JP4248601B1 - Rotary cooling device - Google Patents

Rotary cooling device Download PDF

Info

Publication number
JP4248601B1
JP4248601B1 JP2008225788A JP2008225788A JP4248601B1 JP 4248601 B1 JP4248601 B1 JP 4248601B1 JP 2008225788 A JP2008225788 A JP 2008225788A JP 2008225788 A JP2008225788 A JP 2008225788A JP 4248601 B1 JP4248601 B1 JP 4248601B1
Authority
JP
Japan
Prior art keywords
cylinder
raw material
cooling
rotary
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008225788A
Other languages
Japanese (ja)
Other versions
JP2009189363A (en
Inventor
安平 谷
幸子 谷
Original Assignee
安平 谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安平 谷 filed Critical 安平 谷
Priority to JP2008225788A priority Critical patent/JP4248601B1/en
Application granted granted Critical
Publication of JP4248601B1 publication Critical patent/JP4248601B1/en
Publication of JP2009189363A publication Critical patent/JP2009189363A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)

Abstract

【課題】小型の装置で均一かつ短時間に原料を冷却することができ、単体凍結やバラ凍結にも効果的な回転式冷却装置を提供する。
【解決手段】回転筒12と、該回転筒の回転軸部に配設された中心筒13と、回転筒の内面と中心筒の外面との間を連結して回転筒と中心筒とを一体化するとともに、回転筒の内面と中心筒の外面との間に形成される環状の空間を周方向の複数の処理室14に分割する径方向の複数の仕切板15と、回転筒の両端に設けられた原料投入口16及び製品搬出口17とを備えた冷却筒18における処理室の内面を原料投入口側から製品搬出口側に向かって拡開するテーパ面に形成する。
【選択図】図1
Provided is a rotary cooling device that can cool a raw material uniformly and in a short time with a small device, and is effective for single freezing and loose freezing.
A rotating cylinder, a central cylinder disposed on a rotating shaft of the rotating cylinder, and an inner surface of the rotating cylinder and an outer surface of the central cylinder are connected to form the rotating cylinder and the central cylinder integrally. And a plurality of radial partition plates 15 that divide an annular space formed between the inner surface of the rotating cylinder and the outer surface of the central cylinder into a plurality of circumferential processing chambers 14, and both ends of the rotating cylinder. The inner surface of the processing chamber in the cooling cylinder 18 provided with the raw material inlet 16 and the product outlet 17 is formed into a tapered surface that expands from the raw material inlet side toward the product outlet side.
[Selection] Figure 1

Description

本発明は、回転式冷却装置に関し、詳しくは、食品や化学薬品を冷却し、さらには凍結するための回転式冷却装置に関するもので、例えば、サバ、アジ等を一匹単位で凍結する単体凍結や、剥きエビ、桜エビ、しらす等をバラバラの状態に凍結するバラ凍結を行う際に適する回転式冷却装置に関する。   The present invention relates to a rotary cooling device, and more particularly to a rotary cooling device for cooling and freezing foods and chemicals. For example, freezing a mackerel, horse mackerel, etc. In addition, the present invention relates to a rotary cooling device suitable for performing freezing of a piece of frozen shrimp, cherry shrimp, shirasu, etc. in a separate state.

トウモロコシ、米飯、魚介類等の食品や、注射用医薬品等の原料を冷却して凍結する方法として、ドライアイスや液体窒素、冷凍機により製造した低温空気等の冷却材と原料とを冷却凍結機内に投入した後、撹拌する方法が採用されている。   As a method of cooling and freezing raw materials such as corn, cooked rice and seafood, and injectable drugs, dry ice, liquid nitrogen, low-temperature air and other coolants and raw materials produced in a freezer A method of stirring after being put in is adopted.

例えば、通気性の棚板により上下方向に仕切った複数の区画室を有する筒状容器に、冷却用の気体を下部から上部に向けて通気するとともに、筒状容器の上部から原料を供給し、間欠式に下方の区画室へ原料を順次移行させ、各区画室で原料を撹拌し、筒状容器の下部からバラ状に凍結した製品を搬出する凍結方法及び装置が知られている(例えば、特許文献1参照)。   For example, to the cylindrical container having a plurality of compartments partitioned in the vertical direction by a breathable shelf plate, while supplying the cooling gas from the lower part to the upper part, the raw material is supplied from the upper part of the cylindrical container, A freezing method and apparatus are known in which raw materials are sequentially transferred to lower compartments intermittently, the raw materials are stirred in each compartment, and a product frozen in a rose shape is carried out from the bottom of a cylindrical container (for example, patents) Reference 1).

また、回転軸を水平方向に向けた回転ドラムを用いる回転式冷却凍結装置も知られている(例えば、特許文献2参照)。従来の回転式冷却凍結装置の一例を図11に側面図で示す。この回転式冷却凍結装置80は、内周面に複数のブレード81を設けた回転ドラム82と、該回転ドラム82の回転軸部に複数の回転翼84を設けた軸体83とを備え、回転ドラム82と軸体83とを反対方向に回転させし、回転ドラム82の一端入口から原料と冷却材とを導入し、他端出口から凍結させた製品を搬出するように形成されている。
特開昭63−279772号公報 実公昭53−3272号公報
There is also known a rotary cooling and freezing device using a rotating drum whose rotating shaft is oriented in the horizontal direction (see, for example, Patent Document 2). An example of a conventional rotary cooling and freezing apparatus is shown in a side view in FIG. The rotary cooling / freezing device 80 includes a rotary drum 82 provided with a plurality of blades 81 on the inner peripheral surface, and a shaft body 83 provided with a plurality of rotary blades 84 on the rotary shaft portion of the rotary drum 82. The drum 82 and the shaft 83 are rotated in opposite directions, the raw material and the coolant are introduced from one end inlet of the rotary drum 82, and the frozen product is carried out from the other end outlet.
Japanese Unexamined Patent Publication No. 63-279772 Japanese Utility Model Publication No.53-3272

前記特許文献1によれば、原料を上から下へと鉛直方向に移送するため、筒状容器の設置面積が小さくなり、送風機を筒状容器の外に設置できるため、建物の狭い場所に設置することが可能とあり、冷風が原料を複数回通過するため、熱効率が高いと記載されている。しかし、この装置では、処理中の原料の動きが直線的であり、緩やかであるため、原料が冷却されて凍結されるまでに移動する距離(以下、「凍結距離」ともいう。)が短い。したがって、冷却効率が低く、短時間での冷却や凍結が困難であり、装置規模がまだまだ大きいという問題がある。   According to Patent Document 1, since the raw material is transferred vertically from top to bottom, the installation area of the cylindrical container is reduced, and the blower can be installed outside the cylindrical container. It is described that the thermal efficiency is high because the cold air passes through the raw material a plurality of times. However, in this apparatus, since the movement of the raw material during processing is linear and gentle, the distance that the raw material moves until it is cooled and frozen (hereinafter also referred to as “freezing distance”) is short. Therefore, there is a problem that cooling efficiency is low, cooling and freezing in a short time are difficult, and the scale of the apparatus is still large.

また、前記特許文献2によれば、原料粒子の表面のみを凍結しながら撹拌するため、原料粒子間の粘結を防止してバラ状に凍結することができ、表面凍結よる外皮膜の形成により、原料粒子の外形を保持することができると記載されている。しかし、剥きエビ、桜エビ、しらす等のように、表面に水分の多い原料を連続的に凍結すると、原料表面の水分により回転ドラムの内壁面、ブレード及び軸体の回転翼に原料が付着して凍結し、これが成長して大きな塊状に氷結すると装置が円滑に作動しなくなり、凍結効率が低下する。   Further, according to Patent Document 2, since only the surface of the raw material particles is stirred while being frozen, it can be frozen in a rose shape by preventing caking between the raw material particles, and by forming an outer film by surface freezing. It is described that the outer shape of the raw material particles can be maintained. However, if the raw material with a lot of moisture is frozen on the surface continuously, such as peeled shrimp, cherry shrimp, and shirasu, the raw material adheres to the inner wall of the rotating drum, the blade and the rotor blade of the shaft body due to the moisture on the surface of the raw material. If it freezes and grows and freezes into a large lump, the device will not operate smoothly, and the freezing efficiency will decrease.

また、内面に複数のブレードを設けた回転ドラムと複数の回転翼を設けた軸体とを反対方向に回転する態様では、強制的な撹拌による練りとこねとによって餅状になり、凍結品の品質が劣化する。さらに、回転ドラムの内面で原料と接触するのは、下部面と回転方向上昇側の下半部の面だけであり、回転方向上昇側の上半部から上部面、回転方向下降側の面は原料とほとんど接触しないため、無駄な状態となっていた。   Further, in an aspect in which a rotating drum provided with a plurality of blades on the inner surface and a shaft provided with a plurality of rotating blades are rotated in opposite directions, it becomes a bowl shape due to kneading and kneading by forced stirring, Quality deteriorates. Furthermore, the inner surface of the rotating drum is in contact with the raw material only on the lower surface and the lower half surface in the rotational direction rising side, from the upper half portion in the rotational direction rising side to the upper surface, and in the rotational direction lower side surface Since it was hardly in contact with the raw material, it was in a wasteful state.

そこで本発明は、小型の装置で均一かつ短時間に原料を冷却することができ、単体凍結やバラ凍結にも効果的な回転式冷却装置を提供することを目的としている。   SUMMARY OF THE INVENTION An object of the present invention is to provide a rotary cooling device that can cool a raw material uniformly and in a short time with a small device and is effective for single freezing and loose freezing.

上記目的を達成するため、本発明の回転式冷却装置は、回転軸が水平方向の回転筒と、該回転筒の回転軸部に配設された中心筒と、前記回転筒の内面と前記中心筒の外面との間を連結して前記回転筒と前記中心筒とを一体化するとともに、前記回転筒の内面と前記中心筒の外面との間に形成される環状の空間を周方向の複数の処理室に区画する径方向の複数の仕切板と、前記回転筒の一端に設けられた原料投入口及び他端に設けられた製品搬出口とを備えた冷却筒を有し、前記原料投入口に投入された原料を前記各処理室内に分配してそれぞれ冷却し、冷却後の製品を前記製品搬出口から搬出する回転式冷却装置であって、前記処理室の内面を、前記原料投入口側から前記製品搬出口側に向かって拡開するテーパ面としたことを特徴としている。   In order to achieve the above object, a rotary cooling device according to the present invention includes a rotating cylinder having a rotating shaft in a horizontal direction, a center cylinder disposed on a rotating shaft portion of the rotating cylinder, an inner surface of the rotating cylinder, and the center. The rotating cylinder and the central cylinder are integrated by connecting between the outer surfaces of the cylinders, and a plurality of annular spaces formed between the inner surface of the rotating cylinder and the outer surface of the central cylinder are arranged in the circumferential direction. A cooling cylinder having a plurality of radial partition plates partitioning into the processing chamber, a raw material inlet provided at one end of the rotary cylinder, and a product outlet provided at the other end, and the raw material input A rotary cooling device that distributes the raw material charged into the mouth into the processing chambers and cools them, and carries the cooled product out of the product outlet, wherein the inner surface of the processing chamber is connected to the raw material inlet. The taper surface is widened from the side toward the product exit side. .

さらに、本発明の回転式冷却装置は、前記回転筒の内面が前記原料投入口側から前記製品搬出口側に向かって拡開するテーパ面となっていること、前記中心筒の外面が前記原料投入口側から前記製品搬出口側に向かって縮小するテーパ面となっていることを特徴としている。   Furthermore, in the rotary cooling device of the present invention, the inner surface of the rotary cylinder is a tapered surface that expands from the raw material inlet side toward the product carry-out side, and the outer surface of the central cylinder is the raw material It is characterized by a tapered surface that shrinks from the inlet side toward the product outlet side.

また、前記冷却筒を原料入口側から製品出口側に向かって複数を直列に配列するとともに、原料入口側に配置された冷却筒の前記製品搬出口から搬出される一次冷却品を、製品出口側に配置された冷却筒の前記製品原料投入口に投入するためのガイド部材を備えていることを特徴としている。   Further, a plurality of the cooling cylinders are arranged in series from the raw material inlet side to the product outlet side, and a primary cooling product carried out from the product outlet of the cooling cylinder arranged on the raw material inlet side is arranged on the product outlet side. It is characterized by comprising a guide member for feeding into the product raw material inlet of the cooling cylinder arranged in the box.

さらに、前記原料入口側に配置された冷却筒における処理室のテーパ面の角度が前記製品出口側に配置された冷却筒における処理室のテーパ面の角度より大きく形成されていること、前記原料入口側に配置された冷却筒における処理室の区画数が前記製品出口側に配置された冷却筒における処理室の区画数より多く形成されていること、前記原料入口側に配置された冷却筒の回転数が前記製品出口側に配置された冷却筒の回転数より速く設定されていることを特徴としている。   Furthermore, the angle of the tapered surface of the processing chamber in the cooling cylinder arranged on the raw material inlet side is formed larger than the angle of the tapered surface of the processing chamber in the cooling cylinder arranged on the product outlet side, the raw material inlet The number of processing chamber sections in the cooling cylinder arranged on the side is formed to be larger than the number of processing chamber sections in the cooling cylinder arranged on the product outlet side, and the cooling cylinder arranged on the raw material inlet side is rotated. The number is set faster than the number of rotations of the cooling cylinder arranged on the product outlet side.

本発明の回転式冷却装置によれば、投入された原料が各処理室に分配されて各処理室内を螺旋状に移動しながら出口側に搬送され、その過程で冷却され、さらには凍結されるので、均一で効率のよい冷却処理、凍結処理が可能であり、原料が処理室の内面に固着することがなく、表面の水分が多い原料でもバラバラの状態で冷却して凍結することができ、練りやこねによる品質の劣化を生じることもない。   According to the rotary cooling device of the present invention, the charged raw material is distributed to each processing chamber and conveyed to the outlet side while moving spirally in each processing chamber, cooled in the process, and further frozen. So, uniform and efficient cooling treatment and freezing treatment are possible, the raw material does not stick to the inner surface of the processing chamber, even raw materials with a lot of surface moisture can be cooled and frozen in a disjointed state, There is no degradation of quality due to kneading or kneading.

図1乃至図5は、本発明の回転式冷却装置の第1形態例を示すもので、図1は回転式冷却装置の概略を示す正面図、図2は同じく概略を示す断面側面図、図3は要部の断面正面図、図4は図3のIV−IV断面図、図5は処理室内の原料の移動状態を説明する断面側面図、図6は処理室内の原料の移動状態を説明する斜視図である。   1 to 5 show a first embodiment of the rotary cooling device according to the present invention. FIG. 1 is a front view showing an outline of the rotary cooling device, and FIG. 2 is a sectional side view showing the outline. 3 is a sectional front view of the main part, FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3, FIG. 5 is a sectional side view for explaining the movement state of the raw material in the processing chamber, and FIG. FIG.

この回転式冷却装置は、回転軸を水平方向に向けた回転ドラム11の内部に、前記回転ドラム11と同軸に配置される回転筒12と、該回転筒12の回転軸部に配設される中心筒13と、前記回転筒12の内面と前記中心筒13の外面との間を連結して回転筒12と中心筒13とを一体化するとともに、回転筒12の内面と中心筒13の外面との間に形成される環状の空間を周方向の3個の処理室14に分割する径方向の3枚の仕切板15と、前記回転筒12の一端に設けられた原料投入口16及び他端に設けられた製品搬出口17とを備えた冷却筒18を着脱可能に設けている。   The rotary cooling device is disposed inside a rotating drum 11 with a rotating shaft directed in the horizontal direction, a rotating cylinder 12 disposed coaxially with the rotating drum 11, and a rotating shaft portion of the rotating cylinder 12. The center tube 13 is connected between the inner surface of the rotating tube 12 and the outer surface of the center tube 13 to integrate the rotating tube 12 and the center tube 13, and the inner surface of the rotating tube 12 and the outer surface of the center tube 13 Three partition plates 15 in the radial direction that divide the annular space formed between them into three processing chambers 14 in the circumferential direction, a raw material inlet 16 provided at one end of the rotating cylinder 12, and others A cooling cylinder 18 provided with a product outlet 17 provided at the end is detachably provided.

前記冷却筒18を構成する回転筒12、中心筒13及び仕切板15は、冷却材あるいは冷却材から気化したガスが自由に流通でき、かつ、原料や製品が通過しないような網目を有する網板(メッシュ板)や多数の小通孔を有する多孔板(パンチングメタル)を所定形状に形成したものであることが好ましい。また、回転ドラム11は、回転筒12内での冷却効果を損なうことがないように断熱機能を有する態様が好ましく、回転ドラム11の内部に発泡ウレタン等の断熱材19を封入することにより断熱機能を付与することができる。   The rotating cylinder 12, the central cylinder 13, and the partition plate 15 constituting the cooling cylinder 18 have a mesh that allows a coolant or a gas evaporated from the coolant to freely flow therethrough and does not allow a raw material or a product to pass therethrough. A (mesh plate) or a perforated plate (punching metal) having a large number of small holes is preferably formed in a predetermined shape. Further, the rotating drum 11 preferably has a heat insulating function so as not to impair the cooling effect in the rotating cylinder 12. The heat insulating function is obtained by enclosing a heat insulating material 19 such as urethane foam inside the rotating drum 11. Can be granted.

前記回転ドラム11は、架台21上に設けられた複数の支持部材22に回転軸を中心として回転可能な状態で支持されており、外周のスプロケット部23と駆動用モータ24とに駆動用チェーン25が掛け渡され、駆動用モータ24によって回転ドラム11を所定の回転数で回転できるように形成されている。また、回転ドラム11の両端には、入口用排気ブロア26に接続した入口側排気ダクト27と、出口用排気ブロア28に接続した出口側排気ダクト29とがそれぞれ設けられ、冷却筒18内のガスを排気するように形成されている。   The rotary drum 11 is supported by a plurality of support members 22 provided on a gantry 21 so as to be rotatable around a rotation axis, and a drive chain 25 is supported by an outer sprocket portion 23 and a drive motor 24. Is formed so that the rotary drum 11 can be rotated at a predetermined rotational speed by the drive motor 24. At both ends of the rotary drum 11, an inlet side exhaust duct 27 connected to the inlet exhaust blower 26 and an outlet side exhaust duct 29 connected to the outlet exhaust blower 28 are provided, respectively. It is formed to exhaust.

さらに、回転ドラム11の一端には、前記原料投入口16に原料を投入するための原料投入シュート31が設けられ、他端には、前記製品搬出口17から製品を取り出すための製品取り出しシュート32が設けられている。また、装置上部には、冷却筒18の内部温度と冷却材の供給量とを制御するための庫内温度表示器33と、庫内温度調節器34と、冷却材供給制御器35とが設けられるとともに、回転ドラム11の回転数を制御するための回転数制御機構36と回転動力盤37とが設けられている。   Further, a raw material charging chute 31 for charging the raw material into the raw material charging port 16 is provided at one end of the rotating drum 11, and a product takeout chute 32 for taking out the product from the product carry-out port 17 at the other end. Is provided. Further, in the upper part of the apparatus, an internal temperature indicator 33 for controlling the internal temperature of the cooling cylinder 18 and the supply amount of the coolant, an internal temperature controller 34, and a coolant supply controller 35 are provided. In addition, a rotation speed control mechanism 36 and a rotary power board 37 for controlling the rotation speed of the rotary drum 11 are provided.

前記回転筒12は、前記原料投入口16側の内径が前記製品搬出口17側の内径より小さく形成されており、該回転筒12の内面は、全体として前記原料投入口16側から前記製品搬出口17に向かって外周方向に拡開するテーパ面(円錐面)となっている。また、前記中心筒13は、前記原料投入口16及び前記製品搬出口17の長さ分だけ前記回転筒12より短く形成されるものであって、3枚の板状部材を組み合わせて断面正三角形状に形成されており、前記原料投入口16側の外径(外接円の直径)が前記製品搬出口17側の外径(外接円の直径)より大きく形成され、該中心筒13の外面は、前記原料投入口16側から前記製品搬出口17側に向かって回転軸方向に縮小するテーパ面となっている。   The rotary cylinder 12 is formed so that the inner diameter on the raw material inlet 16 side is smaller than the inner diameter on the product outlet 17 side, and the inner surface of the rotary cylinder 12 as a whole is from the raw material inlet 16 side. A tapered surface (conical surface) that expands in the outer peripheral direction toward the outlet 17 is formed. The central cylinder 13 is formed to be shorter than the rotary cylinder 12 by the length of the raw material input port 16 and the product carry-out port 17, and has a triangular cross section by combining three plate-like members. The outer diameter of the raw material inlet 16 side (diameter of the circumscribed circle) is larger than the outer diameter of the product outlet 17 (diameter of the circumscribed circle), and the outer surface of the central cylinder 13 is The tapered surface is reduced in the direction of the rotation axis from the raw material inlet 16 side toward the product outlet 17 side.

このように、回転筒12の内面及び中心筒13の外面を前述のようなテーパ面で形成することにより、回転筒12の内面と中心筒13の外面と両側の仕切板15とによって区画された処理室14の内面を、前記原料投入口16側から前記製品搬出口17側に向かって拡開するテーパ面に形成している。   Thus, by forming the inner surface of the rotating cylinder 12 and the outer surface of the central cylinder 13 with the tapered surfaces as described above, the inner surface of the rotating cylinder 12, the outer surface of the central cylinder 13, and the partition plates 15 on both sides are partitioned. The inner surface of the processing chamber 14 is formed into a tapered surface that expands from the raw material inlet 16 side toward the product outlet 17 side.

前記回転筒12は、回転ドラム11内に軸方向から挿入され、着脱可能な状態で複数の取付金具38により固定されている。また、断面正三角形状の前記中心筒13は、各頂点部分に前記仕切板15の内端縁が放射状に固着されて一体的に形成されており、仕切板15の外端縁を回転筒12の内面に適宜な取付金具で着脱可能に固定することにより、回転筒12、中心筒13及び仕切板15が一体化して前記冷却筒18が形成され、回転ドラム11の回転軸を中心として冷却筒18が回転ドラム11と一体に回転するように形成されている。   The rotary cylinder 12 is inserted into the rotary drum 11 from the axial direction, and is fixed by a plurality of mounting brackets 38 in a detachable state. The central cylinder 13 having a regular triangular cross section is integrally formed by radially fixing the inner end edge of the partition plate 15 at each apex portion, and the outer end edge of the partition plate 15 is used as the rotary cylinder 12. The rotating cylinder 12, the central cylinder 13 and the partition plate 15 are integrated to form the cooling cylinder 18 by being detachably fixed to the inner surface of the casing with an appropriate mounting bracket, and the cooling cylinder 18 is formed around the rotation axis of the rotating drum 11. 18 is formed to rotate integrally with the rotary drum 11.

したがって、複数の処理室14は、回転ドラム11の回転軸に対して周方向に放射状に配置され、回転軸を中心として回転軸の周囲を公転する状態となる。このような状態に設けられた処理室14内に投入された原料は、回転する処理室14内を壁面に沿って移動しながら、テーパ面の作用により、原料投入口16側から前記製品搬出口17側に向かって移動する。   Therefore, the plurality of processing chambers 14 are arranged radially in the circumferential direction with respect to the rotation axis of the rotary drum 11, and revolve around the rotation axis around the rotation axis. The raw material charged into the processing chamber 14 provided in such a state moves from the raw material charging port 16 side to the product discharge port by the action of the tapered surface while moving along the wall surface in the rotating processing chamber 14. Move towards the 17th side.

例えば、図5に示すように、一つの処理室14内において、図5(A)に示す位置Aにある原料は、冷却筒18が図5において矢印Yで示す時計回りに回転し、処理室14が図5(B)に示す状態になると、矢印Y1で表すように、前記位置Aから一方の仕切板15に沿って中心筒13の外面の位置Bに移動し、さらに、処理室14が図5(C)に示す状態に回転すると、矢印Y2で表すように、前記位置Bから中心筒13の外面及び他方の仕切板15に沿って位置Cに移動する。そして、処理室14が図5(D)に示す状態に回転すると、矢印Y3で表すように、前記位置Cから回転筒12の内面に沿って位置Dに移動し、冷却筒18が一周して処理室14が図5(E)に示す状態に回転すると、矢印Y4で表すように、前記位置Dから回転筒12の内面に沿って位置E、すなわち前記位置Aと同じ状態の位置に移動する。   For example, as shown in FIG. 5, in one processing chamber 14, the raw material at position A shown in FIG. 5A is rotated in the clockwise direction indicated by arrow Y in FIG. When 14 is in the state shown in FIG. 5B, the position A moves from the position A along the one partition plate 15 to the position B on the outer surface of the center tube 13 as shown by the arrow Y1, and the processing chamber 14 is further moved. When rotated to the state shown in FIG. 5C, as indicated by the arrow Y2, it moves from the position B to the position C along the outer surface of the central tube 13 and the other partition plate 15. Then, when the processing chamber 14 is rotated to the state shown in FIG. 5D, it moves from the position C to the position D along the inner surface of the rotary cylinder 12 as indicated by the arrow Y3, and the cooling cylinder 18 makes a round. When the processing chamber 14 rotates to the state shown in FIG. 5E, it moves from the position D to the position E along the inner surface of the rotary cylinder 12, that is, the same position as the position A, as indicated by an arrow Y4. .

すなわち、処理室14内の原料は、回転軸を中心とした処理室14の公転により、矢印Y1〜矢印Y4で表したように、位置Aから位置B,C,Dを経て位置Eに至り、位置Aに戻る。したがって、原料は、回転筒12の内面、中心筒13の外面及び前後一対の仕切板15の表面に沿って処理室14内を周回するように移動するとともに、この移動に伴い、処理室14の内面に設けられた出口側が拡開するテーパ面の作用により、原料投入口16側から前記製品搬出口17側に向かって移動する。この原料の動きは、図6に示すように、処理室14に対して相対的に、螺旋(以下「スパイラル」ともいう。)状の運動Sをしながら出口方向に向かう動きとなる。   That is, the raw material in the processing chamber 14 reaches the position E from the position A through the positions B, C, and D as represented by the arrows Y1 to Y4 by the revolution of the processing chamber 14 around the rotation axis. Return to position A. Accordingly, the raw material moves so as to circulate in the processing chamber 14 along the inner surface of the rotating cylinder 12, the outer surface of the central cylinder 13, and the front and rear surfaces of the pair of partition plates 15. Due to the action of the tapered surface provided on the inner surface, the outlet side expands to move from the raw material inlet 16 side toward the product outlet 17 side. As shown in FIG. 6, the movement of the raw material is a movement toward the exit direction while performing a spiral (hereinafter also referred to as “spiral”) motion S relative to the processing chamber 14.

回転筒12の内面及び中心筒13の外面におけるテーパ面の回転軸に対する角度は、処理室14の軸方向の長さ、区画数、回転数、原料の性状、原料温度、製品温度、冷却材の種類、その他の条件によって異なるが、一般的には、回転軸に対するテーパ面の角度を大きくすると、原料の出口側への移動が促進されて処理能力を高めることができ、原料の分散効果及びスパイラル状の運動効果が高まることで表面凍結が促進されることにより、バラ凍結を容易に行うことができる。しかし、回転軸に対するテーパ面の角度を大きくし過ぎると、出口側への原料の移動が速くなりすぎて十分な冷却効果を得ることが困難となり、均一で確実な冷却処理を行えなくなるおそれがある。これらのことから、回転軸に対するテーパ面の角度は、テーパに換算して1/130〜1/5の範囲、好ましくは1/32.5〜1/11、より好ましくは1/16〜1/22程度であり、角度で表すと1〜2度程度が好ましい。また、回転筒12や中心筒13の中間部で角度を変えることもできる。   The angle of the tapered surface on the inner surface of the rotating cylinder 12 and the outer surface of the central cylinder 13 with respect to the rotation axis is the axial length of the processing chamber 14, the number of sections, the number of rotations, the properties of the raw material, the raw material temperature, the product temperature, In general, if the angle of the taper surface with respect to the rotation axis is increased, the movement of the raw material to the outlet side is promoted to increase the processing capacity, and the dispersion effect of the raw material and the spiral are varied. The freezing of the rose can be easily performed by promoting the surface freezing by increasing the motion effect of the shape. However, if the angle of the taper surface with respect to the rotating shaft is too large, the movement of the raw material to the outlet side becomes too fast and it becomes difficult to obtain a sufficient cooling effect, and there is a possibility that uniform and reliable cooling treatment cannot be performed. . From these facts, the angle of the taper surface with respect to the rotation axis is in the range of 1/130 to 1/5, preferably 1 / 32.5 to 1/11, more preferably 1/16 to 1/1 in terms of taper. It is about 22 and is preferably about 1 to 2 degrees in terms of angle. Further, the angle can be changed at the intermediate portion of the rotary cylinder 12 and the central cylinder 13.

なお、前記テーパは、JISで規定されるテーパねじと同様であり、例えば、1/16(じゅうろくぶんのいち)テーパは、軸方向の長さ16mmに対して直径が1mm変化することをいう。また、本形態例で示す中心筒13のように、三角形等の多角形状のものの場合には、この多角形に外接する円の直径と中心筒13の軸方向長さとによってテーパを表す。   The taper is the same as a taper screw defined by JIS. For example, a 1/16 taper means that the diameter changes by 1 mm with respect to an axial length of 16 mm. . Further, in the case of a polygonal shape such as a triangle like the central cylinder 13 shown in this embodiment, the taper is expressed by the diameter of a circle circumscribing the polygon and the axial length of the central cylinder 13.

ここで、前記回転ドラム11の回転軸、すなわち、回転ドラム11に同軸に設けられた回転筒12の回転軸における水平方向とは、厳密に水平である必要はなく、入口側に対して出口側が上昇していたり、下降していたりしていてもよい。但し、回転筒12の出口側を上昇させる場合は、回転筒12の内面及び中心筒13の外面におけるテーパ面が上り勾配にならないように、テーパ面の角度より小さな上昇角度に設定する必要がある。一方、回転筒12の出口側を下降させる場合は、各処理室14内の原料が十分に冷却されずに出口側に滑り落ちることを避けるため、前記テーパ面の角度プラス5度程度までとすることが好ましい。   Here, the horizontal direction of the rotary shaft of the rotary drum 11, that is, the rotary shaft of the rotary cylinder 12 provided coaxially with the rotary drum 11 does not have to be strictly horizontal, and the outlet side is not in the inlet side. It may be rising or falling. However, when the outlet side of the rotating cylinder 12 is raised, it is necessary to set the rising angle smaller than the angle of the tapered surface so that the tapered surfaces on the inner surface of the rotating cylinder 12 and the outer surface of the central cylinder 13 do not rise upward. . On the other hand, when the outlet side of the rotary cylinder 12 is lowered, in order to avoid the raw material in each processing chamber 14 from sliding down to the outlet side without being sufficiently cooled, the angle of the tapered surface should be up to about 5 degrees. Is preferred.

このように形成した回転式冷却装置は、前記回転数制御機構36及び前記回転動力盤37により駆動用モータ24を作動させて回転ドラム11を回転させることにより、回転筒12、中心筒13及び仕切板15により区画された処理室14を、回転軸を中心とした円周上を公転状態で回転させながら、前記原料投入シュート31から前記原料投入口16に所定量の原料を投入するとともに、前記庫内温度調節器34及び前記冷却材供給制御器35により所定量の冷却材を処理室14内に向けて投入することにより、原料の冷却処理や凍結処理を行うことができる。   In the rotary cooling device formed in this way, the rotating drum 12 is rotated by operating the driving motor 24 by the rotation speed control mechanism 36 and the rotary power board 37, whereby the rotating cylinder 12, the central cylinder 13 and the partition are separated. While the processing chamber 14 partitioned by the plate 15 is rotated in a revolving state on the circumference around the rotation axis, a predetermined amount of raw material is charged from the raw material charging chute 31 to the raw material charging port 16, and By supplying a predetermined amount of coolant into the processing chamber 14 by the internal temperature controller 34 and the coolant supply controller 35, the raw material can be cooled or frozen.

冷却材には、原料の種類や冷却温度に応じて適当な冷却材を用いることができ、例えば、液体窒素等の低温液化ガス、低温冷却空気、ドライアイス等を用いることができる。冷却筒18内への冷却材の投入は適宜な手段で行うことができ、例えば、低温液化ガスを用いる場合は、回転ドラム11の一方又は双方の開口部近傍に低温液化ガス供給用配管及び噴射ノズルを設けて冷却筒18内へ低温液化ガスを噴射すればよく、低温冷却空気を用いる場合は、回転ドラム11の出口側から入口側に向けて低温冷却空気を流通させるようにすればよく、ドライアイスを用いる場合は、原料に混合して原料投入シュート31から投入したり、別に設けたドライアイス投入シュートから原料投入口16へ投入したりすることができる。なお、低温液化ガスやドライアイスから気化したガスは、入口側排気ダクト27及び出口側排気ダクト29から安全に排気することができる。   As the coolant, an appropriate coolant can be used according to the type of raw material and the cooling temperature. For example, low-temperature liquefied gas such as liquid nitrogen, low-temperature cooling air, dry ice, or the like can be used. The coolant can be introduced into the cooling cylinder 18 by an appropriate means. For example, when a low-temperature liquefied gas is used, a low-temperature liquefied gas supply pipe and a jet are disposed near one or both openings of the rotary drum 11. A low-temperature liquefied gas may be injected into the cooling cylinder 18 by providing a nozzle. When using low-temperature cooling air, the low-temperature cooling air may be circulated from the outlet side of the rotating drum 11 toward the inlet side. When dry ice is used, it can be mixed with the raw material and charged from the raw material charging chute 31, or can be charged from a separately provided dry ice charging chute to the raw material charging port 16. The gas vaporized from the low temperature liquefied gas or dry ice can be safely exhausted from the inlet side exhaust duct 27 and the outlet side exhaust duct 29.

原料投入シュート31から前記原料投入口16に投入された原料は、冷却筒18の回転に伴って原料投入口16から各処理室14内に適量ずつが分配され、前述のように各処理室14内でスパイラル状の運動をしながら冷却材によって冷却され、製品搬出口17から製品取り出しシュート32を通り、製品として取り出される。   An appropriate amount of the raw material charged from the raw material charging chute 31 to the raw material charging port 16 is distributed from the raw material charging port 16 into each processing chamber 14 as the cooling cylinder 18 rotates. The product is cooled by a coolant while moving in a spiral shape, and is taken out as a product through a product takeout chute 32 from a product carry-out port 17.

冷却中の原料は、処理室14の回転(公転)に伴い、前述のように、処理室14を区画する回転筒12の内面、中心筒13の外面及び前後の仕切板15の表面に沿って移動するとともに、各面が交わる隅角部で反転乃至回転する動きが加わり、処理室14の内面全体を効果的に利用して原料をスパイラル状に移動させながら冷却して出口側に搬送するため、従来に比べて原料の運動量が大きくなり、原料が効率よく冷却され、さらには、凍結するまでに移動する距離(以下、凍結距離という。)を伸ばすことができる。   As described above, the raw material being cooled moves along the inner surface of the rotating cylinder 12, the outer surface of the central cylinder 13, and the front and rear partition plates 15 that define the processing chamber 14 as the processing chamber 14 rotates (revolves). In addition to the movement, a reversal or rotation motion is added at the corners where each surface intersects, and the entire inner surface of the processing chamber 14 is effectively used to cool the material while moving it spirally and transport it to the outlet side. The momentum of the raw material is increased as compared with the conventional case, the raw material is efficiently cooled, and the distance traveled before freezing (hereinafter referred to as the freezing distance) can be extended.

したがって、原料を冷却する際、特に凍結する際の冷却効率を大幅に高めることができ、原料の表面凍結が促進され、均一な冷却処理・凍結処理が可能となる。さらに、冷却効率が高くなることから、従来に比べて処理能力も大きくなり、冷却筒18の長さを短くすることができ、装置の小型化や低価格化を図りながら高性能の冷却装置を提供することができる。   Therefore, when the raw material is cooled, the cooling efficiency, particularly when it is frozen, can be greatly increased, the surface freezing of the raw material is promoted, and a uniform cooling treatment / freezing treatment is possible. Furthermore, since the cooling efficiency is increased, the processing capacity is increased as compared with the conventional one, the length of the cooling cylinder 18 can be shortened, and a high-performance cooling device can be achieved while reducing the size and price of the device. Can be provided.

また、表面凍結が促進されるため、表面の水分が多い剥きえび、桜えび、しらす等を原料とする場合でも、処理室14の各面への原料の付着を防止することができ、このような水分の多い原料でもバラ凍結を容易かつ確実に行うことができる。さらに、原料が滑らかで穏やかなスパイラル状の運動をしながら冷却されるため、練りとこねによって餅状になることはなく、品質が劣化することもない。   In addition, since surface freezing is promoted, even when peeled shrimp, cherry shrimp, shirasu, etc., with a large amount of moisture on the surface are used as raw materials, adhesion of the raw materials to each surface of the processing chamber 14 can be prevented. Rose freezing can be performed easily and reliably even with raw materials with high moisture content. Furthermore, since the raw material is cooled while moving in a smooth and gentle spiral shape, it does not become cocoon-like by kneading and kneading, and the quality does not deteriorate.

また、冷却筒18の回転数は、原料の種類、冷却筒18の大きさや処理室14の区画数等の条件に応じて任意に設定することができるが、一般に、冷却筒18の回転数を遅くすると、各処理室14内における原料の滞留時間が長くなるため、凍結能力を高めることができ、回転数を速くすると、各処理室14の内面への原料の付着を防止し、バラ状に冷却、凍結することが容易となる。したがって、回転数制御機構36を設けて冷却筒18の回転数を調整可能としておくことにより、各種原料の冷却処理、凍結処理に対応することができる。   The rotation speed of the cooling cylinder 18 can be arbitrarily set according to conditions such as the type of raw material, the size of the cooling cylinder 18 and the number of compartments of the processing chamber 14. When it is slow, the residence time of the raw material in each processing chamber 14 becomes long, so that the freezing capacity can be increased. When the rotational speed is increased, the raw material is prevented from adhering to the inner surface of each processing chamber 14 and is shaped like a rose. It becomes easy to cool and freeze. Therefore, by providing the rotation speed control mechanism 36 so that the rotation speed of the cooling cylinder 18 can be adjusted, it is possible to cope with cooling processing and freezing processing of various raw materials.

さらに、回転ドラム11、回転筒12、仕切板15を備えた中心筒13を容易に着脱できる構造の取付手段でそれぞれ固定しておくことにより、処理後にこれらを分解して個別に清掃することが可能となり、各部の清掃作業を容易かつ確実に行うことができる。   Furthermore, by fixing the rotating cylinder 11, the rotating cylinder 12, and the central cylinder 13 provided with the partition plate 15 with attachment means having a structure that can be easily attached and detached, these can be disassembled and cleaned individually after processing. It becomes possible, and the cleaning work of each part can be performed easily and reliably.

なお、前記処理室14の内面を、前記原料投入口16側から前記製品搬出口17側に向かって拡開するテーパ面とする手段として、本形態例では、回転筒12の内面及び中心筒13の外面をそれぞれテーパ面とする手段を採用したが、これらに加えて、仕切板15の原料投入口16側を厚く、製品搬出口17側を薄くしたウエッジ状に形成し、仕切板15の一面又は両面をテーパ面とすることもできる。また、回転筒12、中心筒13及び仕切板15の少なくとも一つの面をテーパ面とすることにより、処理室14の内面を出口側に向かって拡開するテーパ面とすることができる。   In this embodiment, the inner surface of the rotating chamber 12 and the central tube 13 are used as means for making the inner surface of the processing chamber 14 a tapered surface that expands from the raw material inlet 16 side toward the product outlet 17 side. In addition to these, means for making each outer surface tapered is formed into a wedge shape in which the raw material inlet 16 side of the partition plate 15 is thick and the product carry-out port 17 side is thin. Alternatively, both surfaces can be tapered. Further, by forming at least one surface of the rotating cylinder 12, the central cylinder 13 and the partition plate 15 as a tapered surface, the inner surface of the processing chamber 14 can be a tapered surface that expands toward the outlet side.

図7乃至図9は、前記冷却筒の他の形態例を示す断面図である。まず、図7に示す冷却筒18aでは、中心筒13を断面正六角形状に形成するとともに、6箇所の各頂点に径方向の6枚の仕切板15の内端縁をそれぞれ接続することにより、回転筒12の内面と中心筒13の外面との間に形成される環状の空間を周方向の6個の処理室14に区画している。   7 to 9 are cross-sectional views showing other embodiments of the cooling cylinder. First, in the cooling cylinder 18a shown in FIG. 7, the central cylinder 13 is formed in a regular hexagonal cross section, and the inner edges of the six partition plates 15 in the radial direction are respectively connected to the six apexes, An annular space formed between the inner surface of the rotating cylinder 12 and the outer surface of the central cylinder 13 is divided into six processing chambers 14 in the circumferential direction.

また、図8に示す冷却筒18bでは、中心筒13を断面正方形状に形成するとともに、4箇所の各頂点に径方向の4枚の仕切板15の内端縁をそれぞれ接続することにより、回転筒12の内面と中心筒13の外面との間に形成される環状の空間を周方向の4個の処理室14に区画している。さらに、図9に示す冷却筒18cでは、中心筒13を断面円形状に形成するとともに、中心筒13の外周に等間隔(90度間隔)で径方向の4枚の仕切板15の内端縁をそれぞれ接続することにより、図8の場合と同様に、回転筒12の内面と中心筒13の外面との間に形成される環状の空間を周方向の4個の処理室14に区画している。   Further, in the cooling cylinder 18b shown in FIG. 8, the central cylinder 13 is formed in a square cross section, and the inner end edges of the four partition plates 15 in the radial direction are respectively connected to the four apexes. An annular space formed between the inner surface of the cylinder 12 and the outer surface of the central cylinder 13 is partitioned into four processing chambers 14 in the circumferential direction. Further, in the cooling cylinder 18c shown in FIG. 9, the central cylinder 13 is formed in a circular cross section, and the inner edges of the four partition plates 15 in the radial direction at equal intervals (90 degree intervals) on the outer periphery of the central cylinder 13 As shown in FIG. 8, the annular space formed between the inner surface of the rotating cylinder 12 and the outer surface of the central cylinder 13 is partitioned into four processing chambers 14 in the circumferential direction. Yes.

このように、中心筒13の形状、仕切板15の枚数は、任意に選択することができ、回転筒12が同程度の大きさの場合は、仕切板15の枚数を多くするほどサイズの小さな処理室14を多く形成することができる。同程度の大きさの原料を処理する場合、比較的小さな処理室14を比較的多く形成することによってスパイラル状の運動が滑らかになり、原料の細分化(バラ化)や処理量の増大が図れる。一方、比較的大きな処理室14を比較的少なく形成することによって処理室14内での原料の凍結距離を長くすることができ、凍結能力が増大するとともに、均一な処理が可能となる。したがって、原料の性状に応じて仕切板15の枚数、すなわち処理室14の区画数を適宜設定することにより、最適な状態で原料の冷却処理、凍結処理、バラ化を行うことができる。   As described above, the shape of the center tube 13 and the number of partition plates 15 can be arbitrarily selected. When the rotary tube 12 has the same size, the smaller the number of partition plates 15, the smaller the size. Many processing chambers 14 can be formed. When processing raw materials of the same size, by forming a relatively large number of relatively small processing chambers 14, the spiral motion becomes smooth, and the material can be subdivided (separated) and the amount of processing can be increased. . On the other hand, by forming a relatively large number of processing chambers 14 in a relatively small amount, the freezing distance of the raw material in the processing chamber 14 can be increased, the freezing capacity is increased, and uniform processing is possible. Therefore, by appropriately setting the number of partition plates 15 according to the properties of the raw material, that is, the number of compartments of the processing chamber 14, the raw material can be cooled, frozen, and separated in an optimal state.

また、中心筒13の外面形状は、前述のように、前記形態例や図7、図8に示すような平面状、図9に示すような曲面状のいずれでもよく、原料の特性や冷却筒18の回転数等によっても異なるが、一般的に、曲面状よりも平面状の方が滑らかなスパイラル状の運動を得やすく、凍結距離を伸ばしやすい点で好ましい。また、断面正六角形状の中心筒13の6個の頂点の一つおきに3枚の仕切板15を設けるような形態も可能であり、回転筒12の断面形状も、中心筒13と同様の多角形構造とすることが可能である。   Further, as described above, the outer surface shape of the center tube 13 may be any of the above-described embodiment, a planar shape as shown in FIGS. 7 and 8, and a curved surface shape as shown in FIG. Although it varies depending on the number of rotations of 18 or the like, generally, a flat surface is preferable to a curved surface because it is easy to obtain a smooth spiral motion and to easily increase the freezing distance. In addition, a configuration in which three partition plates 15 are provided at every other six apexes of the center cylinder 13 having a regular hexagonal cross section is possible, and the cross-sectional shape of the rotary cylinder 12 is the same as that of the center cylinder 13. It can be a polygonal structure.

図10は、本発明の回転式冷却装置の第2形態例を示す要部の断面正面図である。本形態例に示す回転式冷却装置は、一つの回転ドラム11の内部に、前記同様に形成した2個の冷却筒51,61を、製品入口側から製品出口側に向かって直列に配列した多段式の回転式冷却装置である。   FIG. 10 is a cross-sectional front view of an essential part showing a second embodiment of the rotary cooling device of the present invention. The rotary cooling device shown in the present embodiment is a multi-stage in which two cooling cylinders 51 and 61 formed in the same manner as described above are arranged in series inside a single rotating drum 11 from the product inlet side to the product outlet side. This is a rotary cooling device of the type.

製品入口側に配置された前段側冷却筒51の製品搬出口52には、該製品搬出口52から搬出される一次冷却品を、製品出口側に配置された後段側冷却筒61の製品原料投入口62に投入するためのガイド部材71が設けられている。このガイド部材71は、前段側冷却筒51の中心筒53の出口部外径より大きな内径を有し、後段側冷却筒61の製品原料投入口62の内径より小さな外径を有する筒状部72と、該筒状部72の製品入口側端部と前段側冷却筒51の回転筒54の出口端とを接続するフランジ部73とを有している。また、前段側冷却筒51の中心筒53の出口側には、回転筒54の出口端から前記筒状部72内に突出する突出部53aが設けられている。   At the product outlet 52 of the front stage cooling cylinder 51 arranged on the product inlet side, the primary cooling product carried out from the product outlet 52 is charged with the product raw material of the rear stage cooling cylinder 61 arranged on the product outlet side. A guide member 71 for feeding into the mouth 62 is provided. The guide member 71 has an inner diameter larger than the outer diameter of the outlet portion of the central cylinder 53 of the front-side cooling cylinder 51 and has an outer diameter smaller than the inner diameter of the product raw material inlet 62 of the rear-stage cooling cylinder 61. And a flange portion 73 that connects the end portion on the product inlet side of the cylindrical portion 72 and the outlet end of the rotating tube 54 of the pre-stage side cooling tube 51. Further, a protruding portion 53 a that protrudes into the cylindrical portion 72 from the outlet end of the rotating tube 54 is provided on the outlet side of the central tube 53 of the front-side cooling tube 51.

原料は、まず、前段側冷却筒51内に投入され、該前段側冷却筒51の回転筒54、中心筒53及び仕切板55によって区画された各処理室内で冷却材によって一次冷却された後、中心筒53の突出部53aと前記ガイド部材71とによって製品搬出口52から後段側冷却筒61の製品原料投入口62にガイドされ、後段側冷却筒61の回転筒63、中心筒64及び仕切板65によって区画された各処理室内で冷却材によって二次冷却され、冷却筒61の製品搬出口66から搬出される。   The raw material is first charged into the front-side cooling cylinder 51, and after being primarily cooled by the coolant in each processing chamber partitioned by the rotating cylinder 54, the central cylinder 53, and the partition plate 55 of the front-stage cooling cylinder 51, The product 53 is guided by the projecting portion 53a of the central cylinder 53 and the guide member 71 to the product raw material inlet 62 of the rear-stage side cooling cylinder 61, and the rotating cylinder 63, the central cylinder 64 and the partition plate of the rear-stage side cooling cylinder 61 are guided. Secondary cooling is performed by the coolant in each processing chamber partitioned by 65, and is carried out from the product outlet 66 of the cooling cylinder 61.

このようにして前段側冷却筒51及び後段側冷却筒61の両者によって多段冷却する場合、特に、多段冷却によって原料を凍結させる場合は、前段側冷却筒51及び後段側冷却筒61におけるそれぞれの処理室の区画数やテーパ面の角度を処理状態に応じて適切に設定することにより、原料の凍結効率を更に向上させることができる。例えば、前段側冷却筒51における回転筒54の内面のテーパを、後段側冷却筒61における回転筒63の内面のテーパより大きく設定することにより、前段側冷却筒51では、原料の移動が促進されて表面凍結が進む結果、容易にバラ化することができ、後段側冷却筒61では、原料の滞留時間を長くして均一で確実な凍結処理を行うことができる。すなわち、前段、後段の各冷却筒51,61で機能を分担し、入口側に配置する前段側冷却筒51を冷却用及び表面凍結用に利用し、出口側に配置する後段側冷却筒61を凍結用に利用することにより、原料の凍結処理効率を大幅に向上させることができる。   Thus, when multistage cooling is performed by both the front-stage side cooling cylinder 51 and the rear-stage side cooling cylinder 61, particularly when the raw material is frozen by multistage cooling, the respective processes in the front-stage side cooling cylinder 51 and the rear-stage side cooling cylinder 61 are performed. The freezing efficiency of the raw material can be further improved by appropriately setting the number of compartments and the angle of the tapered surface according to the processing state. For example, by setting the taper of the inner surface of the rotating cylinder 54 in the front stage side cooling cylinder 51 to be larger than the taper of the inner surface of the rotating cylinder 63 in the rear stage side cooling cylinder 61, the movement of the raw material is promoted in the front stage side cooling cylinder 51. As a result of the surface freezing proceeding, it can be easily separated, and in the rear-side cooling cylinder 61, the residence time of the raw material can be lengthened and uniform and reliable freezing treatment can be performed. That is, the front and rear cooling cylinders 51 and 61 share functions, and the front cooling cylinder 51 arranged on the inlet side is used for cooling and surface freezing, and the rear cooling cylinder 61 arranged on the outlet side is used. By using it for freezing, the freezing treatment efficiency of the raw material can be greatly improved.

また、両冷却筒51,61における処理室の区画数を最適化することによっても処理効率を向上させることができる。例えば、前段側冷却筒51には、6枚の仕切板55を用いて比較的小さな処理室を6個形成し、後段側冷却筒61には、4枚の仕切板65を用いて比較的大きな処理室を4個形成することにより、前段側冷却筒51では処理室が多いので原料の分散効果が高くなり、表面凍結を促進させてバラ状に分散させた状態にすることができ、後段側冷却筒61では、処理室が大きいので移動量が多くなり、均一で確実な凍結処理を行うことができる。   In addition, the processing efficiency can be improved by optimizing the number of processing chamber sections in both cooling cylinders 51 and 61. For example, the front-stage cooling cylinder 51 is formed with six relatively small processing chambers using six partition plates 55, and the rear-stage cooling cylinder 61 is relatively large using four partition plates 65. By forming four processing chambers, the upstream cooling cylinder 51 has a large number of processing chambers, so that the effect of dispersing the raw material is enhanced, and the surface freezing can be promoted to be dispersed in a rose shape. In the cooling cylinder 61, since the processing chamber is large, the moving amount increases, and a uniform and reliable freezing process can be performed.

さらに、前段側冷却筒51の製品搬出口52にガイド部材71を設けているので、該ガイド部材71のフランジ部73によって一次冷却品が製品搬出口52からこぼれ落ちることを防止することができる。加えて、ガイド部材71の筒状部72と、該筒状部72の内部に突出させた中心筒53の突出部53aとにより、一次冷却品を前段側冷却筒51から後段側冷却筒61の製品原料投入口62に確実にガイドして出口側に向かって移送することができる。   Furthermore, since the guide member 71 is provided at the product carry-out port 52 of the front-side cooling cylinder 51, the primary cooling product can be prevented from spilling from the product carry-out port 52 by the flange portion 73 of the guide member 71. In addition, the primary cooling product is moved from the front side cooling cylinder 51 to the rear side cooling cylinder 61 by the cylindrical part 72 of the guide member 71 and the protruding part 53a of the central cylinder 53 protruding inside the cylindrical part 72. It can be reliably guided to the product raw material inlet 62 and transferred toward the outlet side.

また、本形態例では、一つの回転ドラム11の内部に複数の冷却筒51,61を設置し、両冷却筒51,61を同じ回転数で回転させているが、回転ドラム11を前後に分割形成し、前段側、後段側の回転ドラムの回転数を個別に制御できるように形成することにより、例えば、前段側回転ドラムの回転数を速くすることにより、原料を分散させるとともに壁面への付着を防止することができ、後段側回転ドラムの回転数を遅くすることにより、原料の滞留時間が長くして原料内部までの確実な冷却、凍結を行うことができる。このように、冷却筒51,61を完全に分割した場合は、前段側冷却筒51を後段側冷却筒61より高い位置に設け、前段側冷却筒51の製品搬出口52に前記形態例と同様の製品取り出しシュートを、後段側冷却筒61の製品原料投入口62に前記形態例と同様の原料投入シュートをそれぞれ設け、両シュートを上下方向に接続することで前記同様のガイド部材とすることができる。   In this embodiment, a plurality of cooling cylinders 51 and 61 are installed inside one rotating drum 11 and both cooling cylinders 51 and 61 are rotated at the same rotational speed. By forming the rotary drum so that the rotational speeds of the front and rear rotary drums can be individually controlled, for example, by increasing the rotational speed of the front rotary drum, the raw material is dispersed and adhered to the wall surface. By slowing down the number of rotations of the rear-side rotating drum, the residence time of the raw material can be lengthened, and reliable cooling and freezing to the inside of the raw material can be performed. As described above, when the cooling cylinders 51 and 61 are completely divided, the front-side cooling cylinder 51 is provided at a position higher than the rear-stage cooling cylinder 61, and the product carry-out port 52 of the front-stage cooling cylinder 51 is the same as the above-described embodiment. The product takeout chute of the above is provided with the same raw material input chute as that of the above-mentioned embodiment at the product raw material input port 62 of the rear cooling cylinder 61, and both the chutes are connected in the vertical direction to form the same guide member. it can.

実施例1
第1形態例で示したように、処理室14を3区画設けた構造の回転式冷却装置を使用して凍結処理を行った。回転筒12は、長さが650mm、原料投入口16の内径が200mm、製品搬出口17の内径が230mmであり、中心筒13は、長さが510mm、原料投入口16側の外接円の直径が800mm、製品搬出口17側の外接円の直径が60mmであり、いずれも網板により形成したテーパ筒となっている。冷却筒18の回転数は毎分13回転とし、冷却材には液体窒素を使用し、温度は−60℃に設定した。
Example 1
As shown in the first embodiment, the freezing process was performed using a rotary cooling device having a structure in which three processing chambers 14 were provided. The rotating cylinder 12 has a length of 650 mm, the raw material inlet 16 has an inner diameter of 200 mm, and the product outlet 17 has an inner diameter of 230 mm. The central cylinder 13 has a length of 510 mm and the diameter of the circumscribed circle on the raw material inlet 16 side. Is 800 mm, the diameter of the circumscribed circle on the side of the product outlet 17 is 60 mm, and both are tapered cylinders formed of a mesh plate. The number of rotations of the cooling cylinder 18 was 13 rotations per minute, liquid nitrogen was used as the coolant, and the temperature was set to -60 ° C.

原料投入シュート31から「しらす」を毎分500gで投入した。投入から搬出までの処理時間は約3分であり、製品搬出口17からは、均一にバラ凍結された冷凍しらすを得ることができた。練りとこねによる品質劣化は認められず、凍結状態も非常に良好であった。1時間連続運転後にしらすの投入を停止し、冷却筒18の内部状態を観察したが、処理室内面への凍結物の付着はほとんど見られなかった。   “Shirasu” was charged from the raw material charging chute 31 at 500 g per minute. The processing time from loading to unloading was about 3 minutes, and from the product unloading port 17, a frozen shirasu that was uniformly loose-frozen could be obtained. Quality deterioration due to kneading and kneading was not recognized, and the frozen state was also very good. Shirasu was stopped after 1 hour of continuous operation, and the internal state of the cooling cylinder 18 was observed, but there was almost no adhesion of frozen material to the inside of the processing chamber.

同じ条件で、前記しらすに代えて桜えびを毎分500gで投入したところ、約2.5分の処理時間で均一にバラ凍結された冷凍桜えびを長時間連続して得ることができた。さらに、同じ条件で剥きえびを毎分500gで投入したところ、約3分の処理時間で均一にバラ凍結された冷凍剥きえびを長時間連続して得ることができた。   Under the same conditions, instead of the shirasu, sakura shrimp was added at a rate of 500 g / min. As a result, frozen cherry lobster that was uniformly frozen in a processing time of about 2.5 minutes could be obtained continuously for a long time. Furthermore, when the peeled shrimp was added at 500 g / min under the same conditions, a frozen peeled shrimp that was uniformly frozen in a processing time of about 3 minutes could be obtained continuously for a long time.

比較例1
実施例1において、冷却筒18の中心筒13及び仕切板15を取り外し、回転筒12のみを用いて同じ条件で凍結処理を行った。その結果、しらすに関しては、投入量を毎分100gに減らすことにより、約9分の処理時間でバラ凍結された冷凍しらすを得ることができたが、処理開始から10分程度経過した頃から回転筒内面にしらすが少しずつ付着し始め、次第に十分なバラ化を行うことができなくなり、長時間の連続運転は不可能であった。また、桜えび及び剥きえびについては、処理開始直後から回転筒内面への付着が発生し、バラ凍結を行うことができなかった。
Comparative Example 1
In Example 1, the center tube 13 and the partition plate 15 of the cooling tube 18 were removed, and the freezing process was performed under the same conditions using only the rotating tube 12. As a result, with regard to shirasu, it was possible to obtain frozen shirasu that was loose-frozen in a processing time of about 9 minutes by reducing the input amount to 100 g per minute, but it started rotating about 10 minutes after the start of processing. Although it began to adhere to the inner surface of the cylinder little by little, it was not possible to perform sufficient gradation, and continuous operation for a long time was impossible. Further, with regard to cherry shrimp and peeled shrimp, adhesion to the inner surface of the rotating cylinder occurred immediately after the start of processing, and it was not possible to freeze the shrimp.

実施例2
実施例1と同じ回転式冷却装置を使用し、冷却筒18の回転数を毎分15回転、温度を−80℃に設定した。しらすを毎分500gで投入したところ、約2分の処理時間で均一にバラ凍結された冷凍しらすを得ることができた。また、処理室内面への凍結物の付着はほとんど見られなかった。同様に、桜えびを毎分500gで投入したところ、約1分の処理時間で均一にバラ凍結された冷凍桜えびを得ることができた。さらに、剥きえびを毎分500gで投入したところ、約1.5分の処理時間で均一にバラ凍結された冷凍剥きえびを得ることができた。
Example 2
The same rotary cooling device as in Example 1 was used, the number of rotations of the cooling cylinder 18 was set to 15 rotations per minute, and the temperature was set to -80 ° C. When shirasu was added at a rate of 500 g per minute, it was possible to obtain frozen shirasu that was uniformly frozen in about 2 minutes. Moreover, the adhesion of the frozen substance to the processing chamber inner surface was hardly seen. Similarly, when cherry shrimp was added at a rate of 500 g per minute, frozen cherry shrimp that had been uniformly frozen in about 1 minute could be obtained. Furthermore, when the peeled shrimp was added at a rate of 500 g per minute, it was possible to obtain a frozen peeled shrimp that was uniformly frozen in a processing time of about 1.5 minutes.

実施例3
実施例1と同じ回転式冷却装置を使用し、冷却筒18の回転数を毎分17回転、温度を−110℃に設定した。しらすを毎分500gで投入したところ、約1分の処理時間で均一にバラ凍結された冷凍しらすを得ることができた。また、処理室内面への凍結物の付着はほとんど見られなかった。同様に、桜えびを毎分500gで投入したところ、約1分の処理時間で均一にバラ凍結された冷凍桜えびを得ることができた。さらに、剥きえびを毎分500gで投入したところ、約1分の処理時間で均一にバラ凍結された冷凍剥きえびを得ることができた。
Example 3
The same rotary cooling device as in Example 1 was used, the number of rotations of the cooling cylinder 18 was set to 17 rotations per minute, and the temperature was set to -110 ° C. When shirasu was added at a rate of 500 g per minute, it was possible to obtain frozen shirasu that was uniformly frozen in about 1 minute. Moreover, the adhesion of the frozen substance to the processing chamber inner surface was hardly seen. Similarly, when cherry shrimp was added at a rate of 500 g per minute, frozen cherry shrimp that had been uniformly frozen in about 1 minute could be obtained. Further, when the peeled shrimp was added at a rate of 500 g per minute, it was possible to obtain a frozen peeled shrimp that was uniformly frozen in a processing time of about 1 minute.

比較例2
冷却筒18に代えて、長さ650mm、内径220mmの円筒型(直胴型)の筒を使用して実施例1〜3と同様の条件で凍結処理を行った。なお、筒の出口側を15mm下げることにより、筒下面の傾斜を冷却筒18の下面の傾斜と同一になるようにした。回転数を毎分13回転、温度を−60℃に設定してしらすを毎分500gで投入したが、十分なバラ凍結を行うことはできず、筒内面への凍結物の付着も発生した。
Comparative Example 2
A freezing process was performed under the same conditions as in Examples 1 to 3 using a cylindrical (straight barrel) cylinder having a length of 650 mm and an inner diameter of 220 mm instead of the cooling cylinder 18. In addition, the inclination of the bottom surface of the cylinder was made to be the same as the inclination of the bottom surface of the cooling cylinder 18 by lowering the outlet side of the cylinder by 15 mm. Although the rotation speed was set to 13 rotations per minute and the temperature was set to −60 ° C., the shirasu was charged at 500 g per minute, but sufficient rose freezing could not be performed, and the attachment of frozen material to the inner surface of the cylinder also occurred.

比較例3
比較例2における筒を、長さ2000mmのものに代え、筒の出口側に向かって5度の下り勾配とし、回転数を毎分13回転、温度を−60℃に設定して凍結処理を行った。しらすを毎分500gで投入したところ、約9分の処理時間でバラ凍結された冷凍しらすを得ることができた。しかし、得られた冷凍しらすは、その一部に、壁面とのこすれやしらす同士の接触によると思われる折れ及び欠損が発生していた。また、筒内面への凍結物の付着により、数十分程度で凍結処理を中止せざるを得なかった。
Comparative Example 3
The cylinder in Comparative Example 2 was replaced with the one having a length of 2000 mm, and the freezing treatment was performed with a downward gradient of 5 degrees toward the outlet side of the cylinder, the rotation speed set to 13 revolutions per minute, and the temperature set to −60 ° C. It was. When shirasu was added at a rate of 500 g per minute, it was possible to obtain frozen shirasu that had been frozen in about 9 minutes. However, the obtained frozen shirasu was partially broken and broken due to rubbing with the wall surface and contact between the shirasu. Also, due to the adherence of frozen material to the inner surface of the cylinder, the freezing process had to be stopped in about several tens of minutes.

比較例4
比較例3の筒の内面に前記特許文献2に記載されたようなブレードを45度間隔で8枚設けた筒(回転翼は無し。)を使用して凍結処理を行った。しらすの場合にはある程度の凍結処理は可能であったが、折れや欠損だけでなく、ブレードから落下する際の衝撃による練りやこねに起因すると思われる品質劣化が見られた。また、比較例3と同様に、筒内面やブレードに凍結物が大量に付着したため、短時間で凍結処理を中止した。特に、表面水分の多い桜えびやむきえびの場合には、回転数や温度を調整しても、運転開始直後から筒内面やブレードにこれらが凍結して付着し、バラ凍結を行うことができなかった。
Comparative Example 4
Freezing treatment was performed using a cylinder (no rotor blades) in which eight blades as described in Patent Document 2 were provided at 45 ° intervals on the inner surface of the cylinder of Comparative Example 3. In the case of shirasu, freezing treatment to some extent was possible, but not only breakage and chipping, but also quality degradation thought to be caused by kneading and kneading due to impact when falling from the blade was observed. In addition, as in Comparative Example 3, a large amount of frozen material adhered to the inner surface of the cylinder and the blade, so the freezing process was stopped in a short time. In particular, in the case of cherry shrimp and peeled shrimp with a lot of surface moisture, even if the number of rotations and temperature were adjusted, they freeze and adhered to the inner surface of the cylinder and the blade immediately after the start of operation, and the rose could not be frozen. .

なお、本発明の回転式冷却装置は、前述のように、表面の水分が多い剥きえび、桜えび、しらす等を冷却して凍結する処理に最適であるが、サバやアジ等の比較的大きな原料においても、処理室の大きさや冷却筒の回転数を適宜設定し、各処理室内にサバやアジ等の適当量を投入することで一匹単位で凍結させることができ、このような単体凍結にも用いることができる。また、凍結処理に限らず、例えば、炊飯後の高温の飯や釜揚げ後の高温のしらす、桜えび等を原料として適当な温度の冷却材を使用することにより、飯やしらす等を20〜40℃程度に冷却するような冷却処理にも用いることができる。さらに、冷却筒への原料の投入は、原料の種類に応じて適当な手段を用いることができ、例えば、コンベヤ等を用いることができる。   In addition, as described above, the rotary cooling device of the present invention is optimal for the process of cooling and freezing peeled shrimp, cherry shrimp, shirasu, etc. with a large amount of moisture on the surface, but relatively large raw materials such as mackerel and mackerel In addition, the size of the processing chamber and the number of rotations of the cooling cylinder can be set as appropriate, and freezing can be performed in units of one by putting an appropriate amount of mackerel, horse mackerel, etc. into each processing chamber. Can also be used. Moreover, it is not limited to freezing treatment, for example, by using a high temperature rice after cooking, high temperature shirasu after cooking, sakura shrimp or the like as a raw material, a rice or white shirasu or the like is used for 20-40 It can also be used for a cooling process such as cooling to about ° C. Furthermore, the raw material can be charged into the cooling cylinder by using an appropriate means depending on the type of the raw material, for example, a conveyor or the like.

本発明の回転式冷却装置の第1形態例を示す概略正面図である。It is a schematic front view which shows the 1st example of a rotary cooling device of this invention. 同じく概略断面側面図である。It is a schematic sectional side view similarly. 同じく要部の断面正面図である。It is a cross-sectional front view of the principal part. 図3のIV−IV断面図である。It is IV-IV sectional drawing of FIG. 処理室内の原料の移動状態を説明する断面側面図である。It is a cross-sectional side view explaining the movement state of the raw material in a process chamber. 処理室内の原料の移動状態を説明する斜視図である。It is a perspective view explaining the movement state of the raw material in a process chamber. 6個の処理室を設けた冷却筒の一形態例を示す断面図である。It is sectional drawing which shows one example of a cooling cylinder provided with six process chambers. 4個の処理室を設けた冷却筒の一形態例を示す断面図である。It is sectional drawing which shows one example of the cooling cylinder which provided the four process chambers. 4個の処理室を設けた冷却筒の他の形態例を示す断面図である。It is sectional drawing which shows the other example of a cooling cylinder which provided the four process chambers. 本発明の回転式冷却装置の第2形態例を示す概略正面図である。It is a schematic front view which shows the 2nd example of a rotary cooling device of this invention. 従来の回転式冷却凍結装置の一例を示す側面図である。It is a side view which shows an example of the conventional rotary cooling freezing apparatus.

符号の説明Explanation of symbols

11…回転ドラム、12…回転筒、13…中心筒、14…処理室、15…仕切板、16…原料投入口、17…製品搬出口、18…冷却筒、19…断熱材、21…架台、22…支持部材、23…スプロケット部、24…駆動用モータ、25…駆動用チェーン、26…入口用排気ブロア、27…入口側排気ダクト、28…出口用排気ブロア、29…出口側排気ダクト、31…原料投入シュート、32…製品取り出しシュート、33…庫内温度表示器、34…庫内温度調節器、35…冷却材供給制御器、36…回転数制御機構、37…回転動力盤、38…取付金具、51…前段側冷却筒、52…製品搬出口、53…中心筒、53a…突出部、54…回転筒、55…仕切板、61…後段側冷却筒、62…製品原料投入口、63…回転筒、64…中心筒、65…仕切板、66…製品搬出口、71…ガイド部材、72…筒状部、73…フランジ部   DESCRIPTION OF SYMBOLS 11 ... Rotating drum, 12 ... Rotating cylinder, 13 ... Center cylinder, 14 ... Processing chamber, 15 ... Partition plate, 16 ... Raw material inlet, 17 ... Product outlet, 18 ... Cooling cylinder, 19 ... Heat insulating material, 21 ... Mount , 22 ... support member, 23 ... sprocket part, 24 ... drive motor, 25 ... drive chain, 26 ... inlet exhaust blower, 27 ... inlet exhaust duct, 28 ... outlet exhaust blower, 29 ... outlet exhaust duct 31 ... Raw material charging chute, 32 ... Product takeout chute, 33 ... Inside temperature indicator, 34 ... Inside temperature controller, 35 ... Coolant supply controller, 36 ... Revolution control mechanism, 37 ... Rotation power panel, 38 ... Mounting bracket, 51 ... Preliminary side cooling cylinder, 52 ... Product outlet, 53 ... Center cylinder, 53a ... Projection, 54 ... Rotating cylinder, 55 ... Partition plate, 61 ... Rear side cooling cylinder, 62 ... Product raw material input Mouth, 63 ... rotating cylinder, 64 ... central cylinder 65 ... partition plate, 66 ... product unloading opening, 71 ... guide member, 72 ... cylindrical part, 73 ... flange portion

Claims (7)

回転軸が水平方向の回転筒と、該回転筒の回転軸部に配設された中心筒と、前記回転筒の内面と前記中心筒の外面との間を連結して前記回転筒と前記中心筒とを一体化するとともに、前記回転筒の内面と前記中心筒の外面との間に形成される環状の空間を周方向の複数の処理室に区画する径方向の複数の仕切板と、前記回転筒の一端に設けられた原料投入口及び他端に設けられた製品搬出口とを備えた冷却筒を有し、前記原料投入口に投入された原料を前記各処理室内に分配してそれぞれ冷却し、冷却後の製品を前記製品搬出口から搬出する回転式冷却装置であって、前記処理室の内面を、前記原料投入口側から前記製品搬出口側に向かって拡開するテーパ面としたことを特徴とする回転式冷却装置。   A rotating cylinder having a rotating shaft in a horizontal direction, a center cylinder disposed at a rotating shaft portion of the rotating cylinder, and an inner surface of the rotating cylinder and an outer surface of the central cylinder connected to each other to connect the rotating cylinder and the center A plurality of radial partition plates that integrate a cylinder and partition an annular space formed between an inner surface of the rotating cylinder and an outer surface of the central cylinder into a plurality of circumferential processing chambers; A cooling cylinder having a raw material inlet provided at one end of the rotary cylinder and a product outlet provided at the other end, each of the raw materials charged into the raw material inlet being distributed into the processing chambers, respectively. A rotary cooling device for cooling and carrying out the cooled product from the product carry-out port, wherein the inner surface of the processing chamber is widened from the raw material inlet side toward the product carry-out side; A rotary cooling device characterized by that. 前記回転筒の内面は、前記原料投入口側から前記製品搬出口側に向かって拡開するテーパ面となっていることを特徴とする請求項1記載の回転式冷却装置。   The rotary cooling device according to claim 1, wherein an inner surface of the rotary cylinder is a tapered surface that expands from the raw material inlet side toward the product carry-out port side. 前記中心筒の外面は、前記原料投入口側から前記製品搬出口側に向かって縮小するテーパ面となっていることを特徴とする請求項1又は2記載の回転式冷却装置。   The rotary cooling device according to claim 1 or 2, wherein an outer surface of the central cylinder is a tapered surface that decreases from the raw material inlet side toward the product outlet side. 前記冷却筒を原料入口側から製品出口側に向かって複数を直列に配列するとともに、原料入口側に配置された冷却筒の前記製品搬出口から搬出される一次冷却品を、製品出口側に配置された冷却筒の製品原料投入口に投入するためのガイド部材を備えていることを特徴とする請求項1乃至3のいずれか1項記載の回転式冷却装置。 A plurality of the cooling cylinders are arranged in series from the raw material inlet side to the product outlet side, and a primary cooling product carried out from the product outlet of the cooling cylinder arranged on the raw material inlet side is arranged on the product outlet side. The rotary cooling device according to any one of claims 1 to 3, further comprising a guide member for feeding into a product raw material inlet of the cooled cylinder. 前記原料入口側に配置された冷却筒における処理室のテーパ面の角度は、前記製品出口側に配置された冷却筒における処理室のテーパ面の角度より大きく形成されていることを特徴とする請求項4記載の回転式冷却装置。   The angle of the tapered surface of the processing chamber in the cooling cylinder arranged on the raw material inlet side is formed larger than the angle of the tapered surface of the processing chamber in the cooling cylinder arranged on the product outlet side. Item 5. The rotary cooling device according to Item 4. 前記原料入口側に配置された冷却筒における処理室の区画数は、前記製品出口側に配置された冷却筒における処理室の区画数より多く形成されていることを特徴とする請求項4又は5記載の回転式冷却装置。   The number of processing chamber sections in the cooling cylinder disposed on the raw material inlet side is formed to be larger than the number of processing chamber sections in the cooling cylinder disposed on the product outlet side. The rotary cooling device as described. 前記原料入口側に配置された冷却筒の回転数は、前記製品出口側に配置された冷却筒の回転数より速く設定されていることを特徴とする請求項4乃至6のいずれか1項記載の回転式冷却装置。   The rotation speed of the cooling cylinder arrange | positioned at the said raw material inlet side is set faster than the rotation speed of the cooling cylinder arrange | positioned at the said product outlet side, The any one of Claim 4 thru | or 6 characterized by the above-mentioned. Rotary cooling system.
JP2008225788A 2008-01-17 2008-09-03 Rotary cooling device Expired - Fee Related JP4248601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225788A JP4248601B1 (en) 2008-01-17 2008-09-03 Rotary cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008007624 2008-01-17
JP2008225788A JP4248601B1 (en) 2008-01-17 2008-09-03 Rotary cooling device

Publications (2)

Publication Number Publication Date
JP4248601B1 true JP4248601B1 (en) 2009-04-02
JP2009189363A JP2009189363A (en) 2009-08-27

Family

ID=40612090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225788A Expired - Fee Related JP4248601B1 (en) 2008-01-17 2008-09-03 Rotary cooling device

Country Status (1)

Country Link
JP (1) JP4248601B1 (en)

Also Published As

Publication number Publication date
JP2009189363A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US5456091A (en) Water agitation cooler
JP6243593B2 (en) Quenching equipment
JP4248601B1 (en) Rotary cooling device
US4086369A (en) Process for freezing cooked rice
JP4251514B2 (en) Method and apparatus for producing loose frozen food
JP2020157217A (en) Scattering apparatus, and catalyst loading apparatus
US4022600A (en) Apparatus for freezing cooked rice
JP5021785B2 (en) Frozen cooked rice production apparatus and frozen cooked rice production method
JP2007152224A (en) Granular material treatment apparatus and baffle device
JPH0144304B2 (en)
JP3163821U (en) Garbage fermentation processing equipment
JP2009296982A (en) Food processing apparatus, and method for processing food
RU2649379C1 (en) Drum dryer
US2174896A (en) Aerating apparatus
JPS622229B2 (en)
KR20110121429A (en) Rotary dry machine including double drum
JPH10281621A (en) Cylindrical type flow freezing equipment
CN218210914U (en) Powder cooling device
JP3762832B2 (en) Method and apparatus for freezing and granulating cooked rice
JPH10151071A (en) Rice cooking processor
CN109579409A (en) A kind of spiral quick-freezing device
JP3782620B2 (en) Freezing equipment for granular food
WO2023085345A1 (en) Cooling drum for freezing particulate, and rotary freezer
CN211041562U (en) Chemical fertilizer cooling device
JPH01265856A (en) Apparatus for preparation of frozen cooked rice of loosened state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080911

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees