JP4250796B2 - Electrodeionization equipment - Google Patents

Electrodeionization equipment Download PDF

Info

Publication number
JP4250796B2
JP4250796B2 JP04659699A JP4659699A JP4250796B2 JP 4250796 B2 JP4250796 B2 JP 4250796B2 JP 04659699 A JP04659699 A JP 04659699A JP 4659699 A JP4659699 A JP 4659699A JP 4250796 B2 JP4250796 B2 JP 4250796B2
Authority
JP
Japan
Prior art keywords
chamber
concentration
electrodeionization apparatus
concentration chamber
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04659699A
Other languages
Japanese (ja)
Other versions
JP2000237751A (en
Inventor
伸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP04659699A priority Critical patent/JP4250796B2/en
Publication of JP2000237751A publication Critical patent/JP2000237751A/en
Application granted granted Critical
Publication of JP4250796B2 publication Critical patent/JP4250796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気脱イオン装置に係り、特に、電気脱イオン装置の濃縮室におけるスケールの生成を防止して長期に亘り安定に処理を行うことができる電気脱イオン装置に関する。
【0002】
【従来の技術】
従来、半導体製造工場、液晶製造工場、製薬工業、食品工業等の各種の産業ないし研究施設等において使用される脱イオン水の製造には、図3(a)に示す如く、電極(陽極31,陰極32)の間に複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室33と脱塩室34とを交互に形成した電気脱イオン装置30が多用されている。
【0003】
電気脱イオン装置は効率的な脱塩処理が可能であり、イオン交換樹脂のような再生を必要とせず、完全な連続採水が可能で、極めて高純度の水が得られるという優れた効果を奏する。なお、電気脱イオン装置には、脱塩室にアニオン交換樹脂とカチオン交換樹脂とが混合して充填されているものと、脱塩室にイオン交換樹脂が充填されていないものとがあるが、処理水の水質向上の点では、脱塩室にイオン交換樹脂が充填されたものの方が効果的である。
【0004】
電気脱イオン装置では、脱塩室に流入した原水中のイオンが親和力、濃度及び移動度に基いて電位をかけた電極の方向(被処理水の流れに対して直角方向)に移動し、更に、脱塩室と濃縮室とを仕切るカチオン交換膜又はアニオン交換膜を横切って移動し、すべての室において電荷の中和が保たれるようになる。そして、イオン交換膜の半浸透特性及び電位により、原水中のイオンは脱塩室では減少し、隣りの濃縮室では濃縮されることになる。このため、脱塩室から脱イオン水が回収される。
【0005】
従来の電気脱イオン装置は、図3(a)に示す如く、濃縮室33及び脱塩室34内をそれぞれ流れる濃縮水と脱イオン水は同一方向に流れる構造となっている(図3(a)において、上側が濃縮室33及び脱塩室34の入口側であり、下側が出口側である。)。また、通常の場合、水回収率を高めるために、図3(b)に示す如く、濃縮室から排出された濃縮水は、その一部のみが系外へ排出され、残部は濃縮室の入口側へポンプPにより循環される。
【0006】
【発明が解決しようとする課題】
電気脱イオン装置では、アニオン交換膜の濃縮室側ではOH-やHCO3 -等のアニオン濃度が上昇し、また、カチオン交換膜の濃縮室側ではCa2+等のカチオン濃度が上昇するため、濃縮室のイオン交換膜面に炭酸カルシウム等のスケールが発生していた。このようなスケールの発生は、イオン交換膜の有効膜面積を低下させ、脱イオン率を低下させるという問題があった。
【0007】
これらのスケールの発生を防止する方法として、濃縮室にイオン伝導スペーサを充填し、イオン交換膜面からの上記イオンの移動度を高めることにより、膜面境界層のイオン濃度上昇を抑制する方法が用いられることもある。しかし、この方法では、従来のものに比べると膜面境界層でのイオン濃縮が抑制されるものの、スケール発生源の各イオン種が濃縮室に移動することに変わりはなく、長期間運転を継続することにより、スケールの発生に到るという懸念があった。
【0008】
本発明は、上記従来の問題点を解決し、電気脱イオン装置の濃縮室におけるスケールの析出を抑制し、長期に亘り安定に運転を行うことができる電気脱イオン装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の電気脱イオン装置は、複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、該濃縮室に、該濃縮室に隣接する脱塩室の通水方向と交叉する方向に延在する仕切壁を設けて該濃縮室を2以上の濃縮水流通部に区画し、該濃縮水流通部の各々に該仕切壁の延在方向に濃縮水を流通させることを特徴とする。
【0010】
電気脱イオン装置の濃縮室におけるスケールの主成分は、濃縮室で濃縮されたCa2+イオンとHCO3 -イオンから生成する炭酸カルシウム(CaCO3)である。このスケールの生成はアニオン交換膜の濃縮室側の境界層でOH-イオン濃度が上昇し、高pH条件となる部位で特に生じやすい。
【0011】
本発明者は、このようなことから、スケール析出の要因であるCa2+イオン、HCO3 -イオン、OH-イオンがたとえ濃縮室内で濃縮されても、これらが高濃度条件で同一領域に混在していなければ、スケールの析出を防止できるものと考えた。しかして、本発明者は、濃縮室における、主にCa2+,HCO3 -,OH-イオンに起因するスケール析出を防止すべく、更に研究調査を行った結果、濃縮室における硬度成分の析出に係る各イオン移動は、濃縮室の流れ方向によって違いがあることを知見した。
【0012】
図2にその概要を示す。図2において、21はカチオン交換膜、22はアニオン交換膜、23は濃縮室、24は脱塩室、25は陽極、26は陰極であり、図において上側が濃縮室23及び脱塩室24の入口側であり、下側が出口側である。図2に示す通り、イオンがイオン交換膜を透過して濃縮室23に移動する領域は、当該イオン種により異なり、Ca2+イオンは脱塩室24の入口近くで濃縮室23に移動する。また、HCO3 -イオンは脱塩室24の通水方向の中間部分近辺から濃縮室23に移動する。また、OH-イオンは脱塩室24の出口近くにおいて濃縮室23に移動することが明らかになった。もちろん、これらのイオンの他にアニオンとしてのCl-イオンやカチオンとしてのNa+イオンやH+イオンの移動も生じるが、図2には図示を省略した。
【0013】
本発明では、濃縮室を仕切壁で2以上の濃縮水流通部に仕切ったため、スケール析出要因であるCa2+イオンの濃縮領域と、HCO3 -イオン及びOH-イオンの濃縮領域とが分画され、これらが濃縮室内で高濃度条件で混在することがなくなり、スケール析出が防止される。
【0014】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0015】
図1(a)は本発明の電気脱イオン装置の実施の形態を示す概略的な斜視図、図1(b)は同系統図である。
【0016】
図示の如く、本発明の電気脱イオン装置1は、陽極2と陰極3との間に、カチオン交換膜とアニオン交換膜とを交互に配列して濃縮室4と脱塩室5とを交互に形成した点においては従来の電気脱イオン装置と同様の構成とされているが、濃縮室4が仕切壁4Sにより2以上(図1においては2個)の濃縮水流通部4A,4Bに区画され、各濃縮水流通部4A,4Bの濃縮水の通水方向が脱塩室5内の通水方向と交叉する方向とされている点が従来の電気脱イオン装置と異なる。
【0017】
即ち、図1の電気脱イオン装置1において、脱塩室5は、図1(a)における上側が入口側、下側が出口側であり、脱塩室5内を水は上から下へ向って流れる。
【0018】
一方、濃縮室4内には、この脱塩室5内の通水方向と交叉する方向(図1(a)においては、直交方向。なお、この直交方向とは必ずしも厳密なものではなく、80〜100゜程度の範囲を含む)に延在する仕切壁4Sが設けられ、濃縮室4内は図において上下に2段に分画され、各濃縮水流通部4A、4Bの各々に図の手前側から奥側へ通水が行われる。
【0019】
このような電気脱イオン装置1であれば、脱塩室5の入口側で濃縮室4側へ移動するCa2+イオンはそのほぼ全量が上段の濃縮水流通部4A内に移動してこの濃縮水流通部4A内で濃縮される。一方、脱塩室5の通水方向の中央付近や出口付近で濃縮室4側へ移動するHCO3 -イオンやOH-イオンは下段の濃縮水流通部4B内に移動し、この濃縮水流通部4B内で濃縮される。
【0020】
このため、Ca2+イオンと、HCO3 -,OH-イオンとが同一領域で濃縮されることがなくなり、これらのイオンが高濃度条件で混在することによるスケールの生成は防止される。
【0021】
なお、本発明において、濃縮室を仕切壁で仕切って形成する濃縮水流通部は3以上であっても良い。ただし、仕切壁の数を増やすことによる部材数の増加、装置構成の複雑化等を考慮した場合、濃縮室内を2又は3個の濃縮水流通部に区画するのが好ましい。
【0022】
また、このように濃縮室内を区画する場合、形成される濃縮水流通部の容積割合は、スケール析出要因となるCa2+,HCO3 -,OH-イオン等のイオンの移動状況に応じて適宜決定されるが、通常の場合、濃縮室を2個の濃縮水流通部に区間する場合には、脱塩室の入口側の濃縮水流通部:出口側の濃縮水流通部=30〜70:70〜30(容積比)となるように、また、濃縮室を3個の濃縮水流通部に区間する場合には、脱塩室の入口側の濃縮水流通部:中間部分の濃縮水流通部:出口側の濃縮水流通部=20〜40:20〜40:20〜40(容積比)となるように分画するのが好ましい。
【0023】
本発明の電気脱イオン装置では、濃縮室への流入水は一過式とし、濃縮室の流出水を系外へ排出するようにしても良いが、一般的には水回収率の向上のために、濃縮室の流出水の一部を濃縮室の入口側へ循環して再利用するのが好ましい。この場合、図1(b)に示す如く、循環濃縮水は、各濃縮水流通部4A,4B毎に混合されないように、別々の循環ライン及び循環ポンプにより循環することが好ましい。この場合、循環水量は、濃縮室の流出水の70〜90%程度とし、電気脱イオン装置1の水回収率は90〜95%程度の条件で運転を実施するのが好ましい。
【0024】
なお、本発明の電気脱イオン装置は、脱塩室にアニオン交換樹脂とカチオン交換樹脂との混合樹脂が充填されたものであっても、充填されていないものであっても良いが、処理水(生産水)の水質の向上の面からは、脱塩室にアニオン交換樹脂とカチオン交換樹脂の混合樹脂が充填されているものが好ましい。また、これらイオン交換樹脂の代わりに他のイオン交換体(イオン交換繊維等)を使用することもできる。イオン交換体の充填方法は特に混合充填に限定されず、カチオン交換樹脂とアニオン交換樹脂を別々に複層充填した場合にも適用できる。
【0025】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0026】
なお、実施例及び比較例で用いた電気脱イオン装置は、(栗田工業(株)製「ピュアエース」)(処理水量1000L/hr)であり、この電気脱イオン装置は、脱塩室に強塩基性アニオン交換樹脂(三菱化学(株)製「SA10A」)と強酸性カチオン交換樹脂(三菱化学(株)製「SK1B」)とが35:65(容量比)で充填されたものである。ただし、実施例1においては、この電気脱イオン装置の濃縮室に、脱塩室の通水方向と直交方向に仕切壁を設け濃縮室内を2等分して2つの濃縮水流通部を形成し、図1(a),(b)に示す如く、濃縮室内の通水方向が脱塩室内の通水方向と直交する方向となるようにして処理を行った。
【0027】
実施例1
市水を活性炭処理した後、逆浸透膜分離処理した水を原水として、図1(a),(b)に示す電気脱イオン装置により下記条件で運転を行った。濃縮室の各濃縮水流通部から排出される濃縮水はそれぞれ別々の循環ラインで同一の濃縮水流通部に循環させた。
【0028】
〔処理条件〕
電流密度:30mA/dm2
水回収率:95%
この電気脱イオン装置を3ヶ月間連続運転した後、電気脱イオン装置を解体して濃縮室におけるスケールの有無を調べたところ、スケールは全く生成していなかった。
【0029】
比較例1
図3に示す、濃縮室が区画されていない従来の電気脱イオン装置を用いて、濃縮室と脱塩室の通水方向を同方向として処理したこと以外は、実施例1と同様の処理条件で運転を行った。
【0030】
3ヶ月間連続運転した後、電気脱イオン装置を解体して濃縮室におけるスケールの有無を調べたところ、濃縮水出口である下部分の4分の1程度のアニオン交換膜面上にうっすらと白色の付着物が認められた。これらを収集して成分分析を行ったところ、主成分が炭酸カルシウムであることがわかった。
【0031】
なお、上記実施例1及び比較例1のいずれにおいても得られた処理水(生産水)の比抵抗は15〜18M・Ωcmであり、処理水の水質には差異はなかった。
【0032】
【発明の効果】
以上詳述した通り、本発明の電気脱イオン装置によれば、電気脱イオン装置の濃縮室におけるスケールの析出、及びスケールの析出による処理水水質の低下や脱イオン性能の低下を効果的に防止することができ、長期に亘り安定な運転を継続することができる。しかも、本発明では、スケール析出の恐れが殆どないことから、高い電流密度での運転を行って処理効率を高めることも可能である。
【図面の簡単な説明】
【図1】図1(a)は本発明の電気脱イオン装置の実施の形態を示す概略的な斜視図、図1(b)は同系統図である。
【図2】電気脱イオン装置におけるイオンの移動状況を説明する模式図である。
【図3】図3(a)は従来の電気脱イオン装置を示す概略的な斜視図、図3(b)は同系統図である。
【符号の説明】
1 電気脱イオン装置
2 陽極
3 陰極
4 濃縮室
4A,4B 濃縮水流通部
4S 仕切壁
5 脱塩室
21 カチオン交換膜
22 アニオン交換膜
23 濃縮室
24 脱塩室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrodeionization apparatus, and more particularly to an electrodeionization apparatus that can prevent the generation of scale in the concentration chamber of the electrodeionization apparatus and can perform treatment stably over a long period of time.
[0002]
[Prior art]
Conventionally, in the manufacture of deionized water used in various industries or research facilities such as semiconductor manufacturing plants, liquid crystal manufacturing plants, pharmaceutical industry, food industry, etc., as shown in FIG. An electrodeionization apparatus 30 in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged between the cathodes 32) and the concentration chambers 33 and the desalting chambers 34 are alternately formed is frequently used.
[0003]
Electrodeionization equipment is capable of efficient desalination treatment, does not require regeneration like ion-exchange resin, is capable of complete continuous water sampling, and has the excellent effect of obtaining extremely high-purity water. Play. In addition, in the electrodeionization apparatus, there are a demineralization chamber in which an anion exchange resin and a cation exchange resin are mixed and filled, and a demineralization chamber in which an ion exchange resin is not filled, In terms of improving the quality of treated water, it is more effective to have a desalting chamber filled with an ion exchange resin.
[0004]
In the electrodeionization apparatus, ions in the raw water flowing into the desalination chamber move in the direction of the electrode to which potential is applied based on the affinity, concentration and mobility (perpendicular to the flow of water to be treated), and In other words, it moves across the cation exchange membrane or the anion exchange membrane that separates the desalting chamber and the concentration chamber, and the neutralization of the charge is maintained in all the chambers. Then, due to the semi-permeation characteristics and potential of the ion exchange membrane, ions in the raw water are reduced in the desalting chamber and concentrated in the adjacent concentration chamber. For this reason, deionized water is recovered from the desalting chamber.
[0005]
As shown in FIG. 3A, the conventional electrodeionization apparatus has a structure in which concentrated water and deionized water flowing in the concentrating chamber 33 and the desalting chamber 34 flow in the same direction (FIG. 3A). ), The upper side is the inlet side of the concentration chamber 33 and the desalting chamber 34, and the lower side is the outlet side. Further, in order to increase the water recovery rate in the normal case, as shown in FIG. 3B, only a part of the concentrated water discharged from the concentrating chamber is discharged out of the system, and the remaining portion is the inlet of the concentrating chamber. Circulated by pump P to the side.
[0006]
[Problems to be solved by the invention]
In the electrodeionization apparatus, the concentration of anions such as OH and HCO 3 increases on the concentration chamber side of the anion exchange membrane, and the concentration of cations such as Ca 2+ increases on the concentration chamber side of the cation exchange membrane. Scales such as calcium carbonate were generated on the surface of the ion exchange membrane in the concentration chamber. The generation of such a scale has a problem of reducing the effective membrane area of the ion exchange membrane and reducing the deionization rate.
[0007]
As a method of preventing the generation of these scales, there is a method of suppressing an increase in the ion concentration in the membrane surface boundary layer by filling the concentration chamber with an ion conducting spacer and increasing the mobility of the ions from the ion exchange membrane surface. Sometimes used. However, with this method, ion concentration in the membrane boundary layer is suppressed compared to the conventional method, but each ion species of the scale source moves to the concentration chamber and continues to operate for a long time. There was a concern that this would lead to the generation of scale.
[0008]
An object of the present invention is to solve the above-described conventional problems and to provide an electrodeionization apparatus that can suppress the deposition of scale in the concentration chamber of the electrodeionization apparatus and can be stably operated over a long period of time. To do.
[0009]
[Means for Solving the Problems]
The electrodeionization apparatus of the present invention is an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged to alternately form a concentration chamber and a desalting chamber. A partition wall extending in a direction intersecting with the water passing direction of the desalting chamber adjacent to the concentrating chamber is provided to partition the concentrating chamber into two or more concentrated water circulation sections, and each of the concentrated water circulation sections includes the partition. The concentrated water is circulated in the extending direction of the wall.
[0010]
The main component of the scale in the concentration chamber of the electrodeionization apparatus is calcium carbonate (CaCO 3 ) generated from Ca 2+ ions and HCO 3 ions concentrated in the concentration chamber. The generation of this scale is particularly likely to occur at a site where the OH ion concentration increases in the boundary layer on the concentration chamber side of the anion exchange membrane, resulting in a high pH condition.
[0011]
For this reason, the present inventor, even if Ca 2+ ions, HCO 3 ions, and OH ions, which are factors of scale precipitation, are concentrated in the concentration chamber, they are mixed in the same region under high concentration conditions. If not, it was considered that scale deposition could be prevented. As a result of further research and investigation in order to prevent scale precipitation mainly caused by Ca 2+ , HCO 3 , and OH ions in the concentration chamber, the present inventor has precipitated the hardness component in the concentration chamber. It was found that each ion movement related to the difference in flow direction of the concentration chamber.
[0012]
The outline is shown in FIG. In FIG. 2, 21 is a cation exchange membrane, 22 is an anion exchange membrane, 23 is a concentration chamber, 24 is a desalting chamber, 25 is an anode, and 26 is a cathode, and in the figure, the upper side is the concentration chamber 23 and the desalting chamber 24. The inlet side, and the lower side is the outlet side. As shown in FIG. 2, the region where ions permeate the ion exchange membrane and move to the concentration chamber 23 differs depending on the ion species, and Ca 2+ ions move to the concentration chamber 23 near the entrance of the desalting chamber 24. In addition, HCO 3 ions move to the concentration chamber 23 from the vicinity of the intermediate portion of the desalting chamber 24 in the direction of water flow. It was also revealed that OH ions move to the concentration chamber 23 near the outlet of the desalting chamber 24. Of course, in addition to these ions, Cl ions as anions and Na + ions and H + ions as cations also move, but they are not shown in FIG.
[0013]
In the present invention, the concentration chamber is divided into two or more concentrated water circulation portions by the partition wall, so that the concentration region of Ca 2+ ions, which is a factor of scale precipitation, and the concentration region of HCO 3 ions and OH ions are separated. Therefore, they are not mixed in the concentration chamber under high concentration conditions, and scale deposition is prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1A is a schematic perspective view showing an embodiment of the electrodeionization apparatus of the present invention, and FIG.
[0016]
As shown in the figure, the electrodeionization apparatus 1 of the present invention is configured such that a cation exchange membrane and an anion exchange membrane are alternately arranged between an anode 2 and a cathode 3 so that a concentration chamber 4 and a demineralization chamber 5 are alternately arranged. In the point which formed, it is set as the structure similar to the conventional electrodeionization apparatus, However, The concentration chamber 4 is divided into two or more (2 pieces in FIG. 1) concentrated water distribution | circulation part 4A, 4B by the partition wall 4S. The point that the flow direction of the concentrated water in each of the concentrated water circulation portions 4A and 4B intersects the water flow direction in the demineralization chamber 5 is different from the conventional electrodeionization apparatus.
[0017]
That is, in the electrodeionization apparatus 1 of FIG. 1, the demineralization chamber 5 has an upper side in FIG. 1A as an inlet side and a lower side as an outlet side. Flowing.
[0018]
On the other hand, in the concentrating chamber 4, the direction intersecting with the water flow direction in the desalting chamber 5 (the orthogonal direction in FIG. 1 (a). Note that this orthogonal direction is not necessarily strict. Partition wall 4S extending in a range of up to about 100 °, and the inside of the concentrating chamber 4 is divided into two stages in the vertical direction in the figure, and each of the concentrated water circulation parts 4A and 4B is in front of the figure. Water is passed from the side to the back side.
[0019]
In such an electrodeionization apparatus 1, almost all of the Ca 2+ ions moving to the concentration chamber 4 side on the inlet side of the demineralization chamber 5 move into the concentrated water circulation part 4 A in the upper stage, and this concentration. It is concentrated in the water circulation part 4A. On the other hand, HCO 3 ions and OH ions that move to the concentration chamber 4 side near the center of the water passage direction of the desalting chamber 5 and near the outlet move into the concentrated water circulation portion 4B in the lower stage. Concentrate in 4B.
[0020]
For this reason, Ca 2+ ions and HCO 3 and OH ions are not concentrated in the same region, and scale generation due to the mixture of these ions under high concentration conditions is prevented.
[0021]
In the present invention, the concentrated water circulation part formed by partitioning the concentration chamber with the partition wall may be three or more. However, considering the increase in the number of members by increasing the number of partition walls, the complexity of the apparatus configuration, and the like, it is preferable to partition the concentration chamber into two or three concentrated water circulation portions.
[0022]
Further, when the concentration chamber is partitioned as described above, the volume ratio of the concentrated water circulation portion formed is appropriately determined according to the movement state of ions such as Ca 2+ , HCO 3 , and OH ions that cause scale precipitation. In the normal case, when the concentration chamber is divided into two concentrated water circulation sections, the concentrated water circulation section on the inlet side of the desalting chamber: the concentrated water circulation section on the outlet side = 30 to 70: When the concentration chamber is divided into three concentrated water circulation portions so as to be 70 to 30 (volume ratio), the concentrated water circulation portion on the inlet side of the desalination chamber: the concentrated water circulation portion in the middle part : It is preferable to fractionate so that it may become the concentrated water distribution | circulation part of an exit side = 20-40: 20-40: 20-40 (volume ratio).
[0023]
In the electrodeionization apparatus of the present invention, the inflow water to the concentrating chamber may be transient, and the effluent water of the concentrating chamber may be discharged out of the system, but generally, in order to improve the water recovery rate In addition, it is preferable to circulate a part of the effluent of the concentrating chamber to the inlet side of the concentrating chamber for reuse. In this case, as shown in FIG. 1 (b), the circulating concentrated water is preferably circulated by a separate circulating line and a circulating pump so as not to be mixed for each of the concentrated water circulation portions 4A and 4B. In this case, it is preferable that the circulating water amount is about 70 to 90% of the effluent of the concentrating chamber, and the water recovery rate of the electrodeionization apparatus 1 is operated under the condition of about 90 to 95%.
[0024]
Note that the electrodeionization apparatus of the present invention may be a desalting chamber filled with a mixed resin of an anion exchange resin and a cation exchange resin, or may not be filled with treated water. From the viewpoint of improving the water quality of (product water), it is preferable that the desalting chamber is filled with a mixed resin of an anion exchange resin and a cation exchange resin. Moreover, other ion exchangers (ion exchange fiber etc.) can also be used instead of these ion exchange resins. The method of filling the ion exchanger is not particularly limited to mixed filling, and can also be applied to the case where a cation exchange resin and an anion exchange resin are separately packed in multiple layers.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0026]
In addition, the electrodeionization apparatus used by the Example and the comparative example is (Pure Ace by Kurita Kogyo Co., Ltd.) (the amount of treated water is 1000 L / hr), and this electrodeionization apparatus is strong in a demineralization chamber. A basic anion exchange resin ("SA10A" manufactured by Mitsubishi Chemical Corporation) and a strongly acidic cation exchange resin ("SK1B" manufactured by Mitsubishi Chemical Corporation) are filled at 35:65 (volume ratio). However, in Example 1, in the concentration chamber of this electrodeionization apparatus, a partition wall is provided in a direction orthogonal to the water flow direction of the demineralization chamber, and the concentration chamber is divided into two equal parts to form two concentrated water circulation portions. As shown in FIGS. 1 (a) and 1 (b), the treatment was performed such that the water flow direction in the concentration chamber was perpendicular to the water flow direction in the desalting chamber.
[0027]
Example 1
After the city water was treated with activated carbon, the water subjected to the reverse osmosis membrane separation treatment was used as raw water, and the operation was performed under the following conditions using the electrodeionization apparatus shown in FIGS. 1 (a) and 1 (b). The concentrated water discharged from each concentrated water circulation part of the concentration chamber was circulated to the same concentrated water circulation part through separate circulation lines.
[0028]
[Processing conditions]
Current density: 30 mA / dm 2
Water recovery rate: 95%
After this electrodeionization apparatus was operated continuously for 3 months, the electrodeionization apparatus was disassembled and examined for the presence or absence of scale in the concentration chamber, and no scale was generated.
[0029]
Comparative Example 1
Using the conventional electrodeionization apparatus in which the concentration chamber is not partitioned shown in FIG. 3, the processing conditions are the same as in Example 1 except that the water flow direction of the concentration chamber and the desalting chamber is the same direction. I drove in.
[0030]
After three months of continuous operation, the electrodeionization device was disassembled and the presence or absence of scale in the concentration chamber was examined. Deposits were observed. When these were collected and component analysis was conducted, it was found that the main component was calcium carbonate.
[0031]
In addition, the specific resistance of the treated water (product water) obtained in both Example 1 and Comparative Example 1 was 15 to 18 M · Ωcm, and there was no difference in the quality of the treated water.
[0032]
【The invention's effect】
As described above in detail, according to the electrodeionization apparatus of the present invention, scale deposition in the concentration chamber of the electrodeionization apparatus, and degradation of treated water quality and degradation of deionization performance due to scale deposition are effectively prevented. And stable operation can be continued for a long time. Moreover, in the present invention, since there is almost no fear of scale precipitation, it is possible to increase the processing efficiency by operating at a high current density.
[Brief description of the drawings]
FIG. 1 (a) is a schematic perspective view showing an embodiment of an electrodeionization apparatus of the present invention, and FIG. 1 (b) is a similar system diagram.
FIG. 2 is a schematic diagram for explaining the movement of ions in an electrodeionization apparatus.
FIG. 3 (a) is a schematic perspective view showing a conventional electrodeionization apparatus, and FIG. 3 (b) is the same system diagram.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrodeionization apparatus 2 Anode 3 Cathode 4 Concentration chamber 4A, 4B Concentrated water circulation part 4S Partition wall 5 Desalination chamber 21 Cation exchange membrane 22 Anion exchange membrane 23 Concentration chamber 24 Desalination chamber

Claims (1)

複数のアニオン交換膜及びカチオン交換膜を交互に配列して濃縮室と脱塩室とを交互に形成してなる電気脱イオン装置において、
該濃縮室に、該濃縮室に隣接する脱塩室の通水方向と交叉する方向に延在する仕切壁を設けて該濃縮室を2以上の濃縮水流通部に区画し、
該濃縮水流通部の各々に該仕切壁の延在方向に濃縮水を流通させることを特徴とする電気脱イオン装置。
In an electrodeionization apparatus in which a plurality of anion exchange membranes and cation exchange membranes are alternately arranged to form a concentration chamber and a desalting chamber alternately,
The concentration chamber is provided with a partition wall extending in a direction intersecting with the water flow direction of the desalting chamber adjacent to the concentration chamber, and the concentration chamber is divided into two or more concentrated water circulation portions,
An electrodeionization apparatus characterized in that concentrated water is circulated through each of the concentrated water circulation portions in the extending direction of the partition wall.
JP04659699A 1999-02-24 1999-02-24 Electrodeionization equipment Expired - Fee Related JP4250796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04659699A JP4250796B2 (en) 1999-02-24 1999-02-24 Electrodeionization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04659699A JP4250796B2 (en) 1999-02-24 1999-02-24 Electrodeionization equipment

Publications (2)

Publication Number Publication Date
JP2000237751A JP2000237751A (en) 2000-09-05
JP4250796B2 true JP4250796B2 (en) 2009-04-08

Family

ID=12751692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04659699A Expired - Fee Related JP4250796B2 (en) 1999-02-24 1999-02-24 Electrodeionization equipment

Country Status (1)

Country Link
JP (1) JP4250796B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951830B2 (en) * 2001-08-30 2012-06-13 栗田工業株式会社 Electrical deionizer

Also Published As

Publication number Publication date
JP2000237751A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
EP0803474B1 (en) Electrodeionization apparatus and process for purifying a liquid
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
US4969983A (en) Apparatus and process for the removal of acidic and basic gases from fluid mixtures using bipolar membranes
US6896814B2 (en) Fractional deionization process
US20060027457A1 (en) Apparatus for electrodeionization and method for operating the same
JP2004082092A (en) Electric deionizing apparatus
JP2010201361A (en) Apparatus for manufacturing electric deionized water and method for manufacturing deionized water using the apparatus
CN101723491A (en) Electrodeionization method and device for basic working unit containing three compartments
JP3951642B2 (en) Method for operating electrodeionization apparatus, electrodeionization apparatus and electrodeionization system
JP4403621B2 (en) Electrodeionization equipment
JP2009220060A (en) Electrically deionized water production apparatus and its deionization unit
WO1997046492A1 (en) Process for producing deionized water by electrical deionization technique
JP2002143854A (en) Electrochemical water treating device
JP5114307B2 (en) Electric deionized water production equipment
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP3788318B2 (en) Electrodeionization apparatus and electrodeionization method
JP3570279B2 (en) Electric desalination equipment
JP4250796B2 (en) Electrodeionization equipment
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP3570350B2 (en) Electrodeionization equipment and pure water production equipment
JP4599668B2 (en) Operation method of electrodeionization equipment
JP4915843B2 (en) Electric softening device, softening device and soft water production method
JP2000296314A (en) Method and device for electrical desalting
JP2003266077A (en) Electrical deionizing device
JP4631148B2 (en) Pure water production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees