JP4251844B2 - Solid wire for gas shielded arc welding - Google Patents

Solid wire for gas shielded arc welding Download PDF

Info

Publication number
JP4251844B2
JP4251844B2 JP2002289213A JP2002289213A JP4251844B2 JP 4251844 B2 JP4251844 B2 JP 4251844B2 JP 2002289213 A JP2002289213 A JP 2002289213A JP 2002289213 A JP2002289213 A JP 2002289213A JP 4251844 B2 JP4251844 B2 JP 4251844B2
Authority
JP
Japan
Prior art keywords
wire
mass
welding
amount
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002289213A
Other languages
Japanese (ja)
Other versions
JP2004122170A (en
Inventor
圭 山▲崎▼
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002289213A priority Critical patent/JP4251844B2/en
Publication of JP2004122170A publication Critical patent/JP2004122170A/en
Application granted granted Critical
Publication of JP4251844B2 publication Critical patent/JP4251844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉄骨、橋梁、造船及び自動車等の溶接に広く使用されるガスシールドアーク溶接用ソリッドワイヤに関し、特に、軟鋼又は490N/mm級高張力鋼を炭酸ガスシールドアーク溶接する際、高能率で機械的性質及び溶接作業性が優れ、かつ高温割れ感受性が低く良好で健全な溶接金属を得ることができるガスシールドアーク溶接用ソリッドワイヤに関する。
【0002】
【従来の技術】
炭酸ガス等をシールドガスとするガスシールドアーク溶接方法の適用は、その高能率性から急速に普及し、現在最も使用量が多い溶接方法となっている。更に、溶接ロボットの普及に伴い溶接能率が飛躍的に向上してきており、溶接電流の増加及び連続溶接化が可能となっている。しかし、従来の溶接用ソリッドワイヤを使用した場合、これらの高能率溶接を行うことにより、高電流化による大入熱化及び連続溶接化による高パス間温度化が溶接金属の強度及び靭性を劣化させてしまい、溶接金属が必要な機械的性質を満足できなくなる。更に、高電流化に伴い、スパッタ発生量が急増すると共に、アーク安定性も劣化するため、溶接作業者に生じる負担は大きい。
【0003】
以上の問題点から、大入熱・高パス間温度溶接を考慮し、機械的性質の向上を図った溶接ワイヤ及び溶接方法が、従来技術として下記のとおり、いくつか提案されている。
【0004】
Ti、B、N含有量、更にはC、Si、Mn、O、Mo等の含有量を規定することによって、大入熱及び高パス間温度で溶接しても、十分な強度、衝撃靭性、及びCOD特性が得られるガスシールドアーク溶接用ワイヤが特開平11−090678号公報(以下、特許文献1)に記載されている。
【0005】
また、C、Si、Mn、P、S、Cu、Ti、B、Al、O含有量、及びV、Nbの含有量を規定し、かつ、Mp(=C+Si+Mn/20+Ti/10+V/4+Nb/2+5B)を0.21%以上、Cs(=Mn/5+20B+P+S−2C=Ti)を0.25%以下、Al/Oを0.2〜2.2とすることによって、大入熱・高パス間温度条件でも溶接金属の強度及び靭性を劣化させることがないガスシールドアーク溶接用ワイヤが特開2001−287086号公報(以下、特許文献2)に記載されている。
【0006】
更に、C、Si、Mn、Ti、Cr、Mo、B、Cu、Ni、K、S含有量を規定し、かつ、CEQ(=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4)を0.40%以上、MEQ(={0.2×(Mo+Cr)+0.07}/CEQ)を0.10〜0.20、KEQ(=50×K+0.5×S)/(Ti+Si+Al))を0.02〜0.10と規定することによって、大入熱・高パス間温度の溶接条件下において、溶接金属の機械的性能を確保しながら低入熱溶接条件下での溶接作業性を同時に満足し得るガスシールドアーク溶接用ワイヤが特開2002−79395号公報(以下、特許文献3)に開示されている。
【0007】
更にまた、C、Si、Mn、Ti、B、Al、Cr、Mo、Cu、P含有量を規定し、更にPBT=[B]×10/[Ti]によって算出されるPBTを12≦PBT≦40、PBS=[B]×[S]×10によって算出されるPBSを10以下に規定することによって、大入熱・高パス間温度の溶接条件下において溶接金属の機械的性能を確保することができると共に、耐割れ性を向上させることができるガスシールドアーク溶接用ワイヤが特開平10−230387号公報(以下、特許文献4)に開示されている。
【0008】
更にまた、スパッタの発生低減とアーク安定化向上を図った溶接ワイヤ及び溶接方法が従来技術として下記の通りいくつか提案されている。
【0009】
電離電圧が低いLi、Na、K、Ba等の元素の内、1元素を溶接ワイヤ表面に付着させ、アークの安定化を図った溶接ワイヤが特開昭58−3797号公報(以下、特許文献5)に開示されている。
【0010】
また、溶滴の微細化のために、表面張力低下作用のあるOについて、溶接ワイヤ製造工程中の焼鈍の過程を利用して粒界酸化で表層部に富化された酸素の作用によりアークの安定化及びスパッタ低減を図った溶接ワイヤが特公昭63−21595号公報(以下、特許文献6)に開示されている。
【0011】
更に、ワイヤ表面処理技術として、ワイヤ表面の銅メッキ層の厚さ指数を制御した溶接ワイヤが特開平7−100687号公報(以下、特許文献7)に提案されている。
【0012】
【特許文献1】
特開平11−090678号公報
【特許文献2】
特開2001−287086号公報
【特許文献3】
特開2002−79395号公報
【特許文献4】
特開平10−230387号公報
【特許文献5】
特開昭58−3797号公報
【特許文献6】
特公昭63−21595号公報
【特許文献7】
特開平7−100687号公報
【0013】
【発明が解決しようとする課題】
しかしながら、上記特許文献1〜4に記載の溶接用ソリッドワイヤでは、入熱40kJ/cm、パス間温度350℃の高能率溶接における溶接金属の機械的性質は、ある板厚及び開先角度では十分な性能が確保できるものの、最近の板厚増加傾向及び狭開先化傾向に対応しつつ、大入熱・高パス間温度下における高温割れ感受性が優れた溶接材料であるとはいい難かった。また、高電流条件下における溶接作業性についても同様であった。
【0014】
また、特許文献5についても、これらの元素を工業的にワイヤ表面に均一かつ安定に付与することが困難であるという問題点がある。
【0015】
更に、特許文献6についても、ある程度の効果は得られるが、最近の板厚増加傾向及び狭開先化傾向のもとで、大入熱・高パス間温度下における高温割れ感受性を十分に高めたとはいえず、酸素の富化によってスラグ発生量が増大し、溶接スラグ除去に時間と費用を要するという問題点があった。
【0016】
更にまた、特許文献7については、メッキ膜の付着性を目的とし、銅メッキの量と厚さにのみ着目したものであって、最近の板厚増加傾向及び狭開先化傾向のもとで、大入熱・高パス間温度下における高温割れ感受性は不十分であった。
【0017】
大入熱・高パス間温度下でも、優れた機械的性質を有する溶接金属を得るためには、上記特許文献7に記載の発明でも規定しているように、溶接ワイヤ中にある程度以上の合金元素を含有させることになるが、これに起因して高温割れ感受性が高まる。また、大入熱溶接では高電流によるアーク力の増大と溶滴の大粒化に起因して、スパッタ量及びアーク安定性等の溶接作業性が著しく劣化する。
【0018】
本発明はかかる問題に鑑みてなされたものであって、従来の入熱40kJ/cm、パス間温度350℃の大入熱・高パス間温度での高能率溶接においても優れた機械的性質の溶接金属が得られると共に、厚板及び狭開先鋼板における大入熱及び高パス間温度溶接においても、高温割れ感受性が低く、溶接金属の機械的性質が優れており、更に優れた溶接作業性を併せもつガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明に係るガスシールドアーク溶接用ソリッドワイヤは、鋼芯線の周面にCuめっき層が形成されたガスシールドアーク溶接用ソリッドワイヤにおいて、C:0.01乃至0.07質量%、Si:0.50乃至1.00質量%、Mn:1.75乃至2.30質量%、Mo:0.05乃至0.45質量%、Ti:0.13乃至0.28質量%、P:0.020質量%以下、Cuめっき層及び芯線中のCuを含めた全Cu:0.33質量%以下、めっき層のCu:0.10質量%以上、芯線表面に付着しているSを含めた全S:0.003乃至0.020質量%、芯線表面に付着しているS及び芯線表面から50μm以内の芯線表層部に埋め込まれているSの総和:0.03(g/ワイヤ10kg当たり)以上、B:0.0009質量%以下、As+Sb+Sn:0.01質量%以下、残部:Fe及び不可避的不純物であることを特徴とする。
【0020】
このガスシールドアーク溶接用ソリッドワイヤにおいて、更に、Mo:0.05乃至0.45質量%とすることもできる。
【0021】
【発明の実施の形態】
以下、本発明について詳細に説明する。本願発明者等は、前記課題を解決すべく鋭意実験研究を重ねた結果、従来の大入熱及び高パス間温度での溶接において生じていた問題点(高温割れ感受性、スパッタ量、アーク安定性)は、以下の現象により生じていることを知見した。
【0022】
<高温割れ発生現象とそれを防止するために生ずる問題点>
大入熱・高パス間温度で良好な機械的性質を得るために添加しているワイヤ中のBは、少量の添加でもFe−C系合金状態図の固液共存温度範囲を著しく拡大する。ワイヤ中に含まれるC及びSにも同様の作用があり、これらの低融点の液相が凝固の最終段階で粒界に偏析すると高温割れの危険性が高くなる。また、凝固時の初晶としてγ相が多いと、凝固の最終段階において、S、As、Sb及びSn等による低融点化合物が粒界に濃縮され、偏析することとなる。従って、ワイヤ中のγ相安定化元素が多いほど高温割れの危険性が高く、その中でもC及びCuはその作用が大きい。ところが、B、C、S、Cuについては、高温割れを防止するためにその添加量を抑制すると、夫々以下のような問題点が発生する。
【0023】
Bの抑制:大入熱・高パス間温度条件下において溶接金属の靭性が低下してしまう。
【0024】
Cの抑制:大入熱・高パス間温度条件下において溶接金属の強度が低下してしまう。
【0025】
Sの抑制:高電流溶接において溶滴の表面張力が大きくなり、スムースな溶滴の離脱を妨げるため、スパッタ発生量が増加すると共に溶接ビードと溶接母材とのなじみが悪くなる。
【0026】
Cu(Cuめっき)の抑制:高電流溶接においてコンタクトチップとの通電が不安定となり、コンタクトチップとワイヤの融着、アーク不安定、スパッタ発生量の増加を誘発する。また、ワイヤ先端の溶滴表面が酸素を吸収してしまい、溶接金属中の酸素量が増加してしまうため、靭性が低下してしまう。
【0027】
<スパッタ発生及びアーク不安定現象>
スパッタの発生原因については、一般に次のような現象が認められている。アーク溶接では、溶接ワイヤ先端に形成された溶滴が溶融池へ短絡すると、それに伴って生じる電流の増加によって短絡が開放され、再びアークが発生するといった現象を繰り返す。短絡を開放してアークが再生する際に、溶滴又は溶融池の一部が周囲に飛び散り、これがスパッタとなる。再生したアークの押し上げ作用により、溶接ワイヤ先端に残った溶滴が上方に強く押し上げられ、比較的大塊となった溶滴が溶融池に短絡し、時折、溶滴が溶融池へ移行することなくアークが再発生することがある。その結果、溶滴が溶接ワイヤ先端に大塊のままで残った状態で短絡の開放が行われ、そのアーク力によって大粒又は多量のスパッタが発生する。また、ワイヤ先端で溶滴が大きくなる場合には、アークの反発力により溶滴が激しく揺れ動き、アークが不安定となる。そこで、スパッタ発生及びアーク不安定の防止に対して、溶滴の微細化が必要となる。
【0028】
本発明者等は、これらの得られた知見を考慮しつつ、高温割れ感受性を高める元素の添加を抑制しながらも、他元素添加量の調整により、従来の入熱40kJ/cm、パス間温度350℃の大入熱及び高パス間温度溶接でも優れた機械的性質及び優れた溶接作業性を有するソリッドワイヤを以下に述べる方法によって完成した。
【0029】
即ち、ワイヤ中のB量を溶解時、必然的に含有される量以下(≦0.0009質量%)に規定することによってBによる低融点化を抑制し、高温割れ感受性を低減した。但し、Si:0.50乃至1.00質量%、Mn:1.75乃至2.30と規定することによって、大入熱・高パス間温度条件下における靭性低下を補う。
【0030】
ワイヤの全Cu量を0.33質量%以下に規制することによって、Cuによるγ相安定化及び結晶粒界偏析を防止し、溶接金属の高温割れ感受性を低減した。更に、ワイヤ表面のめっきCu量を0.10質量%以上に規制することによって、高電流溶接時のコンタクトチップにおけるワイヤの融着、アーク不安定、スパッタの増大を抑制すると共に、ワイヤ先端の未溶融部分につながる溶滴表面をCuが覆い、溶滴の酸素吸収が抑制され溶接金属中の酸素量が減少するため、大入熱・高パス間温度においても靭性を向上させることができた。
【0031】
ワイヤ中の全S量を0.020質量%以下に規定することにより、Sによる低融点化合物の生成を抑制し、高温割れ感受性を低減した。また、別途、ワイヤ表面に付着させたS量及び表面から50μm以内の表層部に埋め込んだS量の総和を0.03(g/ワイヤ10kg)以上とすることにより溶滴の表面張力を低下させて溶滴の微細化を図り、スパッタ量を低減させた。
【0032】
次に、本発明にて規定する組成の数値限定理由について詳述する。
【0033】
C:0.01乃至0.07質量%
Cは溶接金属の強度を確保するために有用な元素であり、脱酸元素としての効果もある。一方、上記のようにCはγ安定化元素である上に過剰に添加すると固液共存温度範囲を拡大するため高温割れ感受性を劣化させる。その含有量が0.01質量%未満では溶接金属の強度が不足し、0.07%を超えると高温割れが発生しやすくなるため0.01乃至0.07質量%に規定する。
【0034】
Si:0.50乃至1.00質量%
Siは脱酸元素として、CO溶接やMAG溶接のワイヤに不可欠な元素である。Siはその含有量が0.50%未満では脱酸効果が不十分でブローホールが発生しやすくなる上、溶接母材とのなじみが悪くなり、溶接金属の強度も不足する。また、1.00質量%を超えると溶接金属中の含有量が過多となり靭性が低下し、スラグ量及びスパッタ発生量も増加する。したがって、0.50乃至1.00質量%に規定する。
【0035】
Mn:1.75乃至2.30質量%
MnはSiとともに脱酸元素として不可欠な元素であるだけでなく、溶接金属の機械的性質を向上させる元素である。Mnの含有量が1.75質量%未満では溶接金属中の含有量が不足するため十分な強度、靭性を得ることができない。しかしながら、その含有量が2.30質量%を超えると溶接金属中の含有量が過多となり靭性が劣化し、スラグ量及びスパッタ発生量も増加する。したがって1.75乃至2.30質量%に規定する。
【0036】
Ti:0.13乃至0.28質量%
Tiは比較的入熱の高いガスシールドアーク溶接用ワイヤにおいて、アークを安定させてスパッタを減少させ、ブローホールの発生を防止すると同時に機械的性質を向上させる効果がある。しかしながら、その含有量が0.13質量%未満ではそれらの効果が乏しく、一方、0.28質量%を超える場合にはスラグ量が増大する上、靭性も劣化する。したがって、0.13乃至0.28質量%に規定する。
【0037】
P:0.020質量%以下
Pは溶接にとって極めて悪影響が大きい元素であり、高温割れ感受性及び低温靭性を著しく劣化させる。したがって、ワイヤ中のP含有量はできる限り抑制することが必要であるため本発明では0.020質量%以下とした。
【0038】
Cuめっき部及び原線中のCuも含めたワイヤの全Cu量が0.33質量%以下であり、かつ、めっきCu量が0.10質量%以上
Cuめっき部及び原線中のCuを含む全Cu量が0.33質量%を超えると溶接金属中のCu量が過剰となり、高温割れが極めて発生しやすくなる。また、ワイヤ表面を覆うめっきCu量が0.10質量%未満であれば、通電が不安定となる上、溶滴表面から酸素を吸収してしまい、溶接金属の靭性が低下する。これに対して、めっきCu量が0.10質量%以上存在すれば、通電が安定する上、ワイヤ先端の未溶融部分につながる溶滴表面をCuが覆い、溶滴の酸素吸収が抑制され溶接金属中の酸素量が減少するため大入熱・高パス間温度においても良好な靭性を呈する。したがって、全Cu量を0.33質量%以下、めっきCu量が0.10質量%以上と規制する。
【0039】
ワイヤの全S量が0.003乃至0.020質量%であり、かつ、ワイヤ表面に付着させたS量及び表面から50μm以内の表層部に埋め込んだS量の総和:0.03g/10kg以上
Sは上述したように高温割れ感受性を増大させる元素である。本発明の溶接ワイヤにおいてもワイヤの全S量が0.020質量%を超えると、高温割れが極めて発生しやすくなる。一方、ワイヤ中の全S量が0.003質量%未満では溶融池の表面張力が過大となり、ビード形状が凸となるため、溶接母材とのなじみが悪くなる。よって、ワイヤの全S量を0.003乃至0.020質量%とする。また、ワイヤ表面に付着させたS量及び表面から50μm以内の表層部に埋め込んだS量の総和を0.03g/10kg以上とすることによって、溶滴の表面張力を低下させ溶滴の微細化を図り、スパッタの発生を抑制することができる。
【0040】
Bが0.0009質量%以下
Bは結晶粒の微細化を促進し靭性を向上させる。したがって、従来の大入熱・高パス間温度下で使用される溶接ワイヤにはある程度以上のBが含有されている。しかし、上記のようにBは高温割れ感受性を非常に増大させる欠点も有しており、大入熱・高パス間温度溶接下において、その弊害は特に大きい。したがって、ワイヤ中のB量を溶解時、必然的に含有される量である0.0009質量%以下に規定する。
【0041】
As+Sb+Snが0.01質量%以下
凝固の最終段階において、As、Sb及びSnなどによる低融点化合物が粒界に濃縮され偏析すると高温割れ感受性を著しく劣化させる。したがって、これら不純物元素については総和が0.01質量%以下となるように規定する。
【0042】
Mo:0.05乃至0.45質量%
Moは溶接金属への微量の添加により焼入れ性を向上させ、大入熱・高パス間温度下において結晶粒の粗大化を防止し、強度及び靭性を向上させる元素である。ワイヤ中のMo量が0.05質量%未満ではこの効果が得られない。また、0.45質量%を超えると焼入れ性が高くなりすぎて低入熱溶接時に溶接金属が硬化し、低温割れが発生しやすくなる。従って、0.05乃至0.45質量%に規定する。
【0043】
以下、本発明のソリッドワイヤの製造方法について説明する。通常、鋼ワイヤは溶解、熱間圧延、伸線の工程を経て5mm径程度に加工され、ワイヤ製造の各工程に原線として供される。溶鋼段階で全体の成分組成を調整した原線は、前処理工程の後、図1の左側のフローチャートに示すように、焼鈍工程、Cuめっき工程、中間伸線工程、仕上げ伸線工程等を経て製品に仕上げられる。又は、図1の右側のフローチャートに示すように、中間伸線工程、焼鈍工程、Cuめっき工程、仕上伸線工程を経て、製品とされる。以下に、前処理工程、焼鈍工程、Cuめっき工程、及び伸線工程の各工程について説明する。
【0044】
(1)前処理工程
本明細書において、酸洗又は機械的研磨等のスケール除去のための工程を、前処理工程という。この工程において、スケールの噛み込み部分を除去してできるワイヤ表面の酸洗ピット、又はくさび状亀裂を利用して、中間伸線時又は仕上伸線時に塗布した硫化物を、これらのピット又は亀裂に埋め込むことによって、表面及び表層部のSを濃化させることができる。
【0045】
(2)焼鈍工程
焼鈍工程においてワイヤ表層部に亀裂状の粒界酸化層を生じさせ、中間伸線時又は仕上げ伸線時に塗布した硫化物を粒界酸化層の亀裂に埋め込むことによって、表面及び表層部のSを濃化させることができる。但し、酸化力の強い雰囲気において焼鈍すると、太くて深い粒界酸化が生成し、また表層の粒界酸化はスケールロスされるため、粒界酸化の生成状態は不規則なものとなる。本発明ワイヤにおいて、焼鈍工程で深さ50μm以下の細くて均一な粒界酸化を発生させるためには、雰囲気ガスを0.5%CO以下、0.3%CO以下、0.4%O以下、残部Nとして、焼鈍温度を700〜800℃、焼鈍時間を30〜120分とする必要がある。
【0046】
(3)Cuめっき工程
溶接ワイヤのめっき方法には、5mm径程度の原線で行うもの、2mm径程度の中間径で行うもの、最終製品径で行うものなどがあり、その方法も電気めっき及び化学めっき等、様々である。例えば、本発明ワイヤを、図1の右側のフローチャートに示すように、中間径にて銅シアンめっきで実施するなら、めっき浴温度を60〜80℃、CuCN濃度を90〜160g/リットル、NaCN濃度を3〜9g/リットル、NaCO濃度を40〜170g/リットルとする。
【0047】
(4)伸線工程
中間伸線時又は仕上げ伸線時に硫化物を塗布及び/又は粒界酸化層に埋め込むことによって、表面及び表層部のSを濃化させる。硫化物はMoS、WS、FeS等により構成された固体粉末を植物油、動物油、鉱物油、合成油のうち1種類を基油とした複合潤滑油中に分散させる。これをワイヤ表面に塗布する方法には伸線潤滑剤としてスキンパスで塗布する方法、又はフェルト等に染み込ませてそれをワイヤ表面に押し付けて塗布する方法、更に複合潤滑剤を霧化し、その霧中にワイヤをくぐらせ、ワイヤ表面に塗布する方法がある。また、塗布したこれらの物質を強固にワイヤ表層部に埋め込む方法としては、中間伸線工程及び仕上伸線工程で穴ダイス又はローラーダイスを使用することにより、前処理工程又は焼鈍工程で、細く均一に発生したワイヤ表層の亀裂又は粒界酸化層に、これらの複合潤滑剤を均一に埋め込む方法がある。
【0048】
なお、ワイヤ表面及び表面から50μm以内の表層部のS量は、次のようにして求められる。ワイヤ全体をエタノール、アセトン又は石油エーテル等の有機溶媒中で超音波洗浄する。洗浄液をろ紙で濾過した後、ろ紙を乾燥させる。このろ紙を乾燥した後、混合水溶液(硫酸(濃硫酸:水が1:1)、濃化塩素酸、濃硝酸を混合した水溶液)により、ろ紙と表面付着物(MoS、WS、FeS等)とを分解し、溶解する。そして、原子吸光法によりMo、W、Fe等を定量化する。この測定量を(a)とする。
【0049】
有機溶媒で洗浄後のワイヤを塩酸溶液に浸漬して溶解することによって、表面から50μm以内の表層部に埋め込まれたMoS、WS、FeS等を遊離させることができる。そして、この溶液をろ紙で濾過した後、上記の方法と同様の過程で、Mo、W、Fe等を定量化する。この測定量を(b)とする。
【0050】
そうすると、ワイヤ表面及び表面から50μm以内の表層部のMo、W、Fe等の総量(c)は下記数式1で算出することができる。
【0051】
【数1】
(c)=(a)+(b)
【0052】
そして、(c)をS量に換算し、ワイヤ10kg当たりの量を算出する。
【0053】
【実施例】
次に、本発明の実施例について、比較例と比較して具体的に説明する。下記表1(実施例)及び表2(比較例)に示す化学成分のワイヤを使用して、表3に示す大入熱・高パス間温度の試験条件で、図2に示すレ型の開先形状の継手を溶接し、溶接金属の機械的性質(強度、靭性)について試験した。なお、各試験片の採取位置は、図3に示すように、溶接側の表面から7mm下方の位置を中心とする円柱状の領域を溶接金属の部分から切り出したものである。また、表1及び表2の数値の単位は、表面及び表層のS量を除き、質量%である。表面及び表層のS量は、ワイヤ10kgあたりのg数である。そして、表4に示す溶接条件にてスパッタ捕集箱の中でビードオンプレート溶接を行い、スパッタを採取し評価した。更に、表3に示す溶接条件、図2に示す開先形状にて溶接を行い、スラグを採取した。また、その際、試験体1時間放置後のスラグ剥離量を別途採取し、スラグ剥離性も評価した。高温割れについてはC型冶具拘束突合せ割れ(フィスコ)割れ試験(JIS Z 3155)及び表5に示す溶接条件、図4に示す厚板拘束試験体を用いて高温割れの有無を確認した。低温割れについてはU型溶接割れ試験(JIS Z3157)及び表6に示す溶接条件、図5に示す試験体を用いて窓枠拘束割れ試験を実施し、割れの有無を確認した。下記表7及び8にその試験結果を示す。なお、表9にその判定基準を示す。
【0054】
【表1】

Figure 0004251844
【0055】
【表2】
Figure 0004251844
【0056】
【表3】
Figure 0004251844
【0057】
【表4】
Figure 0004251844
【0058】
【表5】
Figure 0004251844
【0059】
【表6】
Figure 0004251844
【0060】
【表7】
Figure 0004251844
【0061】
【表8】
Figure 0004251844
【0062】
【表9】
Figure 0004251844
【0063】
この表7に示すように、実施例1乃至18は本発明の請求項を満足するものであるので、いずれも強度及び靭性が高く、ビード外観が良好であり、スパッタが少なく、スラグ量も少なく、スラグ剥離性、耐高温割れ性が優れているものである。但し、実施例1はCが若干少なく、溶接金属の強度が若干低い(525N/mm)。実施例3はSiがやや少なく、溶接金属の強度が若干低い(527N/mm)。また、母材とのなじみがやや悪い。実施例4はSiがやや多く、溶接金属の靭性がやや低い(110J)。また、スラグ量及びスパッタ量がやや多い。実施例5はMnがやや少なく、溶接金属の強度及び靭性がやや低い(531N/mm及び106J)。実施例6はMnがやや多く、スラグ量及びスパッタ量がやや多い。実施例10は表面Sが若干少なく、スパッタ量がやや多い。実施例12はめっきCuがやや少なく、溶接金属の靭性がやや低い(115J)。またスパッタ量がやや多い。実施例13は請求項2を満足する実施例の中で、Moが若干少ないので、溶接金属の強度がやや低い(520N/mm)。実施例16はTiが若干多くスラグ量がやや多い。
【0064】
これに対し、表8に示す比較例19乃至36は、本発明の請求項1から外れるものである。比較例19はCが少なく、溶接金属の強度が低い(503N/mm)。比較例20はCが多く、高温割れが発生した。比較例21はSiが少なく、溶接金属の強度が低い(488N/mm)。また、母材とのなじみがやや悪い。比較例22はSiが多く、溶接金属の靭性が低い(63J)。また、スラグ量及びスパッタ量が多い。比較例23はMnが少なく、溶接金属の強度及び靭性が低い(512N/mm及び65J)。比較例24はMnが多く、溶接金属の靭性が低い(81J)。スラグ量及びスパッタ量が若干多い。比較例25はPが多く、高温割れが発生した。比較例26は全Sが少なく、母材とのなじみがやや悪い。比較例27は全Sが多く、高温割れが発生した。比較例28は表面Sが少なく、スパッタ量が多い。比較例29は全Cuが多く、高温割れが発生した。比較例30はめっきCuが少なく、溶接金属の靭性が低い(95J)。またスパッタ量が多い。また、比較例31はMoが少なく、溶接金属の強度が低い(492N/mm )。比較例32は、Moが多く低温割れが発生し、耐低温割れ性が低いものであった。比較例33はTiが少なく、スパッタ量が多い。比較例34はTiが多く、溶接金属の靭性が低い(85J)。また、スラグ量が若干多い。比較例35はBが多く、高温割れが発生した。比較例36はAs+Sb+Snが多く、高温割れが発生した。
【0065】
【発明の効果】
以上詳述したように本発明によれば、軟鋼及び490N/mm級高張力鋼を、入熱40kJ/cm、パス間温度350℃のような大入熱・高パス間温度での高能率溶接においても、優れた機械的性質の溶接金属が得られると共に、高温割れ感受性が低い溶接金属を得ることができる。また、上記のような大入熱溶接においてもスパッタ量、アーク安定性などの溶接作業性が良好となる。従って、本発明により高能率溶接を実施しながら、従来よりも健全な溶接金属が得られため補修工程も大幅に低減できる上に、溶接作業性が良好であるためオペレータにかかる負担も軽減できる。
【図面の簡単な説明】
【図1】ワイヤ製造工程を示すフローチャート図である。
【図2】継手形状を示す図である。
【図3】試験片採取位置を示す図である。
【図4】試験体の形状及び寸法を示す図である。
【図5】拘束板及び試験体の形状及び寸法を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid wire for gas shielded arc welding widely used for welding steel frames, bridges, shipbuilding, automobiles and the like, and in particular, mild steel or 490 N / mm.2Solid wire for gas shielded arc welding that can provide high-efficiency, high mechanical properties and welding workability, good low temperature cracking susceptibility, and good and healthy weld metal when welding high-grade steel About.
[0002]
[Prior art]
The application of the gas shielded arc welding method using carbon dioxide gas or the like as a shielding gas has rapidly spread due to its high efficiency and has become the welding method with the largest amount of use at present. Furthermore, with the widespread use of welding robots, the welding efficiency has improved dramatically, enabling an increase in welding current and continuous welding. However, when conventional welding solid wires are used, these high-efficiency weldings result in high heat input due to high current and high interpass temperature due to continuous welding, which deteriorates the strength and toughness of the weld metal. As a result, the weld metal cannot satisfy the required mechanical properties. Furthermore, as the current increases, the amount of spatter increases rapidly and the arc stability also deteriorates, so the burden on the welding operator is large.
[0003]
In view of the above problems, several welding wires and welding methods that have improved mechanical properties in consideration of high heat input and high-pass temperature welding have been proposed as described below.
[0004]
By prescribing the contents of Ti, B, N, and further C, Si, Mn, O, Mo, etc., sufficient strength, impact toughness, even when welding at high heat input and high interpass temperature, Further, a gas shielded arc welding wire capable of obtaining COD characteristics is described in Japanese Patent Laid-Open No. 11-090678 (hereinafter referred to as Patent Document 1).
[0005]
Further, the contents of C, Si, Mn, P, S, Cu, Ti, B, Al, O, and the contents of V and Nb are defined, and Mp (= C + Si + Mn / 20 + Ti / 10 + V / 4 + Nb / 2 + 5B) 0.21% or more, Cs (= Mn / 5 + 20B + P + S-2C = Ti) is 0.25% or less, and Al / O is 0.2 to 2.2. However, a gas shielded arc welding wire that does not deteriorate the strength and toughness of the weld metal is described in Japanese Patent Application Laid-Open No. 2001-287086 (hereinafter referred to as Patent Document 2).
[0006]
Further, the contents of C, Si, Mn, Ti, Cr, Mo, B, Cu, Ni, K, and S are specified, and CEQ (= C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4) is 0.40. % Or more, MEQ (= {0.2 × (Mo + Cr) +0.07} / CEQ) is 0.10 to 0.20, KEQ (= 50 × K + 0.5 × S) / (Ti + Si + Al)) is 0.02 By defining ˜0.10, welding workability under low heat input welding conditions can be satisfied at the same time while ensuring the mechanical performance of the weld metal under welding conditions of high heat input and high pass temperature. A gas shielded arc welding wire is disclosed in Japanese Patent Application Laid-Open No. 2002-79395 (hereinafter, Patent Document 3).
[0007]
Furthermore, the contents of C, Si, Mn, Ti, B, Al, Cr, Mo, Cu and P are defined, and further PBT= [B] x 103/ P calculated by [Ti]BT12 ≦ PBT≦ 40, PBS= [B] x [S] x 105P calculated byBSFor gas shielded arc welding, the mechanical performance of the weld metal can be ensured and the crack resistance can be improved under welding conditions of high heat input and high pass temperature. A wire is disclosed in Japanese Patent Laid-Open No. 10-230387 (hereinafter referred to as Patent Document 4).
[0008]
Furthermore, several welding wires and welding methods that have reduced spatter generation and improved arc stabilization have been proposed as follows.
[0009]
A welding wire in which one of the elements such as Li, Na, K, and Ba having a low ionization voltage is adhered to the surface of the welding wire to stabilize the arc is disclosed in Japanese Patent Laid-Open No. 58-3797 (hereinafter referred to as Patent Document). 5).
[0010]
In addition, for the refinement of droplets, O having surface tension lowering effect is utilized by the action of oxygen enriched in the surface layer by grain boundary oxidation using the annealing process in the welding wire manufacturing process. A welding wire designed to stabilize and reduce spatter is disclosed in Japanese Patent Publication No. 63-21595 (hereinafter referred to as Patent Document 6).
[0011]
Furthermore, as a wire surface treatment technique, a welding wire in which the thickness index of the copper plating layer on the surface of the wire is controlled is proposed in Japanese Patent Application Laid-Open No. 7-100687 (hereinafter referred to as Patent Document 7).
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-090678
[Patent Document 2]
JP 2001-287086 A
[Patent Document 3]
JP 2002-79395 A
[Patent Document 4]
JP-A-10-230387
[Patent Document 5]
JP 58-3797 A
[Patent Document 6]
Japanese Patent Publication No. 63-21595
[Patent Document 7]
Japanese Patent Application Laid-Open No. 7-100687
[0013]
[Problems to be solved by the invention]
However, in the solid wires for welding described in Patent Documents 1 to 4, the mechanical properties of the weld metal in high-efficiency welding with a heat input of 40 kJ / cm and an interpass temperature of 350 ° C. are sufficient for a certain plate thickness and groove angle. However, it is difficult to say that it is a welding material with excellent hot cracking susceptibility under high heat input and high pass temperature while responding to the recent trend of increasing plate thickness and narrowing of the groove. The same was true for welding workability under high current conditions.
[0014]
Also, Patent Document 5 has a problem that it is difficult to apply these elements to the wire surface uniformly and stably industrially.
[0015]
Furthermore, Patent Document 6 can achieve a certain degree of effect, but under the recent trend of increasing the thickness and narrowing of the groove, the sensitivity to high temperature cracking under high heat input and high pass temperature is sufficiently increased. However, the amount of slag generated increases due to enrichment of oxygen, and there is a problem that it takes time and cost to remove the weld slag.
[0016]
Furthermore, Patent Document 7 aims at adhesion of the plating film and focuses only on the amount and thickness of the copper plating. Under the recent tendency to increase the plate thickness and the tendency to narrow the groove. The high temperature cracking sensitivity under high heat input and high pass temperature was insufficient.
[0017]
In order to obtain a weld metal having excellent mechanical properties even under large heat input and high-pass temperatures, as specified in the invention described in Patent Document 7, an alloy having a certain level or more is included in the weld wire. Although an element will be contained, the hot cracking susceptibility increases due to this. Further, in high heat input welding, welding workability such as spatter amount and arc stability is remarkably deteriorated due to an increase in arc force due to a high current and an increase in droplet size.
[0018]
The present invention has been made in view of such a problem, and has excellent mechanical properties even in high-efficiency welding at a high heat input / high pass temperature with a conventional heat input of 40 kJ / cm and a pass-to-pass temperature of 350 ° C. In addition to obtaining weld metal, high-heat input and high-pass temperature welding on thick and narrow gap steel sheets are also less susceptible to hot cracking, and have superior weld metal mechanical properties, and even better workability. An object of the present invention is to provide a solid wire for gas shielded arc welding having both of the following.
[0019]
[Means for Solving the Problems]
  The solid wire for gas shielded arc welding according to the present invention is a solid wire for gas shielded arc welding in which a Cu plating layer is formed on the peripheral surface of a steel core wire. C: 0.01 to 0.07 mass%, Si: 0 .50 to 1.00% by mass, Mn: 1.75 to 2.30% by mass,Mo: 0.05 to 0.45 mass%,Ti: 0.13 to 0.28 mass%, P: 0.020 mass% or less, Cu including Cu plating layer and Cu in core wire: 0.33 mass% or less, Cu of plating layer: 0.10 More than mass%, all S including S adhering to the core wire surface: 0.003 to 0.020 mass%, S adhering to the core wire surface and embedded in the core wire surface layer within 50 μm from the core wire surface Total S: 0.03 (g / per 10 kg of wire) or more, B: 0.0009 mass% or less, As + Sb + Sn: 0.01 mass% or less, balance: Fe and inevitable impurities.
[0020]
In the solid wire for gas shielded arc welding, Mo: 0.05 to 0.45 mass% can be further included.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The inventors of the present application have conducted extensive experimental research to solve the above problems, and as a result, have encountered problems in conventional high heat input and high pass temperature welding (hot cracking susceptibility, spatter amount, arc stability). ) Was found to be caused by the following phenomenon.
[0022]
<Hot-cracking phenomenon and problems that occur to prevent it>
B in the wire added to obtain good mechanical properties at high heat input and high interpass temperature greatly expands the solid-liquid coexistence temperature range of the Fe-C alloy phase diagram even when added in a small amount. C and S contained in the wire also have the same effect, and when these low melting point liquid phases segregate at the grain boundaries in the final stage of solidification, the risk of hot cracking increases. Further, when there are many γ phases as primary crystals during solidification, low melting point compounds such as S, As, Sb, and Sn are concentrated at the grain boundaries and segregated in the final stage of solidification. Therefore, the more γ-phase stabilizing elements in the wire, the higher the risk of hot cracking, and C and Cu have a greater effect among them. However, with respect to B, C, S, and Cu, the following problems occur when the amount of addition is suppressed in order to prevent hot cracking.
[0023]
Suppression of B: The toughness of the weld metal is lowered under conditions of large heat input and high pass temperature.
[0024]
Suppression of C: The strength of the weld metal decreases under large heat input and high pass temperature conditions.
[0025]
S suppression: In high-current welding, the surface tension of the droplets increases, and the smooth droplets are prevented from detaching, so that the amount of spatter increases and the familiarity between the weld bead and the weld base material deteriorates.
[0026]
Suppression of Cu (Cu plating): Energization with the contact tip becomes unstable in high-current welding, which induces fusion between the contact tip and the wire, arc instability, and an increase in spatter generation. Further, the surface of the droplet at the tip of the wire absorbs oxygen, and the amount of oxygen in the weld metal increases, so that the toughness decreases.
[0027]
<Spatter generation and arc instability>
Regarding the cause of spattering, the following phenomenon is generally recognized. In arc welding, when the droplet formed at the tip of the welding wire is short-circuited to the molten pool, the short-circuit is released due to an increase in current that accompanies it, and an arc is generated again. When the arc is regenerated by opening the short circuit, a part of the droplet or the molten pool scatters to the surroundings, which becomes spatter. Due to the pushing up action of the regenerated arc, the droplet remaining on the tip of the welding wire is strongly pushed upward, and the droplet that has become relatively large is short-circuited to the molten pool, and occasionally the droplet moves to the molten pool. Arc may occur again. As a result, the short circuit is opened in a state where the droplet remains as a large mass at the tip of the welding wire, and large grains or a large amount of spatter is generated by the arc force. Further, when the droplet becomes large at the tip of the wire, the droplet shakes violently due to the repulsive force of the arc, and the arc becomes unstable. Therefore, it is necessary to make the droplets finer in order to prevent spattering and arc instability.
[0028]
While considering these findings, the present inventors have suppressed the addition of elements that increase the hot cracking susceptibility, while adjusting the amount of addition of other elements, the conventional heat input of 40 kJ / cm, interpass temperature. A solid wire having excellent mechanical properties and excellent welding workability even at a high heat input of 350 ° C. and high-pass temperature welding was completed by the method described below.
[0029]
That is, when the amount of B in the wire was dissolved, it was regulated to be equal to or less than the amount necessarily contained (≦ 0.0009 mass%), thereby suppressing the lowering of the melting point due to B and reducing the hot cracking susceptibility. However, by specifying Si: 0.50 to 1.00% by mass and Mn: 1.75 to 2.30, the reduction in toughness under large heat input and high-pass temperature conditions is compensated.
[0030]
By regulating the total amount of Cu in the wire to 0.33% by mass or less, γ phase stabilization and grain boundary segregation by Cu were prevented, and the hot cracking susceptibility of the weld metal was reduced. Furthermore, by limiting the amount of Cu plated on the surface of the wire to 0.10% by mass or more, wire fusion, arc instability, and increase in spatter at the contact tip during high current welding are suppressed, and the tip of the wire is not fixed. Since the surface of the droplet connected to the molten portion is covered with Cu, the oxygen absorption of the droplet is suppressed and the amount of oxygen in the weld metal is reduced, so that the toughness can be improved even at high heat input and high interpass temperature.
[0031]
By defining the total amount of S in the wire to 0.020% by mass or less, the generation of low melting point compounds by S was suppressed, and the hot cracking susceptibility was reduced. In addition, the surface tension of the droplets is lowered by making the sum of the amount of S adhered to the wire surface and the amount of S embedded in the surface layer within 50 μm from the surface 0.03 (g / wire 10 kg) or more. As a result, the droplets were refined and the amount of spatter was reduced.
[0032]
Next, the reasons for limiting the numerical values of the composition defined in the present invention will be described in detail.
[0033]
C: 0.01 to 0.07% by mass
C is an element useful for ensuring the strength of the weld metal and also has an effect as a deoxidizing element. On the other hand, as described above, C is a γ-stabilizing element, and if added excessively, the solid-liquid coexistence temperature range is expanded, so that the hot cracking susceptibility is deteriorated. If the content is less than 0.01% by mass, the strength of the weld metal is insufficient, and if it exceeds 0.07%, hot cracking is likely to occur, so 0.01 to 0.07% by mass is specified.
[0034]
Si: 0.50 to 1.00% by mass
Si is a deoxidizing element, CO2It is an essential element for welding and MAG welding wires. When the content of Si is less than 0.50%, the deoxidation effect is insufficient and blowholes are easily generated, and the compatibility with the weld base metal is deteriorated, and the strength of the weld metal is also insufficient. Moreover, when it exceeds 1.00 mass%, content in a weld metal will become excessive, toughness will fall, and the amount of slag and the amount of spatters will also increase. Therefore, it is defined as 0.50 to 1.00% by mass.
[0035]
Mn: 1.75 to 2.30% by mass
Mn is not only an indispensable element as a deoxidizing element together with Si, but also an element that improves the mechanical properties of the weld metal. If the Mn content is less than 1.75% by mass, the content in the weld metal is insufficient, so that sufficient strength and toughness cannot be obtained. However, if the content exceeds 2.30% by mass, the content in the weld metal becomes excessive and the toughness deteriorates, and the slag amount and spatter generation amount also increase. Therefore, it is specified to be 1.75 to 2.30% by mass.
[0036]
Ti: 0.13 to 0.28 mass%
Ti has the effect of stabilizing the arc and reducing spatter in a gas shielded arc welding wire with a relatively high heat input, preventing the occurrence of blowholes, and at the same time improving the mechanical properties. However, if the content is less than 0.13% by mass, those effects are poor. On the other hand, if it exceeds 0.28% by mass, the amount of slag increases and the toughness also deteriorates. Therefore, it is specified to be 0.13 to 0.28 mass%.
[0037]
P: 0.020% by mass or less
P is an element having extremely great adverse effects on welding, and remarkably deteriorates hot cracking susceptibility and low temperature toughness. Therefore, since it is necessary to suppress the P content in the wire as much as possible, it is set to 0.020% by mass or less in the present invention.
[0038]
The total Cu amount of the wire including the Cu plating part and Cu in the original wire is 0.33% by mass or less, and the plating Cu amount is 0.10% by mass or more.
When the total amount of Cu including Cu in the Cu plating portion and the original wire exceeds 0.33 mass%, the amount of Cu in the weld metal becomes excessive, and high temperature cracks are very likely to occur. Moreover, if the amount of plating Cu which covers the wire surface is less than 0.10% by mass, current conduction becomes unstable and oxygen is absorbed from the surface of the droplets, and the toughness of the weld metal decreases. On the other hand, if the amount of Cu plated is 0.10% by mass or more, the energization is stabilized and Cu covers the droplet surface leading to the unmelted portion at the tip of the wire, so that oxygen absorption of the droplet is suppressed and welding is performed. Since the amount of oxygen in the metal decreases, it exhibits good toughness even at high heat input and high pass temperatures. Therefore, the total Cu amount is regulated to 0.33% by mass or less, and the plating Cu amount is regulated to 0.10% by mass or more.
[0039]
The total amount of S in the wire is 0.003 to 0.020% by mass, and the sum of the amount of S attached to the wire surface and the amount of S embedded in the surface layer within 50 μm from the surface: 0.03 g / 10 kg or more
As described above, S is an element that increases the hot cracking susceptibility. Also in the welding wire of the present invention, when the total amount of S in the wire exceeds 0.020% by mass, hot cracking is very likely to occur. On the other hand, if the total amount of S in the wire is less than 0.003% by mass, the surface tension of the molten pool becomes excessive, and the bead shape becomes convex, so that the familiarity with the welded base material becomes worse. Therefore, the total S amount of the wire is set to 0.003 to 0.020 mass%. In addition, by making the total amount of S adhering to the wire surface and S amount embedded in the surface layer within 50 μm from the surface 0.03 g / 10 kg or more, the surface tension of the droplet is lowered and the droplet is refined. Therefore, the generation of spatter can be suppressed.
[0040]
B is 0.0009 mass% or less
B promotes refinement of crystal grains and improves toughness. Therefore, a certain amount or more of B is contained in the welding wire used under the conventional high heat input and high interpass temperature. However, as described above, B also has a drawback of greatly increasing the hot cracking susceptibility, and its detriment is particularly great under large heat input and high pass temperature welding. Therefore, the amount of B in the wire is specified to be 0.0009 mass% or less, which is an amount that is inevitably contained at the time of melting.
[0041]
As + Sb + Sn is 0.01% by mass or less
In the final stage of solidification, if low melting point compounds such as As, Sb and Sn are concentrated and segregated at the grain boundaries, the hot cracking susceptibility is significantly deteriorated. Therefore, these impurity elements are specified so that the sum total is 0.01 mass% or less.
[0042]
Mo: 0.05 to 0.45 mass%
Mo is an element that improves hardenability by adding a small amount to a weld metal, prevents coarsening of crystal grains under high heat input and high interpass temperature, and improves strength and toughness. If the amount of Mo in the wire is less than 0.05% by mass, this effect cannot be obtained. Moreover, when it exceeds 0.45 mass%, hardenability will become high too much and a weld metal will harden | cure at the time of low heat input welding, and it will become easy to generate | occur | produce a low temperature crack. Therefore, it is specified to be 0.05 to 0.45 mass%.
[0043]
Hereinafter, the manufacturing method of the solid wire of this invention is demonstrated. Usually, a steel wire is processed into a diameter of about 5 mm through steps of melting, hot rolling, and wire drawing, and used as a raw wire for each step of wire manufacture. As shown in the flowchart on the left side of FIG. 1, the original wire whose total component composition has been adjusted in the molten steel stage undergoes an annealing process, a Cu plating process, an intermediate wire drawing process, a finish wire drawing process, etc., as shown in the flowchart on the left side of FIG. Finished product. Or as shown to the flowchart on the right side of FIG. 1, it is set as a product through an intermediate | middle wire drawing process, an annealing process, Cu plating process, and a finish wire drawing process. Below, each process of a pre-processing process, an annealing process, Cu plating process, and a wire drawing process is demonstrated.
[0044]
(1) Pretreatment process
In the present specification, a process for removing scale such as pickling or mechanical polishing is referred to as a pretreatment process. In this process, the pickled pits or cracks on the surface of the wire formed by removing the biting portion of the scale or the wedge-shaped cracks are used to apply the sulfides applied during intermediate drawing or finish drawing to these pits or cracks. By embedding in the surface, S on the surface and the surface layer portion can be concentrated.
[0045]
(2) Annealing process
In the annealing process, a crack-like grain boundary oxide layer is formed in the wire surface layer portion, and the sulfide applied at the time of intermediate wire drawing or finish wire drawing is embedded in the crack of the grain boundary oxide layer, so that S on the surface and the surface layer portion is Can be thickened. However, if annealing is performed in an atmosphere having a strong oxidizing power, thick and deep grain boundary oxidation is generated, and the grain boundary oxidation of the surface layer is scale-lossed. Therefore, the generation state of the grain boundary oxidation becomes irregular. In the wire of the present invention, in order to generate thin and uniform grain boundary oxidation having a depth of 50 μm or less in the annealing process, the atmosphere gas is 0.5% CO or less, 0.3% CO20.4% O2The remaining N2It is necessary to set the annealing temperature to 700 to 800 ° C. and the annealing time to 30 to 120 minutes.
[0046]
(3) Cu plating process
Welding wire plating methods include a method using a 5 mm diameter original wire, a method using an intermediate diameter of about 2 mm, and a method using a final product diameter. There are various methods such as electroplating and chemical plating. is there. For example, when the wire of the present invention is implemented by copper cyan plating at an intermediate diameter as shown in the flowchart on the right side of FIG. 1, the plating bath temperature is 60 to 80 ° C., the CuCN concentration is 90 to 160 g / liter, and the NaCN concentration is 3-9 g / liter, Na2CO3The concentration is 40 to 170 g / liter.
[0047]
(4) Wire drawing process
By applying sulfide and / or embedding it in the grain boundary oxide layer at the time of intermediate wire drawing or finish wire drawing, S on the surface and surface layer portions is concentrated. Sulfide is MoS2, WS2A solid powder composed of FeS or the like is dispersed in a composite lubricating oil using one kind of base oil among vegetable oil, animal oil, mineral oil, and synthetic oil. The method of applying this to the surface of the wire is a method of applying with a skin pass as a wire drawing lubricant, or a method of applying it by impregnating it with a felt or the like and applying it to the surface of the wire, and further atomizing the composite lubricant, into the mist There is a method of passing a wire and applying it to the surface of the wire. In addition, as a method of firmly embedding these applied substances in the wire surface layer portion, by using a hole die or a roller die in the intermediate wire drawing step and the finish wire drawing step, it is thin and uniform in the pretreatment step or the annealing step. There is a method of uniformly embedding these composite lubricants in the crack or grain boundary oxide layer of the wire surface layer generated in the above.
[0048]
In addition, the S amount of the surface layer portion within 50 μm from the wire surface and the surface is obtained as follows. The entire wire is ultrasonically cleaned in an organic solvent such as ethanol, acetone or petroleum ether. After the washing liquid is filtered through a filter paper, the filter paper is dried. After the filter paper is dried, the filter paper and surface deposits (MoS) are mixed with a mixed aqueous solution (an aqueous solution in which sulfuric acid (concentrated sulfuric acid: water is 1: 1), concentrated chloric acid, and concentrated nitric acid).2, WS2, FeS, etc.) and dissolve. Then, Mo, W, Fe, etc. are quantified by atomic absorption method. This measured amount is defined as (a).
[0049]
MoS embedded in the surface layer within 50 μm from the surface by immersing the wire after washing with an organic solvent in a hydrochloric acid solution and dissolving it.2, WS2, FeS and the like can be liberated. And after filtering this solution with a filter paper, Mo, W, Fe, etc. are quantified in the process similar to said method. Let this measurement amount be (b).
[0050]
Then, the total amount (c) of Mo, W, Fe, etc. in the surface layer portion within 50 μm from the wire surface and the surface can be calculated by the following formula 1.
[0051]
[Expression 1]
(C) = (a) + (b)
[0052]
Then, (c) is converted into an S amount, and the amount per 10 kg of wire is calculated.
[0053]
【Example】
Next, examples of the present invention will be specifically described in comparison with comparative examples. Using the wire of the chemical composition shown in Table 1 (Example) and Table 2 (Comparative Example) below, the opening of the mold shown in FIG. A pointed joint was welded and tested for the mechanical properties (strength, toughness) of the weld metal. In addition, as shown in FIG. 3, the collection | collection position of each test piece cuts out the column-shaped area | region centering on the position below 7 mm from the surface of a welding side from the weld metal part. Moreover, the unit of the numerical value of Table 1 and Table 2 is the mass% except the amount of S of a surface and a surface layer. The amount of S on the surface and the surface layer is the number of grams per 10 kg of wire. Then, bead-on-plate welding was performed in a sputter collection box under the welding conditions shown in Table 4, and spatter was sampled and evaluated. Furthermore, welding was performed under the welding conditions shown in Table 3 and the groove shape shown in FIG. 2, and slag was collected. At that time, the amount of slag peeling after leaving the test specimen for 1 hour was separately collected, and the slag peeling property was also evaluated. About the hot crack, the presence or absence of the hot crack was confirmed using the C-type jig restraint butt crack (Fisco) crack test (JIS Z 3155), the welding conditions shown in Table 5, and the thick plate restraint test specimen shown in FIG. About the low temperature crack, the window frame restraint cracking test was implemented using the U-type welding crack test (JIS Z3157), the welding conditions shown in Table 6, and the test body shown in FIG. 5, and the presence or absence of the crack was confirmed. The test results are shown in Tables 7 and 8 below. Table 9 shows the determination criteria.
[0054]
[Table 1]
Figure 0004251844
[0055]
[Table 2]
Figure 0004251844
[0056]
[Table 3]
Figure 0004251844
[0057]
[Table 4]
Figure 0004251844
[0058]
[Table 5]
Figure 0004251844
[0059]
[Table 6]
Figure 0004251844
[0060]
[Table 7]
Figure 0004251844
[0061]
[Table 8]
Figure 0004251844
[0062]
[Table 9]
Figure 0004251844
[0063]
  As shown in Table 7, Examples 1 to 18 are claims of the present invention.1Satisfyingis thereTherefore, all have high strength and toughness, good bead appearance, little spatter, little slag, excellent slag peelability and hot crack resistance.The HoweverIn Example 1, C is slightly less and the strength of the weld metal is slightly lower (525 N / mm).2). In Example 3, there is a little Si, and the strength of the weld metal is slightly low (527 N / mm).2). Also, familiarity with the base material is a little bad. In Example 4, the amount of Si is slightly higher and the toughness of the weld metal is slightly lower (110J). Moreover, the amount of slag and the amount of spatter are slightly large. In Example 5, Mn is slightly less, and the strength and toughness of the weld metal are slightly low (531 N / mm).2And 106J). In Example 6, the amount of Mn is slightly higher, and the amount of slag and the amount of sputtering are slightly higher. In Example 10, the surface S is slightly small and the amount of sputtering is slightly large. In Example 12, the plating Cu is slightly less, and the toughness of the weld metal is slightly lower (115J). In addition, the amount of spatter is slightly large. In Example 13, which satisfies Claim 2, Mo is slightly less, so the strength of the weld metal is slightly low (520 N / mm).2). In Example 16, Ti is slightly larger and the amount of slag is slightly larger.
[0064]
  In contrast,Comparative Examples 19 to 36 shown in Table 8 depart from Claim 1 of the present invention.Comparative Example 19 has little C and the strength of the weld metal is low (503 N / mm2). In Comparative Example 20, there was much C, and hot cracking occurred. Comparative Example 21 has little Si and the weld metal has low strength (488 N / mm).2). Also, familiarity with the base material is a little bad. Comparative Example 22 contains a large amount of Si and has low weld metal toughness (63J). In addition, the amount of slag and the amount of spatter are large. In Comparative Example 23, Mn is small and the strength and toughness of the weld metal are low (512 N / mm).2And 65J). The comparative example 24 has much Mn and the toughness of a weld metal is low (81J). Slag and spatter are slightly higher. In Comparative Example 25, P was large and hot cracking occurred. In Comparative Example 26, the total S is small, and the familiarity with the base material is slightly poor. In Comparative Example 27, the total S was large, and hot cracking occurred. Comparative Example 28 has a small surface S and a large amount of sputtering. In Comparative Example 29, the total amount of Cu was large, and hot cracking occurred. The comparative example 30 has few plating Cu, and the toughness of a weld metal is low (95J). In addition, the amount of sputtering is large.In Comparative Example 31, the amount of Mo is small and the strength of the weld metal is low (492 N / mm). 2 ). In Comparative Example 32, there was much Mo and cold cracking occurred, and the cold cracking resistance was low.Comparative Example 33 has a small amount of Ti and a large amount of sputtering. The comparative example 34 has much Ti and the toughness of a weld metal is low (85J). In addition, the amount of slag is slightly large. In Comparative Example 35, there was much B, and hot cracking occurred. In Comparative Example 36, there were many As + Sb + Sn, and hot cracking occurred.
[0065]
【The invention's effect】
As detailed above, according to the present invention, mild steel and 490 N / mm2Even in high-efficiency welding with high heat input and high pass temperature such as high heat input such as high heat input such as high heat input such as high heat input 40kJ / cm and interpass temperature 350 ° C, A weld metal with low cracking sensitivity can be obtained. In addition, in the high heat input welding as described above, welding workability such as the amount of spatter and arc stability is improved. Therefore, while performing high-efficiency welding according to the present invention, a weld metal that is sounder than before can be obtained, so that the repair process can be greatly reduced, and the burden on the operator can be reduced because the welding workability is good.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a wire manufacturing process.
FIG. 2 is a view showing a joint shape.
FIG. 3 is a diagram showing a specimen collection position.
FIG. 4 is a diagram showing the shape and dimensions of a test specimen.
FIG. 5 is a diagram showing shapes and dimensions of a restraint plate and a test body.

Claims (1)

鋼芯線の周面にCuめっき層が形成されたガスシールドアーク溶接用ソリッドワイヤにおいて、C:0.01乃至0.07質量%、Si:0.50乃至1.00質量%、Mn:1.75乃至2.30質量%、Mo:0.05乃至0.45質量%、Ti:0.13乃至0.28質量%、P:0.020質量%以下、Cuめっき層及び芯線中のCuを含めた全Cu:0.33質量%以下、めっき層のCu:0.10質量%以上、芯線表面に付着しているSを含めた全S:0.003乃至0.020質量%、芯線表面に付着しているS及び芯線表面から50μm以内の芯線表層部に埋め込まれているSの総和:0.03(g/ワイヤ10kg当たり)以上、B:0.0009質量%以下、As+Sb+Sn:0.01質量%以下、残部:Fe及び不可避的不純物であることを特徴とするガスシールドアーク溶接用ソリッドワイヤ。In a solid wire for gas shielded arc welding in which a Cu plating layer is formed on the peripheral surface of a steel core wire, C: 0.01 to 0.07 mass%, Si: 0.50 to 1.00 mass%, Mn: 1. 75 to 2.30 mass%, Mo: 0.05 to 0.45 mass%, Ti: 0.13 to 0.28 mass%, P: 0.020 mass% or less, Cu plating layer and Cu in the core wire Total Cu included: 0.33 mass% or less, Cu of plating layer: 0.10 mass% or more, Total S including S adhering to the core wire surface: 0.003 to 0.020 mass%, core wire surface The total of S adhering to the core wire and S embedded in the core wire surface layer within 50 μm from the surface of the core wire: 0.03 (g / per 10 kg of wire) or more, B: 0.0009 mass% or less, As + Sb + Sn: 0.00. 01% by mass or less, balance: Fe and non A solid wire for gas shielded arc welding characterized by being an inevitable impurity.
JP2002289213A 2002-10-01 2002-10-01 Solid wire for gas shielded arc welding Expired - Lifetime JP4251844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002289213A JP4251844B2 (en) 2002-10-01 2002-10-01 Solid wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002289213A JP4251844B2 (en) 2002-10-01 2002-10-01 Solid wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2004122170A JP2004122170A (en) 2004-04-22
JP4251844B2 true JP4251844B2 (en) 2009-04-08

Family

ID=32281481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002289213A Expired - Lifetime JP4251844B2 (en) 2002-10-01 2002-10-01 Solid wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP4251844B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4628027B2 (en) * 2004-07-12 2011-02-09 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
JP2007301597A (en) * 2006-05-11 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd Solid wire for carbon dioxide gas-shielded arc welding
JP5026002B2 (en) * 2006-06-16 2012-09-12 日鐵住金溶接工業株式会社 Copper plated wire for gas shielded arc welding
JP5038853B2 (en) * 2007-10-30 2012-10-03 日鐵住金溶接工業株式会社 Solid wire for carbon dioxide shielded arc welding
JP7244393B2 (en) * 2019-09-17 2023-03-22 株式会社神戸製鋼所 Wire for gas-shielded arc welding

Also Published As

Publication number Publication date
JP2004122170A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP5652574B1 (en) Solid wire for gas shielded arc welding, gas shielded arc welding metal, welded joint, welded member, welding method, and method of manufacturing welded joint
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP4251844B2 (en) Solid wire for gas shielded arc welding
JP5038853B2 (en) Solid wire for carbon dioxide shielded arc welding
JP3941528B2 (en) Carbon dioxide shielded arc welding wire
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP4234481B2 (en) Welding wire for gas shielded arc welding
JP2711130B2 (en) Gas shielded arc welding wire
JP3945396B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2007118069A (en) Gas-shielded arc welding method
JP2005169414A (en) Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP3861979B2 (en) Steel wire for carbon dioxide shielded arc welding
JP3969323B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP6892305B2 (en) Arc welding method
JP2528341B2 (en) Solid wire for gas shield arc welding
JP3969322B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2005246478A (en) Multi-electrode gas shielded arc welding method
JP2015167991A (en) Solid wire for carbon dioxide gas shielded arc welding
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JPH11197884A (en) Dual electrode electrogas arc welding method
JP4673048B2 (en) Gas shielded arc welding wire
JP2005230868A (en) High speed rotary arc welding method
JP3941369B2 (en) Steel wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4251844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

EXPY Cancellation because of completion of term