JP4253308B2 - Optical receiver circuit device - Google Patents

Optical receiver circuit device Download PDF

Info

Publication number
JP4253308B2
JP4253308B2 JP2005075934A JP2005075934A JP4253308B2 JP 4253308 B2 JP4253308 B2 JP 4253308B2 JP 2005075934 A JP2005075934 A JP 2005075934A JP 2005075934 A JP2005075934 A JP 2005075934A JP 4253308 B2 JP4253308 B2 JP 4253308B2
Authority
JP
Japan
Prior art keywords
circuit
current
signal
absorption
optical receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005075934A
Other languages
Japanese (ja)
Other versions
JP2006262003A (en
Inventor
俊之 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005075934A priority Critical patent/JP4253308B2/en
Publication of JP2006262003A publication Critical patent/JP2006262003A/en
Application granted granted Critical
Publication of JP4253308B2 publication Critical patent/JP4253308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)
  • Control Of Amplification And Gain Control (AREA)

Description

本発明は、光通信等の光信号を光電変換して得られる電気信号を受信する光受信回路装置、特に光電変換素子に接続する集積化光受信回路装置に関する。   The present invention relates to an optical receiver circuit device that receives an electrical signal obtained by photoelectrically converting an optical signal such as optical communication, and more particularly to an integrated optical receiver circuit device connected to a photoelectric conversion element.

光通信装置の一例としてPIN型フォトダイオードとトランスインピーダンス型増幅回路を用いた高速光受信装置の従来技術を説明する。一般にPIN型フォトダイオードとトランスインピーダンス型増幅器は素子が異なるため、それぞれ別プロセスでPIN型フォトダイオードは素子チップとして、トランスインピーダンス型増幅器は集積回路として作製される。両者は電気的に結合されることになるが、その手法は一般には高周波特性を劣化させないために、基板上にそれぞれを近接実装してボンディングワイヤで電気的に結合される。   As an example of an optical communication apparatus, a conventional technique of a high-speed optical receiver using a PIN photodiode and a transimpedance amplifier circuit will be described. In general, since a PIN photodiode and a transimpedance amplifier have different elements, the PIN photodiode is manufactured as an element chip and the transimpedance amplifier is manufactured as an integrated circuit by different processes. The two are electrically coupled. In general, however, the method does not deteriorate the high frequency characteristics, so that they are mounted on the substrate in close proximity and are electrically coupled by bonding wires.

光受信装置は一般に微小な光信号から大きな光信号までの広いダイナミックレンジで動作する必要がある。フォトダイオードから出力される信号に含まれるDC(直流)電流成分は微小な光信号時の場合は少ないDC電流が発生し、大きな光信号の場合は大DC電流が発生するため、入力信号パワーに応じて信号振幅が変化すると共に、DC電流も変化する。このDC電流はトランスインピーダンスアンプへ流入すると回路の動作状態がずれるため、トランスインピーダンスアンプの入力部で、DC電流を吸入する回路で処理が行われる。   In general, an optical receiver needs to operate in a wide dynamic range from a minute optical signal to a large optical signal. The DC (direct current) current component included in the signal output from the photodiode generates a small DC current in the case of a minute optical signal, and generates a large DC current in the case of a large optical signal. Accordingly, the signal amplitude changes and the DC current also changes. When this DC current flows into the transimpedance amplifier, the operation state of the circuit is shifted. Therefore, processing is performed by a circuit that sucks in the DC current at the input part of the transimpedance amplifier.

一方、入力信号成分はそのままトランスインピーダンスアンプへ入力されるため、大信号がフォトダイオードより発生した場合、トランスインピーダンスアンプが飽和し、正常動作ができない問題があった。これを避けるためにはトランスインピーダンスアンプの利得を下げれば良いが、その場合、小信号入力時にノイズが増加する問題が生じる。これらの問題から、トランスインピーダンスアンプはダイナミックレンジが大きく取れない問題があった。   On the other hand, since the input signal component is directly input to the transimpedance amplifier, when a large signal is generated from the photodiode, the transimpedance amplifier is saturated and there is a problem that normal operation cannot be performed. In order to avoid this, the gain of the transimpedance amplifier may be lowered. In this case, however, there is a problem that noise increases when a small signal is input. Because of these problems, the transimpedance amplifier has a problem that the dynamic range cannot be increased.

この課題を解決するために、従来例として特許文献1に記載されているような自動利得切替型バースト光受信回路が提供されている。このバースト光受信回路では、フォトダイオードの受光電流を電圧信号に変換するトランスインピーダンスアンプ、このトランスインピーダンスアンプの利得を決める負帰還回路部に通過用のMOSトランジスタ及び受光電流のピークを検出するピーク検出回路を設け、フォトダイオードが大振幅信号を出力すると、ピーク検出によりゲートを開き、信号成分を通過させる。これにより大振幅信号時に回路の飽和を避けると共に、小信号時にはゲートを閉じ、利得を増加させ、ノイズ特性も向上させる。
特開2000−252775
In order to solve this problem, an automatic gain switching type burst optical receiver circuit as described in Patent Document 1 is provided as a conventional example. In this burst light receiving circuit, a transimpedance amplifier that converts a light receiving current of a photodiode into a voltage signal, a negative feedback circuit that determines the gain of the transimpedance amplifier, and a peak detection that detects the peak of the light receiving current When a circuit is provided and the photodiode outputs a large amplitude signal, the gate is opened by peak detection, and the signal component is allowed to pass. This avoids circuit saturation for large amplitude signals, closes the gate for small signals, increases gain, and improves noise characteristics.
JP 2000-252775 A

従来のバースト光受信回路によって、大信号が入力された場合も、小信号が入力された場合もトランスインピーダンスアンプは動作が可能となり、ダイナミックレンジが広く取れる。しかしながら、従来の光受信回路では、ピーク検出回路が必要であり、回路構成が非常に複雑となり、誤動作の問題、チップ面積の拡大、試験の複雑さなどの問題があり、ひいてはコストの増加、消費電力の増加など欠点があった。更に、ピーク検知の場合は、高周波を検知しなければならないので制御系に誤差が生じてしまう。   With a conventional burst light receiving circuit, the transimpedance amplifier can operate regardless of whether a large signal is input or a small signal is input, and a wide dynamic range can be obtained. However, the conventional optical receiver circuit requires a peak detection circuit, which makes the circuit configuration very complicated, causing problems such as malfunction, enlargement of chip area, and complexity of testing, which in turn increases cost and consumption. There were drawbacks such as increased power. Further, in the case of peak detection, since a high frequency must be detected, an error occurs in the control system.

この発明は、簡易な回路構成で大信号振幅の信号入力を検知し、検知結果に基づいて利得制御し、広ダイナミックレンジで動作する光受信回路装置を提供することを目的とする。   An object of the present invention is to provide an optical receiver circuit device that detects a signal input having a large signal amplitude with a simple circuit configuration, performs gain control based on the detection result, and operates in a wide dynamic range.

本発明の一局面は、光信号を電流信号に変換する受光素子と、当該受光素子の電流信号を電圧信号に可変的に変換増幅する変換増幅器と、前記受光素子から発生する直流電流分を引き抜く直流電流吸収回路と、前記直流電流吸収回路に吸収される電流を検知する吸収電流量検知回路と、前記吸収電流量検知回路の検知結果を元に前記トランスインピーダンスアンプの増幅量の制御する増幅率制御回路とを具備することを特徴とする光受信回路装置を提供する。   One aspect of the present invention extracts a light receiving element that converts an optical signal into a current signal, a conversion amplifier that variably converts the current signal of the light receiving element into a voltage signal, and a DC current generated from the light receiving element. DC current absorption circuit, absorption current amount detection circuit for detecting current absorbed in the DC current absorption circuit, and amplification factor for controlling the amplification amount of the transimpedance amplifier based on the detection result of the absorption current amount detection circuit An optical receiver circuit device comprising a control circuit is provided.

本発明では、直流電流吸収回路により引き抜かれる受光素子のDC電流を検知することにより、変換増幅器の利得を制御しているので回路構成は簡易となる。また、信号流入阻止回路を付加する事により、小信号入力時のノイズを低下させ、ダイナミックレンジを拡大させる効果がある。   In the present invention, the circuit configuration becomes simple because the gain of the conversion amplifier is controlled by detecting the DC current of the light receiving element drawn out by the DC current absorption circuit. In addition, the addition of a signal inflow prevention circuit has the effect of reducing the noise when inputting a small signal and expanding the dynamic range.

以下、図面を参照しながら本実施の形態について詳細に説明する。   Hereinafter, the present embodiment will be described in detail with reference to the drawings.

この発明の第1の実施形態を図1を参照して説明する。図1において、点線枠で囲んだ部分が電気信号増幅ICモジュール11を示している。フォトダイオードを含む光電変換回路12はICモジュール11の外部に配置され、ICモジュール12にボンディング接続される。   A first embodiment of the present invention will be described with reference to FIG. In FIG. 1, the electric signal amplification IC module 11 is shown in a portion surrounded by a dotted frame. The photoelectric conversion circuit 12 including a photodiode is disposed outside the IC module 11 and bonded to the IC module 12 by bonding.

電気信号増幅ICモジュール11には、電気信号増幅回路13と直流電流吸収回路14が設けられる。電気信号増幅回路13は光電変換回路12の受光信号を増幅するために光電変換回路12の出力部に接続され、直流電流吸収回路14は受光信号の直流(DC)電流を全て吸収するために直流電流吸収回路14の出力部に接続される。直流電流吸収回路14は吸収電流検知回路15を介して増幅率制御回路16に接続される。増幅率制御回路16が吸収電流検知回路15によって検知されたDC電流の吸収量に応じて電気信号増幅回路13の利得を制御する。   The electric signal amplification IC module 11 is provided with an electric signal amplification circuit 13 and a direct current absorption circuit 14. The electric signal amplifier circuit 13 is connected to the output part of the photoelectric conversion circuit 12 to amplify the light reception signal of the photoelectric conversion circuit 12, and the direct current absorption circuit 14 is direct current to absorb all the direct current (DC) current of the light reception signal. It is connected to the output part of the current absorption circuit 14. The direct current absorption circuit 14 is connected to the amplification factor control circuit 16 through the absorption current detection circuit 15. The amplification factor control circuit 16 controls the gain of the electric signal amplification circuit 13 according to the amount of absorption of the DC current detected by the absorption current detection circuit 15.

第2図に光信号の小信号入力時と大信号入力時の波形が示されている。小信号入力時には、振幅の小さい信号と或るバイアス電流値Ib1を示すが、大信号入力時には、信号振幅が増大すると共に、それに応じてバイアス電流値Ib2も増大していることが分かる。この関係から、大信号を検出するためにはバイアス電流値Ib2の値を検出すれば良く、信号のピークを検出する必要は無い。従って、第1図の回路構成はDC吸収電流によって信号振幅を検知し、その結果で電気信号増幅回路13の増幅率を制御する。   FIG. 2 shows waveforms when a small signal and a large signal of an optical signal are input. When a small signal is input, a signal with a small amplitude and a certain bias current value Ib1 are shown. When a large signal is input, the signal amplitude increases, and the bias current value Ib2 increases accordingly. From this relationship, in order to detect a large signal, it is only necessary to detect the value of the bias current value Ib2, and it is not necessary to detect the peak of the signal. Therefore, the circuit configuration of FIG. 1 detects the signal amplitude by the DC absorption current, and controls the amplification factor of the electric signal amplifier circuit 13 based on the result.

上記の回路構成によって、大光信号が入力した時に電気信号増幅回路13が飽和状態に入ることが無くなり、安定した動作が可能となる。また、小信号入力時には電流吸収回路14は殆ど電流を吸収しないため、電気信号増幅回路13の増幅率は最大の状態となる。従って、ノイズの低い高利得の状態を保つことができる。この結果、広ダイナミックレンジの光信号に対応して、本発明の光受信回路装置は動作することが可能となる。   With the above circuit configuration, the electric signal amplifier circuit 13 does not enter a saturated state when a large light signal is input, and stable operation is possible. Further, when the small signal is input, the current absorption circuit 14 hardly absorbs current, so that the amplification factor of the electric signal amplification circuit 13 is in a maximum state. Therefore, a high gain state with low noise can be maintained. As a result, the optical receiver circuit device of the present invention can operate in response to an optical signal with a wide dynamic range.

第3図は、本発明の第2の実施形態の光受信回路を示す。点線枠で囲んだ部分が電気信号増幅ICモジュール11を示している。第1の実施形態と同様に光電変換回路12はICモジュール11の外部に設けられる。この第2の実施形態では、第1の実施形態に更に信号阻止回路17が電流吸収回路14の前段に設けられている。   FIG. 3 shows an optical receiver circuit according to a second embodiment of the present invention. A portion surrounded by a dotted frame indicates the electric signal amplification IC module 11. Similar to the first embodiment, the photoelectric conversion circuit 12 is provided outside the IC module 11. In the second embodiment, a signal blocking circuit 17 is further provided in front of the current absorption circuit 14 in the first embodiment.

第2の実施形態においても、光電変換回路12は光信号を光電変換して電気信号を出力する。出力された電気信号はICモジュール11の電気信号増幅回路13へ入力される。入力された電気信号は電圧増幅されてICモジュール11の外部に出力される。   Also in the second embodiment, the photoelectric conversion circuit 12 photoelectrically converts an optical signal and outputs an electrical signal. The outputted electric signal is inputted to the electric signal amplifying circuit 13 of the IC module 11. The input electrical signal is voltage amplified and output to the outside of the IC module 11.

電気信号増幅回路13の信号入力部には、信号阻止回路17を介して電流吸収回路14が接続されている。電流吸収回路14は、一般に光電変換回路12もしくは電気信号増幅回路13の出力部に設けた電流検知回路で制御され、光電変換回路12から発生するDC電流を全て吸収する。電流吸収回路14によって吸収されるDC電流値は吸収電流検知回路15により検知され、吸収DC電流値がある値になると電気信号増幅回路13の増幅率、即ち利得を制御する増幅率制御回路16を制御する。この結果、電気信号増幅回路13は電流吸収回路14の吸収電流量によって利得が制御されることになる。   A current absorption circuit 14 is connected to a signal input portion of the electric signal amplification circuit 13 via a signal blocking circuit 17. The current absorption circuit 14 is generally controlled by a current detection circuit provided at the output portion of the photoelectric conversion circuit 12 or the electric signal amplification circuit 13 and absorbs all DC current generated from the photoelectric conversion circuit 12. The DC current value absorbed by the current absorption circuit 14 is detected by the absorption current detection circuit 15, and when the absorption DC current value reaches a certain value, the amplification factor of the electric signal amplification circuit 13, that is, the amplification factor control circuit 16 that controls the gain is provided. Control. As a result, the gain of the electric signal amplifier circuit 13 is controlled by the amount of current absorbed by the current absorption circuit 14.

信号阻止回路17は電気信号が電流吸収回路14へ流入することを阻止するための回路であり、その阻止量は吸収電流量検知回路15の検知結果に応じて調整される。   The signal blocking circuit 17 is a circuit for blocking an electric signal from flowing into the current absorption circuit 14, and the blocking amount is adjusted according to the detection result of the absorption current amount detection circuit 15.

この回路構成によって、図1の実施形態で述べた効果と共に、信号を電流吸収回路14へ流入させない効果があり、さらに阻止量を調整できるために、電流吸収回路14は正常なバイアスレベルを保ちつつ、最大限の効果を得ることができる。即ち、小信号入力時には信号阻止量を大きく設定し、大信号入力時は信号阻止量を小さく設定する。これにより、小信号時にはノイズ特性を向上させ、大信号時には電流吸収量を向上させることができ、図1の実施形態よりもさらなる広ダイナミックレンジの光信号に対応して、電気信号増幅回路13は動作できる。   With this circuit configuration, in addition to the effects described in the embodiment of FIG. 1, there is an effect that the signal does not flow into the current absorption circuit 14, and further, the amount of inhibition can be adjusted, so that the current absorption circuit 14 maintains a normal bias level. , You can get the maximum effect. That is, the signal blocking amount is set large when a small signal is input, and the signal blocking amount is set small when a large signal is input. Thereby, noise characteristics can be improved for small signals, and the amount of current absorption can be improved for large signals. The electrical signal amplifier circuit 13 corresponds to an optical signal having a wider dynamic range than that of the embodiment of FIG. Can work.

図4は、図3の回路を具体的にしました光受信回路装置を示している。この回路装置によると、図3の電気信号増幅回路l3が電気信号アンプ21とこの電気信号アンプ21に並列に接続される抵抗26により構成され、光変換回路12のフォトダイオード22からの光電信号を電圧信号に可変的に変換増幅する。信号阻止回路17はフォトダイオード22と電流吸収器23との間に接続された抵抗24とこの抵抗24の両端にソース及びドレインがそれぞれ接続されたMOSトランジスタ25によって構成される。MOSトランジスタ25のゲートは吸収電流量検知回路15の出力端子に接続される。増幅率制御回路16は抵抗26の両端にソース及びドレインがそれぞれ接続されるMOSトランジスタ27によって構成される。   FIG. 4 shows an optical receiver circuit device that is a specific implementation of the circuit of FIG. According to this circuit device, the electric signal amplifying circuit 13 in FIG. 3 includes the electric signal amplifier 21 and the resistor 26 connected in parallel to the electric signal amplifier 21, and the photoelectric signal from the photodiode 22 of the light conversion circuit 12 is received. Variable conversion to voltage signal and amplification. The signal blocking circuit 17 includes a resistor 24 connected between the photodiode 22 and the current absorber 23, and a MOS transistor 25 having a source and a drain connected to both ends of the resistor 24, respectively. The gate of the MOS transistor 25 is connected to the output terminal of the absorbed current amount detection circuit 15. The amplification factor control circuit 16 includes a MOS transistor 27 having a source and a drain connected to both ends of the resistor 26, respectively.

図4の回路において、フォトダイオード22から出力される光電変換電流の直流電流が抵抗24を介して電流吸収器23によって吸収される。このとき、電流吸収器23により小さい直流電流が吸収されているときには、電流量検知回路15はMOSトランジスタ25のゲートに直流電流に応じたゲート信号を供給し、MOSトランジスタ25をOFFにする。これにより、小信号の流出が抵抗により制限され、信号阻止回路の電流阻止量が大きくなる。これに対して、大きな直流電流が電流吸収器23に取り込まれると、電流量検知回路15はMOSトランジスタ25のゲートに大直流電流に応じたゲート信号を供給し、MOSトランジスタ25をONにする。これにより、大信号はMOSトランジスタ25を介して流出する。即ち、信号阻止回路の電流阻止量が小さくなる。   In the circuit of FIG. 4, the direct current of the photoelectric conversion current output from the photodiode 22 is absorbed by the current absorber 23 via the resistor 24. At this time, when a smaller direct current is absorbed by the current absorber 23, the current amount detection circuit 15 supplies a gate signal corresponding to the direct current to the gate of the MOS transistor 25 to turn off the MOS transistor 25. Thereby, the outflow of the small signal is limited by the resistance, and the current blocking amount of the signal blocking circuit is increased. On the other hand, when a large direct current is taken into the current absorber 23, the current amount detection circuit 15 supplies a gate signal corresponding to the large direct current to the gate of the MOS transistor 25 to turn on the MOS transistor 25. Thereby, a large signal flows out through the MOS transistor 25. That is, the current blocking amount of the signal blocking circuit is reduced.

吸収電流量検知回路15の検知信号は増幅率制御回路のMOSダイオード27のゲートにも供給されるが、フォトダイオード22から大電流が供給されたとき、吸収電流量検知回路15の検知信号はMOSダイオード27をONにし、増幅回路13の増幅率を低下させ、増幅回路13が飽和状態になることを防止する。   The detection signal of the absorption current amount detection circuit 15 is also supplied to the gate of the MOS diode 27 of the amplification factor control circuit, but when a large current is supplied from the photodiode 22, the detection signal of the absorption current amount detection circuit 15 is the MOS signal. The diode 27 is turned on, the amplification factor of the amplifier circuit 13 is lowered, and the amplifier circuit 13 is prevented from being saturated.

第5図は、本発明の第3の実施形態に従った受信回路を示している。本実施形態では、電気信号増幅ICモジュール11では、信号阻止回路17は直列接続された抵抗32,33と抵抗33の両端子にそれぞれソース及びドレインが接続されたMOSトランジスタ34とによって構成される。抵抗33の両端子がDC電流量検知回路15の入力部に接続される。DC電流量検知回路15の出力部は制御回路35を介してMOSトランジスタ27のゲートに接続される。制御回路35の制御出力はMOSトランジスタ34のゲートに接続される。   FIG. 5 shows a receiving circuit according to the third embodiment of the present invention. In the present embodiment, in the electric signal amplification IC module 11, the signal blocking circuit 17 is configured by resistors 32 and 33 connected in series and a MOS transistor 34 having a source and a drain connected to both terminals of the resistor 33. Both terminals of the resistor 33 are connected to the input part of the DC current amount detection circuit 15. The output portion of the DC current amount detection circuit 15 is connected to the gate of the MOS transistor 27 via the control circuit 35. The control output of the control circuit 35 is connected to the gate of the MOS transistor 34.

MOSトランジスタ36は電流吸収回路を構成し、DC電流吸収量制御回路37からの制御信号に応じてフォトダイオード22からのDC電流を全て吸収する。DC電流吸収量制御回路37は、通常、アンプを飽和させる−3dbmの電流信号がアンプ21に入力されるときにオン信号をMOSトランジスタ36に入力し、このMOSトランジスタ36をオンにする。   The MOS transistor 36 constitutes a current absorption circuit and absorbs all the DC current from the photodiode 22 in accordance with a control signal from the DC current absorption amount control circuit 37. The DC current absorption amount control circuit 37 normally inputs an ON signal to the MOS transistor 36 when the current signal of −3 dBm that saturates the amplifier is input to the amplifier 21, and turns on the MOS transistor 36.

信号阻止回路17は、MOSトランジスタ34によって信号阻止量を制御する。トランスインピーダンスアンプ21と抵抗26は電気信号増幅回路を構成し、MOSトランジスタ27が増幅率制御回路を構成する。Vpdはフォトダイオード22の電源電圧であり、フォトダイオードのカソード端子に接続される。   The signal blocking circuit 17 controls the signal blocking amount by the MOS transistor 34. The transimpedance amplifier 21 and the resistor 26 constitute an electric signal amplifier circuit, and the MOS transistor 27 constitutes an amplification factor control circuit. Vpd is the power supply voltage of the photodiode 22 and is connected to the cathode terminal of the photodiode.

フォトダイオード22には光信号が入力され、光電変換によりアノード端子に電気信号が出力される。出力された電気信号は電気信号増幅回路13に入力される。フォトダイオード22からの信号電流は、阻止回路の抵抗32によって電流吸収回路36へは信号は流れ込まず、電気信号増幅回路13へと流れ込む。   An optical signal is input to the photodiode 22, and an electric signal is output to the anode terminal by photoelectric conversion. The output electric signal is input to the electric signal amplifier circuit 13. The signal current from the photodiode 22 does not flow into the current absorption circuit 36 due to the resistance 32 of the blocking circuit, but flows into the electric signal amplification circuit 13.

吸収電流量検出回路15は抵抗32によって電圧降下した電圧値を算出する。この値がある一定値よりも下がると、吸収電流量検知回路15は大電流が入力されたと判断し、制御回路35を制御し、MOSトランジスタ27をオン状態とする。この結果、抵抗26へ流れていた電流信号はMOSトランジスタ27へ流れ込み、利得が下がることになる。従って、大電流が入力されても電気信号増幅回路13は飽和することなく正常に動作することが可能となる。また、小電流入力時は制御回路35はオフとなり、MOSトランジスタ27もオフ状態で入力された信号は全て抵抗26を通り、増幅へ寄与しノイズを低減する。この結果、本回路を用いることにより、広ダイナミックレンジの回路を提供できる。   The absorption current amount detection circuit 15 calculates a voltage value in which the voltage is dropped by the resistor 32. When this value falls below a certain value, the absorption current amount detection circuit 15 determines that a large current has been input, controls the control circuit 35, and turns on the MOS transistor 27. As a result, the current signal that has flowed to the resistor 26 flows to the MOS transistor 27 and the gain decreases. Therefore, even if a large current is input, the electric signal amplifier circuit 13 can operate normally without being saturated. Further, when a small current is input, the control circuit 35 is turned off, and all the signals inputted in the off state of the MOS transistor 27 pass through the resistor 26 to contribute to amplification and reduce noise. As a result, a circuit with a wide dynamic range can be provided by using this circuit.

図6は、図5の第3の実施形態の変形例であり、図5の回路にヒステリシス回路38と高周波補償抵抗39が設けられている。ヒステリシス回路38は制御回路35と増幅率制御回路用MOSトランジスタ27のゲートとの間に接続され、MOSトランジスタ27のON/OFF動作の揺れを補償するために設けられている。高周波補償抵抗39はMOSトランジスタ27がOFF時の高周波信号劣化の影響を防ぐために設けられている。   FIG. 6 is a modification of the third embodiment of FIG. 5, and a hysteresis circuit 38 and a high frequency compensation resistor 39 are provided in the circuit of FIG. 5. The hysteresis circuit 38 is connected between the control circuit 35 and the gate of the amplification factor control circuit MOS transistor 27 and is provided to compensate for the fluctuation of the ON / OFF operation of the MOS transistor 27. The high frequency compensation resistor 39 is provided to prevent the influence of high frequency signal deterioration when the MOS transistor 27 is OFF.

図7を参照して第4の実施形態を説明する。この第3の実施形態によると、ダミー回路を設け、主回路とダミー回路との直流差分に従って直流電流の引き込み量を制御している。   A fourth embodiment will be described with reference to FIG. According to the third embodiment, a dummy circuit is provided, and the amount of direct current drawn is controlled according to the direct current difference between the main circuit and the dummy circuit.

図7の光受信回路によると、主回路は、光変換回路12のフォトダイオード22からの光電信号を電圧信号に可変的に変換増幅する主電気信号アンプ21と電気信号アンプ21に並列に接続される抵抗26とこの抵抗26の両端にそれぞれ接続されるソース及びドレインを有するMOSトランジスタ27とによって構成される。これに対して、ダミー回路は、ダミー電気信号アンプ41とこのダミー電気信号アンプ41に並列に接続される抵抗42とこの抵抗42の両端にそれぞれ接続されるソース及びドレインを有するMOSトランジスタ43とによって構成される。主電気信号アンプ21及びダミー電気信号アンプ41の出力部はDC差分検出回路44及び出力差動増幅器45に接続される。DC差分検出回路44の出力部は電流吸収器23の制御入力部に接続される。   According to the optical receiver circuit of FIG. 7, the main circuit is connected in parallel to the main electric signal amplifier 21 and the electric signal amplifier 21 that variably converts and amplifies the photoelectric signal from the photodiode 22 of the optical conversion circuit 12 into a voltage signal. And a MOS transistor 27 having a source and a drain connected to both ends of the resistor 26, respectively. On the other hand, the dummy circuit includes a dummy electric signal amplifier 41, a resistor 42 connected in parallel to the dummy electric signal amplifier 41, and a MOS transistor 43 having a source and a drain connected to both ends of the resistor 42, respectively. Composed. Output portions of the main electric signal amplifier 21 and the dummy electric signal amplifier 41 are connected to a DC difference detection circuit 44 and an output differential amplifier 45. The output part of the DC difference detection circuit 44 is connected to the control input part of the current absorber 23.

上記構成の光受信回路によると、主電気信号アンプ21及びダミー電気信号アンプ41の直流出力電圧成分の差分がDC差分検出回路44により検出され、この差分に応じて電流吸収器23がDC電流の引き込み量を制御する。   According to the optical receiver circuit having the above configuration, the difference between the DC output voltage components of the main electric signal amplifier 21 and the dummy electric signal amplifier 41 is detected by the DC difference detection circuit 44, and the current absorber 23 detects the DC current according to this difference. Control the pull-in amount.

図8は、図1の実施形態の光信号受光装置に光信号を入力し、電気信号増幅回路13から出力される信号の符号誤り率を測定した結果を示している。図8では、同時に従来からの技術を用いた場合の光信号受光装置に対する符号誤り率の測定結果も示されている。実線が本発明の実施形態の測定結果を示し、点線が従来例の測定結果を示している。符号誤り率は規格で設定された一定値で評価する。この場合、破線の位置の符号誤り率が規定値である。従来例では小信号入力時はノイズが大きいため低いレベルの信号を受信できない。また、大信号入力時はDC電流が電気信号増幅回路に流入するため、大信号を受信できない。この結果、ダイナミックレンジは18dBに留まる。一方、本発明では、小信号時はノイズが小さいため、低いレベルまで受信ができ、また、大信号時にはPDからのDC電流をDC電流吸収回路が吸収するため、受信可能となる。この結果、ダイナミックレンジは従来に比べ10dB広い28dBを得ることができる。   FIG. 8 shows the result of measuring the code error rate of the signal output from the electrical signal amplifier circuit 13 by inputting the optical signal to the optical signal receiving device of the embodiment of FIG. FIG. 8 also shows the measurement result of the code error rate for the optical signal receiving device when the conventional technique is used at the same time. The solid line shows the measurement result of the embodiment of the present invention, and the dotted line shows the measurement result of the conventional example. The code error rate is evaluated with a constant value set by the standard. In this case, the code error rate at the position of the broken line is a specified value. In the conventional example, when a small signal is input, a low level signal cannot be received due to a large noise. Further, when a large signal is input, a large current cannot be received because a DC current flows into the electric signal amplifier circuit. As a result, the dynamic range remains at 18 dB. On the other hand, in the present invention, since the noise is small when the signal is small, the signal can be received to a low level. When the signal is large, the DC current from the PD is absorbed by the DC current absorption circuit, so that the signal can be received. As a result, the dynamic range can be 28 dB which is 10 dB wider than the conventional one.

なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明は光通信システムとして、長距離光通信システム或いは、ギガビットイーサ等家庭用光送受信システムに適用できる。   The present invention is applicable as an optical communication system to a long-distance optical communication system or a home optical transmission / reception system such as Gigabit Ethernet.

本発明の第1の実施形態である光受信回路装置のブロック回路図1 is a block circuit diagram of an optical receiver circuit device according to a first embodiment of the present invention. 光小信号波形と光大信号波形の波形図Waveform diagram of small optical signal waveform and large optical signal waveform 本発明の第2の実施形態である光受信回路装置のブロック回路図The block circuit diagram of the optical receiver circuit device which is the 2nd Embodiment of this invention 図3の光受信回路装置の回路図Circuit diagram of the optical receiver circuit device of FIG. 本発明の第3の実施形態である光受信回路装置の回路図The circuit diagram of the optical receiver circuit device which is the 3rd Embodiment of this invention 図5の第3の実施形態の変形例である光受信回路装置の回路図FIG. 5 is a circuit diagram of an optical receiver circuit device which is a modification of the third embodiment of FIG. 本発明の第4の実施形態である光受信回路装置の回路図The circuit diagram of the optical receiver circuit device which is the 4th Embodiment of this invention 本発明と従来例による特性を示すグラフThe graph which shows the characteristic by this invention and a prior art example

符号の説明Explanation of symbols

11…電気信号増幅ICモジュール、12…光電変換回路、13…電気信号増幅回路、14…電流吸収回路、15…吸収電流量検知回路、16…増幅率制御回路、17…信号阻止回路、21…電気信号アンプ、22…フォトダイオード、23…電流吸収器、25…MOSトランジスタ、27、34,36…MOSトランジスタ、35…制御回路、37…DC電流吸収量制御回路、38…ヒステリシス回路、41…ダミー電気信号アンプ、44…DC差分検出回路 DESCRIPTION OF SYMBOLS 11 ... Electric signal amplification IC module, 12 ... Photoelectric conversion circuit, 13 ... Electric signal amplification circuit, 14 ... Current absorption circuit, 15 ... Absorption current amount detection circuit, 16 ... Amplification rate control circuit, 17 ... Signal blocking circuit, 21 ... Electrical signal amplifier, 22 ... photodiode, 23 ... current absorber, 25 ... MOS transistor, 27, 34, 36 ... MOS transistor, 35 ... control circuit, 37 ... DC current absorption amount control circuit, 38 ... hysteresis circuit, 41 ... Dummy electric signal amplifier, 44 ... DC difference detection circuit

Claims (5)

光信号を電流信号に変換する受光素子と、当該受光素子から出力される電流信号を電圧信号に可変的に変換増幅する変換増幅回路と、前記受光素子から出力される電流信号のうち直流電流を吸収する直流電流吸収回路と、前記直流電流吸収回路に吸収される前記直流電流を検知する吸収電流量検知回路と、前記吸収電流量検知回路の検知結果に基づいて前記変換増幅回路の増幅率を制御する増幅率制御回路とを具備することを特徴とする光受信回路装置。 A light receiving element for converting an optical signal into a current signal, and a conversion amplifier circuit for variably converting amplifying the current signal output from the light receiving element into a voltage signal, the DC current of the current signal outputted from said light receiving element A DC current absorption circuit for absorbing, an absorption current amount detection circuit for detecting the DC current absorbed by the DC current absorption circuit, and an amplification factor of the conversion amplification circuit based on a detection result of the absorption current amount detection circuit. An optical receiver circuit device comprising: an amplification factor control circuit for controlling. 前記直流電流吸収回路と前記変換増幅回路の入力端子との間に設けられる可変信号流入阻止回路を更に具備することを特徴とする請求項1に記載の光受信回路装置。   2. The optical receiver circuit device according to claim 1, further comprising a variable signal inflow blocking circuit provided between the DC current absorption circuit and an input terminal of the conversion amplifier circuit. 前記吸収電流量検知回路は前記信号流入阻止回路を通過する直流電流量を検知する手段を含むことを特徴とする請求項2に記載の光受信回路装置。   3. The optical receiver circuit device according to claim 2, wherein the absorption current amount detection circuit includes means for detecting a direct current amount passing through the signal inflow prevention circuit. 前記増幅率制御回路は前記変換増幅回路の負帰還素子に並列に接続されたMOSトランジスタにより構成されることを特徴とする請求項1乃至3のいずれか1に記載の光受信回路装置。   4. The optical receiver circuit device according to claim 1, wherein the amplification factor control circuit includes a MOS transistor connected in parallel to a negative feedback element of the conversion amplifier circuit. 5. 前記吸収電流量検知回路と前記増幅率制御回路との間に接続されるヒステリシス回路を具備することを特徴とする請求項1乃至4のいずれか1に記載の光受信回路装置。   5. The optical receiver circuit device according to claim 1, further comprising a hysteresis circuit connected between the absorption current amount detection circuit and the amplification factor control circuit.
JP2005075934A 2005-03-16 2005-03-16 Optical receiver circuit device Expired - Fee Related JP4253308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005075934A JP4253308B2 (en) 2005-03-16 2005-03-16 Optical receiver circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005075934A JP4253308B2 (en) 2005-03-16 2005-03-16 Optical receiver circuit device

Publications (2)

Publication Number Publication Date
JP2006262003A JP2006262003A (en) 2006-09-28
JP4253308B2 true JP4253308B2 (en) 2009-04-08

Family

ID=37100753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005075934A Expired - Fee Related JP4253308B2 (en) 2005-03-16 2005-03-16 Optical receiver circuit device

Country Status (1)

Country Link
JP (1) JP4253308B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081678B2 (en) 2008-03-24 2012-11-28 株式会社日立製作所 Optical signal receiving circuit
ES2714387T3 (en) 2016-09-15 2019-05-28 Knowledge Dev For Pof Sl Transimpedance amplifier for high-speed optical communications based on linear modulations
CN113624338B (en) * 2021-08-23 2024-06-11 深圳市杰芯创电子科技有限公司 Photoelectric detection chip and method for smart home

Also Published As

Publication number Publication date
JP2006262003A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4005401B2 (en) Amplifier circuit and optical communication device
JP4926408B2 (en) Photodetection circuit
US8841972B2 (en) Electronic device, fiber-optic communication system comprising the electronic device and method of operating the electronic device
US8050573B2 (en) Optical burst receiver and method
US20060202766A1 (en) Transimpedance amplifier with signal amplification circuit that performs power signal regulation
US8248165B2 (en) Amplifier and optical module performing gain control
JP6038165B2 (en) Receiver and receiving method
JP5459424B2 (en) Signal amplifier for optical receiver circuit
US6879217B2 (en) Triode region MOSFET current source to bias a transimpedance amplifier
US20200091881A1 (en) Differential trans-impedance amplifier
JP4253308B2 (en) Optical receiver circuit device
JP2003168933A (en) Photoreceiving circuit
US6876260B2 (en) Elevated front-end transimpedance amplifier
JP2005101798A (en) Reception circuit for optical space communication
JPH11127039A (en) Optical reception circuit and optical reception method
US7221229B2 (en) Receiver circuit having an optical reception device
US11405111B2 (en) Receiving circuit and optical receiver
US6714082B2 (en) Semiconductor amplifier circuit
KR100802518B1 (en) Transimpedance pre-amplifier with function of gain control
JP3999184B2 (en) Optical signal receiving apparatus and DC offset adjusting circuit
Schneider et al. Three-stage burst-mode transimpedance amplifier in deep-sub-/spl mu/m CMOS technology
Aznar et al. A highly sensitive 2.5 Gb/s transimpedance amplifier in CMOS technology
JP3826779B2 (en) Optical receiver circuit
JP5045370B2 (en) Semiconductor circuit device
JP2004363678A (en) Optical signal receiving apparatus and method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090123

R151 Written notification of patent or utility model registration

Ref document number: 4253308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees