corp Projection aligner
JPH11142108A (en) * 1997-11-07 1999-05-28 Toshiba Corp Pattern measuring method
JPH11297608A (en) * 1998-04-15 1999-10-29 Sony Corp Exposure method and aligner
JP2000124104A (en) * 1998-10-16 2000-04-28 Nec Corp Adjustment method for reduction projection aligner
JP2003318092A (en) * 2002-04-24 2003-11-07 Sony Corp Aligner and method for manufacturing semiconductor device
JP2004246223A (en) * 2003-02-17 2004-09-02 Sony Corp Method of correcting mask
JP2005026701A (en) * 2003-06-30 2005-01-27 Asml Masktools Bv Method of simultaneous optimization between na-sigma exposure setting using device layout and dispersion bar opc, program product, and equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315226A (en) * 1992-05-11 1993-11-26 Sony Corp Projection aligner
JPH11142108A (en) * 1997-11-07 1999-05-28 Toshiba Corp Pattern measuring method
JPH11297608A (en) * 1998-04-15 1999-10-29 Sony Corp Exposure method and aligner
JP2000124104A (en) * 1998-10-16 2000-04-28 Nec Corp Adjustment method for reduction projection aligner
JP2003318092A (en) * 2002-04-24 2003-11-07 Sony Corp Aligner and method for manufacturing semiconductor device
JP2004246223A (en) * 2003-02-17 2004-09-02 Sony Corp Method of correcting mask
JP2005026701A (en) * 2003-06-30 2005-01-27 Asml Masktools Bv Method of simultaneous optimization between na-sigma exposure setting using device layout and dispersion bar opc, program product, and equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438507B2 (en) 2008-11-20 2013-05-07 Nikon Corporation Systems and methods for adjusting a lithographic scanner
KR101457029B1 (en) * 2014-01-02 2014-11-04 주식회사 에프엠에스코리아 Box package for low-temperature materials

Similar Documents

Publication Publication Date Title
KR100599932B1 (en) Method of measuring aberration in an optical imaging system
US7348582B2 (en) Light source apparatus and exposure apparatus having the same
US7771905B2 (en) Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method
JP4034262B2 (en) Lithographic apparatus and device manufacturing method
US20060109463A1 (en) Latent overlay metrology
US20050179881A1 (en) Exposure apparatus and method
WO1999034255A1 (en) Method and apparatus for manufacturing photomask and method of fabricating device
JP4057847B2 (en) Lithographic projection apparatus calibration method, patterning apparatus, and device manufacturing method
JP2005150760A (en) Optimization of lithography processing based on hyper-sample correlation
US7083290B2 (en) Adjustment method and apparatus of optical system, and exposure apparatus
JP2008300821A (en) Exposure method, and manufacturing method for electronic device
JP2008263194A (en) Exposure apparatus, exposure method, and method for manufacturing electronic device
US7369214B2 (en) Lithographic apparatus and device manufacturing method utilizing a metrology system with sensors
JP2008263193A (en) Exposure method and manufacturing method for electronic device
JP2004200701A (en) Lithography projection mask, method for manufacturing device by lithography projection mask, and device manufactured by this method
JP3950082B2 (en) Lithographic apparatus and method for manufacturing a device
JP2009152251A (en) Exposure device, exposure method, and method for manufacturing device
US8345221B2 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
US7397535B2 (en) Lithographic apparatus and device manufacturing method
JP2008283178A (en) Lithographic apparatus and method
JP2005347749A (en) Lithography equipment, method of manufacturing device, and method of forming pattern forming equipment
US6897947B1 (en) Method of measuring aberration in an optical imaging system
US20060215140A1 (en) Method of measuring the performance of an illumination system
WO2005055295A1 (en) Exposure method and system, and device producing method
JP2002139406A (en) Mask for measuring optical characteristic, method of measuring optical characteristic and production method of exposer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 04819842

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 4819842

Country of ref document: EP