JP4251247B2 - Condensation device - Google Patents

Condensation device Download PDF

Info

Publication number
JP4251247B2
JP4251247B2 JP14534599A JP14534599A JP4251247B2 JP 4251247 B2 JP4251247 B2 JP 4251247B2 JP 14534599 A JP14534599 A JP 14534599A JP 14534599 A JP14534599 A JP 14534599A JP 4251247 B2 JP4251247 B2 JP 4251247B2
Authority
JP
Japan
Prior art keywords
cooling
outside air
cooled condenser
water
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14534599A
Other languages
Japanese (ja)
Other versions
JP2000337106A (en
Inventor
俊樹 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Plant Systems and Services Corp filed Critical Toshiba Plant Systems and Services Corp
Priority to JP14534599A priority Critical patent/JP4251247B2/en
Publication of JP2000337106A publication Critical patent/JP2000337106A/en
Application granted granted Critical
Publication of JP4251247B2 publication Critical patent/JP4251247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は蒸気タービンの排気を空冷式復水器で冷却する復水装置に関し、詳しくは外気温度の上昇に伴う空冷式復水器の真空度低下を防止する復水装置に関するものである。
【0002】
【従来の技術】
蒸気タービンにより発電機を駆動して発電する火力発電設備において、蒸気タービンの出力は入口側蒸気圧力と排気圧力の差に比例する。そこで通常蒸気タービンの排気は復水器により凝縮して圧力降下させる。
臨海地域や大きな河川近くに設置される火力発電所では大量の冷却水が得られるので水冷式の復水器が多く設置される。ところがそのように冷却水を豊富に得られない地域に設置される火力発電所では空冷式復水器が使用される。この空冷式復水器は、排気が流通する多数のチューブとその外面に固定された多数のフィンとによりコアを構成し、そのコアに冷却風を送るファンが設けられたものである。図2は従来の空冷式復水器を使用した復水装置による火力発電装置を示すプロセスフロー図である。ボイラ1で発生した高圧蒸気は高圧蒸気管2により高圧タービン3に導入され、そこから排出される低圧蒸気は低圧蒸気管4により低圧タービン5に導入される。低圧タービン5からの排気は排気管6を経て空冷式復水器7に導入され、そこで外気により冷却されて凝縮し、復水となって給水管8から再びボイラ1に戻される。
【0003】
【発明が解決しようとする課題】
一般に水冷式の復水器は冷却水温度が安定しているので、季節変化や天気の変動により外気温度が変化しても冷却能力には殆ど影響を与えない。しかし空冷式復水器は放熱管と外気の接触による熱交換作用を利用するので、外気温度の変化により冷却能力が変動し、特に外気温度の高い夏期などは冷却能力が大幅に下がり、空冷式復水器における真空度の低下という現象が起こる。夏期は発電需要が多いにも拘わらず、このように空冷式復水器の真空度が低下すると、蒸気タ−ビン(図2の例では低圧タービン5)における蒸気の膨張仕事量が減少して出力低下を招く。蒸気タ−ビンの定格出力を維持するにはボイラからの蒸気量を増加する必要があるが、その場合には発電プラントの総合効率が低下する。
そこで本発明は、空冷式復水器を備えた復水装置におけるこのような問題を解決することを課題とするものである。
【0004】
【課題を解決するための手段】
前記課題を解決する請求項1に記載の発明は、蒸気タービンの排気を空冷式復水器で冷却する復水装置において、冷却水をスプレーする散水手段9により、蒸気タービンから空冷式復水器7への排気管6を冷却するようにしたことを特徴とするものである。
また請求項2に記載の発明は、請求項1に記載の復水装置の好ましい実施の形態であって、外気温度の上昇に比例して散水手段9による冷却量を増加させるか、または外気温度が設定値を越えたときに散水手段9による冷却を開始もしくは冷却量を増加させるように構成されていることを特徴とするものである。
【0005】
【発明の実施の形態】
次に、本発明の実施の形態を図面により説明する。図1は本発明の復水装置を使用した火力発電装置を示すプロセスフロー図であり、図2と同じ部分には同一符号が付されている。本発明では低圧タービン5から排出される排気を空冷式復水器7に導入するための排気管6に散水手段9が設けられる。この散水手段9は所定長の排気管6の外周部に冷却水をスプレーする散水ノズル10と、散水ノズル10に冷却水を供給する冷却水管11と、冷却水管11に設けた供給ポンプ12および調節弁13と、冷却水を貯蔵する水槽14を有している。なお、排気管6は一例として、その直径が1m60cm程で、全長が16m〜20m程のものである。そこで、好ましくは、散水ノズル10はその大きな排気管6の全周に可能な限り均一に散水ができるように設置する。
さらには、排気管6の下方に冷却水回収設備を設け、そこで回収した冷却水を比較的小容量のクーリングタワー等の冷却装置で冷却してから水槽14に戻すことにより、冷却水を循環使用するようにしてもよい。
【0006】
調節弁13は外気温度を検出する温度検出器15からの温度信号に応じた制御信号を出力する温度制御器16により制御される。すなわち外気温度が設定された値より上昇するとそれに比例して温度制御器16の出力が増加し、調節弁13の開度が大きくなって冷却量が増加し、逆に外気温度が設定された値より低下すると温度制御器16の出力がそれに比例して減少し、調節弁13の開度が小さくなって冷却量が減少するようになっている。
また別の方法として、外気温度が設定温度を越えたときに作動する温度スイッチを設け、その作動時に調整弁13を開けて散水手段9による冷却を開始させるか、または該温度スイッチの作動時に低開度から高開度に切り換えて散水手段9による冷却を増加させるような2段階制御方式を採用することもできる。
【0007】
上記のように温度制御器16を使用する代わりに、真空度制御器を使用することもできる。すなわち真空検出器により空冷式復水器7内の真空度を検出し、その検出値が予め設定された真空度になるように真空度制御器が調整弁13を制御するように構成する。なお真空度の代わりに排気管6の圧力を検出して同様な制御をさせてもよい。
さらに別の方法として、調節弁13を手動操作弁とし、外気温度の値に応じて随時散水手段9による冷却量を変化させることもできる。このような構成は外気温度が比較的緩やかにしか変動しないような場合に適しており、装置が簡便になるという利点がある。
【0008】
【発明の効果】
以上のように請求項1に記載の復水装置は、冷却水をスプレーする散水手段により蒸気タービンから空冷式復水器への排気管を冷却するようにしたことを特徴とするものである。それによって外気温度が上昇し空冷式復水器の冷却能力が低下したとき、その低下を散水手段の冷却作用によって補償することができる。そのため、外気温度が上昇しても空冷式復水器の真空度低下を防止して蒸気タービンの出力低下を回避することができる。また水の冷却効果に加えて水の一部が蒸発する際の蒸発潜熱も利用できるので、より少ない冷却水で効率よく排気を冷却することができる。
さらに、散水手段に使用される冷却水は水冷式復水器における冷却水に比較して極めて少量でよく、冷却水を大量に得られない地域でも簡単に設置できる。しかも冷却水量が少ないので、比較的小容量のクーリングタワーなどの冷却装置で冷却して、その冷却水を循環使用することもできる。
【0009】
また請求項2に記載の復水装置は、外気温度の上昇に比例して散水手段9による冷却量を増加させるか、または外気温度が設定値を越えたときに散水手段9による冷却を開始もしくは冷却量を増加させるように構成されていることを特徴とするものである。それによって空冷式復水器の真空度を安定化し、蒸気タービンの出力変動をより少なくすることができる。
【図面の簡単な説明】
【図1】本発明の復水装置を使用した火力発電装置を示すプロセスフロー図。
【図2】従来の空冷式復水器を使用した復水装置による火力発電装置を示すプロセスフロー図。
【符号の説明】
1 ボイラ
2 高圧蒸気管
3 高圧タービン
4 低圧蒸気管
5 低圧タービン
6 排気管
7 空冷式復水器
8 給水管
9 散水手段
10 散水ノズル
11 冷却水管
12 供給ポンプ
13 調節弁
14 水槽
15 温度検出器
16 温度制御器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condensing device that cools the exhaust of a steam turbine with an air-cooled condenser, and more particularly to a condensing device that prevents a decrease in the degree of vacuum of the air-cooled condenser accompanying an increase in outside air temperature.
[0002]
[Prior art]
In a thermal power generation facility that generates power by driving a generator with a steam turbine, the output of the steam turbine is proportional to the difference between the inlet-side steam pressure and the exhaust pressure. Therefore, the exhaust of the steam turbine is usually condensed by a condenser and the pressure is reduced.
Thermal power plants installed near waterfront areas and large rivers can obtain a large amount of cooling water, so many water-cooled condensers are installed. However, air-cooled condensers are used in thermal power plants that are installed in areas where cooling water cannot be obtained abundantly. In this air-cooled condenser, a core is constituted by a large number of tubes through which exhaust flows and a large number of fins fixed to the outer surface thereof, and a fan for sending cooling air to the core is provided. FIG. 2 is a process flow diagram showing a thermal power generation apparatus using a condensing device using a conventional air-cooled condenser. The high-pressure steam generated in the boiler 1 is introduced into the high-pressure turbine 3 through the high-pressure steam pipe 2, and the low-pressure steam discharged therefrom is introduced into the low-pressure turbine 5 through the low-pressure steam pipe 4. Exhaust gas from the low-pressure turbine 5 is introduced into an air-cooled condenser 7 through an exhaust pipe 6, where it is cooled and condensed by outside air, becomes condensed water, and returns to the boiler 1 from the water supply pipe 8 again.
[0003]
[Problems to be solved by the invention]
In general, since the cooling water temperature is stable in a water-cooled condenser, even if the outside air temperature changes due to seasonal changes or weather changes, the cooling capacity is hardly affected. However, since the air-cooled condenser uses the heat exchange effect due to the contact between the radiator pipe and the outside air, the cooling capacity fluctuates due to changes in the outside air temperature, especially in summer when the outside air temperature is high. The phenomenon of a decrease in the degree of vacuum in the condenser occurs. Despite the high demand for power generation in summer, when the degree of vacuum of the air-cooled condenser decreases as described above, the work of expansion of steam in the steam turbine (low-pressure turbine 5 in the example of FIG. 2) decreases. Reduces output. In order to maintain the rated output of the steam turbine, it is necessary to increase the amount of steam from the boiler. In this case, the overall efficiency of the power plant is reduced.
Then, this invention makes it a subject to solve such a problem in the condensing apparatus provided with the air-cooling type condenser.
[0004]
[Means for Solving the Problems]
The invention according to claim 1, which solves the above problem, is a condensing device for cooling the exhaust of a steam turbine with an air-cooled condenser, and the air-cooled condenser from the steam turbine by means of water spray means 9 for spraying the cooling water. 7, the exhaust pipe 6 is cooled.
The invention according to claim 2 is a preferred embodiment of the condensing device according to claim 1, wherein the amount of cooling by the sprinkling means 9 is increased in proportion to the increase in the outside air temperature, or the outside air temperature is increased. Is configured to start cooling by the sprinkling means 9 or to increase the cooling amount when it exceeds a set value.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram showing a thermal power generation apparatus using the condensing apparatus of the present invention, and the same parts as those in FIG. In the present invention, sprinkling means 9 is provided in the exhaust pipe 6 for introducing the exhaust discharged from the low-pressure turbine 5 into the air-cooled condenser 7. The watering means 9 includes a watering nozzle 10 for spraying cooling water on the outer periphery of the exhaust pipe 6 having a predetermined length, a cooling water pipe 11 for supplying cooling water to the watering nozzle 10, a supply pump 12 provided in the cooling water pipe 11, and adjustment. It has a valve 13 and a water tank 14 for storing cooling water. As an example, the exhaust pipe 6 has a diameter of about 1 m60 cm and a total length of about 16 m to 20 m. Therefore, the watering nozzle 10 is preferably installed so that water can be sprayed as uniformly as possible around the entire circumference of the large exhaust pipe 6.
Further, a cooling water recovery facility is provided below the exhaust pipe 6, and the recovered cooling water is cooled by a cooling device such as a relatively small capacity cooling tower and then returned to the water tank 14, whereby the cooling water is circulated and used. You may do it.
[0006]
The control valve 13 is controlled by a temperature controller 16 that outputs a control signal corresponding to a temperature signal from a temperature detector 15 that detects the outside air temperature. That is, when the outside air temperature rises above the set value, the output of the temperature controller 16 increases in proportion thereto, the opening degree of the control valve 13 increases, the cooling amount increases, and conversely the value at which the outside air temperature is set. When the temperature is further lowered, the output of the temperature controller 16 is reduced in proportion thereto, the opening degree of the control valve 13 is reduced, and the cooling amount is reduced.
As another method, a temperature switch that operates when the outside air temperature exceeds a set temperature is provided, and the adjustment valve 13 is opened during the operation to start cooling by the water spraying means 9, or the temperature switch is activated when the temperature switch is operated. It is also possible to adopt a two-stage control method that increases the cooling by the sprinkling means 9 by switching from the opening to the high opening.
[0007]
Instead of using the temperature controller 16 as described above, a vacuum degree controller can also be used. That is, the degree of vacuum in the air-cooled condenser 7 is detected by the vacuum detector, and the degree of vacuum controller is configured to control the adjustment valve 13 so that the detected value becomes a preset degree of vacuum. The same control may be performed by detecting the pressure of the exhaust pipe 6 instead of the degree of vacuum.
As another method, the control valve 13 can be a manually operated valve, and the amount of cooling by the sprinkling means 9 can be changed as needed according to the value of the outside air temperature. Such a configuration is suitable for cases where the outside air temperature fluctuates only relatively slowly, and has the advantage that the apparatus is simple.
[0008]
【The invention's effect】
As described above, the condensing device according to the first aspect is characterized in that the exhaust pipe from the steam turbine to the air-cooled condenser is cooled by the watering means for spraying the cooling water. Accordingly, when the outside air temperature rises and the cooling capacity of the air-cooled condenser decreases, the decrease can be compensated by the cooling action of the watering means. Therefore, even if the outside air temperature rises, the vacuum degree of the air-cooled condenser can be prevented from lowering and the output of the steam turbine can be prevented from lowering. In addition to the cooling effect of water, the latent heat of vaporization when part of the water evaporates can also be used, so that the exhaust can be efficiently cooled with less cooling water.
Furthermore, the cooling water used for the watering means may be very small as compared with the cooling water in the water-cooled condenser, and can be easily installed even in an area where a large amount of cooling water cannot be obtained. Moreover, since the amount of cooling water is small, the cooling water can be circulated and used after cooling with a cooling device such as a cooling tower having a relatively small capacity.
[0009]
The condensing device according to claim 2 increases the amount of cooling by the sprinkling means 9 in proportion to the rise in the outside air temperature, or starts cooling by the sprinkling means 9 when the outside air temperature exceeds a set value. It is configured to increase the cooling amount. Thereby, the degree of vacuum of the air-cooled condenser can be stabilized, and the output fluctuation of the steam turbine can be reduced.
[Brief description of the drawings]
FIG. 1 is a process flow diagram showing a thermal power generation apparatus using a condensing apparatus of the present invention.
FIG. 2 is a process flow diagram showing a thermal power generation apparatus using a condensing device using a conventional air-cooled condenser.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Boiler 2 High pressure steam pipe 3 High pressure turbine 4 Low pressure steam pipe 5 Low pressure turbine 6 Exhaust pipe 7 Air-cooled condenser 8 Water supply pipe 9 Sprinkling means 10 Sprinkling nozzle 11 Cooling water pipe 12 Supply pump 13 Control valve 14 Water tank 15 Temperature detector 16 Temperature controller

Claims (2)

蒸気タービンの排気を空冷式復水器7で冷却する復水装置において、冷却水をスプレーする散水手段9により、蒸気タービンから空冷式復水器7への排気管6を冷却するようにしたことを特徴とする復水装置。In the condensing device that cools the exhaust of the steam turbine with the air-cooled condenser 7, the exhaust pipe 6 from the steam turbine to the air-cooled condenser 7 is cooled by the sprinkling means 9 that sprays the cooling water. Condensation device characterized by. 外気温度の上昇に比例して散水手段9による冷却量を増加させるか、または外気温度が設定値を越えたときに散水手段9による冷却を開始もしくは冷却量を増加させるようにした請求項1に記載の復水装置。The amount of cooling by the sprinkling means 9 is increased in proportion to the rise of the outside air temperature, or the cooling by the watering means 9 is started or the amount of cooling is increased when the outside air temperature exceeds a set value. Condensation device as described.
JP14534599A 1999-05-25 1999-05-25 Condensation device Expired - Fee Related JP4251247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14534599A JP4251247B2 (en) 1999-05-25 1999-05-25 Condensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14534599A JP4251247B2 (en) 1999-05-25 1999-05-25 Condensation device

Publications (2)

Publication Number Publication Date
JP2000337106A JP2000337106A (en) 2000-12-05
JP4251247B2 true JP4251247B2 (en) 2009-04-08

Family

ID=15383044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14534599A Expired - Fee Related JP4251247B2 (en) 1999-05-25 1999-05-25 Condensation device

Country Status (1)

Country Link
JP (1) JP4251247B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375523B1 (en) * 2000-12-13 2003-03-10 주식회사 경동보일러 Waste gas purification device for condensing boiler
SE535316C2 (en) * 2011-02-25 2012-06-26 Scania Cv Ab Systems for converting thermal energy into mechanical energy in a vehicle
KR101547064B1 (en) * 2014-06-23 2015-08-26 이중용 Hybrid-type process cooling water cooling apparatus and the process system including the same
JP6813286B2 (en) * 2015-11-05 2021-01-13 株式会社東芝 Steam recovery system in generated exhaust gas, thermal power generation system, and steam recovery method in generated exhaust gas
WO2017078146A1 (en) * 2015-11-05 2017-05-11 株式会社 東芝 System for recovering water vapor in electrical power generation exhaust gas, thermal power generation system, and method for recovering water vapor in electrical power generation exhaust gas
CN108106449A (en) * 2017-12-15 2018-06-01 神华集团有限责任公司 Air-cooling island cooling device and method

Also Published As

Publication number Publication date
JP2000337106A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
JP4030432B2 (en) Gas turbine power generator
US20130298568A1 (en) Process Utilizing High Performance Air-Cooled Combined Cycle Power Plant With Dual Working Fluid Bottoming Cycle and Integrated Capacity Control
US5437157A (en) Method of and apparatus for cooling hot fluids
JPH11324710A (en) Gas turbine power plant
US20110203279A1 (en) Cogeneration device
JPS5912207A (en) Exhaust gas steam generator with degassing instrument
JP4251247B2 (en) Condensation device
JP2001193417A (en) Directly contacting type condenser for axial-flow exhaust turbine
KR101499810B1 (en) Hybrid type condenser system
JP2003161164A (en) Combined-cycle power generation plant
JP2002122387A (en) Air-cooling type heat exchanger
US4004424A (en) Method for limiting back pressure on steam turbine
JP2006521527A (en) Air cooler for power plant and use of this air cooler
JP2005308235A (en) Water heater
JPH0821205A (en) Condenser device
JP2000303803A (en) Power generation system
JP2004286024A (en) Generating set
FI102565B (en) Process for generating cooling power
JP2004156517A (en) Steam turbine plant
US20090188254A1 (en) Kinetic steam condenser
JP2692972B2 (en) Water heater Drain pump up device
CN219810299U (en) Air cooling island auxiliary cooling system
JP2003120513A (en) Geothermal power generation device
KR100439250B1 (en) System for deaerating
JP3670776B2 (en) Condenser pressure control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees