JP4250908B2 - 坑道のモニタリング方法 - Google Patents

坑道のモニタリング方法 Download PDF

Info

Publication number
JP4250908B2
JP4250908B2 JP2002126003A JP2002126003A JP4250908B2 JP 4250908 B2 JP4250908 B2 JP 4250908B2 JP 2002126003 A JP2002126003 A JP 2002126003A JP 2002126003 A JP2002126003 A JP 2002126003A JP 4250908 B2 JP4250908 B2 JP 4250908B2
Authority
JP
Japan
Prior art keywords
disposal
monitoring
tunnel
data collection
collection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002126003A
Other languages
English (en)
Other versions
JP2003028991A (ja
Inventor
尚 高村
一夫 奥津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002126003A priority Critical patent/JP4250908B2/ja
Priority to US10/477,001 priority patent/US7287934B2/en
Priority to EP02724666A priority patent/EP1394814B1/en
Priority to PCT/JP2002/004373 priority patent/WO2002091393A1/ja
Priority to AT02724666T priority patent/ATE458254T1/de
Priority to DE60235359T priority patent/DE60235359D1/de
Publication of JP2003028991A publication Critical patent/JP2003028991A/ja
Application granted granted Critical
Publication of JP4250908B2 publication Critical patent/JP4250908B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、坑道のモニタリング方法に関するものであり、特に放射性廃棄物等を地下に埋設処分するための地層処分場のモニタリングに有効に適用される。
【0002】
【従来の技術】
放射性廃棄物の地層処分方法は、従来から種々の方法が提案されており、例えば高レベル放射性廃棄物に関しては、廃棄物をガラス原料と共に高温で溶かし合わせてステンレス鋼製のキャニスターに流し込むことにより、ガラス固化体として安定化処理し、このガラス固化体をオーバーパックと称される厚肉鋼板製の密閉容器内に密閉収納し、このオーバーパックを地下数百〜千数百mの深さの岩盤中に緩衝材を介して地層処分することが計画されている。
【0003】
このような地層処分システムにおいて、廃棄体(オーバーパック)を定置埋設するレイアウトとしては、図16に示すような基本的な4つの方式がある。図16 (a) は、処分坑道横置き方式であり、左右に一対の主要坑道(搬送坑道)1,1間に水平あるいは上下方向に傾斜させた処分坑道(処分空間)2を所定の間隔をおいて平行に掘削形成し、各処分坑道2内に廃棄体Aを横にして坑道長手方向に所定の間隔をおいて定置埋設している。図16 (b) は、処分立坑竪置き方式であり、上部の主要坑道(搬送坑道)1と下部の坑道1’間に垂直の処分孔(処分立坑:処分空間)3を所定の間隔をおいて平行に掘削形成し、各処分立坑3内に廃棄体Aを竪にして上下方向に所定の間隔をおいて定置埋設している。
【0004】
図16 (c) は、処分孔横置き方式であり、処分坑道(搬送坑道)4の両側壁部に水平の処分孔(処分空間)5を坑道長手方向に間隔をおいて掘削形成し、各処分孔5内に廃棄体Aを横にして定置埋設している。図16 (d) は、処分孔竪置き方式であり、処分坑道4の底部に垂直の処分孔(処分空間)6を坑道長手方向に間隔をおいて掘削形成し、各処分孔6内に廃棄体Aを竪にして定置埋設している。
【0005】
このような地層処分システムにおいては、操業前の試験段階や実際の操業段階で、岩盤の変位や地下水の浸入等をモニタリングする必要があり、スウェーデンのプロトタイプ処分場では、図17に示すような、バリア性能を確認する実証試験が実施されている。
【0006】
この実証試験では、図17に示すように、実物大の処分孔6に疑似キャニスターAと緩衝材Cを定置し、上部空間4を埋め戻し、先ず緩衝材Cの膨潤挙動をモニタリングしている。この緩衝材の挙動確認のため、多くのセンサー101が埋め込まれ、このセンサーからのデータを得るため、隣接して設けた計測用坑道102から30本程度の試錐孔103をプロトタイプ処分場100(処分孔上部坑道4)に向けて掘削し、試錐孔103の中に通信ケーブルを配置している。
【0007】
【発明が解決しようとする課題】
しかし、前述のような従来のモニタリング方法では、センサー,試錐孔,通信ケーブルの数が膨大なものとなり、設置作業やメンテナンスに時間がかかり、コストが増大するという課題がある。あるいは、メンテナンスが不可能であり、モニタリングを継続できない場合がある。
【0008】
また、地層処分場で適用されるセンサーや通信ケーブル等のモニタリング機器は、高温・高圧環境下で長期間の使用に耐える必要があり、モニタリング機器には耐久性が必要とされる。しかし、後述する例に示される通り、モニタリング機器の耐久性は、長期間の使用に対して十分であるとはいえず、従来のモニタリング方法では、一度埋め込んだセンサーやケーブルの交換が難しいという課題がある。
【0009】
センサーの耐久性に関しては、カナダの地下420mの坑道におけるベントナイトプラグとコンクリートプラグの実証試験では、ベントナイトプラグの性能確認のために800個以上のセンサーが設置されたが、その稼動状況は3年間で80%台であった。また、通常の土木工事における情報化施工でも、数年の工事期間終了までに3割程度のセンサーに何らかの問題が生じることが多い。
【0010】
本発明は、前述のような従来のモニタリング方法の課題を解決すべくなされたもので、本発明目的は、廃棄物の地層処分場等におけるモニタリングに際し、試錐孔,通信ケーブルの数を少なくすることができると共に、人工バリアに水の通り道が形成されるのを防止することができ、かつ、モニタリング装置を小型で安価な装置とすることができる坑道のモニタリング方法を提供することにある。
【0011】
【課題を解決するための手段】
【0012】
本発明の請求項1は、廃棄物が緩衝材を介して埋設される処分坑道または処分孔と、この処分坑道または処分孔に廃棄物を搬送するための坑道を備えた地層処分場におけるモニタリング方法であり、処分孔を有する処分坑道または主要坑道の近傍や周辺の岩盤内または坑道支保工の内部や表面、あるいは、処分坑道または処分孔の近傍や周辺の岩盤内または処分坑道または処分孔の内部や表面に、ボーリング孔による走行路あるいはボーリング孔内に走行管を設置した走行路を設け、前記走行路の内部に、計測データを無線で受信する受信器を有するデータ収集機器が内蔵された本体と本体両端部の移動安定装置から構成されている移動式のデータ収集装置を配置し、岩盤、坑道支保工または処分坑道または処分孔内や坑道内の充填材(緩衝材や埋め戻し材・プラグ等)に関連する各種のデータを計測する機能と、計測データを無線で送信する機能を有するモニタリング装置を前記走行路の近傍の岩盤内、または、処分坑道や処分孔の緩衝材中、あるいは処分孔を有する処分坑道の埋め戻し材中に設け、前記モニタリング装置で計測したデータを前記データ収集装置に無線で発信し、走行路内を移動し、あるいは所定の位置に定置した前記データ収集装置で受信して収集することを特徴とする坑道のモニタリング方法である。
【0013】
この請求項1は、放射性廃棄物等の地層処分場に適用した場合であり、図16に示す坑道1や4などの近傍の岩盤内に走行路を坑道軸方向と平行または直角に設ける。あるいは、坑道1や4の支保工の内部に坑道軸方向と平行に走行路を設ける。あるいは、図16に示す処分坑道2,処分孔3,処分孔5,処分孔6などの処分空間の近傍の岩盤内に走行路を処分空間軸方向と平行に設ける。走行路は、ボーリングにより形成し、あるいは、このボーリング孔内に走行管を設置して形成する。走行管の材質は、耐久性のあるプラスチックやセラミックス等が好ましい。一方、モニタリング装置(地中無線センサ)は、処分坑道や処分孔などの処分空間に定置埋設される廃棄体(オーバーパック)等に近接して、あるいは、その近傍に埋設し、または、処分孔に通じる坑道等の埋め戻し材内等に埋設し、例えば、廃棄体の温度など、緩衝材や埋め戻し材の温度、膨潤圧、ひずみなど、周辺岩盤や坑道支保工等の温度、変位、歪み、応力、間隙水圧、空隙、ガス、電位、地下水化学(pH、Eh、地下水組成、放射能、電気伝導度等)などを計測する。この計測データを、モニタリング装置に搭載された送信器から無線方式(電磁波方式、音響方式や超音波方式等)で発信し、走行路内を移動し、あるいは、所定の位置に定置されたデータ収集装置の受信器で受信して収集する。
【0014】
本発明の請求項2は、請求項1に記載の坑道のモニタリング方法において、データ収集装置は、自走可能なデータ収集機器または外部の駆動手段で移動可能なデータ収集機器にデータの受信器が設けられていることを特徴とする坑道のモニタリング方法である。
【0015】
この請求項2では、データ収集装置は比較的小径の走行路を移動可能な装置であり、データ収集機器を駆動モータと駆動輪等で自走させ、あるいは、押し棒,ケーブル,流体圧などの外部の駆動手段で走行させる。データ収集機器は、少なくとも受信器が搭載され、受信した計測データを通信ケーブルを介して伝送し、あるいは、データ収集機器のメモリ内に一時的に蓄積するなどする。なお、このデータ収集機器には、センサを搭載し、モニタリング装置(地中無線センサ)とは別の計測を行うようにすることもできる。
【0016】
本発明の請求項3は、請求項1または2に記載の坑道のモニタリング方法において、モニタリング装置は、密閉容器の中に、電源と、各種の計測を行うセンサと、センサからの計測データを無線で送信する送信器が収納されていることを特徴とする坑道のモニタリング方法である。
【0017】
この請求項3では、モニタリング装置とデータ収集機器は比較的近くに位置しているため、小型の送信器等を用いることができる。センサは常時作動させてもよいし、電源を節約するために定期的に作動させてもよい。また、モニタリング装置とデータ収集機器にそれぞれ送受信器を設け、モニタリング装置に制御信号を送信してセンサ等を制御することもできる。
【0018】
以上のような構成の本発明の走行路と移動式のデータ収集装置と地中無線センサによる坑道のモニタリング方法では、坑道の周辺の岩盤内または坑道支保工などに走行路を設け、この走行路内に移動式のデータ収集装置を配置し、岩盤、坑道支保工または処分空間内や坑道内の充填材などに関連する各種のデータをモニタリング装置で計測して無線で発信し、前記データ収集装置で収集するため、従来のスウェーデンのプロトタイプ処分場の場合と比べて、試錐孔,通信ケーブルの数を大幅に削減することができる。
【0019】
また、モニタリング装置の計測データをデータ収集装置へ無線で伝送するため、緩衝材や埋め戻し材等の人工バリアに水の通り道(通信ケーブルや走行管など)が形成されるのを防止することができ、核種等の選択的移行経路を無くすことができ、処分場の安全性を損なうことがない。また、無線による通信は、モニタリング装置と走行路のデータ収集装置とが比較的近くに位置しているため、例えば10m程度の短距離の通信であり、小型の通信装置でよく、モニタリング装置を小型で安価な装置とすることができる。
【0020】
【発明の実施の形態】
以下、本発明を図示する実施の形態に基づいて説明する。この実施形態は、高レベル放射性廃棄物の地層処分場に本発明を適用した例である。図1〜図13は、本発明の基本的なモニタリング方法であり、走行路と移動式のモニタリング装置による坑道のモニタリング方法実施形態である。
【0021】
図1は、図16 (d) の処分孔竪置き方式に適用した例であり、処分坑道4の近傍における岩盤B内に走行管10を坑道4の軸方向と平行に配設し、坑道4の近傍における岩盤B内に走行管11を坑道4の軸方向と直交するように配設している。また、処分坑道4の支保工(吹付けコンクリートと2次覆工コンクリートなど)D内または支保工Dの表面に走行管12を坑道4の軸方向と平行に配設している。
【0022】
さらに、坑道4の底部に垂直に掘削形成された処分孔6の近傍における岩盤B内に走行管13を処分孔6の軸方向と平行に配設し、処分孔6の緩衝材(ベントナイトを主な成分とする混合土など)Cの内部における廃棄体(オーバーパック)Aの外側に走行管14を処分孔6の軸方向と平行に配設している。なお、緩衝材Cのベントナイト混合土は、力学的な緩衝機能,低透水性能,放射性物質の低拡散性能を有する材料であり、岩盤圧や地下水の影響を低減し、核種の移行を遅延させることができるものである。
【0023】
このような走行管10〜14内に移動式のモニタリング装置20を配置し、モニタリング装置20を移動させながら、あるいは、所定の位置に定置させて、後述する種々の測定や採水などのモニタリングを行なう。また、必要に応じて、走行管からモニタリング装置20を取り出して、センサーや通信ケーブル等の交換やメンテナンスを行なう。
【0024】
モニタリング装置20は、例えば図1 (b) に示すように、センサー等のモニタリング機器が内蔵された本体21と、この本体21の両端部に配置された移動安定装置22などから構成されている。移動安定装置21には、その周方向に間隔をおいて車輪、ローラあるいはスライダー23等が複数配設されている。本体21には、1種類のセンサー等を搭載してもよいし、複数個のセンサー等を搭載するようにしてもよい。
【0025】
例えば、図2 (a) は処分孔内の人工バリア(緩衝材)のモニタリング概念図であり、処分孔6の緩衝材C内に走行管14を設置し、この走行管14の内部に種々のセンサー等を備えた各種モニタリング装置20を上下に移動させることで、様々なデータを走行管14内の任意の位置で取得することが可能となる。従来と比べて、センサーの数を大幅に減少させることができ、コストの削減が可能となる。
【0026】
図2 (b) は天然バリア(岩盤)のモニタリング概念図であり、処分坑道4の周辺母岩に沿って水平ボーリングを行い、このボーリング孔に走行管10を設置し、この走行管10の内部にモニタリング装置20を水平移動させることで、広範囲にわたって1つのセンサーでモニタリングすることが可能となる。センサー等の種類を替えることで、多くの項目をモニタリングすることも可能である。
【0027】
なお、モニタリング装置20を常時移動させる必要がない場合には、交換時にのみ移動させるという使い方で十分である。
【0028】
(1) 走行管の配置レイアウト
図3はオーバーパック近傍の人工バリア内に走行管を設置する場合の走行管の配置レイアウト例を示したものである。処分孔竪置き方式では、図3 (a) に示すように、直線状の走行管14内をモニタリング装置20が上下に往復移動する往復型や、廃棄体Aの周りに環状に配置した走行管14内をモニタリング装置20が循環移動する循環型などが考えられる。
【0029】
処分坑道横置き方式では、図3 (b) に示すように、処分坑道2の軸方向に平行に配設された走行管14内をモニタリング装置20が一方向に水平移動する一方通行型、比較的短い走行管14内をモニタリング装置20が水平往復移動する往復型、1個ないし複数個の廃棄体Aの周りをモニタリング装置20が循環移動する循環型などが考えられる。
【0030】
図4は天然バリアの配置レイアウト例を示したものであり、図4 (a) の処分孔竪置き方式の処分坑道4では、一方通行型などとし、図4 (b) の処分孔竪置き方式の処分孔6では、往復型などとする。
【0031】
(2) モニタリング装置の移動方式
図5はモニタリング装置20の移動方式の例を示したものである。図5 (a) は、移動安定装置22に走行管の内面を転動する駆動輪23を複数設け、自走させる自走式の例である。駆動輪23の駆動モータには電力ケーブル24で電力を供給する。これに限らず、バッテリー電源式とすることもできる。
【0032】
図5 (b) は、モニタリング装置20の片側から伸縮棒等の押し込み装置25により押し引きする片押し式の例である。処分孔竪置き方式のように上下移動させる場合には、重力を利用できるため、ケーブルとウインチ等による巻き上げ・巻き下げ方式とすることができる。
【0033】
図5 (c) は、モニタリング装置20の両端に連結した牽引ケーブル26で牽引するケーブル式の例である。処分孔竪置き方式のように上下移動させる場合には、モニタリング装置20の上端部のみに牽引ケーブル26を連結すればよい。
【0034】
図5 (d) は、空気圧あるいは液圧(走行管内に液を充填する場合)27でモニタリング装置20を移動させる圧力式の例である。一方向の移動に空気圧等を使用し、他方向の移動に牽引ケーブル26を使用してもよいし、両方向の移動に空気圧等を使用することもできる。
【0035】
(3) モニタリング装置の形状
図6はモニタリング装置20の形状の例を示したものである。図6 (a) は、円筒形の本体21の両端部に車輪付きの移動安定装置22を設けた基本形の例である。この場合、直線状の走行管内での走行性が良好となる。
【0036】
図6 (b) は、本体21の中央部を2分割してピンヒンジ等で連結し、折れ曲がるようにした中折れ型の例である。この場合、曲線状の走行管内での走行が円滑となる。折り曲げる箇所は、本体21に限らず、その他の部分でもよい。
【0037】
図6 (c) は、モニタリング装置20の両端に流線型の端部28を設けた例である。この場合、液体中を移動させる場合に有効である。
【0038】
図6 (d) は、装置全体を球型にした例であり、球形の本体21の中央に移動安定装置22を設けている。この場合、形状がコンパクトであるため、走行性がよい。
【0039】
図6 (e) は、円筒形の本体21のみからなる例であり、移動安定装置22が無くても、直線状の走行管の場合は十分に走行可能と考えられる。
【0040】
図6 (f) は、球形の本体21のみからなる例である。移動方式が圧力方式(空気圧・液圧)で、かつ、データ保存装置を内蔵させれば、ケーブルも不要であり、簡素なシステムになる。
【0041】
(4) モニタリング装置の交換方法
移動式のモニタリング装置の特徴である「交換しやすさ」や「メンテナンスのし易さ」を向上させるため、図7 (a) に示すように、走行管14の端部から使用していたモニタリング装置20を直接取り出し、新しいモニタリング装置20を挿入し、モニタリング装置を完全に取り替える方式が最も簡単である。
【0042】
これに対し、常時モニタリングをする必要がなく、モニタリング装置20を一時的に別の場所に保管しておきたい場合、また、走行管内の雰囲気を乱したくない場合などには、図7 (b) に示すように、走行管14の一部とモニタリング装置20を一体化して着脱する方式が考えられる。この場合、走行管14内の雰囲気が一定に保たれるため、人工バリアへの影響が小さい。センサー自体のキャリブレーションも容易になる。
【0043】
(5) モニタリング装置からのデータ伝送方式
モニタリング装置20のセンサーで取得したデータは、図8 (a) に示すように、移動用ケーブルを兼ねる通信ケーブル30を用い、パソコン等の記録装置31に直接伝送する方式が考えられる。この方式は、信頼性が高いが、通信距離が長くなる場合にはケーブルに負担がかかる。
【0044】
また、センサーにメモリを内蔵させ、モニタリングしたデータをメモリ内に一時的に蓄積する方式も考えられる。図8 (b) に示すように、データが保存されたモニタリング装置20を走行管14内の所定の位置まで移動させ、記録装置31に接続してデータを保存する。場合によっては、モニタリング装置20を走行管14から取り外して記録装置31に接続する。モニタリング装置20の移動方式が圧力方式の場合、ケーブルが不要になるため、システムを簡素化できる。
【0045】
なお、以上のようなデータ伝送方式に限らず、無線でデータを伝送することも可能である。
【0046】
また、モニタリング装置20の走行は、有線方式や無線方式で、オペレータの操作により制御され、あるいはコンピュータにより自動制御される。
【0047】
(6) 走行管の埋め戻し
実際の操業段階で廃棄体Aや緩衝材C等の搬送や定置の作業の間、モニタリングを継続し、これらの作業が終了すると、搬送坑道等を埋め戻して永久閉鎖することになるが、天然バリアや人工バリア内に設置された走行管が将来の水の通りみちになることを防止するため、適切に埋め戻し処理する必要がある。このような埋め戻し処理の一例を図9に示す。
【0048】
図9において、(1) 先ずモニタリング装置20を走行管14内から撤去した後、走行管14の内部にベントナイトCを注入する。(2) 緩衝材Cの上面から所定の距離だけ走行管14の上部の周囲の緩衝材Cを掘削する。(3) 走行管14の上部を切断除去する。(4) 掘削した空間を緩衝材Cで埋め戻す。
【0049】
(7) 走行管
移動式のモニタリング装置20の場合、装置自体は交換可能であるため、交換しながら長期間のモニタリングが可能となる。しかし、走行管10〜14の交換は困難であるため、走行管は耐久性のある材質、例えばプラスチックやセラミックスとするのが好ましい。
【0050】
(8) その他
図10 (a) に示すように、人工バリア(緩衝材C)への影響を小さくするため、走行管14内に窒素等の不活性ガスを封入することも考えられる。
【0051】
また、図10 (b) に示すように、走行管14に通水用孔40を設けるなどして、再冠水後に走行管14内に間隙水が浸入可能な構造とすることにより、緩衝材間隙水のpH等の化学特性もモニタリングすることができる。
【0052】
さらに、図10 (c) に示すように、モニタリング装置20に清掃ブラシ41を設け、走行管14のメンテナンスを実施することもできる。
【0053】
(9) 具体的な測定例
図11は、図1の処分孔竪置き方式における岩盤関連のモニタリングの例を示したものである。図11 (a) は、モニタリング装置20に移動式傾斜計20−1を使用し、岩盤B内に設置した処分坑道4に平行な3本の走行管10(1本でもよい)内を水平移動させ、トンネル軸方向の岩盤変位を測定する例である。この測定値から歪みや応力を算出することができる。
【0054】
図11 (b) は、岩盤B内に設置した処分坑道4に垂直な走行管11内に移動式傾斜計20−1を上下移動させ、トンネル直角方向の歪みや応力を測定する例である。
【0055】
図11 (c) は、モニタリング装置20に移動式採水装置20−2を使用し、走行管10内を水平移動させ、所定の位置で地下水を採取する例である。採水後、試験室で地下水組成を測定する。なお、走行管10の所定位置にパッカーや弁等を設置しておくこともできる。また、直接、pH計を走行させることも可能である。
【0056】
図12は、図1の処分孔竪置き方式における支保工関連のモニタリングの例を示したものである。図12 (a) は、モニタリング装置20に移動式傾斜計20−1を使用し、支保工D内に設置した処分坑道4に平行な3本の走行管12(1本でもよい)内を水平移動させ、トンネル軸方向の支保工変位を測定する例である。この測定値から歪みや応力を算出することができる。
【0057】
図12 (b) は、モニタリング装置20に移動式採水装置20−2を使用し、走行管12内を水平移動させ、所定の位置で地下水を採取する例である。採水後、試験室で地下水組成を測定する。この場合、地盤中地下水組成との比較ができる。なお、走行管12の所定位置にパッカーや弁等を設置しておくこともできる。また、直接、pH計を走行させることも可能である。
【0058】
図12 (c) は、モニタリング装置20に移動式超音波測定器20−3を使用し、走行管12内を水平移動させ、支保工Dの背面の空隙を測定する例である。
【0059】
図13は支保工関連のその他のモニタリング等の例を示したものである。図13 (a) は、走行管12を支保工Dの2次覆工排水層内(排水シート内)に2本設置し(1本でもよい)、排水層に浸入する地下水を通水孔等を有する走行管12に集水し、処分坑道4の端部より排水する例である。その際、水量と組成を測定する。
【0060】
図13 (b) は、長期間供用中に支保工Dの背面に空隙が発生し、処分坑道4の健全性を維持するのが難しくなった場合には、走行管12を予めダブルパッカー式スリーブパイプとし、グラウトの注入を行なう例である。管の閉塞にも利用することができる。グラウト材料は、セメント系やベントナイト系などを使用する。
【0061】
なお、以上は、図16に示す放射性廃棄物の地層処分場に適用した場合について説明したが、これに限らず、その他の廃棄物の埋設処分にも適用が可能であり、さらに、通常のトンネルのモニタリングにも適用が可能である。
【0062】
次に、図14、図15は、本発明の走行路と移動式のデータ収集装置と地中無線センサによる坑道のモニタリング方法(請求項1〜3)の実施形態である。図14は、実験段階(実験場)に適用した場合を示している。
【0063】
図14は、図1と同様に、処分孔竪置き方式であり、処分坑道4の支保工(吹付けコンクリートと2次覆工コンクリートなど)D内または支保工Dの表面に走行管12が坑道4の軸方向と平行に配設されている。なお、処分坑道4の近傍における岩盤B内に走行管を坑道4の軸方向と平行に配設し、坑道4の近傍における岩盤B内に走行管を坑道4の軸方向と直交するように配設してもよい(図示省略、図1参照)。また、坑道4の底部に垂直に掘削形成された処分孔6内に廃棄体(オーバーパック)Aが緩衝材(ベントナイトを主な成分とする混合土など)Cにより定置埋設されている。なお、処分坑道4の奥側が埋め戻し材Eで埋め戻され、プラグFで閉鎖されている。
【0064】
このような処分坑道4において、図14に示すように、走行管12内に移動式のデータ収集装置50を配置し、緩衝材Cおよび埋め戻し材Eなどの中に地中無線センサによるモニタリング装置51を埋設し、各種のデータをモニタリング装置51のセンサで計測し、この計測されたデータを無線でデータ収集装置50に発信し、このデータ信号をデータ収集装置51で収集する。データ収集装置50は、走行管12内を移動させながら、あるいは、所定の位置に定置させて、データを収集する。必要に応じて、データ収集装置50は交換・メンテナンス位置52から取り出して、部品の交換やメンテナンスを行う。
【0065】
移動式のデータ収集装置50は、図15に示すように、データ収集機器が内蔵された本体53と、車輪やローラやスライダー等の移動安定装置54などから構成されている。本体53には、少なくとも、データ収集機器の無線の受信器が搭載されている。
【0066】
移動式のデータ収集装置50の移動方式は、図1の移動式のモニタリング装置20と同様であり、図5に示すような、駆動輪と駆動モータを用いた電力ケーブル供給方式やバッテリー電源方式、その他の方式を採用できる。また、形状も図6に示す種々の形状を採用することができる。また、データ収集装置50で収集したデータは、図1の移動式のモニタリング装置20と同様に、通信ケーブルでパソコン等の記録装置に伝送する方式、データ収集機器にメモリを内蔵させて一次的に蓄積しておく方式、無線で記録装置に伝送する方式などを採用することができる。
【0067】
地中無線センサによるモニタリング装置51は、図14に示すように、密閉容器55の中に、電源56と、各種の計測を行うセンサ57と、センサ57からの計測データを無線で送信する送信器58などを搭載して構成されている。信号の無線伝送には、電磁気信号による電磁波方式あるいは音波信号による音響方式・超音波方式等を用いる。
【0068】
埋設してあるセンサ57からの計測データを、近傍を走行し、あるいは近傍に定置されたデータ収集装置50で収集するため、バリア(緩衝材Cや埋め戻し材Eなど)に水の通りみち(通信ケーブルや走行管など)が形成されるのを防止することができる。また、無線による通信は、例えば10m程度の短距離の通信であり、小型の通信装置でよく、モニタリング装置51を小型で安価な装置とすることができる。さらに、電源やセンサ等も10年程度の短期間使用できる装置とすれば、より小型で安価な装置とすることができ、実験段階(実験場)に使用する場合に好適となる。なお、実験段階に限らず、長期にわたるモニタリングにも適用できることはいうまでもない。
【0069】
なお、地中無線センサによるモニタリング装置51は、図14に示すように、処分孔6の緩衝材Cおよび処分坑道4の埋め戻し材Eの中に埋設する場合を例示したが、これに限らず、例えば図16 (a) 、(b) の場合には、処分坑道2や処分孔3の内部に埋設する。
【0070】
センサ57は、温度センサ、圧力センサ、変位センサ(傾斜計)、超音波センサ,pHセンサなどであり、(1)廃棄体Aの温度など、(2)緩衝材Bや埋め戻し材Eの温度、膨潤圧、ひずみなど、(3)周辺岩盤や坑道支保工等の温度、変位、歪み、応力、間隙水圧、空隙、ガス、電位、地下水化学(pH、Eh、地下水組成、放射能、電気伝導度等)など、の項目を計測する。
【0071】
なお、センサ57は、耐腐食性、耐圧性、耐放射線性等に優れたプローブを用い、このプローブを検出箇所に配置する。
【0072】
また、データ収集装置50にもセンサを設け、モニタリング装置51とは別の計測を行うようにすることもできる。また、モニタリング装置51のセンサ57は常時作動させてもよいし、電源56を節約するために定期的に作動させてもよい。また、モニタリング装置51とデータ収集装置50にそれぞれ送受信器を設け、モニタリング装置51に制御信号を送信してセンサ57を制御することもできる。
【0073】
なお、以上は、図16に示す放射性廃棄物の地層処分場に適用した場合について説明したが、これに限らず、本発明の走行路と移動式のデータ収集装置と地中無線センサによる坑道のモニタリング方法は、その他の廃棄物の埋設処分にも適用が可能であり、さらに、通常のトンネルのモニタリングにも適用が可能である。
【0074】
【発明の効果】
(1) 本発明の走行路と移動式のデータ収集装置と地中無線センサによる坑道のモニタリング方法は、坑道の周辺の岩盤内または坑道支保工などに走行路を設け、この走行路内に移動式のデータ収集装置を配置し、岩盤、坑道支保工または処分空間内や坑道内の充填材などに関連する各種のデータをモニタリング装置で計測して無線で発信し、前記データ収集装置で収集するため、従来のスウェーデンのプロトタイプ処分場の場合と比べて、試錐孔,通信ケーブルの数を大幅に削減することができ、コストの大幅な低減が可能となる。
【0075】
(2) また、モニタリング装置の計測データをデータ収集装置へ無線で伝送するため、緩衝材や埋め戻し材等の人工バリアに水の通り道(通信ケーブルや走行管など)が形成されるのを防止することができ、核種等の選択的移行経路を無くすことができ、処分場の安全性を損なうことがない。また、無線による通信は、モニタリング装置と走行路のデータ収集装置とが比較的近くに位置しているため、例えば10m程度の短距離の通信であり、小型の通信装置でよく、モニタリング装置を小型で安価な装置とすることができる。
【図面の簡単な説明】
【図1】本発明の基本的なモニタリング方法であり、走行路と移動式のモニタリング装置による坑道のモニタリング方法を廃棄物の地層処分に適用した場合の1例であり、(a) は断面にして示す斜視図、(b) は部分断面図である。
【図2】図1の処分孔と処分坑道の断面図である。
【図3】図1のモニタリング方法における処分孔と処分坑道における人工バリアのモニタリングを示す断面図である。
【図4】図1のモニタリング方法における坑道と処分孔における天然バリアのモニタリングを示す断面図である。
【図5】図1のモニタリング方法におけるモニタリング装置の種々の移動方式を示す断面図である。
【図6】図1のモニタリング方法におけるモニタリング装置の種々の形状を示す断面図である。
【図7】図1のモニタリング方法におけるモニタリング装置の交換方法を示す断面図である。
【図8】図1のモニタリング方法におけるモニタリング装置のデータ伝送方法を示す断面図である。
【図9】図1のモニタリング方法における走行管の埋め戻しを示す断面図である。
【図10】図1のモニタリング方法にけるその他のモニタリングやメンテナンスを示す断面図である。
【図11】図1のモニタリング方法における岩盤関連のモニタリングの具体例を示す断面図である。
【図12】図1のモニタリング方法における支保工関連のモニタリングの具体例を示す断面図である。
【図13】図1のモニタリング方法における支保工関連のその他のモニタリングやメンテナンスの具体例を示す断面図である。
【図14】本発明の走行路と移動式のデータ収集装置と地中無線センサによる坑道のモニタリング方法を廃棄物の地層処分に適用した場合の1例であり、断面にして示す斜視図である。
【図15】図14における移動式のデータ収集装置と地中無線センサによるモニタリング装置を示す断面図である。
【図16】廃棄物の地層処分の基本的な定置方式を示す斜視図である。
【図17】従来の実証試験の処分場におけるモニタリングシステムを示す断面図と斜視図である。
【符号の説明】
A……廃棄体
B……岩盤
C……緩衝材
D……支保工
E……埋め戻し材
F……プラグ
1……主要坑道
2……処分坑道
3……処分孔
4……処分坑道
5……処分孔
6……処分孔
7……立坑
10,11,12,13,14……走行管
20……モニタリング装置
21……本体
22……移動安定装置
23……車輪、ローラあるいはスライダー等
24……電力ケーブル
25……押し込み装置
26……牽引ケーブル
27……空気圧あるいは液圧
28……流線型の端部
30……通信ケーブル
31……記録装置
40……通水用孔
41……清掃ブラシ
50……データ収集装置
51……モニタリング装置
52……交換・メンテナンス位置
53……本体
54……移動安定装置
55……密閉容器
56……電源
57……センサ
58……送信器

Claims (3)

  1. 廃棄物が緩衝材を介して埋設される処分坑道または処分孔と、この処分坑道または処分孔に廃棄物を搬送するための坑道を備えた地層処分場におけるモニタリング方法であり、処分孔を有する処分坑道または主要坑道の近傍や周辺の岩盤内または坑道支保工の内部や表面、あるいは、処分坑道または処分孔の近傍や周辺の岩盤内または処分坑道または処分孔の内部や表面に、ボーリング孔による走行路あるいはボーリング孔内に走行管を設置した走行路を設け、前記走行路の内部に、計測データを無線で受信する受信器を有するデータ収集機器が内蔵された本体と本体両端部の移動安定装置から構成されている移動式のデータ収集装置を配置し、岩盤、坑道支保工または処分坑道または処分孔内や坑道内の充填材に関連する各種のデータを計測する機能と、計測データを無線で送信する機能を有するモニタリング装置を前記走行路の近傍の岩盤内、または、処分坑道や処分孔の緩衝材中、あるいは処分孔を有する処分坑道の埋め戻し材中に設け、前記モニタリング装置で計測したデータを前記データ収集装置に無線で発信し、走行路内を移動し、あるいは所定の位置に定置した前記データ収集装置で受信して収集することを特徴とする坑道のモニタリング方法。
  2. 請求項1に記載の坑道のモニタリング方法において、データ収集装置は、自走可能なデータ収集機器または外部の駆動手段で移動可能なデータ収集機器にデータの受信器が設けられていることを特徴とする坑道のモニタリング方法。
  3. 請求項1または2に記載の坑道のモニタリング方法において、モニタリング装置は、密閉容器の中に、電源と、各種の計測を行うセンサーと、センサーからの計測データを無線で送信する送信器が収納されていることを特徴とする坑道のモニタリング方法。
JP2002126003A 2001-05-09 2002-04-26 坑道のモニタリング方法 Expired - Fee Related JP4250908B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002126003A JP4250908B2 (ja) 2001-05-09 2002-04-26 坑道のモニタリング方法
US10/477,001 US7287934B2 (en) 2001-05-09 2002-05-01 Stratum disposal monitoring system
EP02724666A EP1394814B1 (en) 2001-05-09 2002-05-01 Gallery monitoring system
PCT/JP2002/004373 WO2002091393A1 (fr) 2001-05-09 2002-05-01 Procede et systeme de surveillance de galeries
AT02724666T ATE458254T1 (de) 2001-05-09 2002-05-01 Galerieüberwachungssystem
DE60235359T DE60235359D1 (de) 2001-05-09 2002-05-01 Galerieüberwachungssystem

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001138514 2001-05-09
JP2001-138514 2001-05-09
JP2002126003A JP4250908B2 (ja) 2001-05-09 2002-04-26 坑道のモニタリング方法

Publications (2)

Publication Number Publication Date
JP2003028991A JP2003028991A (ja) 2003-01-29
JP4250908B2 true JP4250908B2 (ja) 2009-04-08

Family

ID=26614808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126003A Expired - Fee Related JP4250908B2 (ja) 2001-05-09 2002-04-26 坑道のモニタリング方法

Country Status (1)

Country Link
JP (1) JP4250908B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100764094B1 (ko) * 2006-06-30 2007-10-09 한국원자력연구원 중수로 사용후핵연료의 저장시스템
JP5839273B2 (ja) * 2011-11-11 2016-01-06 清水建設株式会社 原位置試験方法および原位置試験装置
US10002683B2 (en) * 2015-12-24 2018-06-19 Deep Isolation, Inc. Storing hazardous material in a subterranean formation
KR101938460B1 (ko) * 2016-12-21 2019-01-14 한국광해관리공단 광산 채굴 공동 안정화 방법
TWI789397B (zh) 2017-06-05 2023-01-11 美商深絕公司 於地下岩層中儲存危險材料
JP7304321B2 (ja) * 2020-07-06 2023-07-06 大成建設株式会社 地山計測システム、地山計測方法、地山管理システム、及び地山管理方法

Also Published As

Publication number Publication date
JP2003028991A (ja) 2003-01-29

Similar Documents

Publication Publication Date Title
WO2002091393A1 (fr) Procede et systeme de surveillance de galeries
Meng et al. Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil
Rajapakse Pile design and construction rules of thumb
CN101487249B (zh) 土压力盒埋设装置及其埋设方法
JP4914550B2 (ja) 高度化封じ込めシステム
Sofianos et al. Pipe jacking a sewer under Athens
CN109723443B (zh) 隧道施工方法
Wan et al. Lessons learnt from installation of field instrumentation
JP4250908B2 (ja) 坑道のモニタリング方法
CN104963341B (zh) 一种耦合式地源热泵混合回填工艺及回填料
Issakulov et al. Investigation of the interaction of the bored micro pile by DDS (FDP) technology with the soil ground
JP5839273B2 (ja) 原位置試験方法および原位置試験装置
JP5747739B2 (ja) 原位置試験方法
Van der Berg et al. Displacements ahead of an advancing NATM tunnel in the London clay
Gaitanaru et al. Bucharest city urban groundwater monitoring system
Morino et al. Monitoring
JP2002048900A (ja) 高レベル放射性廃棄物地層処分の定置構造
Dussud TDR monitoring of soil deformation: case histories and field techniques
Dunnivant et al. Verifying the Integrity of Annular and Back‐Filled Seals for Vadose‐Zone Monitoring Wells
Ashoori Comparison of ground movements during trenchless technology operations for pipe and box installations by numerical analysis
Whiteley Seismic imaging of ground conditions from buried conduits and boreholes
Pusch et al. Buffer mass test-Rock drilling and civil engineering
Jovicic et al. Tunnelling in Slovenian Dinaric Karst: Challenges and Solutions
Romani et al. The T3 stretch of Line C in Rome: TBM excavation
CN118128108A (zh) 一种下穿敏感建筑物的监测方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees